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Asymptotic estimates for the parabolic-elliptic

Keller-Segel model in the plane

Introduction

Consider the two-dimensional parabolic-elliptic Keller-Segel system

       ∂u ∂t = ∆u -∇ • (u ∇v) x ∈ R 2 , t > 0 , v = G 2 * u x ∈ R 2 , t > 0 , u(0, x) = n 0 ≥ 0 x ∈ R 2 , (1.1) 
where G 2 denotes the Green function associated to -∆ on R 2 :

G 2 (x) := - 1 2π log |x| , x ∈ R 2 .
The equation for the mass density u is parabolic, while the chemo-attractant density v solves an (elliptic) Poisson equation: -∆v = u. The drift term corresponds to an attractive mean-field nonlinearity, which has attracted lots of attention in mathematical biology in the recent years: see [START_REF] Hillen | A user's guide to PDE models for chemotaxis[END_REF][START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I[END_REF][START_REF]From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II[END_REF][START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Tindall | Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations[END_REF][START_REF] Tindall | Overview of mathematical approaches used to model bacterial chemotaxis. I. The single cell[END_REF] for some recent overviews. According to [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF][START_REF] Dolbeault | Optimal critical mass in the two-dimensional Keller-Segel model in R 2[END_REF][START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF][START_REF] Carrillo | A note on the subcritical two dimensional Keller-Segel system[END_REF], it is known that if

(1.2) n 0 ∈ L 1 + R 2 , (1 + |x| 2 ) dx , n 0 |log n 0 | ∈ L 1 (R 2 ) and M := R 2 n 0 dx < 8 π ,
then there exists a solution u, in the sense of distributions, that is global in time and such that M = R 2 u(t, x) dx is conserved along the evolution in the euclidean space R 2 . There is no non-trivial stationary solution of (1.1) and any solution converges to zero locally as time gets large. In order to study the asymptotic behavior of u, it is convenient to work in self-similar variables. We define R(t) := √ 1 + 2 t, τ (t) := log R(t), and the rescaled functions n and c by u(t, x) := R -2 (t) n τ (t), R -1 (t) x and v(t, x) := c τ (t), R -1 (t) x .

This time-dependent rescaling is the one of the heat equation. We observe that the non-linear term is also invariant under such a rescaling. The rescaled systems reads

       ∂n ∂t = ∆n + ∇ • (n x) -∇ • (n ∇c) x ∈ R 2 , t > 0 , c = G 2 * n x ∈ R 2 , t > 0 , n(0, x) = n 0 ≥ 0 x ∈ R 2 .
(1.3)

Under Assumptions (1.2), it has been shown in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF]Theorem 1.2] that there exists a solution n ∈ C 0 (0, ∞; L 1 (R 2 ))∩L ∞ loc (0, ∞; L p (R 2 )) for any p ∈ (1, ∞) (also see [START_REF] Dolbeault | Optimal critical mass in the two-dimensional Keller-Segel model in R 2[END_REF] for a priori estimates) such that

lim t→∞ n(t, •) -n ∞ L 1 (R 2 ) = 0 and lim t→∞ ∇c(t, •) -∇c ∞ L 2 (R 2 ) = 0 ,
where (n ∞ , c ∞ ) solves (1.4)

n ∞ = M e c∞-|x| 2 /2 R 2 e c∞-|x| 2 /2 dx with c ∞ = G 2 * n ∞ .
Moreover, n ∞ is smooth and radially symmetric. Existence of a solution to (1.4) has been established in [START_REF] Biler | Growth and accretion of mass in an astrophysical model[END_REF] by ordinary differential equation techniques and in [START_REF] Naito | Self-similar solutions to a nonlinear parabolic-elliptic system[END_REF] by partial differential equation methods. The uniqueness has been shown in [START_REF] Biler | The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane[END_REF]. To recall the dependence of n ∞ in M , we will write it as n ∞,M whenever needed.

A simple computation of the second moment shows that smooth solutions with mass larger than 8 π blow-up in finite time; see for instance [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF]. The case M = 8 π has been extensively studied. We shall refer to [START_REF] Biler | The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane[END_REF][START_REF] Blanchet | Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model[END_REF][START_REF] Blanchet | Infinite time aggregation for the critical Patlak-Keller-Segel model in R 2[END_REF] for some recent papers on this topic. The asymptotic regime is of a very different nature in such a critical case. In the present paper, we shall restrict our purpose to the sub-critical case M < 8 π.

In [START_REF] Blanchet | Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model[END_REF] (also see [START_REF] Dolbeault | Optimal critical mass in the two-dimensional Keller-Segel model in R 2[END_REF]) it has been proved that there exists a positive mass M ⋆ ≤ 8 π such that for any initial data n 0 ∈ L 2 (n -1 ∞ dx) of mass M < M ⋆ satisfying (1.2), System (1.3) has a unique solution n ∈ C 0 (0, ∞; L 1 (R 2 )) ∩ L ∞ loc (0, ∞; L p (R 2 )) for any p ∈ (1, ∞) such that

R 2 |n(t, x) -n ∞ (x)| 2 dx n ∞ (x)
≤ C e -δ t ∀ t ≥ 0 for some positive constants C and δ. Moreover δ can be taken arbitrarily close to 1 as M → 0. If M < 8 π, we may notice that the condition n 0 ∈ L 2 (n -1 ∞ dx) is stronger than (1.2). Our main result is that M ⋆ = 8 π and δ ≥ 1, at least for a large subclass of solutions with initial datum n 0 satisfying the following technical assumption:

(1.5) ∃ ε ∈ (0, 8 π -M ) such that s 0 n 0, * (σ) dσ ≤ B 0, √ s/π n ∞,M +ε (x) dx ∀ s ≥ 0 .
Here n 0, * (σ) stands for the symmetrized function associated to n 0 . Details will be given in Section 2.

Theorem 1. Assume that n 0 satisfies (1.5),

n 0 ∈ L 2 + (n -1 ∞ dx) and M := R 2 n 0 dx < 8 π .
Then any solution of (1.3) with initial datum n 0 is such that

R 2 |n(t, x) -n ∞ (x)| 2 dx n ∞ (x)
≤ C e -2 t ∀ t ≥ 0 for some positive constant C, where n ∞ is the unique stationary solution to (1.4) with mass M .

This result is consistent with the recent results of [START_REF] Calvez | Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities[END_REF] for the two-dimensional radial model and its one-dimensional counterpart (see Proposition 16 for more comments). For completeness, let us mention that results of exponential convergence for problems with mean field have been obtained earlier in [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF][START_REF]Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF], but only for interaction potentials involving much smoother kernels than G 2 . The technical restriction (1.5) on the initial datum looks rather strong as it imposes a uniform bound with a decay at infinity which is the one of a stationary solution (with larger mass). However, it is probably not as restrictive as it looks for well behaved solutions. For instance, it can reasonably be expected that the property holds true after a certain time delay for any solution corresponding to a smooth compactly supported initial datum. Solutions with a slower decay at infinity may be more difficult to handle. Both issues are open and probably require a significant effort for reaching a complete answer. This is why they are out of the scope of the present paper whose aim is to establish that the exponential convergence holds for arbitrary masses less than 8π and at a rate which is independent of the mass.

Our paper is organized as follows. In Section 2, we will apply symmetrization techniques as in [START_REF] Diaz | Symmetrization in a parabolic-elliptic system related to chemotaxis[END_REF][START_REF] Diaz | Symmetrization techniques on unbounded domains: application to a chemotaxis system on R N[END_REF] to establish uniform estimates on n L p (R 2 ) . Then we will prove the uniform convergence of n to n ∞ using Duhamel's formula: see Corollary 7 in Section 3. Section 4 is devoted to the linearization of the problem around n ∞ and to the study of the spectral gap of the linearized operator. A strict positivity result for the linearized entropy is also needed and will be proved in Section 5. The proof of Theorem 1 is completed in the last section. It is based on two estimates: Theorems 15 and 17 (also see Corollary 18) that are established in Sections 4 and 5 respectively. Some of the results of Sections 4 and 5 (see Theorem 15 and Corollary 18) have been announced without proof in [START_REF] Serrano | A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities[END_REF] in connection with a new Onofri type inequality, whose linearized form is given in Inequality (5.2).

Symmetrization

In this section, we adapt the results of J.I. Diaz, T. Nagai, and J.-M. Rakotoson in [START_REF] Diaz | Symmetrization techniques on unbounded domains: application to a chemotaxis system on R N[END_REF] to the setting of self-similar variables. Several key estimates are based on an earlier work of J.I. Diaz and T. Nagai for the bounded domain case: see [START_REF] Diaz | Symmetrization in a parabolic-elliptic system related to chemotaxis[END_REF]. For a general introduction to symmetrization techniques, we refer to [28]. We shall therefore only sketch the main steps of the method and emphasize the necessary changes.

To any measurable function u : R 2 → [0, +∞), we associate the distribution function defined by µ(t, τ ) := |{u > τ }| and its decreasing rearrangement given by

u * : [0, +∞) → [0, +∞] , s → u * (s) = inf{τ ≥ 0 : µ(t, τ ) ≤ s} .
We adopt the following convention: for any time-dependent function u : (0, +∞) × R 2 → [0, +∞), we will also denote by u * the decreasing rearrangement of u with respect to the spatial variable, that is, u * (t, s) = u(t, .) * (s).

