
HAL Id: hal-00706186
https://hal.science/hal-00706186v1

Submitted on 9 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Embedded Eavesdropping on Java Card
Guillaume Barbu, Christophe Giraud, Vincent Guerin

To cite this version:
Guillaume Barbu, Christophe Giraud, Vincent Guerin. Embedded Eavesdropping on Java Card.
27th Information Security and Privacy Conference (SEC), Jun 2012, Heraklion, Greece. pp.37-48,
�10.1007/978-3-642-30436-1_4�. �hal-00706186�

https://hal.science/hal-00706186v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Embedded Eavesdropping on Java Card

Guillaume Barbu1,2, Christophe Giraud1, and Vincent Guerin1

1 Oberthur Technologies
Technologies and Innovation,

4 allée du Doyen George Brus, 33600 Pessac, France.

2 Institut Télécom / Télécom ParisTech, CNRS LTCI,
Département COMELEC,

46 rue Barrault, 75634 Paris Cedex 13, France.

{g.barbu,c.giraud,v.guerin}@oberthur.com

Abstract. In this article we present the first Combined Attack on a
Java Card targeting the APDU buffer itself, thus threatening both the
security of the platform and of the hosted applications as well as the
privacy of the cardholder. We show that such an attack, which combines
malicious application and fault injection, is achievable in practice on the
latest release of the Java Card specifications by presenting several case
studies taking advantage for instance of the well-known GlobalPlatform
and (U)SIM Application ToolKit.

Key words: Java Card, APDU Buffer, Fault Attack, Logical Attack,
Combined Attack.

1 Introduction

When introduced in the mid-nineties, Java Cards revolutionized the develop-
ment process for smart cards applications. Indeed before then, applications were
always developed in a native way, i.e. by taking into account the specificities of
the corresponding hardware on which the application is going to be executed.
This meant in particular that if a developer wanted to execute the same appli-
cation on several different devices, he had to develop as many implementations
as devices. Java Cards on the other hand allow the developer to implement an
application independently from the device on which it is going to be executed.
Such an abstraction layer is provided by the Virtual Machine which interprets
the Java code, called bytecode, and executes the corresponding instructions for
a specific device. Therefore, executing a brand new Java Card application on
each and every Java Card on the market costs only one development, leading
to the very fast deployment of such an application which cannot be achieved
when using native products. Moreover, Java Cards allow one to easily load new
applications when the card is in the field whereas such a functionality extension
is very difficult to achieve when using a native card.

Originally used in the mobile environment, Java Cards are now widely used
in banking and identity environments where the constraints in terms of security

2

are very strong. Indeed, Java Cards are generally considered as intrinsically
safer than native ones due to the security brought by the Java Card Runtime
Environment which for instance constantly checks that objects of an application
do not access objects of another application. However, as it is often the case
when a new system appears, many attackers try to circumvent the inherent
security of Java Card by using so-called ill-formed applications. To do so, the
attacker modifies the binary representation of a Java Card application in order
to allow it to access unauthorised objects [1–5]. Fortunately, such logical attacks
can be counteracted by the use of a bytecode verifier [6, §4.9.2] whose aim is
to ensure that an application is conform to the Java Card specifications [7–10].
In addition, implementors may operate certain verifications at run time in a
so-called defending virtual machine, by opposition to the offensive ones which
merely interpret the bytecode and totally rely on the security brought by the
bytecode verification. However, such a verification was not mandatory up to
the very recent Java Card 3.0 Connected Edition specifications which make the
use of an on-card bytecode verifier compulsory. Therefore, each and every Java
Card prior to the Java Card 3.0 Connected Edition is likely to be vulnerable to
software attacks if the bytecode verification is not performed or if the embedded
virtual machine does not implement additional security checks at run time.

