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A NOTE ON POSITIVE EIGENFUNCTIONS AND HIDDEN

CONVEXITY

LORENZO BRASCO AND GIOVANNI FRANZINA

Abstract. We give a simple convexity-based proof of the following fact: the only
eigenfunction of the p−Laplacian that does not change sign is the first one. The
method of proof covers as well more general nonlinear eigenvalue problems.

1. Introduction

Given a connected open set Ω ⊂ R
N and 1 < p < ∞, we recall that a (positive)

number λ is said to be a Dirichlet eigenvalue of the p−Laplace operator, if there
holds

(1.1) −div (|∇u|p−2 ∇u) = λ |u|p−2 u, in Ω,

for some nontrivial function u ∈ W 1,p
0 (Ω): correspondingly, such a function u is called

eigenfunction. Here solutions to (1.1) are always intended in a weak sense. Observe
that eigenvalues can be characterized as critical values of the nonlinear Dirichlet
integral

∫
Ω
|∇u|p, restricted to the manifold

Sp = {u ∈ W 1,p
0 (Ω) : ‖u‖Lp(Ω) = 1}.

The corresponding critical points are of course the eigenfunctions, normalized by the
constraint on the Lp norm. The first eigenvalue λ1(Ω) plays a distinguished role,
since it corresponds to the global minimum of the Dirichlet integral on Sp: then up
to the choice of the sign, the first (normalized) eigenfuction is unique (see [3]).

The aim of this short note is to show how a subtle form of hidden convexity1 is
responsible for the well-known result, asserting that only eigenfunctions relative to
λ1(Ω) can have constant sign. This fact has been derived in various places, under
different assumptions on the regularity of Ω (see [1, 4, 6] and [7] for example): at
present, we believe that the most simple and direct proof of this fact, was the one
by Kawohl and Lindqvist ([4]), in turn inspired to that by Ôtani and Teshima ([7]).
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1We owe this terminology to Bernd Kawohl.
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The proof in [4] is based on a clever use of the equation, but it does not clearly dis-
play – at least, not at an explicit level – the reason behind such a remarkable result:
as we will show, it is just a matter of convexity of the energy functional

∫
Ω
|∇u|p.

More precisely,
∫
Ω
|∇u|p enjoys a sort of geodesic convexity on the intersection be-

tween the cone of positive functions and the manifold Sp. Clearly, this permits to
conclude that on this space the global analysis of

∫
Ω
|∇u|p is trivial: convexity im-

plies that there can not be any critical point, except for the global minimizer, which
as already said is unique (up to the sign). In the end, we believe this to be the real
motivation which neatly explains why it is forbidden to have positive eigenfunctions,
corresponding to a λ strictly greater than λ1(Ω).

The plan of this small note is as follows: in the next section, we prove a convexity
property of variational integrals, whose Lagrangians depend homogeneously on the
gradient. This is a variation on the convexity principle employed by Belloni and
Kawohl in [3] (see also [2]), in order to prove the uniqueness of the first (normalized)
eigenfunction of the p−Laplacian. Then, Section 3 shows how to use this convexity,
so as to derive the above claimed result, about positive eigenfunctions. For the sake
of generality – and since this does not require any additional efforts – we will give
the result in a slightly general version (see Theorem 3.1), suitable to be applied to
more general nonlinear eigenvalue problems, like for example

(1.2) −div(∇H(x,∇u)) = b(x)λ |u|p−2 u,

where H : Ω×R
N → R is C1 convex and p−positively homogeneous in the gradient

variable and b ∈ L∞(Ω), with b ≥ 0.

2. The Hidden Convexity Lemma

The main tool of our proof is the following convexity principle, used by Belloni
and Kawohl in [3] for the functional

∫
|∇u|p. To make the paper self-contained, we

repeat here the proof: the statement is slightly more general, in order to include a
wider list of functionals. Also, we relax the requirement on the strict posivity of the
functions.

Lemma 2.1. Given Ω ⊂ R
N an open set, let p ≥ 1 and let H : Ω× R

N → R+ be a

measurable functions, such that

(2.1) z 7→ H(x, z) is convex and p−positively homogeneous, for every x ∈ Ω.

For every u0, u1 ∈ W 1,p(Ω) such that u0, u1 ≥ 0 on Ω and
∫

Ω

H(x,∇ui(x)) dx < +∞, i = 0, 1,
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we define

σt(x) =
(
(1− t) u0(x)

p + t u1(x)
p
) 1

p

, t ∈ [0, 1], x ∈ Ω.

Then

(2.2) t 7→

∫

Ω

H(x,∇σt(x)) dx is convex on [0, 1].