Rearrangement techniques are a standard tool in the study of partial differential equations: in the framework of chemotaxis, see for instance [START_REF] Bandle | Isoperimetric inequalities and applications[END_REF][START_REF] Díaz | Nonlinear partial differential equations and free boundaries[END_REF][START_REF] Mossino | Inégalités isopérimétriques et applications en physique[END_REF] in case of bounded domains, and [START_REF] Diaz | Symmetrization techniques on unbounded domains: application to a chemotaxis system on R N[END_REF] for unbounded domains. Let us briefly recall some properties of the decreasing rearrangement:

(a) For every measurable function F : R + → R + , we have

R 2 F (u) dx = ∞ 0 F (u * ) ds . In particular, if u ∈ L p (R N ) with 1 ≤ p ≤ ∞, then u L p (R N ) = u * L p (R N ) . (b) If u ∈ W 1,q (0, T ; L p (R N )) is a nonnegative function, with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞,
then u * ∈ W 1,q (0, T ; L p (0, ∞)) and the formula [START_REF] Diaz | Symmetrization techniques on unbounded domains: application to a chemotaxis system on R N[END_REF], let us consider a solution (n, c) of (1.3) and define

k(t, s) := s 0 n * (t, σ) dσ
The strategy consists in finding a differential inequality for k(t, s). Then, using a comparison principle, we will obtain an upper bound on the L p norm of n. In [START_REF] Diaz | Symmetrization techniques on unbounded domains: application to a chemotaxis system on R N[END_REF], the method was applied to (1.1). Here we adapt it to the solution in rescaled variables, that is (1.3).

Lemma 2.

If n is a solution of (1.3) with initial datum n 0 satisfying the assumptions of Theorem 1, then the function k(t, s) satisfies

k ∈ L ∞ ([0, +∞) × (0, +∞)) ∩ H 1 [0, +∞); W 1,p loc (0, +∞) ∩ L 2 [0, +∞); W 2,p loc (0, +∞) and        ∂k ∂t -4 π s ∂ 2 k ∂s 2 -(k + 2 s) ∂k ∂s ≤ 0 a.e. in (0, +∞) × (0, +∞) , k(t, 0) = 0 , k(t, +∞) = R 2 n 0 dx for t ∈ (0, +∞) , k(0, s) = s 0 (n 0 ) * dσ for s ≥ 0 .
Proof. The proof follows the method of [21, Proposition 3.1]. We will therefore only sketch the main steps that are needed to adapt the results to the setting of self-similar variables and refer to [START_REF] Diaz | Symmetrization techniques on unbounded domains: application to a chemotaxis system on R N[END_REF] for all technical details. For τ ∈ (0, n * (t, 0)) and h > 0, define the truncation function T τ,h on (-∞, +∞) by

T τ,h =        0 if s ≤ τ s -τ if τ < s ≤ τ + h h if τ + h < s and observe that T τ,h (n(t, •)) belongs to W 1,p (R 2 ) since n(t, •) ∈ W 1,p (R 2 ) and T τ,h is Lipschitz continuous. Now we integrate (1.3) against T τ,h (n) over R 2
, and integrate by parts to obtain

R 2 ∂n ∂t T τ,h (n) dx + R 2 ∇n ∇T τ,h (n) dx = R 2 n (∇c -x) ∇T τ,h (n) dx .
We have that |{n = τ }| = 0 for almost every τ ≥ 0. Hence one can prove that lim

h→0 1 h R 2 ∂n ∂t T τ,h (n) dx = {n>τ } ∂n ∂t (t, x) dx = ∂k ∂t (t, µ(t, τ )) .
Next we observe that lim

h→0 1 h R 2 ∇n ∇T τ,h (n) dx = lim h→0 1 h {n>τ } |∇n| 2 dx - {n>τ +h} |∇n| 2 dx = ∂ ∂τ {n>τ } |∇n| 2 dx .
Consider the function

Φ τ,h = s 0 σ ∂T τ,h ∂σ (σ) dσ =        0 if s ≤ τ , 1 2 (s 2 -τ 2 ) if τ < s ≤ τ + h , h(τ + h 2 ) if τ + h < s .
Integrating the Poisson equation for c against Φ τ,h (n), we get 

R 2 ∇c ∇Φ τ,h (n) dx = R 2 n ∇c ∇T τ,h (n) dx = R 2 n Φ τ,h (n) dx , thus proving that lim h→0 + 1 h R 2 n ∇c ∇T τ,h (n) dx = lim h→0 + 1 2 h {τ <n≤τ +h} n (n 2 -τ 2 ) dx + {n>τ +h} n τ + h 2 dx = τ {n>τ } n dx = ∂k ∂s (t,
lim h→0 + 1 h R 2 n(x) x • ∇T τ,h (x) dx = lim h→0 + 1 h R 2 x • ∇Φ τ,h (n) dx = -lim h→0 + 2 h R 2 Φ τ,h (n) dx = -2 τ |{n > τ }| = -2 ∂k ∂s (t, µ(t, τ )) µ(t, τ ) .
Using the inequality 

= R + × (0, +∞) such that (i) f , g ∈ L ∞ (Q) ∩ L 2 (0, +∞; W 2,
       ∂f ∂t -4 π s ∂ 2 f ∂s 2 -(f + 2 s) ∂f ∂s ≤ ∂g ∂t -4 π s ∂ 2 g ∂s 2 -(g + 2 s
) ∂g ∂s a.e. in Q , f (t, 0) = 0 = g(t, 0) and f (t, +∞) ≤ g(t, +∞) for any t ∈ (0, +∞) , f (0, s) ≤ g(0, s) for s ≥ 0 , and g(t, s) ≥ 0 in Q , then f ≤ g on Q.

Proof. Take w = f -g. We have

∂w ∂t -4 π s ∂ 2 w ∂s 2 -2 s ∂w ∂s ≤ w ∂f ∂s + g ∂w ∂s .
Multiplying by w + /s, and integrating over (δ, L) with 0 < δ < 1 < L, we obtain From Gronwall's lemma and w + (0, s) = 0, with R(t) := 2

t 0 (1 + K C(τ )) C(τ ) dτ , it follows that L δ w 2 + s ds ≤ 2 e R(t) t 0 e -R(τ ) G(τ, δ, L) dτ .
Taking the limit as δ → 0 and L → +∞, we obtain

∞ 0 w 2 + s ds ≤ 0 ,
which implies f ≤ g and concludes the proof.

Using Lemma 2 and Proposition 3, we can now establish uniforms bounds on n L p (R 2 ) and ∇c L ∞ (R 2 ) , which are enough to justify all integrations by parts that are needed in this paper.

Theorem 4. Assume that n 0 ∈ L 2 + (n -1 ∞ dx) satisfies (1.5) and M := R 2 n 0 dx < 8 π. Then, for any p ∈ [1, ∞], there exist positive constants

C 1 = C 1 (M, p) and C 2 = C 2 (M, p) such that n(t, •) L p (R 2 ) ≤ C 1 and ∇c(t, •) L ∞ (R 2 ) ≤ C 2 ∀ t > 0 . Proof. The function M ε (s) := B(0, √ s/π) n ∞,M +ε dx satisfies 4 π s M ′′ ε + 2 s M ′ ε + M ε M ′ ε = 0 . By direct application of Proposition 3, we obtain k(t, s) ≤ M ε (s) ∀ (t, s) ∈ Q .
By [START_REF] Díaz | Nonlinear partial differential equations and free boundaries[END_REF]Lemma 1.33], we deduce

n * L p (0,∞) ≤ M ′ ε L p (0,∞)
, which yields the result. More details on M ε and cumulated densities will be given in Section 4.5.

Uniform convergence

Wit the boundedness results of Section 2 in hands, we can now prove a result of uniform convergence for n and ∇c, if (n, c) is given as a solution of (1.3) satisfying the assumptions of Theorem 1.

Consider the kernel associated to the Fokker-Planck equation

K(t, x, y) := 1 2π (1 -e -2 t ) e -1 2 |x-e -t y| 2 1-e -2 t x ∈ R 2 , y ∈ R 2 , t > 0 .
This definition deserves some explanations. If n is a solution of

∂n ∂t = ∆n + ∇ • (n x) with initial datum n 0 , then u(τ, ξ) = R -2 n log R, R -1 ξ with R = R(τ ) = √ 1 + 2 τ is a solution of the heat equation ∂u ∂τ = ∆u , u(τ = 0, •) = n 0 ,
whose solution is given by

u(ξ, τ ) = 1 4 π τ R 2 e -|ξ-y| 2 4τ
n 0 (y) dy .

By undoing the change of variables, we get that the solution of the Fokker-Planck equation is given by

n(t, x) = R 2 K(t, x, y) n 0 (y) dy .
Consider now a solution of (1.3). We have the following Duhamel formula.

Lemma 5. Assume that n is a solution of (1.3) with initial data satisfying (1.2). Then for any t > 0, x ∈ R 2 , we have

n(t, x) = R 2 K(t, x, y) n 0 (y) dy + t 0 R 2 ∇ x K(t -s, x, y) • n(s, y) ∇c(s, y) dy ds .
This is a standard fact whose proof relies on the fact that (t, x) → K(t, x, y) is a solution of the Fokker-Planck equation with a δ-Dirac function initial value. Details are left to the reader.