At the same time as Java Cards were introduced, two new kinds of attacks
specific to the embedded environment were published. These attacks take advan-
tage of the physical properties of the embedded device on which the application
is being executed. The first kind of these physical attacks, called Side Chan-
nel Analysis, takes into account the physical interactions between a device and
its environment to obtain information about the secrets manipulated by the
device. Examples of such interactions are the power consumption [11] or the
electromagnetic radiation [12] of the device. The second kind of attacks, called
Fault Attacks, aim to disturb the execution of an application. Such a disturbance
could lead to a faulty output or to executing the application with granted privi-
leges [13,14]. Nowadays, the main mean of disturbing an embedded device is to
use light beams [15] or electromagnetic pulses [16]. Physical attacks were mainly
studied in the literature to break cryptographic implementations but they can
also target any function implemented on embedded devices.

The idea to combine software and physical attacks appears recently in [17].
Such attacks, called Combined Attacks, aim at allowing a malicious application
to bypass the security of Java Cards even using a bytecode verifier. Since then,
many Combined Attacks have been published to attack several vital points of a
Java Card such as the operand stack or the garbage collector [18–22].

In this paper, we use a Combined Attack to compromise another vital point
of a Java Card which has not yet been targeted: the APDU buffer. This buffer is
used to exchange all data that passes between the smart card and the terminal.
It is therefore a central element of any smart card. In the following parts, we
will show how an attacker can spy on the content of the APDU buffer or mod-
ify it through concrete examples on Java Cards. This study exhibits the fact
that the developer must always take into account that the APDU buffer can

3

be compromised at any time and not only during communication with the card
reader.

The rest of this paper is organised as follows. In Section 2, we detail the
usage of the APDU buffer on smart cards before exposing the main specificities
of this buffer in a Java Card. We also briefly present the characteristics of the two
Java Card platforms which are described in the latest specifications, namely the
Classic and Connected Editions. In Section 3, we show how a Combined Attack
can allow an attacker to access the content of the APDU buffer during the
execution of an application running on either Java Card Classic or Connected
Edition. In Section 4 we present several cases studies, in particular to break
Secure Channels. Finally Section 5 concludes the paper.

2 Forewords on the APDU Buffer and Targeted

Platforms

The attack we propose is about the attacker’s ability to illegally access the
Application Protocol Data Unit buffer within an applet of her own. In this
section, we start by discussing the possible usage of the APDU buffer and the
potential security issues. Then we outline a couple of statements from the JCRE
specification relative to the security of the APDU buffer in a Java Card platform.
Finally, we present the two platforms we consider in the scope of this article.

2.1 The APDU Buffer Usage

At first glance, one could say that having hand over the APDU buffer is only a
Man-In-The-Middle attack between the card and the card reader. However when
looking more carefully, one can observe that the APDU buffer contains not only
received or emitted data but it is also a temporary buffer that the application
uses during its execution. We expose hereafter two examples which illustrate
how powerful an adversary is compared to a Man-In-The-Middle attack when
she can spy on and/or modify the APDU buffer.

The first example is based on Secure Channel which is the most common
countermeasure to counteract Man-In-The-Middle. The principle of a Secure
Channel is to share a key between the card and the reader and then to en-
sure confidentiality and integrity of the communication by using this key with
cryptographic functions such as encryption or MAC verification for instance.
For simplicity reasons and memory consumption optimisation, such operations
are often performed in the APDU buffer. In such a case a Man-In-The-Middle
cannot alter the exchanged data without being detected nor recover the sensi-
tive information which are exchanged. However, an attacker having hand over
the APDU buffer can not only spy on the communication, bypassing the con-
fidentiality insurance, but she can also modify the command after the MAC
verification leading to very powerful potential attacks.

A second example concerns the management of the APDU buffer during
commands requiring a very large amount of memory space, such as asymmet-
ric cryptographic computations for instance. In such a case, the developer can

4

use the APDU buffer as a temporary buffer during the application execution to
extend the memory space capability of the device. However, an attacker spying
on the APDU buffer during the cryptographic computation can compromise the
security of the system if sensitive values such as cryptographic keys are manipu-
lated in this buffer. Moreover, if the attacker can modify the values manipulated
in the APDU buffer, a logical fault can be injected on a temporary value leading
to an erroneous cryptographic output. Such a faulty output can then be used to
recover the corresponding cryptographic secret key by using Differential Fault
Analysis [13].