Proof. First of all, we observe that in order to prove (2.2), it sufficies to show that
∫

Ω

H(x,∇σt(x)) dx ≤ (1− t)

∫

Ω

H(x,∇u0(x)) dx

+ t

∫

Ω

H(x,∇u1(x)) dx, t ∈ [0, 1],

(2.3)

It is easily seen that for every t ∈ [0, 1], σt defines an element of W 1,p(Ω), since this
is nothing but the composition of the vector-valued Sobolev map

(
(1− t)

1

p u0, t
1

p u1

)
∈ W 1,p(Ω;R2),

with the ℓp norm, i.e. ‖(x, y)‖ℓp = (|x|p + |y|p)1/p. Moreover, the latter is a C1

function outside the origin and ∇ui vanishes almost everywhere on the set u−1
i ({0}),

i = 0, 1: then we have the usual chain rule formula, i.e. we obtain

∇σt = σ1−p
t

[
(1− t)∇u0(x) u

p−1
0 + t∇u1(x) u

p−1
1

]

= σt

[
(1− t) up

0

σp
t

∇u0

u0

+
t up

1

σp
t

∇u1

u1

]
,

where the previous expression has to be intedended equal to 0, as soon as u0 and u1

both vanish. Observe that inside the square brackets we have a convex combination
of ∇u0/u0 and ∇u1/u1: using the convexity and homogeneity of H in the gradient
variable, we then get

H(x,∇σt) ≤ σp
t

[
(1− t) up

0

σp
t

H

(
x,

∇u0

u0

)
+

t up
1

σp
t

H

(
x,

∇u1

u1

)]

= (1− t) up
0 H

(
x,

∇u0

u0

)
+ t up

1 H

(
x,

∇u1

u1

)

= (1− t)H(x,∇u0) + tH(x,∇u1).

By integrating over Ω, we finally get (2.3) and thus the thesis. �

Remark 2.2. Differently from the scalar case, it is useful to recall that in general
the chain rule formula is not true, for the composition between a Lipschitz function
and a vector-valued Sobolev function. Necessary and sufficient conditions for this to
hold are described in [5].
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Remark 2.3. We like to point out that the curves of the form

σt(x) =
(
(1− t) u0(x)

p + t u1(x)
p
) 1

p

, t ∈ [0, 1],

are the constant speed geodesics of the cone Cp = {u ∈ Lp(Ω) : u ≥ 0}, endowed
with the metric

dp(u0, u1) =

(∫

Ω

|u0(x)
p − u1(x)

p| dx

) 1

p

= ‖up
0 − up

1‖L1(Ω), u0, u1 ∈ Cp.

Indeed, we have

dp(σt, σs) =

(∫

Ω

|σt(x)
p − σs(x)

p| dx

) 1

p

= |t− s|

(∫

Ω

|u0(x)
p − u1(x)

p| dx

) 1

p

= |t− s| d(u0, u1), s, t ∈ [0, 1].

3. The main result

We are going to prove the main result of this note: the argument is very simple and
just based on the convexity principle of Lemma 2.1, but we have to go on through a
mild approximation argument. Also, since this is essentially a uniqueness result, we
do not insist on the sharp hypotheses, needed to obtain existence for the variational
problem defining λ1(Ω) below. Rather, we will directly assume that this is well-
defined: in what follows, for simplicity with ∇H(x, z) we will indicate the gradient
of H with respect to the gradient variable.

Theorem 3.1. Let Ω ⊂ R
N be a open set, having finite measure. Given p > 1, we

consider H : Ω×R
N → R+ to be a C1 function satisfying (2.1) and we suppose that

the variational problem

λ1(Ω) = min
u∈W 1,p

0
(Ω)

{∫

Ω

H(x,∇u) dx : ‖u‖Lp(Ω) = 1

}
,

is well-posed, i.e. there exists at least a solution. Assume that λ is such that

(3.1)
1

p

∫

Ω

〈∇H(x,∇v(x)),∇ϕ(x)〉 dx = λ

∫

Ω

|v(x)|p−2 v(x)ϕ(x) dx, ϕ ∈ W 1,p
0 (Ω),

for some strictly positive v ∈ W 1,p
0 (Ω) \ {0}. Then necessarily

(3.2) λ = λ1(Ω).
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Proof. First of all, observe that we can always assume that ‖v‖Lp(Ω) = 1, since
equation (3.1) is (p − 1)-homogeneous and v 6≡ 0. We also observe that by testing
the equation with ϕ = v and by homogeneity of H, we get

∫

Ω

H(x,∇v(x)) dx =
1

p

∫

Ω

〈∇H(x,∇v(x)),∇v(x)〉 dx = λ ≥ λ1(Ω),

since v is admissible for the problem defining λ1(Ω). Let us assume by contradiction
that (3.2) is not true, this means that we have

(3.3) λ1(Ω)− λ < 0.

Then we take u ∈ W 1,p
0 (Ω) a minimizer for (3.2) and for every ε ≪ 1, we set for

simplicity

uε = u+ ε and vε = v + ε.

