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We give a simple convexity-based proof of the following fact: the only eigenfunction of the p-Laplacian that does not change sign is the first one. The method of proof covers also more general nonlinear eigenvalue problems.

Introduction

Let Ω ⊂ R N be a connected open set and p ∈ (1, ∞). A (positive) number λ is said to be a Dirichlet eigenvalue of the p-Laplace operator if (1.1) -div (|∇u| p-2 ∇u) = λ |u| p-2 u, in Ω, holds for some nontrivial function u ∈ W 1,p 0 (Ω). In this case the function u is called eigenfunction. Here solutions to (1.1) are always intended in a weak sense. Observe that eigenvalues can be characterized as critical values of the nonlinear Dirichlet integral Ω |∇u| p , restricted to the manifold S p = {u ∈ W 1,p 0 (Ω) : u L p (Ω) = 1}. The corresponding critical points are the eigenfunctions, normalized by the constraint on the L p norm. The first eigenvalue λ 1 (Ω) plays a distinguished role, since it corresponds to the global minimum of the Dirichlet integral on S p . Modulo the choice of its sign, the first (normalized) eigenfuction is unique (see [START_REF] Belloni | A direct uniqueness proof for equations involving the p-Laplace operator[END_REF]).

The aim of this short note is to show that a subtle form of hidden convexity 1 implies the well-known result, that the only eigenfunctions with constant sign are the ones associated with λ 1 (Ω). This has been derived in various places, under different assumptions on the regularity of Ω (see [START_REF] Anane | Simplicité et isolation de la première valeur propre du p-Laplacien avec poids[END_REF][START_REF] Kawohl | Positive eigenfunctions for the p-Laplace operator revisited[END_REF][START_REF] Lindqvist | On the equation div (|∇| p-2 ∇u) + λ |u| p-2 u = 0[END_REF] and [START_REF] Ôtani | On the first eigenvalue of some quasilinear elliptic equations[END_REF] for example). We believe that the most simple and direct proof of this fact was given by Kawohl and Lindqvist ([4]), in turn inspired by [START_REF] Ôtani | On the first eigenvalue of some quasilinear elliptic equations[END_REF].

The proof in [START_REF] Kawohl | Positive eigenfunctions for the p-Laplace operator revisited[END_REF] is based on a clever use of the equation, but it does not clearly display the reason behind such a remarkable result. As we will show, it is just a matter of convexity of the energy functional Ω |∇u| p . More precisely, Ω |∇u| p enjoys a sort of geodesic convexity on the intersection between the cone of positive functions and the manifold S p . This allows one to conclude that on this space the global analysis of Ω |∇u| p is trivial, because convexity implies that there can not be any critical point, except for the global minimizer, which as already said is unique (except for its sign). In the end, we believe this to be the deep reason why it is impossible to have positive eigenfunctions corresponding to a λ > λ 1 (Ω).

The plan of this small note is the following. In the next section, we prove a convexity property of variational integrals, whose Lagrangians depend homogeneously on the gradient. This is a variation on the convexity principle used by Belloni and Kawohl in [START_REF] Belloni | A direct uniqueness proof for equations involving the p-Laplace operator[END_REF] (see also [START_REF] Belloni | The pseudo p-Laplace eigenvalue problem and viscosity solution as p → ∞[END_REF]), in order to prove the uniqueness of the first (normalized) eigenfunction of the p-Laplacian. Then, Section 3 shows how this convexity can be used to derive the above claimed result about positive eigenfunctions. For the sake of generality, we will give the result in a slightly more general version (see Theorem 3.1), that can be applied to more general nonlinear eigenvalue problems such as

(1.2) -div∇H(x, ∇u) = b(x) λ |u| p-2 u,
where H : Ω× R N → R is C 1 convex and p-positively homogeneous in the gradient variable and b ∈ L ∞ (Ω), with b ≥ 0.

The Hidden Convexity Lemma

The main tool of our proof is the following convexity principle, used by Belloni and Kawohl in [START_REF] Belloni | A direct uniqueness proof for equations involving the p-Laplace operator[END_REF] for the functional |∇u| p . In order to make the paper selfcontained, we repeat here the proof. The statement is slightly more general than in [START_REF] Belloni | A direct uniqueness proof for equations involving the p-Laplace operator[END_REF] so as to include a wider list of functionals. Moreover, we relax the strict posivity requirement on the functions.