Using the semi-group property, we deduce from Lemma 5 the expression for n(t + 1, x) in terms of n(t, x) as

n(t + 1, x) = R 2 K(t, x, y) n(t, y) dy + t+1 t R 2 ∇ x K(t + 1 -s, x, y) • n(s, y) ∇c(s, y) dy ds
for any t ≥ 0. Since n ∞ is a stationary solution, we can also write that

n ∞ (x) = R 2 K(t, x, y) n ∞ (y) dy + t+1 t R 2 ∇ x K(t + 1 -s, x, y) • n ∞ (y) ∇c ∞ (y) dy ds
for any t ≥ 0. By taking the difference of the two expressions, we get that

n(t + 1, x) -n ∞ (x) = R 2 K(t, x, y) (n(t, y) -n ∞ (y)) dy + t+1 t R 2 ∇ x K(t + 1 -s, x, y) • (n(s, y) ∇c(s, y) -n ∞ (y) ∇c ∞ (y)) dy .
This provides a straightforward estimate, which goes as follows:

n(t + 1, •) -n ∞ L ∞ (R 2 ) ≤ K(t, •, •) L ∞ (R 2 x ;L r (R 2 y ) n(t, •) -n ∞ L 1 (R 2 ) + 1 0 ∇K(s, •, •) L ∞ (R 2 x ;L r (R 2 y )) ds R(t)
where

1 p + 1 q + 1 r = 1 with p ∈ (2, ∞), q ∈ [2, ∞) and r ∈ (1, 2), and 
R(t) := sup s∈(t,t+1) n(s, •) L p (R 2 ) ∇c(s, •) -∇c ∞ L q (R 2 ) + n(s, •) -n ∞ L p (R 2 ) ∇c ∞ L q (R 2 ) .
A direct computation shows that

∇K(t, x, •) = e -t 2π (1 -e -2 t ) 2 (e t x -y) e -|e t x-y| 2 2 (e 2t -1)
and hence, for some explicit, finite function r → κ(r),

∇K(t, x, •) L r (R 2 y ) = e -t 2π (1 -e -2t ) 2 R 2 |z| r e -r |z| 2 2 (e 2t -1) dz 1 r = κ(r) e 3t (e 2t -1) 2-3 r 2 r is integrable in t ∈ (0, 1) if r ∈ [1, 2
). On the other hand, R(t) converges to 0 by Theorem 4 and the fact that

lim t→∞ n(t, •) -n ∞ L 1 (R 2 ) = 0 and lim t→∞ ∇c(t, •) -∇c ∞ L 2 (R 2 ) = 0 according to [10, Theorem 1.2]. Hence we have shown the uniform convergence of n towards n ∞ as t → ∞ and lim t→∞ n(t, •) -n ∞ L p (R 2 ) = 0 for any p ∈ [1, ∞], by Hölder's interpolation. As for the convergence of ∇c(t, •) towards ∇c ∞ as t → ∞ in L q (R 2 ) for q ∈ (2, ∞],
we need one more interpolation inequality.

Lemma 6. If h = (-∆) -1 ρ for some function ρ ∈ L 2-ε ∩ L 2+ε (R 2 ), with ε ∈ (0, 1), then there exists an explicit positive constant C = C(ε) such that ∇h L ∞ (R 2 ) ≤ C ρ L 2-ε (R 2 ) + ρ L 2+ε (R 2 ) .
Proof. This follows by a direct computation. We can estimate |∇h| by

|∇h(x)| = 1 2π R 2 ρ(y) |x -y| dy
for any x ∈ R 2 and split the integral into two pieces corresponding to |x-y| < 1 and |x-y| ≥ 1: by Hölder's inequality, we obtain that

1 2π |x-y|<1 ρ(y) |x -y| dy ≤ C 1 (ε) ρ L 2+ε (R 2 ) with C 1 (ε) = 1 2π (2π (1 + ε)/ε) (1+ε)/(2+ε) and 1 2π |x-y|≥1 ρ(y) |x -y| dy ≤ C 2 (ε) ρ L 2-ε (R 2 ) with C 2 (ε) = 1 2π (2π (1 -ε)/ε) (1-ε)/(2-ε) . The conclusion holds with C = max i=1,2 C i .
Hence we have also shown the uniform convergence of ∇c towards ∇c ∞ as t → ∞. By Hölder's interpolation, the convergence holds in L q (R 2 ) for any q ∈ [2, ∞]. Summarizing all results of this section, we have shown the following limits.

Corollary 7. Assume that n is a solution of (1.3) with initial data satisfying the assumptions of Theorem 1. Then

lim t→∞ n(t, •) -n ∞ L p (R 2 ) = 0 and lim t→∞ ∇c(t, •) -∇c ∞ L q (R 2 ) = 0 for any p ∈ [1, ∞] and any q ∈ [2, ∞].

Spectral gap of the linearized operator L

Assume that n is a solution of (1.3) and consider f and g defined for any (t,

x) ∈ R + × R 2 by n(t, x) = n ∞ (x) (1 + f (t, x)) and c(t, x) = c ∞ (x) (1 + g(t, x)) . Then (f, g) is a solution of the nonlinear problem ∂f ∂t -L f = -1 n∞ ∇ • [f n ∞ ∇(g c ∞ )] x ∈ R 2 , t > 0 , -∆(g c ∞ ) = f n ∞ x ∈ R 2 , t > 0 , (4.1)
where L is the linear operator

L f = 1 n ∞ ∇ • [n ∞ ∇(f -g c ∞ )] .
Such a formulation has already been used in [START_REF] Blanchet | Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model[END_REF], but there only estimates of the lowest eigenvalues of L were considered. Here we are going to establish the exact value of the gap. The goal of this section is indeed to establish that L has a spectral gap in an appropriate functional setting. To characterize the spectrum of L, it is necessary to specify the domain of the operator L. Heuristically, it is simpler to identify the eigenfunctions corresponding to the lowest eigenvalues and define only afterwards the norm for which L turns out to be self-adjoint. We will -identify some eigenfunctions of the linearized Keller-Segel operator L in Section 4.1, -characterize the kernel of L in Section 4.2, -determine an adapted functional setting for L and related operators in Section 4.3, -show that the spectrum of L is discrete in Section 4.4, -and finally establish a spectral gap inequality in Section 4.5.

4.1. Some eigenfunctions of the linearized Keller-Segel operator L. Using the fact that n ∞ depends on x = (x 1 , x 2 ) ∈ R 2 and on the mass parameter M , we observe that the functions

f 0,0 = ∂ M log n ∞,M , f 1,i = ∂ x i log n ∞,M , i = 1 , 2 , f 0,1 = 1 + 1 2 x • ∇ log n ∞,M , are eigenfunctions of L.
Here ∂ M n ∞,M denotes the derivative of the function n ∞ = n ∞,M with respect to the mass parameter M , while ∂ x i stands for ∂/∂ x i . We shall use two indices for the numbering of the eigenfunctions because of a spherical harmonics decomposition that will be studied in Section 4.5. A precise statements goes as follows.

Lemma 8. With the above notations, we have

L f 0,0 = 0 , L f 1,i = -f 1,i , L f 0,1 = -2 f 0,1 .
Proof. Assume that M ∈ (0, 8 π) and consider the unique solution n ∞ of (1.4), which is also the unique stationary solution of (1.1) such that (1.2) holds. For brevity, we shall omit to mention the dependence of

n ∞ = n ∞,M in M . Let us differentiate with respect to M each term of ∆ n ∞ + ∇ • (n ∞ x) -∇ • (n ∞ ∇c ∞ ) = 0, where c ∞ = G 2 * n ∞ . It is straightforward to check that g 0,0 := ∂ M log c ∞ is such that g 0,0 c ∞ = G 2 * (f 0,0 n ∞ ) and L f 0,0 = 0. Since -∆ c ∞ = M e c∞-1 2 |x| 2 R 2 e c∞-1 2 |x| 2 dx = n ∞ ,
it is clear that g 0,0 is non-trivial, and therefore

f 0,0 = ∂ M log n ∞ is a non-trivial solution to L f = 0. By computing 0 = ∂ ∂x 1 ∆n ∞ + ∇ • (x n ∞ ) -∇ • (n ∞ ∇c ∞ ) with -∆ ∂c ∞ ∂x 1 = ∂n ∞ ∂x 1 and observing that ∂ ∂x 1 ∇ • (x n ∞ ) = ∂n ∞ ∂x 1 + ∇ • x ∂n ∞ ∂x 1 , we obtain that f 1,1 := ∂ x 1 log n ∞ associated with g 1,1 = 1 c∞ ∂ x 1 c ∞ is an eigenfunction of L, such that -L f 1,1 = f 1,1 .
The same observation holds if we differentiate with respect to x i , i = 2.

Next consider the dilation operator D := x•∇. If a is a vector valued function, an elementary computation shows that

D (∇ • a) = ∇ • (D a) -∇ • a . Since a = ∇n ∞ + x n ∞ -n ∞ ∇c ∞ is such that ∇ • a = 0, we get D (∇ • a) = ∇ • (D a) and hence 0 = D ∆n ∞ + ∇ • (x n ∞ ) -∇ • (n ∞ ∇c ∞ ) = ∇ • D ∇n ∞ + x n ∞ -n ∞ ∇c ∞ .
Next, we observe that

D (∇n ∞ ) = ∇ (D n ∞ ) -∇ n ∞ so that ∇ • D (∇n ∞ ) = ∆(D n ∞ ) -∆ n ∞ .
It is also straightforward to observe that

D (x n ∞ ) = x n ∞ + x D n ∞ and D (∇c ∞ ) = ∇ (D c ∞ ) -∇ c ∞ . Let f 0,1 = 1 + 1 2 D log n ∞ = 1 + 1 2 n∞ D n ∞ . By writing D (∆c ∞ + n ∞ ) = 0, we get -∆ (D c ∞ ) + 2 ∆c ∞ = D n ∞ = 2 (f 0,1 -1) n ∞ , since D (∆c) = ∆(D c) -2 ∆c . Hence, using the fact that 2 ∆c ∞ = -2 n ∞ , the function g 0,1 := 1 c∞ (-∆) -1 (n ∞ f 0,1 ) is given by c ∞ g 0,1 = 1 2 D c ∞ .
Collecting these identities, we have found that

2 n ∞ L (D log n ∞ ) -∇ • ∇n ∞ -x n ∞ -2 n ∞ ∇(c ∞ g 0,1 ) -∇c ∞ + n ∞ D (∇c ∞ ) = 0 . Using 2 ∇(c ∞ g 0,1 ) -∇c ∞ = ∇(D c ∞ ) -2 ∇c ∞ = D (∇c ∞ ) -∇c ∞ , this gives n ∞ L (D log n ∞ ) -∆n ∞ + ∇ • (x n ∞ -n ∞ ∇c ∞ ) = 0 .
Hence, owing to the fact that D log n ∞ = 2 (f 0,1 -1) and

n ∞ L (D log n ∞ ) = 2 n ∞ Lf 0,1 + 2 ∇ • (n ∞ ∇c ∞ ) , we get -2 n ∞ L f 0,1 = -∆n ∞ + ∇ • (x n ∞ + n ∞ ∇c ∞ ) = 2 ∇ • (x n ∞ ) = 4 n ∞ 1 + D n ∞ 2 n ∞ = 4 n ∞ f 0,1 .
We have finally found that -L f 0,1 = 2 f 0,1 , which completes the proof.