We now want to use Lemma 2.1: at this aim, we define as before the following curve
of functions

σt(x) = [(1− t) vε(x)
p + t uε(x)

p]
1

p , x ∈ Ω, t ∈ [0, 1],

connecting vε and uε. Thanks to Lemma 2.1, we can infer that
∫

Ω

H(x,∇σt(x)) dx ≤ (1− t)

∫

Ω

H(x,∇vε(x)) dx+ t

∫

Ω

H(x,∇uε(x)) dx

= t

[∫

Ω

H(x,∇u(x)) dx−

∫

Ω

H(x,∇v(x)) dx

]

+

∫

Ω

H(x,∇vε(x)) dx, t ∈ [0, 1],

where we used that ∇uε = ∇u and ∇vε = ∇v. From the previous, we then arrive at
∫

Ω

H(x,∇σt(x))−H(x,∇σ0(x))

t
dx ≤

∫

Ω

H(x,∇u(x)) dx−

∫

Ω

H(x,∇v(x)) dx

= λ1(Ω)− λ, t ∈ (0, 1],

and we recall that σ0 = vε, by construction. We then use the (standard) convexity
of H in the left-hand side: thus, we can infer

∫

Ω

〈
∇H(x,∇σ0(x)),

∇σt(x)−∇σ0(x)

t

〉
dx ≤ λ1(Ω)− λ.

Since ∇σ0 = ∇vε = ∇v, we can use the equation (3.1), by testing it with the function
σt − σ0 ∈ W 1,p

0 (Ω): this yields

λ

∫

Ω

v(x)p−1 σt(x)− σ0(x)

t
dt ≤ λ1(Ω)− λ, for every ε ≪ 1, t ∈ (0, 1].
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Observe that there holds∣∣∣∣
σt(x)− σ0(x)

t

∣∣∣∣ ≤
1

p
ε1−p |up

ε − vpε | ∈ L1(Ω), for every t ∈ (0, 1],

then by Lebesgue Dominated Convergence, the limit as t goes to 0 takes us to

λ

p

∫

Ω

(
v(x)

vε(x)

)p−1 [
uε(x)

p − vε(x)
p
]
dx ≤ λ1(Ω)− λ, for every ε ≪ 1.

By passing to the limit as ε converges to 0 in the previous – and keeping in mind
that u and v have the same Lp norm – we finally end up with

0 =
λ

p

[∫

Ω

u(x)p dx−

∫

Ω

v(x)p dx

]
≤ λ1(Ω)− λ,

where we used that v > 0 on Ω. This gives the desired contradiction, thanks to
assumption (3.3). �

Remark 3.2. Observe that we required the solution v to (3.1) to be strictly positive
on Ω: this is not a big deal, since in most of the situation of interest, the Harnack
inequality holds true and guarantees that positive solutions of (3.1) does not vanish
in the interior on Ω. This is the case for example of H : Ω × R

n → R+ satisfying
(2.1) and the growth conditions

c1 |z|
p ≤ |H(x, z)| ≤ c2 |z|

p, (x, z) ∈ Ω× R
N ,

for two positive constants c1 ≥ c2 > 0.

The uniqueness of positive eigenfunctions of the p−Laplacian is now an easy con-
sequence of Theorem 3.1.

Corollary 3.3. Let Ω ⊂ R
N be a connected open set, having finite measure. Then

the only Dirichlet eigenfunctions of the p−Laplacian that do not change sign, are

those corresponding to the first eigenvalue, defined by

λ1(Ω) = min
u∈W 1,p

0
(Ω)

{∫

Ω

|∇u(x)|p dx : ‖u‖Lp(Ω) = 1

}
.

Remark 3.4. The same conclusions can be drawn for the Dirichlet eigenfunctions

of the so called pseudo p−Laplacian ∆̃p, defined by

∆̃pu :=
N∑

i=1

∂xi

(
|∂xi

u|p−2 ∂xi
u
)
.

Here of course the eigenvalue problem – introduced in [2] – consists in finding the
positive numbers λ > 0, such that the equation

−∆̃pu = λ |u|p−2 u,
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has nontrivial solutions in W 1,p
0 (Ω). The proof amounts to applying again Theorem

3.1, now with the variational integral
N∑

i=1

∫

Ω

|∂xi
u(x)|p dx,

which satisfies the hypotheses of Lemma 2.1.

Remark 3.5. We explicitly observe that the statement of Theorem 3.1 still holds –
and the proof is exactly the same – if we replace the Lp constraint ‖u‖Lp(Ω) = 1, by
the following one ∫

Ω

b(x) |u(x)|p dx = 1,

i.e. if we look at the eigenvalue problem

−div (∇H(x,∇u(x))) = λ b(x) |u(x)|p−2 u(x).

Acknowledgements. The authors would like to thank Bernd Kawohl for his kind in-
terest in this work, as well as the Centre International de Rencontres Mathématiques
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