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ADMISSIBLE COVERS AND THE ELSV COMPACTIFICATION

B. DUDIN

ABSTRACT. We revisit Ekedahl, Lando, Shapiro and Vainshtein’s compactification of the

stack of Hurwitz covers. By drawing a connection with the Harris and Mumford stack

of admissible covers we give a new geometric interpretation of boundary points of the

ELSV compactification. As a byproduct we establish that this compactification holds

for any algebraically closed field of sufficiently high characteristic.

INTRODUCTION

Hurwitz covers of genus g and type (k1, . . . ,kn) ∈ (N∗)n are covers of smooth rational

single marked curves φ : (C ; p1, . . . , pn) → (R ,∞) for a smooth genus g n-marked curve C
such that φ is simply ramified away from ∞ and satisfies scheme theoretically φ−1∞=∑n

i=1 ki pi . A cover ψ : (B , q1, . . . , qn) → (T,∞) is said to be isomorphic to φ if there is a

commutative diagram

(C , p1, . . . , pn) (R ,∞)

(B , q1, . . . , qn) (T,∞)

where vertical arrows are isomorphisms of marked curves. The number of isomorphism

classes of Hurwitz covers of a given genus and type having a fixed branch locus are

called Hurwitz numbers. When the base field is C the celebrated ELSV formula ex-

presses these numbers in terms of tautological intersection numbers on the stack of

stable marked curves. To prove this formula Ekedahl, Lando, Shapiro and Vainshtein

introduced a compactification of the stack of Hurwitz covers Hg ,~k which has a projec-

tive stack cone structure over Mg ,n . Let’s unravel how this cone structure appears in

the case of Hg ,~k over Mg ,n . Take an isomorphism α : (R ,∞) ≃ (P1,∞), the composition

α◦φ is given by a global non zero section ζα in H 0(OC (
∑n

i=1 ki pi )). Write 1 for the section

OC → OC (
∑n

i=1 ki pi ) and let ζβ ∈ H 0(OC (
∑n

i=1 ki pi )) correspond to β : (R ,∞) ≃ (P1,∞).

There exists a couple (λ,µ) ∈ Ga ⋊Gm = Aut(P1,∞) such that ζα = λζβ +µ1. One gets

that the image [ζα] of ζα in PH 0(OC (
∑n

i=1
(ki pi ))/OC ) does only depend on φ. Covers

automorphic to φ can be recovered out of lifts of [ζα] to PH 0(OC (
∑

i=1 ki pi )). A unique

choice of a lift can be made by choosing the one having 0 sum of branch points away

from ∞. Following this procedure one gets a locally closed embedding of Hg ,~k in the

projective bundle over Mg ,n having fiber PH 0(OC (
∑n

i=1)ki pi /OC ) over (C , p1, . . . , pn).

To compactify Hg ,~k following [ELSV01] one starts by extending underlying curves to

the case of stable marked ones and replaces sections of O−(
∑n

i=1 ki pi ) by sections of

a more sophisticated coherent sheaf called the sheaf of generalized polar parts. This

sheaf is constructed by giving local explicit descriptions which glue together over the

whole of Mg ,n . The projective stack cone attached to the sheaf of generalized polar
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2 B. DUDIN

parts has a closed substack of a quotient of the stack of stable maps by Gm . The ELSV

compactification is the closure H g ,~k of Hg ,~k in this closed substack. One can raise two

questions:

• Is there a construction of the stack of generalized polar parts over Mg ,n which

shortcuts the previously mentioned local descriptions?

• Can one have a finer understanding of boundary points of H g ,~k ?

To answer the first question we choose to keep global sections of O−(
∑n

i=1 ki pi )/O−

rather than working with generalized polar parts over stable curves. We extend how-

ever underlying curves to specific prestable marked curves called bubbly curves (defi-

nition 1.2). These enriched bubbly curves are called polar curves (definition 1.4). The

forgetful morphism that sends such data to the underlying bubbly curve and stabilizes

it gives the stack of polar curves the structure of a stack cone over Mg ,n . We prove this

cone is isomorphic to the stack of generalized polar parts. In the process we check that

the stack of polar parts gives birth to a tame stack in the sense of [AOV08] over any al-

gebraically closed field. The latter contains a closed substack in which Hg ,~k lies as an

open substack. One can define the ELSV compactification over any algebraically closed

base field as the closure H g ,~k of Hg ,~k in this closed substack. In general Hg ,~k is badly

behaved and we have to restrict our attention to the case of base fields of sufficiently

high characteristic.