Remark 1. The fact that 1 and 2 are eigenvalues of L was known in the limit M → 0 + : see [START_REF] Blanchet | Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model[END_REF].

It is remarkable that these two eigenvalues are independent of M but this can be explained by noticing that the corresponding eigenfunctions are associated with invariances of the problem before rescaling. The functions ∂ x i log n ∞ , i = 1, 2 correspond to the invariance under translation in the directions x i . A decentered self-similar solution would converge in self-similar variables to the stationary solution, in relative entropy, exactly at a rate e -t , thus showing that λ 1,1 = λ 1,2 = 1 are eigenvalues by considering the asymptotic regime.

The function D log n ∞ is associated with the scaling invariance. In original variables, a scaling factor corresponds to a translation in time at the level of the self-similar solution and it can easily be checked that, in self-similar variables, a solution corresponding to the stationary solution rescaled by a factor different from 1 converges, in relative entropy, exactly at a rate e -2 t , thus showing that λ 0,1 = 2 is also an eigenvalue by considering the asymptotic regime.

The kernel of the linearized Keller

-Segel operator L. By definition of n ∞ , we know that log n ∞ = µ 0 (M )+c ∞ -1 2 |x| 2 , so that f 0,0 = µ ′ 0 (M )+g 0,0 c ∞ where g 0,0 = ∂ M log c ∞ is such that -∆(g 0,0 c ∞ ) = -∆f 0,0 = f 0,0 n ∞ . The normalization constant µ 0 is determined by the condition that M = R 2 n ∞ dx, that is µ 0 = log M -log R 2 e c∞-|x| 2 /2
dx . By differentiating with respect to M , we also get that

µ ′ 0 (M ) = 1 M 1 - R 2 g 0,0 n ∞ c ∞ dx .
The function f = f 0,0 solves L f = 0 and is such that the equation for g = f /c ∞ reads

-∆ f = n ∞ f .
It is not a priori granted that such an equation has at most one solution, up to a multiplication by a constant. The uniqueness issue is the purpose of our next result.

Proposition 9. The kernel Ker(L) is generated by

f 0,0 = ∂ M log n ∞ , which is the unique solution in L 2 (R 2 , n ∞ dx)
, up to a multiplication by a constant, to

-∆f 0,0 = f 0,0 n ∞ .
Proof. We have already seen that f 0,0 ∈ Ker(L). It remains to prove that Ker(L) is onedimensional. Let f be such that L f = 0 and

g = c -1 ∞ G 2 * (f n ∞ ). An elementary computation shows that 0 = R 2 L f (f -g c ∞ ) n ∞ dx = R 2 |∇(f -g c ∞ )| 2 n ∞ dx , thus proving that f = g c ∞ + µ ′
0 for some real constant µ ′ 0 (depending eventually on M , with the same notations as above). Hence any solution of L f = 0 has to solve

H f = 0
where H := -∆ -n ∞ is a Schrödinger operator with potential n ∞ , at least if one assumes that ∇(f -G 2 * (f n ∞ )) belongs to L 2 (n ∞ dx). As we shall see later in the discussion of the domain of definition of L, this is indeed a natural assumption. Altogether, we are interested in characterizing the ground state of the Schrödinger operator H (with energy level 0) and prove that it is uniquely determined, up to a multiplication by a constant. It is clear that H has no negative eigenvalue, otherwise the free energy functional

F [n] := R 2 n log n n ∞ dx + 1 4 π R 2 ×R 2 (n(x) -n ∞ (x)) log |x -y| (n(y) -n ∞ (y)) dx dy
would not achieve its minimum for n = n ∞ (see [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] for a proof).

Since n ∞ is radially symmetric (see for instance [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] for a summary of known results), Schwarz' symmetrization applied to H shows that the ground state is radially symmetric. The function n ∞ seen as a potential, is smooth. By standard elliptic theory, the ground state is smooth as well. Hence, if f ∈ H 1 (R 2 ) solves H f = 0, it is uniquely determined as a solution of an ordinary differential equation by the Cauchy-Lipschitz theorem, up to a standard analysis at the origin. Indeed, by considering abusively n ∞ and f as functions of r = |x|, we find that f is given by

f ′′ + 1 r f ′ + n ∞ f = 0 f (0) = 1 , f ′ (0) = 0
(up to a multiplication by an arbitrary constant). This concludes the proof. 4.3. Functional setting and operators. In order to go further in the spectral analysis, to define correctly the domain of the operator L, to justify the assumption that ∇(f -G 2 * (f n ∞ )) belongs to L 2 (n ∞ dx) and to establish spectral gap estimates which are crucial for our analysis, some considerations on the functional setting are in order. On L 2 (R 2 , n ∞ dx), let us consider the quadratic form Q 1 obtained by linearization around n ∞ , that is

Q 1 [f ] := lim ε→0 1 ε 2 F [n ∞ (1 + ε f )] . It takes the form Q 1 [f ] = R 2 |f | 2 n ∞ dx + 1 2π R 2 ×R 2 f (x) n ∞ (x) log |x -y| f (y) n ∞ (y) dx dy .
As a consequence of its definition, Q 1 is nonnegative.

Lemma 10. Assume that M ∈ (0, 8 π) and consider n ∞ defined by (1.4). Then (4.2)

- 1 2π R 2 ×R 2 f (x) n ∞ (x) log |x -y| f (y) n ∞ (y) dx dy = R 2 f n ∞ g c ∞ dx ≤ R 2 |f | 2 n ∞ dx for any f ∈ L 2 (R 2 , n ∞ dx), where g c ∞ = G 2 * (f n ∞ ). Moreover, if (4.3) 
R 2 f f 0,0 n ∞ dx = 0 ,
then equality holds in the above inequality if and only if

f = 0. Notice that, if f ∈ L 2 (R 2 , n ∞ dx) is such that (4.4) R 2
f n ∞ dx = 0 , then (4.2) can be written as

(4.5) R 2 |∇(g c ∞ )| 2 dx ≤ R 2 |f | 2 n ∞ dx . It is indeed well known that ∇(g c ∞ ) is in L 2 (R 2 , dx) as a solution of -∆(g c ∞ ) = f n ∞ only if (4.4
) holds. Lemma 10 will be improved in Section 5 (see Corollary 18); the proof of such a result is independent of the remainder of this section.

Proof of Lemma 10. To prove (4.2), we recall that the free energy n → F [n] achieves its minimum for n = n ∞ according to the logarithmic Hardy-Littlewood-Sobolev inequality (see [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] for detailed considerations on this formulation of the inequality), and observe that Q 1 [f ] ≥ 0 for any smooth function f with compact support satisfying (4.3). The inequality then holds for

any f ∈ L 2 (R 2 , n ∞ dx) by density of smooth functions with compact support in L 2 (R 2 , n ∞ dx).
If equality holds in (4.2), then the Euler-Lagrange equation amounts to -∆f = f n ∞ , which characterizes the kernel Ker(L) according to Proposition 9. By (4.2), Q 1 [f ] is nonnegative, and positive semi-definite on the orthogonal of the kernel of L, for the natural scalar product on L 2 (n ∞ dx), i.e. for any f ∈ L 2 (n ∞ dx) such that (4.3) holds. Using previous notations, we may write

Q 1 [f ] = R 2 f (f -g c ∞ ) n ∞ dx with g c ∞ = G 2 * (f n ∞ ) .
If (4.4) holds, we can also observe that

Q 1 [f ] = R 2 |f | 2 n ∞ dx - R 2 |∇(g c ∞ )| 2 dx .
To Q 1 we associate its polar form L 1 defined on smooth functions with compact support such that (4.3) holds and define its Friedrich's extension on L 2 (n ∞ dx), that we still denote by L 1 . By construction, L 1 is a positive self-adjoint operator with domain D(L 1 ) ⊂ L 2 (n ∞ dx). On D(L 1 ), we shall denote by •, • the scalar product induced by L 1 . Explicitly, this means that

f, f = R 2 f f n ∞ dx + 1 2π R 2 ×R 2 f (x) n ∞ (x) log |x -y| f (y) n ∞ (y) dx dy .
The scalar product •, • induced by L 1 is defined on the orthogonal of f 0,0 , but can be extended as a bilinear form to L 2 (n ∞ dx). If f ∈ L 2 (n ∞ dx) is such that (4.4) holds, then we notice that

f, f 0,0 = R 2 f (f 0,0 -G 2 * f 0,0 ) n ∞ dx = 0 because f 0,0 = G 2 * (f 0,0 n ∞ ) + µ ′ 0 . With these notations, notice that we have f, f = Q 1 [f ] ≥ 0
for any f ∈ D(L 1 ), with equality if and only if f = 0.

We can also define the quadratic form Q 2 as

Q 2 [f ] := R 2 |∇(f -g c ∞ )| 2 n ∞ dx with g = 1 c ∞ G 2 * (f n ∞ ) .
As for Q 1 , we define Q 2 on the set of smooth functions such that (4.3) holds and extend it. The associated self-adjoint nonnegative operator is denoted by L 2 and it is again a self-adjoint operator, with domain

D(L 2 ) ⊂ L 2 (n ∞ dx).
Proposition 11. With the above notations, the restriction of L to D(L 1 ) is a self-adjoint operator for the scalar product •, • with domain D(L 2 ), such that

f, L f = -Q 2 [f ] ∀ f ∈ D(L 2 )
and Ker(L) ∩ D(L 2 ) = {0}.

