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A short exposition with complete proofs of the theory of cluster expansions for an abstract polymer system is presented.

Consider a countable set P, whose elements will be called polymers. Let I be a subset of P 2 (P), the set of all subsets of P with two elements. We say that two polymers γ and γ ′ are incompatible if {γ, γ ′ } ∈ I or if γ = γ ′ , and we will also write γ ∼ γ ′ . If {γ, γ ′ } ∈ I we say that the two polymers are compatible and we write γ ∼ γ ′ .

Assume that a complex valued function φ(γ), γ ∈ P, is given. We call φ(γ) the weight, or the activity, of the polymer γ. For any finite subset Λ ⊂ P, the partition function Z(Λ) of the polymer system is defined by

Z(Λ) = X⊂Λ compatible γ∈X φ(γ) (1) 
The sum runs over all subsets X of Λ such that γ ∼ γ ′ for any two distinct elements of X. If X contains only one element, X is considered a compatible subset, and if X = ∅, the product is interpreted as the number 1.

We introduce the following function on P × P

f (γ, γ ′ ) = -1 if γ ∼ γ ′ or γ = γ ′ 0 otherwise (2) 
Let G n , n ≥ 2 be the set of connected graphs with n vertices, 1, . . . , n. We consider undirected graphs without multiple edges, equivalently defined by a subset of P 2 ({1, . . . , n}) which determines the edges. Given g ∈ G n we define the value of g on a sequence (γ 1 , . . . , γ n ) ∈ P n as

g(γ 1 , . . . , γ n ) = (i,j)∈g f (γ i , γ j ) (3) 
where (i, j) ∈ g means that the graph g has an edge connecting i with j. We also define G 1 as the set containing only one graph g having only one vertex (and no edges) and write

g(γ) = 1, γ ∈ P (4) Theorem 1 (Expansion) Define a T (γ 1 , . . . , γ n ) = g∈Gn g(γ 1 , . . . , γ n ) (5)
Then, we have

ln Z(Λ) = ∞ n=1 1 n! (γ 1 ,...,γn)∈Λ n a T (γ 1 , . . . , γ n ) n i=1 φ(γ i ) (6)
Proof. The partition function can be written as

Z(Λ) = 1 + γ∈Λ φ(γ) + ∞ n=2 1 n! (γ 1 ,...,γn)∈Λ n n i=1 φ(γ i ) 1≤i<j≤n (f (γ i , γ j ) + 1) (7)
and developing the second product

Z(Λ) = 1 + ∞ n=1 1 n! ∞ m=1 1 m! k 1 ,...,km i k i =n g 1 ∈G k 1 g 2 ∈G k 2 . . . gm∈G km n! k 1 !k 2 ! . . . k m ! (γ 1 ,...,γn)∈Λ n g 1 (γ 1 , . . . , γ k 1 )g 2 (γ k 1 +1 , . . . , γ k 1 +k 2 ) . . . . . . g m (γ k 1 +...+k m-1 +1 , . . . , γ n ) n i=1 φ(γ i ) = 1 + ∞ m=1 1 m! ∞ k=1 1 k! g∈G k (γ 1 ,...,γ k )∈Λ k g(γ 1 , . . . , γ k ) k i=1 φ(γ i ) m = exp ∞ k=1 1 k! g∈G k (γ 1 ,...,γ k )∈Λ k g(γ 1 , . . . , γ k ) k i=1 φ(γ i ) (8) 
The theorem is proved.

With any finite sequence Γ = (γ 1 , . . . , γ n ) ∈ P n we associate the graph θ(Γ) with vertices {1, . . . , n} obtained by drawing an edge between the vertices i and j if γ i ∼ γ j and also if γ i = γ j . We observe that g(Γ) = 0 only if θ(Γ) is a connected graph (i.e., if

θ(Γ) ∈ G n ) and g ∈ G n is a subgraph of θ(Γ). Then a T (Γ) = g∈Gn g(Γ) = g⊂θ(Γ) g∈Gn (-1) |g| (9) 
where |g| is the number of edges of the graph g. In other words, a T (Γ) is equal to the number of connected subgraphs of θ(Γ) with an even number of edges minus the number of connected subgraphs with an odd number of edges. If the graph θ(Γ) is not connected, a T (Γ) = 0. We observe that the a T (γ 1 , . . . , γ n ), n = 1, 2, . . ., are symmetric functions. Thus, we can write the considered expansions also in terms of multi-indices instead of finite sequences. A multi-index X on a set P is a function X(γ), γ ∈ P, taking non-negative integer values and such that supp X = {γ ∈ P : X(γ) ≥ 1} is a finite set or, equivalently, such that |X| = γ∈P X(γ) is a finite number. We denote by M(Λ) the set of multi-indices defined on Λ.