Lemma 2.1. Given Ω ⊂ R N an open set, let p ≥ 1 and let H : Ω × R N → R + be a measurable function such that z → H(x, z) is convex and positively homogeneous of degree p, i.e. H(x, tz) = t p H(x, z) for every t ≥ 0, (x, z) ∈ Ω × R N . (2.1) If for every u 0 , u 1 ∈ W 1,p (Ω) such that u 0 , u 1 ≥ 0 on Ω and Ω H(x, ∇u i (x)) dx < +∞, i = 0, 1, σ t (x) is defined by σ t (x) := (1 -t) u 0 (x) p + t u 1 (x) p 1 p , t ∈ [0, 1], x ∈ Ω,
then the mapping

(2.2) t → Ω H(x, ∇σ t (x)) dx is convex on [0, 1].
Proof. We claim that

Ω H(x, ∇σ t (x)) dx ≤ (1 -t) Ω H(x, ∇u 0 (x)) dx + t Ω H(x, ∇u 1 (x)) dx, t ∈ [0, 1]. (2.3)
It is easily seen that for every t ∈ [0, 1], σ t defines an element of W 1,p (Ω). Indeed, this is nothing but the composition of the vector-valued Sobolev map

(1 -t)

1 p u 0 , t 1 p u 1 ∈ W 1,p (Ω; R 2 ),
with the ℓ p norm, i.e. (x, y) ℓ p = (|x| p + |y| p ) 1/p . Moreover, the latter is a C 1 function outside the origin and ∇u i vanishes almost everywhere on the set u -1 i ({0}), i = 0, 1. Thus the usual chain rule formula holds, i.e. we obtain

∇σ t = σ 1-p t (1 -t) ∇u 0 (x) u p-1 0 + t ∇u 1 (x) u p-1 1 = σ t (1 -t) u p 0 σ p t ∇u 0 u 0 + t u p 1 σ p t ∇u 1 u 1 ,
almost everywhere in Ω. Observe that the latter is a convex combination of ∇u 0 /u 0 and ∇u 1 /u 1 . Using the convexity and homogeneity of H in the z variable, we then get

H(x, ∇σ t ) ≤ σ p t (1 -t) u p 0 σ p t H x, ∇u 0 u 0 + t u p 1 σ p t H x, ∇u 1 u 1 = (1 -t) u p 0 H x, ∇u 0 u 0 + t u p 1 H x, ∇u 1 u 1 = (1 -t) H(x, ∇u 0 ) + t H(x, ∇u 1 ).
By integrating over Ω, the claim (2.3) is proved. Finally, for every t 0 , t 1 ∈ [0, 1] we have

σ (1-λ) t0+λ t1 = (1 -λ) σ p t0 + λ σ p t1 1 p , λ ∈ [0, 1].
Thus (2.2) follows by inequality (2.3), replacing u 0 and u 1 by σ t0 and σ t1 , respectively.

Remark 2.2. It is noteworthy that the curves of the form

σ t (x) = (1 -t) u 0 (x) p + t u 1 (x) p 1 p , t ∈ [0, 1],
are the constant speed geodesics of C p = {u ∈ L p (Ω) : u ≥ 0}, endowed with the metric

d p (u 0 , u 1 ) = Ω |u 0 (x) p -u 1 (x) p | dx 1 p
.

Indeed, we have

d p (σ t , σ s ) = Ω |σ t (x) p -σ s (x) p | dx 1 p = |t -s| Ω |u 0 (x) p -u 1 (x) p | dx 1 p = |t -s| d p (u 0 , u 1 ),
for all s, t ∈ [0, 1].

The main result

We are going to prove the main result of this note. The argument is very simple and just based on the convexity principle of Lemma 2.1, but a mild approximation argument is needed. Since this is essentially a uniqueness result, we do not insist on the sharp hypotheses needed to obtain existence for the problem defining λ 1 (Ω) below. Rather, we will directly assume that this is well-defined. In what follows, for simplicity we will denote by ∇H(x, z) the gradient of H with respect to the z variable.

Theorem 3.1. Let Ω ⊂ R N be an open set, having finite measure and p > 1. Let H : Ω × R N → R + be a function such that z → H(x, z) is C 1 convex and homogeneous of degree p, i.e.

H(x, tz) = |t| p H(x, z) for every t ∈ R, (x, z) ∈ Ω × R N . (3.1)
Assume that the variational problem

λ 1 (Ω) = min u∈W 1,p 0 (Ω) Ω H(x, ∇u) dx : u L p (Ω) = 1 ,
admits at least one solution. If there exist λ and a strictly positive v ∈ W 1,p 0 (Ω) such that

(3.2) 1 p Ω ∇H(x, ∇v(x)), ∇ϕ(x) dx = λ Ω |v(x)| p-2 v(x) ϕ(x) dx, for all ϕ ∈ W 1,p 0 (Ω), then (3.3) λ = λ 1 (Ω).
Proof. First of all, we can assume that v L p (Ω) = 1, since equation (3.2) is (p -1)homogeneous and v ≡ 0. Moreover, by testing the equation with ϕ = v and by homogeneity of H, we get

Ω H(x, ∇v(x)) dx = 1 p Ω ∇H(x, ∇v(x)), ∇v(x) dx = λ ≥ λ 1 (Ω),
since v is admissible for the problem defining λ 1 (Ω). Let us assume by contradiction that (3.3) is not true. This means that we have