The examples described above emphasize the strength of an attacker if she
succeeds in spying on and modifying the APDU buffer during the execution of
an application. In the following, we will present in more detail the specificities
of the APDU buffer in the context of a Java Card.

2.2 Specificities of the APDU Buffer in a Java Card

On a Java Card platform, a global array is a particular type of array ob-
ject that is owned by the JCRE but accessible by different applications. The
APDU buffer object contains such an array which is accessible through the
javacard.framework.APDU.getBuffer() virtual method. Indeed this array is
the buffer containing the incoming APDU command and the outgoing APDU
response.

The sensitive nature of such arrays is quite obvious since they are potentially
shared amongst all applications. Therefore the JCRE specifications mandate
several restrictions and verifications concerning its use.

Firstly, to prevent an application from accessing a global array when it should
not, the following restriction applies:

”Accessing Class Instance Object Fields (...). Otherwise, if the byte-
code is putfield and the field being stored is a reference type and the
reference being stored is a reference to a temporary JCRE entry point
object or a global array, access is denied.” [10, §2.4.2.8]

Secondly, to avoid any data leakage from one application to another, the
following statement is specified:

”Because of the global status of the APDU buffer, it MUST be cleared
to zeroes whenever an applet is selected, before the applet container ac-
cepts a new APDU command. ” [10, §2.4.2.2]

In the following, let us present the two different Java Card platforms we
consider in this paper.

2.3 Targeted Platforms

In its latest version, the Java Card standard has been divided into two different
Editions: the Classic and the Connected. Let us briefly present below these two
editions.

5

Java Card 3.0 Classic Edition The Java Card 3.0 Classic Edition appears
as a regular update of the Java Card 2.2.2 standard. It is as of today the most
widespread type of Java Card platform. Therefore several frameworks have been
defined with a strong link with such platforms. This is the case for instance of
the GlobalPlatform environment and the Card/(U)SIM Application Toolkits.

Java Card 3.0 Connected Edition. The Java Card 3.0 Connected Edition
stands as the major evolution of the latest release of the Java Card specifica-
tions. It offers several new capabilities, such as an embedded web server, coming
with standard network protocols, a widely upgraded API, or on-card bytecode
verification. Besides the on-card bytecode verification, making an ill-formed-
applet-based attack hardly possible, the main features used in the following of
this article are the multithreading support and the notion of Restartable Tasks.

The multithreading consists in allowing the concurrent execution of several
processes (threads of execution) on a given system. On a single-core system such
as a smart card, multithreading is then typically implemented by alternatively
giving the system resources to the different threads of execution.

In the scope of this article, the multithreading will be used through the
definition of a restartable task, also introduced in the latest Java Card speci-
fications. The notion of Restartable Tasks is based on a task registry in which
an application can register/unregister tasks it wishes to launch automatically
whenever the system is powered on. In particular, an application can register
an object instance of a class implementing the interface Runnable (by extend-
ing the class Thread typically) into the registry by a call to the static method
TaskRegistry.register(Runnable t). Subsequently, the run()method of this
object instance will be automatically executed in a new thread of execution every
time the system starts up.

This section has introduced the APDU buffer and its specificities. As just
seen, the specifications are aware of its sensitiveness, hence the quoted restric-
tions. In Section 3 we present different ways to overcome these restrictions de-
pending on the targeted platform.

3 The APDU Buffer Storage Attacks

In this section we firstly detail a fault attack allowing an attacker to store the
APDU buffer despite the JCRE restrictions. Subsequently, we show how to ex-
ploit such a capability to mount a full attack path on platforms implementing
either the Classic or the Connected Editions of the Java Card 3.0 specifications.

3.1 A Fault Attack to Store the APDU Buffer

Attacks against Java Card platforms often take advantage of ill-formed appli-
cations loaded on-card without going through the bytecode verification process.
We will describe below how the combination of a malicious, but yet well-formed,

6

application with a single physical fault injection can allow an attacker to gain
a permanent access to the APDU buffer array whatever Edition the Java Card
implements.