If X is a given multi-index and Γ = (γ 1 , . . . , γ n ), n = |X|, one of the sequences corresponding to X, we define a T (X) = a T (Γ), and a new function

φ T (X) = γ∈P X(γ)! -1 a T (X) γ∈P φ(γ) X(γ) (10) 
Taking into account that the number of different sequences Γ associated to X is n!/ γ∈P X(γ)!, the statement in theorem 1 can be written as

ln Z(Λ) = X∈M(Λ) φ T (X) (11) 
The multi-indices such that a T (X) = 0 (i.e., whose associated graph θ(Γ) is connected) will be called clusters.

Theorem 2 (Convergence) Assume that there is a positive function µ(γ), γ ∈ P, such that, for all γ 0 ∈ P,

|φ(γ 0 )| ≤ (e µ(γ 0 ) -1) exp - γ ∼γ 0 µ(γ) (12) 
Then, for all γ 1 ∈ P, we have

X∈M(P), X(γ 1 )≥1 |φ T (X)| ≤ µ(γ 1 ) (13) 
X∈M(P)

X(γ 1 )|φ T (X)| ≤ e µ(γ 1 ) -1 (14) 
We first prove the following lemma.

Lemma 1 For any X ∈ M(P), we have

(-1) |X|+1 a T (X) ≥ 0 (15)
Proof of lemma 1. We introduce the partition function

Z * (Λ) = X⊂Λ compatible γ∈X -|φ(γ)| (16) 
for which

-ln Z * (Λ) = X∈M(Λ) - γ∈P X(γ)! -1 a T (X) γ -|φ(γ)| X(γ) (17) 
If inequality (15) is satisfied, we have

-ln Z * (Λ) = X∈M(Λ) |φ T (X)| (18)
showing that lemma 1 is equivalent to the fact that all terms in the expansion ofln Z * (Λ) are positive. This fact will be proved by an induction argument on the subsets Λ. It certainly holds when Λ contains only one polymer. Assume that it holds for a given Λ and let γ 0 ∈ P\Λ. From the definition of Z * we see that

Z * (Λ ∪ {γ 0 }) = Z * (Λ) -|φ(γ 0 )|Z * (Λ 0 ) (19) 
with Λ 0 = {γ ∈ Λ : γ ∼ γ 0 }, and

-ln Z * (Λ ∪ {γ 0 }) = -ln Z * (Λ) -ln 1 - |φ(γ 0 )|Z * (Λ 0 ) Z * (Λ) (20) 
On the other hand, we have

Z * (Λ 0 )/Z * (Λ) = exp X∈M(Λ)\M(Λ 0 ) |φ T (X)| (21) 
This shows the positivity of all the terms in the expansion of the second term in the right hand side of equation (20) (remark that the series expansions of the functions exp x andln(1x) have only positive terms for x ≥ 0). Since, by assumption, this is also the case for the first term, it follows that also ln Z * (Λ ∪ {γ 0 }) satisfies the induction hypothesis. The lemma is proved.

Proof of theorem 2. We use again an induction argument on the subsets Λ. Assume that, for a given Λ and any γ ∈ Λ, the following estimate holds

X∈M(Λ), X(γ)≥1 |φ T (X)| ≤ µ(γ) (22) 
This inequality can also be written as

-ln Z * (Λ) + ln Z * (Λ\{γ}) ≤ µ(γ) (23) 
and, for all Λ ′ ⊂ Λ, it implies

-ln Z * (Λ) + ln Z * (Λ ′ ) ≤ γ∈Λ\Λ ′ µ(γ) (24) 
and, in particular,

Z * (Λ 0 )/Z * (Λ) ≤ exp γ:γ∈Λ,γ ∼γ 0 µ(γ) (25) 
because Λ\Λ 0 = {γ ∈ Λ : γ ∼ γ 0 }. Since Λ does not contain γ 0 , we get

|φ(γ 0 )| Z * (Λ 0 ) Z * (Λ) ≤ |φ(γ 0 )| exp -µ(γ 0 ) + γ:γ∈P,γ ∼γ 0 µ(γ) (26) 
and, taking the assumption [START_REF] Dobrushin | Estimates of semi-invariants for the Ising model at low temperatures[END_REF] of the theorem into account,

φ(γ 0 )Z * (Λ 0 ) Z * (Λ) ≤ e -µ(γ 0 ) (e µ(γ 0 ) -1) = 1 -e -µ(γ 0 ) (27)
Then, using (20) and the fact thatln(1x) is an increasing function of x, for any real x in the interval -1 < x < 1, we obtain