(3.4) λ 1 (Ω) -λ < 0.
Then we take a minimizer u ∈ W 1,p 0 (Ω) for (3.3). Thanks to the homogeneity of H, we can suppose that u ≥ 0 without loss of generality. Indeed, the function u = |u| is nonnegative and still satisfies the constraint on the L p norm. Since H(x, z) = H(x, -z), we get H(x, ∇ u) = H(x, ∇u) almost everywhere and

Ω H(x, ∇ u(x)) dx = Ω H(x, ∇u(x)) dx = λ 1 (Ω).
For every ε ≪ 1, we set for simplicity

u ε = u + ε and v ε = v + ε.
Now we define as before the following curve of functions

σ t (x) = (1 -t) v ε (x) p + t u ε (x) p 1 p , x ∈ Ω, t ∈ [0, 1],
connecting v ε and u ε . By Lemma 2.1 we can infer that

Ω H(x, ∇σ t (x)) dx ≤ (1 -t) Ω H(x, ∇v ε (x)) dx + t Ω H(x, ∇u ε (x)) dx = t Ω H(x, ∇u(x)) dx - Ω H(x, ∇v(x)) dx + Ω H(x, ∇v ε (x)) dx, t ∈ [0, 1],
where we used that ∇u ε = ∇u and ∇v ε = ∇v. The last estimate implies that

Ω H(x, ∇σ t (x)) -H(x, ∇σ 0 (x)) t dx ≤ Ω H(x, ∇u(x)) -H(x, ∇v(x)) dx = λ 1 (Ω) -λ, t ∈ (0, 1],
where we used that σ 0 = v ε by construction. By the convexity of H in the left-hand side we can infer

Ω ∇H(x, ∇σ 0 (x)), ∇σ t (x) -∇σ 0 (x) t dx ≤ λ 1 (Ω) -λ.
Since ∇σ 0 = ∇v ε = ∇v, we can use the equation (3.2) and test it with ϕ = σ t -σ 0 ∈ W 1,p 0 (Ω). This yields

p λ Ω v(x) p-1 σ t (x) -σ 0 (x) t dx ≤ λ 1 (Ω) -λ, for every ε ≪ 1, t ∈ (0, 1].
We first pass to the limit as t goes to 0. Observe that by concavity of the function s → s 1/p , we have

v p-1 σ t -σ 0 t ≥ v p-1 (σ 1 -σ 0 ) = v p-1 (u ε -v ε ) ∈ L 1 (Ω), t ∈ (0, 1],
then by Fatou Lemma the limit as t goes to 0 gives

λ Ω v(x) v ε (x) p-1 u ε (x) p -v ε (x) p dx ≤ λ 1 (Ω) -λ, for every ε ≪ 1.
We now send ε to 0. Since u and v have the same L p norm, we finally end up with

0 = λ Ω u(x) p dx - Ω v(x) p dx ≤ λ 1 (Ω) -λ,
where we also used that v > 0 on Ω. This contradicts assumption (3.4), hence the Theorem is proved.

Remark 3.2. Observe that we required the solution v to (3.2) to be strictly positive on Ω. This is not a big deal, since in many situations of interest Harnack's inequality holds true and guarantees that nontrivial nonnegative solutions of (3.2) do not vanish at interior points of Ω. This is the case for example for H : Ω × R N → R + satisfying (3.1) and the growth conditions

c 1 |z| p ≤ H(x, z) ≤ c 2 |z| p , (x, z) ∈ Ω × R N , with two positive constants c 1 ≥ c 2 > 0.
The uniqueness of positive eigenfunctions of the p-Laplacian is now an easy consequence of Theorem 3.1. 
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 331134 Let Ω ⊂ R N be a connected open set having finite measure. Then the only Dirichlet eigenfunctions of the p-Laplacian having constant sign are those corresponding to the first eigenvalue, that is defined byλ )| p dx : u L p (Ω) =Remark The same conclusions can be drawn for the Dirichlet eigenfunctions of the so called pseudo p-Laplacian ∆ p , defined by∆ p u := N i=1 ∂ xi |∂ xi u| p-2 ∂ xi u .Here the eigenvalue problem (introduced in[START_REF] Belloni | The pseudo p-Laplace eigenvalue problem and viscosity solution as p → ∞[END_REF]) consists in finding the positive numbers λ > 0, such that the equation-∆ p u = λ |u| p-2 u,has nontrivial solutions in W 1,p 0 (Ω). The proof amounts to applying again Theorem 3.1, now with the variational integral N i=1 Ω |∂ xi u(x)| p dx. Remark 3.5. We observe that the statement of Theorem 3.1 holds true and the proof is exactly the same if we replace the L p constraint u L p (Ω) = 1 by the following weighted one Ω b(x) |u(x)| p dx = 1. Here b(x) is any nonnegative bounded measurable weight such that the nonlinear eigenvalue problem -div ∇H(x, ∇u(x)) = λ b(x) |u(x)| p-2 u(x), admits a first eigenfunction.

Acknowledgement. The authors would like to thank Bernd Kawohl for his kind interest in this work, as well as the Centre International de Rencontres Mathématiques (Marseille) and its facilities, where this paper has been written.