Remark 2. The function f 0,0 is an eigenfunction of L but this is not the case of f ≡ 1. With the notations of Section 4.1, the functions f 0,1 and f 1,i are orthogonal to f ≡ 1 in L 2 (R 2 , n ∞ dx) for i = 1, 2, but this is not the case neither for f 0,0 .

4.4.

The spectrum of L is discrete. We define

Λ 1 := inf f ∈D(L 2 )\{0} Q 2 [f ] Q 1 [f ] and Λ ∞ := lim R→∞ inf f ∈ D(L 2 ) \ {0} supp(f ) ⊂ R 2 \ B(0, R) Q 2 [f ] Q 1 [f ]
.

First, let us give a heuristic approach of the problem. As an application of Persson's method (see [START_REF] Persson | Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator[END_REF]), the bottom of the essential spectrum of L can be characterized as inf σ ess (L) = Λ ∞ .

To prove that L has a spectral gap on D(L 2 ), it is enough to show that Λ ∞ is positive: either Λ 1 = Λ ∞ , or Λ 1 < Λ ∞ is a nonnegative eigenvalue, which cannot be equal to 0. This is summarized in the following statement.

Proposition 12. With the above notations, Λ 1 is positive and

(4.6) Λ 1 Q 1 [f ] ≤ Q 2 [f ] ∀ f ∈ D(L 2 ) .
For any f ∈ D(L 2 ), if (4.4) holds, then Inequality (4.6) can be reformulated as

Λ 1 R 2 |f | 2 n ∞ dx ≤ R 2 |∇(f -g c ∞ )| 2 n ∞ dx + Λ 1 R 2 |∇(g c ∞ )| 2 dx .
The proof of Proposition 12 can be done by considering L as a perturbation of the operator

f → n -1 ∞ ∇ • (n ∞ ∇f ) defined on L 2 (R 2 , n ∞ dx).
This was the method of [START_REF] Blanchet | Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model[END_REF]. However on such a space L is not self-adjoint and justifications are delicate because of the logarithmic kernel, away from the small mass regime.

In practice, Persson's method is not well designed either to handle convolution operators, although it can probably be adapted with little effort. This may even have been done, but we are not aware of such a result. Moreover, as we shall see below, we have: Λ ∞ = ∞, which further simplifies the proof. For these reasons, we will therefore give a direct proof, based on some of the tools of the concentration-compactness method (see [START_REF] Lions | Principe de concentration-compacité en calcul des variations[END_REF][START_REF]Applications de la méthode de concentration-compacité à l'existence de fonctions extrémales[END_REF][START_REF]The concentration-compactness principle in the calculus of variations. The locally compact case. II[END_REF][START_REF]The concentration-compactness principle in the calculus of variations. The limit case. I[END_REF][START_REF]The concentration-compactness principle in the calculus of variations. The limit case. II[END_REF]) and adapted to the case of a bounded measure, n ∞ dx, as in [START_REF] Blanchet | Stochastic Stokes' drift, homogenized functional inequalities, and large time behavior of brownian ratchets[END_REF]. In that framework, Λ ∞ corresponds to the problem at infinity. For simplicity, let us split the proof into Lemmas 13 and 14.

Lemma 13. With the above notations, Λ ∞ = ∞.

Proof. Recall that

n ∞ = M e c∞-1 2 |x| 2 R 2 e c∞-1 2 |x| 2 dx where c ∞ = (-∆) -1 n ∞ is such that lim sup |x|→∞ c ∞ (x) + M 2π log |x| < ∞ .
As a consequence, we know that

n ∞ (x) ∼ |x| -α e -1 2 |x| 2 as |x| → +∞ , with α = M 2π .
We can expand the square |∇(f -g c ∞ )| 2 and get

Q 2 [f ] = R 2 |∇(f -g c ∞ )| 2 n ∞ dx = R 2 |∇f | 2 n ∞ dx + R 2 |∇(g c ∞ )| 2 n ∞ dx + 2 R 2 f ∇(g c ∞ ) • ∇n ∞ dx -2 R 2 f -∆(g c ∞ ) n ∞ dx . Assume that f is supported in R 2 \ B(0, R), for R > 0, large. Then R 2 f -∆(g c ∞ ) n ∞ dx = R 2 |f | 2 n 2 ∞ dx ≤ sup |x|>R n ∞ (x) R 2 |f | 2 n ∞ dx ∼ R -α e -1 2 R 2 R 2 |f | 2 n ∞ dx
on the one hand, and we know from Persson's method that lim

R→∞ inf f ∈ D(L 2 ) \ {0} supp(f ) ⊂ R 2 \ B(0, R) R 2 |∇f | 2 n ∞ dx R 2 |f | 2 n ∞ dx = +∞
on the other hand, so that, for any ε > 0, there exists R > 0 large enough for which

R 2 |f | 2 n ∞ dx ≤ ε R 2 |∇f | 2 n ∞ dx for any function f ∈ H 1 (R 2 , n ∞ dx).
Equivalently, we can write that there exists a positive function R → ε(R) such that lim R→+∞ ε(R) = 0 and

0 ≤ R 2 f -∆(g c ∞ ) n ∞ dx ≤ R -α e -1 2 R 2 ε(R) for any function f ∈ H 1 such that supp(f ) ⊂ R 2 \ B(0, R).
Assume first that Condition (4.4) is satisfied. We notice that

R 2 f ∇(g c ∞ ) • ∇n ∞ dx ≤ 2 R 2 |f √ n ∞ | |∇(g c ∞ )| |(∇c ∞ -x) √ n ∞ | dx can be estimated by R 2 f ∇(g c ∞ ) • ∇n ∞ dx ≤ 2 sup |x|>R (∇c ∞ -x) √ n ∞ R 2 |f | 2 n ∞ dx R 2 |∇(g c ∞ )| 2 dx 1/2 .
As a consequence of (4.5), we find that

R 2 f ∇(g c ∞ ) • ∇n ∞ dx ≤ 2 sup |x|>R (∇c ∞ -x) √ n ∞ R 2 |f | 2 n ∞ dx ≤ 2 sup |x|>R (∇c ∞ -x) √ n ∞ ε(R) R 2 |∇f | 2 n ∞ dx .
On the other hand, since Condition (4.4) is satisfied, we know for free that

Q 1 [f ] = R 2 |f | 2 n ∞ dx - R 2 |∇(g c ∞ )| 2 dx ≤ R 2 |f | 2 n ∞ dx .
As a consequence, we have obtained that lim

R→∞ inf f ∈ D(L 2 ) \ {0} supp(f ) ⊂ R 2 \ B(0, R) Q 2 [f ] Q 1 [f ] = lim R→∞ inf f ∈ D(L 2 ) \ {0} supp(f ) ⊂ R 2 \ B(0, R) R 2 |∇f | 2 n ∞ dx R 2 |f | 2 n ∞ dx = +∞ , which proves our claim.
If Condition (4.4) is not satisfied, the proof is more complicated. By homogeneity, there is no restriction to assume that

1 M R 2 f 2 n ∞ dx = 1. Let θ := 1 M R 2 f n ∞ dx and f := f -θ, g := g -θ. Then R 2 f n ∞ dx = 0.
Notice that, by the Cauchy-Schwarz inequality, we have:

θ ∈ [-1, 1]. Moreover, if θ = 0, then B(0, R) is contained in supp( f ).
With these notations, we first have to estimate

R 2 f ∇(g c ∞ ) • ∇n ∞ dx = 2 θ R 2 f √ n ∞ ∇c ∞ • ∇ √ n ∞ dx + 2 R 2 f √ n ∞ ∇(g c ∞ ) • ∇ √ n ∞ dx .
By the Cauchy-Schwarz inequality, we have

R 2 f ∇c ∞ • ∇ √ n ∞ dx 2 ≤ R 2 f 2 n ∞ dx R 2 \B(0,R) |∇c ∞ | 2 |∇ √ n ∞ | 2 dx ,
and it is simple to check that the last integral in the right hand side converges to 0 as R → ∞.

The second integral can be estimated as before by writing

R 2 f √ n ∞ ∇(g c ∞ ) • ∇ √ n ∞ dx 2 ≤ sup |x|>R ∇ √ n ∞ 2 R 2 |f | 2 n ∞ dx R 2 |∇(g c ∞ )| 2 dx
and by recalling that

R 2 | f | 2 n ∞ dx = M .
From these estimates, we conclude that lim

R→∞ inf f ∈ D(L 2 ) \ {0} supp(f ) ⊂ R 2 \ B(0, R) Q 2 [f ] = ∞ .
We also need to estimate Q 1 [f ] and this can be done by showing that

Q 1 [f ] = M + 1 2π R 2 ×R 2 (f n ∞ )(x) log |x -y| (f n ∞ )(y) dx dy is bounded from above if we still impose that R 2 |f | 2 n ∞ dx = M . Using the crude estimate 2 log |x -y| ≤ |x -y| 2 ≤ 2 (|x| 2 + |y| 2 ) ∀ (x, y) ∈ R 2 × R 2
and, as a consequence,

R 2 ×R 2 (f n ∞ )(x) log |x -y| (f n ∞ )(y) dx dy ≤ 2 R 2 f n ∞ dx R 2 |y| 2 (f n ∞ )(y) dy ,
we conclude by observing that

R 2 f n ∞ dx ≤ √ M R 2 \B(0,R) n ∞ dx 1/2 and R 2 |y| 2 (f n ∞ )(y) dy ≤ √ M R 2 \B(0,R) |y| 4 n ∞ dy 1/2
both converge to 0 as R → ∞.