As stated in Section 2.2, the JCRE is responsible for preventing an appli-
cation from storing references to global arrays, and in particular to the APDU
buffer array. Therefore, the JCRE must perform runtime checks to enforce this
rule. Without loss of generality, we assume that the JCRE operates the check
described in Listing 1.1 when executing a putfield instruction.

Listing 1.1. Detection of APDU buffer storage attempt in putfield

// r e f po i n t s to the o b j e c t to s t o r e
i f (i sGlobalArray (r e f)) {

// Handle s t o ra g e attempt
throw Secur i tyExcep t ion

}

Obviously, the aim of the attacker is to force the jump in the else-branch in
our case. Since such a disturbance can be achieved thanks to a fault injection [13],
the attacker can run within her own applet a method trying to store the refer-
ence of the APDU buffer array into a global array and disturb the conditional
branching execution to avoid the SecurityException.

Let us assume that the attacker has been successful with the fault injection.
As a result, she has been able to store the reference of the APDU buffer into a
non-volatile field. Using this field, she is then likely to access the APDU buffer
at any time. The following shows how such a capability can be exploited by an
attacker on the Java Card 3.0 Classic and Connected Editions.

3.2 Attacking a Java Card 3.0 Classic Edition

By using the attack presented in Section 3.1, we assume that the attacker is able
to access the APDU buffer at any time. However, without any interaction with
other entities on-card, she cannot take advantage of this privilege in other ways
than accessing the command and response of her own application.

In order to be able to exploit her new facility, the attacker’s application must
be given a chance to run when the APDU buffer is meant for another application.
It is therefore necessary that it exposes one or several method(s) that might be
called by another entity on the platform through shareable interfaces. The point
is that when called, these shared method would allow the attacker to read or
corrupt the APDU buffer ”belonging” to the entity calling the method.

One can think that such a situation where an entity on-card calls the shared
method of another applet would only appear in an attack proof of concept.
However, we demonstrate in Section 4 that different contexts can lead to this
situation in practice.

7

3.3 Attacking a Java Card 3.0 Connected Edition

In the following, we show how an attacker can take advantage of the Java Card
3.0 Connected Edition multithreading facility to exploit the privilege of accessing
the APDU buffer whenever she wants.

Considering the attacker has been able to store the APDU buffer, we can
then imagine a restartable task whose run() method infinitely loops and spies
upon the APDU buffer, such as detailed in Listing 1.2.

Listing 1.2. The eavesdropping restartable task

/∗∗
∗ − f i e l dBu f i s the s t o r ed APDU bu f f e r r e f e r ence .
∗ − BUF LEN i s the assumed APDU bu f f e r l en g t h .
∗ − tmpBuf i s a by te array i n i t i a l i z e d wi th a s i z e o f BUF LEN.
∗ − os i s an OutputStream used by the a t t a c k e r
∗/
public void run () {

while (true) {
// APDU bu f f e r i s d i f f e r e n t , copy i t s content .
i f (arrayCompare (f i e l dBu f , 0 , tmpBuf , 0 , BUF LEN) != 0) {

System . arraycopy (f i e l dBu f , 0 , tmpBuf , 0 , BUF LEN) ;
os . wr i t e (tmpBuf) ;

}
}

}

The attacker is then potentially able to dump every byte written in the
APDU buffer inside her run method. Moreover, she can also modify the content
of the APDU buffer by writing into instead of copying it.

We have seen how a Combined Attack on a Java Card can allow an attacker
to spy the content of the APDU buffer during the execution of an application.
In the following, we expose different case studies based on this capability.

4 Case Study

In this section, we exhibit two case studies from two important specifications
of the Java Card ecosystem, namely the GlobalPlatform (GP) environment [23,
24] and the Card and (U)SIM Application ToolKit (CAT/(U)SAT) [25, 26]. In
addition, we detail a possible exploitation of the restartable task described in
Section 3.3.

4.1 Attacking through the GP Environment: OPEN

GP is an entity developing and publishing specifications relative to the deploy-
ment and management of embedded applications on secure chip technologies. As
part of the GP specifications [23], we find the description of the GP environment:
the OPEN.