-ln Z * (Λ ∪ {γ 0 }) Z * (Λ) ≤ -ln 1 -1 -e -µ(γ 0 ) = µ(γ 0 ) (28)
This proves the induction hypothesis ( 22) for Λ ∪ {γ 0 }, and therefore for all Λ (being valid when Λ contains only one element). Statement ( 13) of the theorem is proved. Finally, if γ 0 ∈ Λ and Λ 0 is defined as above, we have

X∈M(Λ) X(γ 0 )|φ T (X)| = -|φ(γ 0 )| ∂ ∂|φ(γ 0 )| ln Z * (Λ) = |φ(γ 0 )|Z * (Λ 0 ) Z * (Λ) (29)
Then, the statement ( 14) follows from hypothesis [START_REF] Dobrushin | Estimates of semi-invariants for the Ising model at low temperatures[END_REF], taking into account inequality (24) and that now Λ contains γ 0 . This ends the proof of the theorem.

The following consequences of the theorem concern the correlation functions and the truncated correlation functions. Notice that, for Λ finite and {γ 1 , . . . , γ n } ⊂ Λ, these functions can be written as

ρ Λ (γ 1 , . . . , γ n ) = Z(Λ) -1 n i=1 φ(γ i ) Z(∩ n i=1 Λ i ) (30) = Z(Λ) -1 n i=1 (φ(γ i ) ∂/∂φ(γ i )) Z(Λ) (31) 
ρ T Λ (γ 1 , . . . , γ n ) = n i=1 (φ(γ i ) ∂/∂φ(γ i )) ln Z(Λ) (32) 
with

Λ i = {γ ∈ Λ : γ ∼ γ i }.
Corollary 1 Under the hypothesis of theorem 2, the thermodynamic limits (Λ ↑ P) of the correlation functions and the truncated correlation functions, ρ and ρ T , exist. Moreover

|ρ(γ 1 , . . . , γ n )| ≤ n i=1 (e µ(γ i ) -1) (33) 
Proof. Expressions (30), ( 31) and (32) show that the corresponding expansions in terms of the φ T (X) are

ρ Λ (γ 1 , . . . , γ n ) = n i=1 φ(γ i ) exp X∈ φ T (X) (34) 
ρ T (γ 1 , . . . , γ n ) = X∈M(P) X(γ 1 ) . . . X(γ n )φ T (X) (35) 
where Q(γ 1 , . . . , γ n = M(P)\M(∩ n i=1 P i ) is the set of X whose support contains a γ incompatible with one of the γ i , i = 1, . . . , n. The corollary follows from the convergence of these expansions stated in theorem 2. A simple extension of the argument leading to inequality (15) proves the inequality stated in the corollary.

Corollary 2 Assume that, for all γ 0 ∈ P, |φ(γ 0 )| ≤ e -t (e µ(γ 0 ) -1) exp -

γ ∼γ 0 µ(γ) ( 36 
)
where e -t < 1 is a uniform factor. Then the following cluster property is satisfied (for all γ 1 ∈ P)

(γ 2 ,...,γn)∈P n-1 |ρ T Λ (γ 1 , . . . , γ n )| ≤ (n -1)! t -n+1 (e µ(γ 1 ) -1) (37) 
Proof. Theorem 2 and assumption (36) imply the bound

X∈M(P) X(γ 1 )e t |X| |φ T (X)| ≤ (e µ(γ 1 ) -1) (38) 
Taking into account equation (32) and that

e t |X| = ∞ n=0 t n n! γ∈P X(γ) n (39) 
we obtain the stated estimate (37) from this bound.
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The proof of the convergence of cluster expansions presented in this note, and in ref. [START_REF] Miracle-Sole | On the convergence of cluster expansions[END_REF], is based in part on the last mentioned work. This proof is in our view rather simple and direct. The result, stated in Theorem 2, is expressed in the "classical" form, useful in the applications, that is as a bound on a sum of an absolutely convergent series. The hypothesis, the same that in [START_REF] Dobrushin | Estimates of semi-invariants for the Ising model at low temperatures[END_REF], is slightly weaker than the hypothesis used in the mentioned previous works. We use, as in [START_REF] Kotecký | Cluster expansion for abstract polymer systems[END_REF] and [START_REF] Dobrushin | Estimates of semi-invariants for the Ising model at low temperatures[END_REF], the formalism of an abstract polymer system. Some recent developments of this approach can be found in ref. [START_REF] Fernandez | Cluster expansions for abstract polymer models. New bounds from an old approach[END_REF].

In the present note we follow refs. [START_REF] Gallavotti | Some problems connected with the description of coexisting phases at low temperatures in Ising models[END_REF] and [START_REF] Miracle-Sole | On the convergence of cluster expansions[END_REF]. The proofs, however, have been improved and simplified.