Lemma 14. With the above notations, Λ 1 > 0.

Proof. Tools for the proof of this lemma are to a large extent standard in concentrationcompactness methods or when applied to models of quantum chemistry like in [START_REF] Catto | Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. I. A necessary and sufficient condition for the stability of general molecular systems[END_REF], so we shall only sketch the main steps and omit as much as possible the technicalities of such an approach. We will actually prove a result that is stronger than the one of Lemma 14: Λ 1 is achieved by some function

f ∈ D(L 2 ). Consider a minimizing sequence (f n ) n∈N for the functional f → Q 2 [f ]/Q 1 [f ] defined on D(L 2 ) \ {0}. By homogeneity, we may assume that R 2 f 2 n ∞ dx = 1 for any n ∈ N, with no restriction, while Q 2 [f n ] is bounded uniformly in n ∈ N. Let F n := f n √ n ∞ .
In the framework of concentration-compactness methods, for any given ε > 0, it is a standard result that one can decompose F n as

F n = F (1) n + F (2) n + F n for any n ∈ N, with R 2 |F (1) n | 2 dx + R 2 |F (2) n | 2 dx + R 2 | F n | 2 dx = 1
where

F (1) n , F (2) 
n and F n are supported respectively in B(0

, 2 R), R 2 \ B(0, R n ) and B(0, 2 R n ) \ B(0, R), R n > R > 1, lim n→∞ R n = ∞, R 2 |F (1) n | 2 dx ≥ θ -ε and R 2 |F (2) n | 2 dx ≥ 1 -θ -ε
for some θ ∈ [0, 1], which is independent of ε. As a consequence, we also have that

R 2 | F n | 2 dx ≤ 2 ε.
A standard method to obtain such a decomposition is based on the IMS truncation method, which goes as follows. Take a smooth truncation function χ with the following properties: 0 ≤ χ ≤ 1, χ(x) = 1 for any x ∈ B(0, 1), χ(x) = 0 for any x ∈ R 2 \ B(0, 2), and define χ R (x) := χ(x/R) for any x ∈ R 2 . Then for an appropriate choice of R and (R n ) n∈N , we can choose

F (1) n = χ R F n and F (2) n = 1 -χ 2 Rn F n . If θ = 1, then (F (1)
n ) n∈N strongly converges in L 2 loc (R 2 , dx) to some limit F and we have

lim inf n→∞ R 2 |∇F n | 2 dx ≥ R 2 |∇F | 2 dx and R 2 |F | 2 dx ≥ 1 -ε .
Now we repeat the argument as ε = ε n → 0 + , take a diagonal subsequence that we still denote by (F n ) n∈N , define

F (1) n = χ R (1) n F n , F (2) n = 1 -χ 2 R (2) n F n and F n = F n -F (1) n -F (2) n ,
where lim n→∞ R

(1)

n = +∞ and R (2) n ≥ 2 R (1)
n for any n ∈ N. Since limits obtained above by taking a diagonal subsequence coincide on larger and larger centered balls (that is when R increases), we find a nontrivial minimizer

f = F/ √ n ∞ such that R 2 F 2 dx = R 2 f 2 n ∞ dx = 1,
since all other terms are relatively compact. Notice that Q 1 [f ] > 0 because the condition (4.3) is preserved by passing to the limit. Hence Λ 1 is achieved and we know that Λ 1 is positive because

Q 1 is positive semi-definite. Assume now that θ < 1. We know that R 2 | F n | 2 dx ≤ 2 ε n and hence lim n→∞ R 2 | F n | 2 dx = 0 .
It is not difficult to see that cross terms do not play any role in the integrals involving convolution kernels, as it is standard for Hartree type (or Schrödinger-Poisson) models. As a consequence, we can write that

lim n→∞ Q 1 [f n ] = lim n→∞ Q 1 [f (1) n ] + lim n→∞ Q 1 [f (2) n ]
where

f (i) n := F (i) n / √ n ∞ , i = 1, 2.
Proceeding as above, we may find a limit f of (f

n ) n∈N , in L 2 (n ∞ dx). It is then straightforward to observe that Λ 1 = lim n→∞ Q 2 [f n ] Q 1 [f n ] ≥ lim n→∞ Q 2 [f ] + Q 2 [f (1) 
n ] Q 1 [f ] + Q 1 [f (2) n ] . If θ > 0, we know that Q 2 [f ] ≥ Λ 1 Q 1 [f ] and lim n→∞ Q 2 [f (2) n ]/Q 1 [f (2) n ] > Λ 1 by Lemma 13, so that lim n→∞ Q 2 [f (2) 
n ] = 0 and f is a nontrivial minimizer: we are back to the case θ = 1, but with a different normalization of f . If θ = 0, it is clear that Q 1 [f ] = 0 and we get

Λ 1 ≥ lim n→∞ Q 2 [f (2) n ] Q 1 [f (2) n ] = ∞ ,
again by Lemma 13, a contradiction with the fact that

Q 2 [f ]/Q 1 [f ]
takes finite values for arbitrary test functions in D(L 2 ) \ {0}. This concludes our proof.

Remark 3. For any k ∈ N, k ≥ 1, define the Raleigh quotient

Λ k := inf f ∈ D(L 2 ) \ {0} f j , f = 0 , j = 0, 1, ...k -1 Q 2 [f ] Q 1 [f ]
where f j denotes a critical point associated to Λ j . Critical points are counted with multiplicity. Since the orthogonality condition f j , f = 0 is preserved by taking the limit along the weak topology of L 2 (n ∞ dx), building a minimizing sequence for k ≥ 1 goes as in the case k = 1. It is easy to check that Λ k is then an eigenvalue of L considered as an operator on D(L 2 ) with scalar product •, • , for any k ≥ 1and lim k→∞ Λ k = ∞.

4.5.

A spectral gap inequality. We are now going to prove that Ineq. (4.6) holds with Λ 1 = λ 1,i = 1, i = 1, 2. This is our first main estimate.

Theorem 15. For any function f ∈ D(L 2 ), we have

Q 1 [f ] ≤ Q 2 [f ] .
Recall that, with the notations of Section 4,

Q 1 [f ] = f, f and Q 2 [f ] = f, L f .
Proof. We have to compute the lowest positive eigenvalue of L. After a reformulation in terms of cumulated densities for the solution of (1.3) and for the eigenvalue problem for L, we will identify the lowest eigenvalue λ 0,1 = 2 when L is restricted to radial functions, and the lowest ones, λ 1,1 = λ 1,2 = 1, when L is restricted to functions corresponding to the k = 1 component in the decomposition into spherical harmonics.

Step 1. Reformulation in terms of cumulated densities.

Among spherically symmetric functions, it is possible to reduce the problem to a single ordinary differential equation.

Consider first a stationary solution (n ∞ , c ∞ ) of (1.3) and as in [START_REF] Biler | Steady states for Streater's energy-transport models of self-gravitating particles[END_REF] or [START_REF] Biler | Large mass self-similar solutions of the parabolic-parabolic keller-segel model of chemotaxis[END_REF] (also see references therein), let us rewrite the system in terms of the cumulated densities Φ and Ψ defined by

Φ(s) := 1 2π B(0, √ s) n ∞ (x) dx , Ψ(s) := 1 2π B(0, √ s) c ∞ (x) dx .
Notice that Φ(s) = 1 2 π M ε (π s) for ε = 0, with the notations of the proof of Theorem 4. The motivation for such a reformulation is that the system can be rewritten in terms of a nonlinear, local, ordinary differential equation for Φ using the fact that n ∞ is radial. With a slight abuse of notations, we can consider n ∞ and c ∞ as functions of r = |x|. Elementary computations show that

n ∞ ( √ s) = 2 Φ ′ (s) and n ′ ∞ ( √ s) = 4 √ s Φ ′′ (s) , c ∞ ( √ s) = 2 Ψ ′ (s) and c ′ ∞ ( √ s) = 4 √ s Ψ ′′ (s) . After one integration with respect to r = √ s, the Poisson equation -∆c ∞ = n ∞ can be rewritten as - √ s c ′ ∞ ( √ s) = Φ(s) while the equation for n ∞ , after an integration on (0, r), is n ′ ∞ ( √ s) + √ s n ∞ ( √ s) -n ∞ ( √ s) c ′ ∞ ( √ s) = 0 .
These two equations written in terms of Φ and Ψ are

-4 s Ψ ′′ = Φ and Φ ′′ + 1 2 Φ ′ -2 Φ ′ Ψ ′′ .
After eliminating Ψ ′′ , we find that Φ is the solution of the ordinary differential equation

(4.7) Φ ′′ + 1 2 Φ ′ + 1 2 s Φ Φ ′ = 0
with initial conditions Φ(0) = 0 and Φ ′ (0) = 1 2 n(0) =: a, so that all solutions can be parametrized in terms of a > 0.

Consider next the functions f and g involved in the linearized Keller-Segel system (1.3) and define the corresponding cumulated densities given by

φ(s) := 1 2π B(0, √ s) (f n ∞ )(x) dx , ψ(s) := 1 2π B(0, √ s) (g c ∞ )(x) dx . If g c ∞ = (-∆) -1 (f n ∞ ) and f is a solution of the eigenvalue problem -L f = λ f ,
then we can make a computation similar to the above one and get

(n ∞ f )( √ s) = 2 φ ′ (s) , (n ∞ f ′ )( √ s) = 4 √ s φ ′′ (s) -2 n ′ ∞ n ∞ ( √ s) φ ′ (s) , (g c ∞ )( √ s) = 2 ψ ′ (s) and (g c ∞ ) ′ ( √ s) = 4 √ s ψ ′′ (s)
. The equations satisfied by f and g are

- √ s (g c ∞ ) ′ ( √ s) = φ(s) and √ s (n ∞ f ′ )( √ s) -n ∞ (g c ∞ ) ′ ( √ s) + λ φ(s) = 0 .
These two equations written in terms of φ and ψ become

-4 s ψ ′′ = φ and 4 s φ ′′ - Φ ′′ Φ ′ φ ′ -2 Φ ′ ψ ′′ + λ φ = 0 .
After eliminating ψ ′′ , we find that φ is the solution of the ordinary differential equation

φ ′′ - Φ ′′ Φ ′ φ ′ + λ + 2 Φ ′ 4 s φ = 0 .
Taking into account the equation for Φ, that is

- Φ ′′ Φ ′ = 1 2 + Φ 2 s ,
we can also write that φ solves (4.8)

φ ′′ + s + Φ 2 s φ ′ + λ + 2 Φ ′ 4 s φ = 0 .
Recall that the set of solutions to (4.7) is parametrized by a = Φ ′ (0). It is straightforward to remark that φ = d da Φ solves (4.8) with λ = 0. The reader is invited to check that s → s Φ ′ (s) provides a nonnegative solution of (4.8) with λ = 2.