8

The GP Environment: OPEN As per [23], the OPEN is the on-card entity re-
sponsible for command dispatch, card content management operations, security
management operations and secure inter-application communication. According
to this last responsibility, the OPEN including its contactless extension [24], is
the GP entity that sends notifications to other on-card entities when certain
events occur. In order to keep track of the different on-card entities, the OPEN
owns and uses an internal GP registry as an information resource. This registry
contains information for managing the card, executable load files, applications,
Security Domain associations, and privileges.

Shareable Interface Method Call from the OPEN. The event notifications
are operated through calls to a shareable interface method. The only limitation is
then for the attacking application to register for such notifications. In the scope
of GP’s contactless services, applications that implement the CLApplet interface
shall be notified of changes occurring to their GP registry entry. These changes
can have various origins, depending on the Contactless Registry Service (CRS).
For instance, the application is notified of its installation on the platform, of the
modification of the contactless communication protocol, etc... (the complete list
of events can be found in [27]). These notifications are implemented by calls to
the notifyCLEvent method of this interface.

Therefore, the applet detailed in Listing 1.3, which has gained a permanent
access to the APDU buffer array as described in Section 3, is likely to anal-
yse its content each time the registry entry of the applet is updated. As such
updates occur quite often, the attacker is then able to access frequently to the
APDU buffer. One could note that these updates of the GP registry are typ-

Listing 1.3. APDU analysis on event notification when the attacking applet
implements CLApplet

public class MyApplet extends Applet , implements CLApplet {
. . .
public void notifyCLEvent (short event) {

analyseAPDU () ; // using the s t o r ed r e f e r ence
}

}

ically privileged operations performed by the CRSApplication. Therefore, the
data potentially contained in the APDU buffer is likely to be particularly sensi-
tive. This could be for instance data having led to a successful authentification
or granted authorization.

In this section we have shown how the access to the APDU buffer could lead
to gain sensitive information relative to the security of both the platform and
the hosted applications. The following section describes how the privacy of the
card holder can also be threatened.

9

4.2 Attacking through the CAT/(U)SAT

Mobile communication is in constant evolution since the early 90s. With the
well known (U)SIM card and UICC (resp. for (Universal) Subscriber Identity
Module and Universal Integrated Circuit Card), it is today the most important
market in the smart card industry. The CAT [25] and (U)SAT [26] are standards
from the mobile communication. Their main goal is to define how the smart card
should interact with the outside world and initiate commands independently of
both the handset and the network. We show in the following that these can be
misused by an attacker with the APDU buffer access privilege.

The CAT Runtime Environment and the (U)SAT Framework. As part
of these toolkits, the CAT and (U)SAT Application Programming Interfaces
(APIs) for Java Card are respectively specified in [28] and [29]. Java Card toolkit
applets are then likely to control access to the network, displaying menus on the
handset, etc...

These features are achieved thanks to the Toolkit Registry, which similarly
to the GP registry defined in the previous section, allows a Toolkit Applet to
register to events fired by the runtime environment.

Eavesdropping and Corrupting the Short Message Service. As for the
attack described in the previous section, event notifications are operating through
calls to a shareable interface method. In order to register to some events, an ap-
plet must implement the interface uicc.toolkit.ToolkitInterface and call
the setEvent(short event) method of its ToolkitRegistry instance (available
by a call to uicc.toolkit.ToolkitRegistrySystem.getEntry()). Subsequent-
ly, the implemented processToolkit(short event) will be triggered each time
an event to which the applet is registered occurs.

In the context of the attack we describe, the attacker has then all the reasons
to register to all possible events, in order to have her eavesdropping method
called as often as possible. In particular, we study the case of events associated
to the reception of a short message through the Short Message Service (SMS).
The attacker’s toolkit applet is described in Listing 1.4.

Provided, short messages are located in the APDU buffer, the attacker is able
to intercept them and to either redirect them to the outside world or modify
their content as she pleases. This is indeed one of the many ways the attacker
can use the APDU buffer in this context. Other potential applications can also
take advantage of the pro-active capability of the CAT environment to redirect
outgoing messages or calls to taxed services for instance.