Assume the characteristic of the base field is either 0 or greater than the degree of

the Hurwitz covers we’re interested in, as well as greater than the number of simple

ramification points away from ∞. Under this assumption we build a natural surjective

morphism from Harris Mumford’s stack of admissible covers to a quotient of the stack

of stable maps by Gm . Using the generalized branch divisor introduced by Fantechi and

Pandharipande we identify the ELSV compactification with the image of this morphism.

This answers the second question. The previously mentioned morphism gives combi-

natorial restrictions on the modular graphs of curves underlying H g ,~k . A study of these

combinatorial restrictions will appear in a forthcoming paper.

A word about notation. Throughout this paper we fix a natural number g and a posi-

tive integer n. All of our prestable curves shall be of genus g and marked by n points.

Unless otherwise stated we will assume (g ,n) is different from (0,1) and (0,2). We also

fix an n-tuple of positive integers (k1, . . . ,kn) written~k. In what follows, without further

notification, k is an algebraically closed field of any characteristic p, and a scheme is a

k-scheme, that belongs to the category Sch/k.

Acknowledgements. The author would like to thank his advisor J. Bertin for his guid-

ance and support as well as A. Chiodo and M. Romagny for fruitful discussions. The

author is grateful to G. Magnusson for correcting english mistakes in early versions of

this paper.

1. THE STACK OF POLAR CURVES

1.1. Stable maps of profile~k . For an exhaustive study of marked stable curves and re-

lated stacks and moduli problems, see [ACG11]. Let S ∈ Sch/k, and let π : C → S be a

prestable S-curve marked by the S-points σ1, . . . ,σn . Recall that this means that π is a

proper and flat S-scheme π : C → S whose fibers are connected reduced 1-dimensional

k-schemes having at most nodes for singularities. In addition we are given n disjoint

sections (σ1, . . . ,σn) of the projection π : C → S whose images D1, . . . ,Dn are in the

smooth locus of π. The divisor
∑

i=1 ki Di is a relative Cartier divisor on C . The above
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data is written (C /S,~σ). An automorphism of (C /S,~σ) is an automorphism of C /S fix-

ing the S-sections. The n-marked S-curve C is said to be stable if the automorphism

groups of its fibers are all finite. The moduli stack of stable n-marked curves is written

Mg ,n .

In a similar fashion we can define the moduli space of stable maps into a fixed tar-

get (see [FP97] for a convenient reference). In this paper we’ll be interested in the case

where this target is P
1. A stable S-map with target P1 and degree d is a degree d pro-

jective S-morphism from a prestable n-marked S-curve into P
1 whose fibers have finite

automorphism groups, equivalently, each rational contracted component of the domain

has at least 3 special points, that are either marked or nodal. The moduli space of sta-

ble maps is written Mg ,n(P1,d ). We have on Mg ,n(P1,d ) evaluations maps ev1, . . . ,evn

which send a stable k-map φ on its value at each marked point. Details about the mod-

uli space of stable maps can be found in [FP97]. We write Mg ,n(P1,d ,∞) for the closed

substack of Mg ,n(P1,d ) corresponding to the locus

( n∏

i=1

evi

)−1
(∞, . . . ,∞)︸ ︷︷ ︸

∈(P1)n

.

The group scheme of automorphisms of P1 fixing the point at infinity acts naturally on

Mg ,n(P1,d ,∞). This group is isomorphic to Ga ⋊Gm and (λ,α) ∈O∗
S ×OS acts on P

1
S by

sending [t0; t∞] on [λt0 +αt∞; t∞]. The induced action on Mg ,n(P1,d ,∞) is given with

the obvious notation by sending an S-map φ : C →P
1
S on λφ+α.

Definition 1.1. We set Mg ,n(P1,~k) for the category fibered in groupoids given for S ∈

Sch/k by S-maps φ : (C /S,~σ) →P
1
S in Mg ,n(P1,d ,∞) satisfying scheme theoretically

(1.1) φ−1
∞=

∑

i=1

ki Di

where ∞ is the S-section at infinity of P1
S .

This category fibered in groupoids is indeed a substack of Mg ,n(P1,d ,∞). The condi-

tion 1.1 expressed previously is obviously local, stable under any base change and étale

descent. It is stable as well under the action of Ga ⋊Gmo n Mg ,n(P1,d ,∞).

Proposition 1.1. The substack Mg ,n(P1,~k) is a locally closed substack in Mg ,n(P1,d ,∞).
In particular, it is an algebraic stack.