Step 2. Characterization of the radial ground state.

It is possible to rewrite (4.8) as The equation holds on (0, ∞) and boundary conditions are φ(0) = 0 and lim s→∞ φ(s) = 0. By the Sturm-Liouville theory, we know that λ = 2 = λ 0,1 is then the lowest positive eigenvalue such that φ is nonnegative and satisfies the above boundary conditions.

In other words, we have shown that the function f 0,1 found in Section 4.1 generates the eigenspace corresponding to the lowest positive eigenvalue of L restricted to radial functions.

Step 3. Spherical harmonics decomposition.

We have to deal with non-radial modes of L. Since n ∞ and c ∞ are both radial, we can use a spherical harmonics decomposition for that purpose. As in [START_REF]A numerical study of linearized Keller-Segel operator in self-similar variables[END_REF], the eigenvalue problem for the operator L amounts to solve among radial functions f and g the system

-f ′′ - 1 r f ′ + k 2 r 2 f + (r -c ′ ∞ ) (f ′ -(g c ∞ ) ′ ) -n ∞ f = λ f , -(g c ∞ ) ′′ - 1 r (g c ∞ ) ′ + k 2 r 2 (g c ∞ ) = n ∞ f , for some k ∈ N, k ≥ 1.
Here as above, we make the standard abuse of notations that amounts to write n ∞ and c ∞ as a function of r = |x|. It is straightforward to see that k = 1 realizes the infimum of the spectrum of L among non-radial functions. The function f = -n ′ ∞ provides a nonnegative solution for k = 1 and λ = 1. It is then possible to conclude using the following observation: f is a radial C 2 solution if and only if r → r f =: f (r) solves -L f = (λ + 1) f among radial functions, and we are back to the problem studied in Step 2. The value we look for is therefore λ = 1 = λ 1,1 = λ 1,2 . In other words, we have shown that the functions f 1,1 and f 1,2 found in Section 4.1 generate the eigenspace corresponding to the lowest positive eigenvalue of L corresponding to k = 1. We are now in position to conclude the proof of Theorem 15.

Either the spectral gap is achieved among radial functions and Λ 1 = 2, or it is achieved among functions in one of the non-radial components corresponding to the spherical harmonics decomposition: the one given by k = 1 minimizes the gap and hence we obtain Λ 1 = 1. See Fig. 1 for an illustration.

As a consequence of Step 2 in the proof of Theorem 15, we find that the following inequality holds.

Proposition 16. For any radial function f ∈ D(L 2 ), we have

2 Q 1 [f ] ≤ Q 2 [f ] .
where, with the notations of Section 4, Q 1

[f ] = f, f and Q 2 [f ] = f, L f .
This observation has to be related with recent results of V. Calvez and J.A. Carrillo. As a consequence, the rate e -2 t in Theorem 1 can be replaced by e -4 t when solutions are radially symmetric, consistently with [START_REF] Calvez | Refined asymptotics for the subcritical Keller-Segel system and related functional inequalities[END_REF]Theorem 1.2]. The necessary adaptations (see Section 6) are straightforward.

5.

A strict positivity result for the linearized entropy Lemma 10 can be improved and this is our second main estimate.

Theorem 17. There exists Λ > 1 such that

(5.1) Λ R 2 f n ∞ (-∆) -1 (f n ∞ ) dx ≤ R 2 |f | 2 n ∞ dx for any f ∈ L 2 (R 2 , n ∞ dx) such that (4.3) holds.
Proof. Let us give an elementary proof based on two main observations: the equivalence with a Poincaré type inequality using Legendre's transform, and the application of a concentrationcompactness method for proving the Poincaré inequality. Recall that by Lemma 10 we already know that (5.1) holds with Λ = 1.

Step 1. We claim that Inequality (5.1) is equivalent to

(5.2) Λ R 2 |h| 2 n ∞ dx ≤ R 2 |∇h| 2 dx
for any h ∈ L 2 (R 2 , n ∞ dx) such that the condition R 2 h f 0,0 n ∞ dx = 0 holds, i.e. such that h satisfies (4.3). Let us prove this claim. Assume first that (5.2) holds and take Legendre's transform of both sides with respect to the natural scalar product in L 2 (n ∞ dx): for any f ∈ L 2 (R 2 , n ∞ dx) such that (4.3) holds,

sup h R 2 f h n ∞ dx - 1 2 R 2 h 2 n ∞ dx ≥ sup h R 2 f h n ∞ dx - 1 2Λ R 2 |∇h| 2 dx
where the supremum is taken on both sides on all functions h in L 2 (R 2 , n ∞ dx) such that h satisfies (4.3). Since semi-definite positive quadratic forms are involved, the suprema are achieved by convexity. For the left hand side, we find that the optimal function satisfies

f = h + µ f 0,0
for some Lagrange multiplier µ ∈ R. However, if we multiply by f 0,0 n ∞ , we get that µ = 0, so that the left hand side of the inequality is simply 1 2 R 2 f 2 n ∞ dx. As for the right hand side, we find that the optimal function f is such that

f n ∞ = - 1 Λ ∆h + µ f 0,0 n ∞
for some Lagrange multiplier µ ∈ R. In that case, if we multiply by (-∆)

-1 (f 0,0 n ∞ ) = f 0,0 , we get that µ R 2 f 2 0,0 n ∞ dx = 1 Λ R 2 ∆h (-∆) -1 (f 0,0 n ∞ ) dx = - 1 Λ R 2 h f 0,0 n ∞ dx = 0
thus proving that µ = 0 as well. Hence the right hand side of the inequality is simply

Λ 2 R 2 f n ∞ (-∆) -1 (f n ∞ )
dx, which establishes (5.1). It is left to the reader to check that Inequality (5.2) can also be deduced from (5.1) by a similar argument.

Step 2. Let us prove that (5.2) holds for some Λ > 1. Consider an optimizing sequence of functions (h n ) n≥1 such that R 2 h 2 n n ∞ dx = 1 and R 2 h n f 0,0 n ∞ dx = 0 for any n ≥ 1, and lim n→∞ R 2 |∇h n | 2 dx = Λ. As in the proof of Lemma 14, we are going to use the IMS truncation method. Consider a smooth function χ with the following properties: 0 ≤ χ ≤ 1, χ(x) = 1 for any x ∈ B(0, 1), χ(x) = 0 for any x ∈ R 2 \ B(0, 2), and define χ R (x) := χ(x/R) for any x ∈ R 2 . It is standard in concentration-compactness methods that for any ε > 0, one can find a sequence of positive numbers (R n ) n≥1 such that h (1) n = χ Rn h n and h (2) n = 1 -χ 2 Rn h n , and, up to the extraction of a subsequence, there exists a function h such that

R 2 |∇h (1) n | 2 dx ≥ η Λ -ε and R 2 |∇h (2) n | 2 dx ≥ (1 -η) Λ -ε for some η ∈ [0, 1]
, where the sequence (∇h

n ) n≥1 strongly converges to ∇h and

lim n→∞ R 2 |h (1) n | 2 n ∞ dx = R 2 h 2 n ∞ dx =: θ (this implies the strong convergence of (h (1) 
n ) n≥1 towards h in L 2 (n ∞ dx)) because R 2 \B(0,R) |h (1) n | 2 n ∞ dx ≤ R 2 |h (1) n | 2d d-2 n ∞ dx d-2 d R 2 \B(0,R) n d 2 ∞ dx 2 d
is uniformly small as R → ∞ by Sobolev's inequality and because the last term of the right hand side is such that lim

R→∞ R 2 \B(0,R) n d/2 ∞ dx = 0. Of course, we know that η Λ ≥ R 2 |∇h| 2 dx ≥ Λ θ
by definition of Λ. The above estimate also guarantees that

R 2 \B(0,R) |h (2) n | 2 n ∞ dx =: ε n → 0 as n → ∞ .
By construction of (h

n ) n≥1 and (h

n ) n≥1 , we know that |h

n | 2 + |h (1) 
n | 2 = |h n | 2 and hence θ = 1. This also means that η = 1 and hence h is a minimizer, since the constraint passes to the limit:

R 2 h f 0,0 n ∞ dx = lim n→∞ R 2 h n f 0,0 n ∞ dx = 0 .
The function h is a solution of the Euler-Lagrange equation:

-∆h = Λ h n ∞ .
By Proposition 9, if Λ = 1, then h and f 0,0 are collinear, which is a contradiction with the constraint. This proves that Λ > 1.