The two previous case studies were targeting the Java Card 3.0 Classic
Edition and earlier. The next one described how the so-called eavesdropping
restartable task can be exploited on a Java Card 3.0 Connected Edition.

4.3 Attacking through the Eavesdropping Restartable Task

In this section we depict a scenario where the attacker is able to eavesdrop
or tamper with the communication (even if secured by a secure channel) and

10

Listing 1.4. Eavesdropping and corrupting the SMS

public class MyApplet extends Applet ,
implements Too l k i t I n t e r f a c e {

Too lk i tReg i s t r y r ;
public MyApplet () {

r = Toolk itRegist rySystem . getEntry () ;
. . .
r . setEvent (Toolk itConstants .EVENTUNFORMATTEDSMS PP UPD) ;

}
public void p roc e s sToo l k i t (short ev) {

i f (ev == Toolk itConstants .EVENTUNFORMATTEDSMS PP UPD){
analyseAPDUSMS () ; // using the s t o r ed r e f e r ence

}
. . .

}
}

temporary data. In both cases we can use the result presented in [21], exploiting
I/O flooding to force a thread scheduling at a specific time. As a consequence,
the attacker finds herself in the situation described in Section 2.1 where she can
access the APDU buffer almost whenever she pleases. In the following, we detail
a case study proving the potential threat of such a situation.

Breaking the Secure Channel. As stated in Section 2.1, a Secure Channel is
a mechanism provided by GP to ensure both the confidentiality and integrity of
the terminal-card communication through cryptographic mechanisms. We show
here that the restartable task we have introduced in Section 3.3 can be use to
break a Secure Channel.

The initialisation of a Secure Channel is made thanks to two APDU com-
mands, namely INIT UPDATE and EXT AUTHENTICATE, with specific CLA

and INS bytes (respectively 80 50 and 84 82). Therefore, the eavesdropping
task can detect the beginning of a Secure Channel session by detecting these
commands. Subsequently, the deciphering (resp. ciphering) and MAC checking
(resp. computing) of an incoming (resp. outgoing) APDU is operated thanks
to a call to the method unwrap(byte[] baBuffer, short sOffset, short

sLength) (resp. wrap(byte[] baBuffer, short sOffset, short sLength))
of the SecureChannel interface. Our point is that if this method is called with
the APDU buffer array as parameter, the attacker owning the restartable task
will be able to both eavesdrop and corrupt the communication. The attack sce-
nario is depicted in Figure 1.

The SecureChannel is indeed used in numerous application in all smart card
fields of application, from finance to health-care. If deemed successful, the de-
scribed attack would have serious consequences regarding security and privacy.

11

Terminal Java Card

?

Man-in-the-Middle

?

Embedded
Eavesdropper

Terminal On-Card

? ?

-

�

-

�

INIT UPDATE(HRAND)

RESP(CRAND, CCRYPT)

EXT AUTHENTICATE(HCRYPT)

RESP(OK/NOK)

App.App. SecureChannel SecureChannel

? ?

-
-

CMD
EK(CMD) + MAC

-
CMD

RESP
�

�
�

EK(RESP) + MAC
RESP

Fig. 1. Breaking the SecureChannel with the Eavesdropping Restartable Task

5 Conclusion

In this article, we have introduced a novel Combined Attack tampering with
the Application Protocol Data Unit buffer. This attack leads to an outstand-
ing privilege: accessing the APDU buffer array at any time. This attack was
motivated by the fact that the APDU buffer is indeed far from being only the
communication channel between the card and the terminal.

In order not to limit the range of the attack, we have described different
ways to take advantage of this privilege on platforms implementing both the
Classic and Connected Editions of the Java Card 3.0 specifications. Finally,
we have exhibited practical exploitations of the attack on both platforms using
widely spread frameworks (the GP API and the CAT/(U)SAT API) for the first
platform and the multithreading facility for the second.

These exploitations highlight the crucial necessity to protect the access to
the APDU buffer array, by taking into account especially attackers with fault
injection capability.

References

1. Witteman, M.: Java Card Security. In: Information Security Bulletin. Vol 8. (2003)
291–298

2. Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In CARDIS 2008. Vol. 5189 of LNCS, Springer (2008) 1–16

3. Sere, A.A., Iguchi-Cartigny, J., Lanet, J.L.: Automatic Detection of Fault Attack
and Countermeasures. In WESS ’09 (2009) 1–7

4. Hogenboom, J., Mostowski, W.: Full Memory Attack on a Java Card. In: 4th
Benelux Workshop on Information and System Security (2009)

12

5. Iguchi-Cartigny, J., Lanet, J.L.: Developing a Trojan Applet in a Smart Card.
Journale on Computers and Virology 6 (2010) 343–351

6. Lindholm, T., Yellin, F.: Java Virtual Machine Specification. 2nd edn. Addison-
Wesley, Inc. (1999)

7. Sun Microsystems Inc.: Virtual Machine Specification – Java Card Plateform,
Version 3.0.1 (2009)

8. Sun Microsystems Inc.: Application Programming Interface, Java Card Platform,
Version 3.0.1 Connected Edition (2009)

9. Sun Microsystems Inc.: Java Servlet Specification, Java Card Platform, Version
3.0.1 Connected Edition (2009)

10. Sun Microsystems Inc.: Runtime Environment Specification, Java Card Platform,
Version 3.0.1 Connected Edition (2009)

11. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In CRYPTO ’99. Vol.
1666 of LNCS, Springer (1999) 388–397

12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In CHES 2001. Vol. 2162 of LNCS, Springer (2001) 251–261

13. Giraud, C., Thiebeauld, H.: A Survey on Fault Attacks. In CARDIS 2004, Kluwer
Academic Publishers (2004) 159–176

14. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. IEEE 94 (2006) 370–382

15. Skorobogatov, S., Anderson, R.: Optical Fault Induction Attack. In CHES 2002.
Vol. 2523 of LNCS, Springer (2002) 2–12

16. Quisquater, J.J., Samyde, D.: Eddy Current for Magnetic Analysis with Active
Sensor. In: e-Smart 2002. (2002)

17. Barbu, G.: Fault Attacks on Java Card 3 Virtual Machine. In: e-Smart’09. (2009)
18. Barbu, G., Duc, G., Hoogvorst, P.: Java Card Operand Stack: Fault Attacks,

Combined Attacks and Countermeasures. In CARDIS 2011. Vol. 7079 of LNCS,
Springer (2011) 297–313

19. Barbu, G., Hoogvorst, P., Duc, G.: Application-Replay Attack on Java Cards:
When the Garbage Collector Gets Confused. In ESSoS 2012. Vol. 7159 of LNCS,
Springer (2012)

20. Vétillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In CARDIS
2010. Vol. 6035 of LNCS, Springer (2010) 133–147

21. Barbu, G., Thiebeauld, H.: Synchronized Attacks on Multithreaded Systems -
Application to Java Card 3.0 -. In CARDIS 2011. Vol. 7079 of LNCS, Springer
(2011) 18–33

22. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In CARDIS 2010. Vol. 6035 of LNCS, Springer (2010) 148–163

23. GlobalPlatform Inc.: GlobalPlatform Card Specification 2.2.1 (2011)
24. GlobalPlatform Inc.: GlobalPlatform Card Specification 2.2, Amendment C, Con-

tactless Services (2010)
25. European Telecommunications Standards Institute: Card Application Toolkit

(CAT) (Release 10) (2011)
26. European Telecommunications Standards Institute: Universal Subscriber Identity

Module (USIM) Application Toolkit (USAT) (Release 10) (2011)
27. GlobalPlatform Inc.: Java Card Contactless API and Export File for Card Speci-

fication v2.2.1 (org.globalplatform.contactless) v1.0 (2011)
28. European Telecommunications Standards Institute: UICC Application Program-

ming Interface (UICC API) for Java Card (Release 9) (2011)
29. European Telecommunications Standards Institute: (U)SIM Application Program-

ming Interface ((U)SIM API) for Java Card (Release 10) (2011)