Notice that the functions n ∞ and c ∞ being radial symmetric, we know that a decomposition into spherical harmonics allows to reduce the problem of computing all eigenvalues to radially symmetric eigenvalue problems. This provides a method to compute the explicit value of Λ, at least numerically. Remark 4. Inequality (5.2) is a Poincaré inequality, which has already been established in [START_REF] Serrano | A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities[END_REF] as a linearized version of an Onofri type inequality. This Onofri inequality is dual of the logarithmic Hardy-Littlewood-Sobolev type inequality that has been established in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] and according to which the free energy functional F [n] is nonnegative. In this paper, we make use of the linearized versions of these Onofri and subcritical (in terms of the mass) logarithmic Hardy-Littlewood-Sobolev inequalities, and of improved forms that are obtained by requiring some addition orthogonality constraints.

A straightforward consequence of Theorem 17 is that we can estimate

R 2 f 2 n ∞ dx in terms of Q 1 [f ] = R 2 f (f -g c ∞ ) n ∞ dx.
This result has been announced in [START_REF] Serrano | A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities[END_REF].

Corollary 18. For the same value of Λ > 1 as in Theorem 17, we have

R 2 f 2 n ∞ dx ≤ Λ Λ -1 Q 1 [f ] for any f ∈ L 2 (R 2 , n ∞ dx) such that (4.3) holds.
Proof. We may indeed write

Q 1 [f ] = Λ -1 Λ R 2 f 2 n ∞ dx + 1 Λ R 2 |f | 2 n ∞ dx -Λ R 2 f n ∞ (-∆) -1 (f n ∞ ) dx
and use the fact that the last term of the right hand side is nonnegative.

The large time behavior

This section is devoted to the proof of Theorem 1. Our approach is guided by the analysis of the evolution equation corresponding to the linearization of the Keller-Segel system: see Section 6.1. The key estimates for the nonlinear evolution problem have been stated in Theorem 15, Theorem 17, and Corollary 18. Nonlinear terms are estimated using Corollary 7.

6.1.

A linearized evolution problem. We recall that the restriction of L to D(L 1 ) is a self-adjoint operator with domain D(L 2 ), such that

f, L f = -Q 2 [f ] ∀ f ∈ D(L 2 ) . and Ker(L) ∩ D(L 2 ) = {0}
By Proposition 11, any solution (t, x) → f (t, x) of the linearized Keller-Segel model

∂f ∂t = L f x ∈ R 2 , t > 0 , -∆(g c ∞ ) = f n ∞ x ∈ R 2 , t > 0 ,
has an exponential decay, since we know that

d dt f (t, •), f (t, •) = 2 f (t, •), L f (t, •) , that is d dt Q 1 [f (t, •)] = -2 Q 2 [f (t, •)] ≤ -2 Q 1 [f (t, •)]
by Theorem 15. Hence we obtain

Q 1 [f (t, •)] ≤ Q 1 [f (0, •)] e -2 t ∀ t ∈ R + .
Here we adopt the usual convention that Q 2 [f ] = +∞ for any f ∈ D(L 1 ) \ D(L 2 ).

Proof of Theorem 1.

As in [START_REF] Blanchet | Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model[END_REF], Eq. (1.3) can be rewritten in terms of f = (n -n ∞ )/n ∞ and g = (c -c ∞ )/c ∞ in the form of (4.1), that is

∂f ∂t = L f - 1 n ∞ ∇ [n ∞ f ∇(g c ∞ )] .
The computation for the linearized problem established in Section 6.1 can be adapted to the nonlinear case and gives

d dt Q 1 [f (t, •)] = -2 Q 2 [f (t, •)] + 2 R 2 ∇(f -g c ∞ ) f n ∞ • ∇(g c ∞ ) dx , with -2 Q 2 [f (t, •)] ≤ -2 Q 1 [f (t,
•)] according to Theorem 15.

As noted in Section 4.3, Condition (4.3) is satisfied, which means that f, f 0,0 = 0. Indeed, using the explicit expression of f 0,0 = ∂ M log n ∞,M , we recall that

f (t, •), f 0,0 = R 2 f (t, •) f 0,0 n ∞ dx - R 2 f (t, •) n ∞ (-∆) -1 (f 0,0 n ∞ ) dx = R 2 f (t, •) (∂ M n ∞ -n ∞ ∂ M c ∞ ) dx = 1 µ 1 + R 2 ∂ M c ∞ n ∞ dx R 2 f (t, •) n ∞ dx = 0
because of the mass conservation.

To get an estimate on the asymptotic behaviour, we have to establish an estimate of the last term of the right hand side, which is cubic in terms of f . For this purpose, we apply Hölder's inequality to get

R 2 ∇(f -g c ∞ ) f n ∞ • ∇(g c ∞ ) dx 2 ≤ Q 2 [f ] R 2 f 2 n ∞ dx ∇(g c ∞ ) 2 L ∞ (R 2 ) .
Using Corollary 18, we find that the right hand side can be bounded by

Λ Λ -1 Q 1 [f ] Q 2 [f ] ∇(g c ∞ ) 2 L ∞ (R 2 )
and lim t→∞ ∇(g(t, •) c ∞ ) L ∞ (R 2 ) = 0 according to Corollary 7. Therefore, there exists a positive continuous function t → δ(t) with lim t→∞ δ(t) = 0 such that

d dt Q 1 [f (t, •)] ≤ -2 Q 2 [f (t, •)] + δ(t) Q 1 [f (t, •)] Q 2 [f (t, •)] ≤ (δ(t) -2) Q 2 [f (t, •)] ,
where the last inequality is a consequence of Theorem 15. For some t * > 0, large enough, we have that δ(t) -2 ≤ 0 for any t > t * and by Theorem 15 again, we get that

d dt Q 1 [f (t, •)] ≤ -(2 -δ(t)) Q 1 [f (t, •)] ∀ t > t * ,
thus proving that lim t→∞ Q 1 [f (t, •)] = 0. Now we can give a refined estimate of the decay of ∇(g c ∞ ) L ∞ (R 2 ) . Applying Lemma 6 with ε = 1, we get that

∇(g c ∞ ) L ∞ (R 2 ) ≤ C f n ∞ L 1 (R 2 ) + f n ∞ L 3 (R 2 ) .
Using Hölder's inequality, we find that

f n ∞ L 1 (R 2 ) ≤ √ M f √ n ∞ L 2 (R 2 ) , f n ∞ L 3 (R 2 ) ≤ f √ n ∞ 2/3 L 2 (R 2 ) f n ∞ 1/3 L ∞ (R 2 ) n ∞ 1/3 L ∞ (R 2 ) . According to Corollary 18, f √ n ∞ 2 L 2 (R 2 ) is bounded by Λ Λ-1 Q 1 [f ], so that δ(t) ≤ O(Q 1 [f (t, •)] 4/3 ) as t → ∞ .
As a consequence, we finally get that lim sup

t→∞ e 2 t Q 1 [f (t, •)] < ∞ ,
which completes the proof of Theorem 1.

Remark 5. From the estimate of Theorem 1, we can deduce uniform rate of convergence. Indeed, by repeating the computations of Section 3, we may now give a refined estimate of R(t). From Theorem 1, we deduce the estimates

n(t, •) -n ∞ L 1 (R 2 ) ≤ n ∞ L 1 (R 2 ) R 2 |n(s, •) -n ∞ | 2 n ∞ dx 1 2 ≤ √ C M 2π e -t 1 -e -2t , n(s, •) -n ∞ L p (R 2 ) ≤ |n(s, •) -n ∞ | p-2 n ∞ L ∞ (R 2 ) R 2 |n(s, •) -n ∞ | 2 n ∞ dx 1 p
= O(e -2s/p ) .

Moreover, the equivalence of Q 1 [f ] with R 2 f 2 n ∞ dx and Theorem 1 shows that

∇c(s, •) -∇c ∞ 2 L 2 (R 2 ) = O(e -2s
) as s → ∞ , and, as a consequence of Corollary 7, ∇c(s, •) -∇c ∞ L q (R 2 ) = O(e -s/q ) as s → ∞ .

Hence with p = 2 q = 3 r r-1 we have shown that

n(t, •) -n ∞ L ∞ (R 2 )
= O e -2 (r-1) 3 r t as t → ∞ .

Reinjecting this estimate in the above ones, we can even get an improved rate of convergence.

Concluding remarks

As a conclusion, let us summarize the main novelties of the method developed in this paper.

(a) Symmetrization and comparison with the symmetrized problem are applied in rescaled variables, and not in the original ones as was done in previous papers. As a consequence, algebraic decay estimates in the original variables are obtained, and not only bounds. (b) These estimates are sufficient to reduce the nonlinear problem to a linearized one. Still one has to understand the spectrum of the linearized operator. (c) As a consequence of the invariances of the original equation, the three lowest modes can be identified. They are independent of the mass (which is not the case for the other ones). (d) Our results strongly rely on new, sharp functional inequalities. Getting sharp logarithmic Hardy-Littlewood-Sobolev inequalities in the subcritical range of masses is a consequence of previous papers, but the fact that it has to be done in self-similar variables (after rescaling) has to be emphasized. The Onofri counterpart, which is obtained by a Legendre transform, has been established recently in [START_REF] Serrano | A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities[END_REF] and is of independent interest. Linearization of both inequalities allows us to establish sharp spectral gap inequalities (and improvements under orthogonality constraints) that are crucial for this paper and may prove to be useful for other mean field type problems.

(e) As far as we know, proving that the linearized operator is self-adjoint in the functional space corresponding to the linearization of the free energy (which is a Lyapunov functional) is a natural idea, but has not been exploited yet in this class of problems. The scalar product is new, non-trivial, and we are not aware of the use of similar tools in problems with a mean field term.

Figure 1 .

 1 Figure1. Using a shooting method, one can numerically compute the lowest eigenvalues of -L for k = 0 (radial functions, plain curves) and for the k = 1 component of the spherical harmonics decomposition (dashed curves). The plot shows that 1 and 2 are the lowest eigenvalues, when mass varies between 0 and 8 π ≈ 25.1327. See[START_REF]A numerical study of linearized Keller-Segel operator in self-similar variables[END_REF] for details and further numerical results.
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