Proof. Let φ : C →P
1
S be an S-object in Mg ,n(P1,d ,∞). Call π : C → S the projection on

S. We are going to show that the locus of S given by points having fibers in Mg ,n(P1,~k)

is locally closed. The condition
∑

ki Di ⊂ φ−1(∞) is closed. Indeed we can see φ as

given by a surjective map (s0, s∞) : OC
2
→ M , then the condition is equivalent to s∞ =

0. Next the condition for φ−1(∞) → S to be quasi-finite, then finite, is open on S, as

a consequence of the Zariski main theorem. Finally assuming φ−1(∞) → S finite, the

condition φ−1(∞) =
∑

i ki Di is closed on the base. �

1.2. Bubbly curves. We have a natural forgetful morphism fromMg ,n(P1,~k) to the stack

of prestable n-marked curves M
pre
g ,n that sends an S-map in Mg ,n(P1,~k) on the source

S-curve together with its marked points. This section is devoted to the study of the

prestable curves appearing in the image of this forgetful morphism.

We shall write (C ,~p) for a prestable k-curve C marked by p1, . . . , pn . An irreducible

component E of C has a natural marking induced by (C ,~p): points of ~p that lie in E and

branches of the nodes of C lying on E . Call these points special points of S. Such data is
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called an irreducible component of (C ,~p). An irreducible component of (C ,~p) is said to

be stable if it is a stable marked curve with respect to this induced marking. It is called

unstable when this is not the case.

Proposition 1.2. Let φ : C → P
1 be a stable map of profile ~k over k. Then (C ,~p) is a

prestable curve that has only stable irreducible components except for rational compo-
nents having two special points only one of which is a marking.

Proof. Since our curves are marked by at least one point (n > 0) the only unstable irre-

ducible components of (C ,~p) are rational components having less than 3 special points.

If such a rational component has no marked points this in turn means that φ avoids ∞

on this component and thus contracts it. We can therefore assume such rational com-

ponents have at least one marked point. But then such a component can’t have two

marked points. Indeed, because of connectedness it would mean this component is the

whole of C , i.e. C is a genus 0 curve with only 2 marked points. �

Definition 1.2. A prestable n-marked k-curve is called a bubbly n-marked k-curve if it

has only stable components except for bubble components, i.e., rational components

having two special points only one of which is a marked point. By extension we say

that a prestable n-marked S-curve is a bubbly n-marked S-curve if each of its fibers is a

bubbly n-marked k-curve.

Thus bubbly n-marked S-curves are the prestable marked curves underlying a stable

S-map of profile~k .

Proposition 1.3. Let (C ,~p) be a prestable k-curve. We have equivalence between the fol-
lowing

(1) (C ,~p) is a bubbly curve,
(2) ωC (

∑n
i=1

2pi ) is ample,
(3) there exists integers m1, . . . ,mn such that each mℓ ≥ 2 and ωC (

∑n
i=1

mi pi ) is am-
ple.

Proof. It is clear that (2) ⇒ (3). We are going to show that (3) ⇒ (1) ⇒ (2) and this will

end the proof. Let {Cℓ | 1 ≤ ℓ ≤ v} be the set of irreducible components of C and write

ωℓ(
∑n

i=1 mi pi ) for the restriction of ωC (
∑n

i=1 mi pi ) to Cℓ. The degree of ωℓ(
∑n

i=1 mi pi )

is given by

(1.2) deg
(
ωℓ(

n∑

i=1

mi pi )
)
= 2gCℓ

−2+
( ∑

{i |pi∈Cℓ}

mi
)
+ ♯{e ∈Cℓ | e is a nodal point of C}.

Assume ωC (
∑n

i=1
mi pi ) is ample. Each of its restrictions ωℓ(

∑n
i=1

mi pi ) is also ample.

This means that ωℓ(
∑n

i=1 mi pi ) has positive degree for each ℓ ranging in {1, . . . , v}. But

equation 1.2 shows it is exactly the case for bubbly n-marked k-curves. Now assume

(C ,~p) is a bubbly curve and assume that m1 = ·· · = mn = 2 in equation 1.2. As soon as

the genus of Cℓ is non-zero the degree given by the left hand side of this equation is pos-

itive. If Cℓ is rational it must have at least two special points one of which is a marking.

The marking contributes for a 2 and the other special point for 1. This guarantees the

positivity of the degree on Cℓ in any case and ωC (
∑n

i=1 mi pi ) is indeed ample. �

“Being a bubbly curve” is stable under any base change. This is due to the fact that

ωC /S (
∑n

i=1 2Di ) commutes with any base change.

Notation. Following the previous remark we call Bg ,n the stack of bubbly n-marked

curves.
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Proposition 1.4. The stack Bg ,n is an open substack of M
pre
g ,n and hence is an algebraic

stack.

Proof. If (C /S,~σ) is a k-point of Bg ,n , a local chart around this point in the stack M
pre
g ,n is

provided by the versal formal deformation. We know from the Grothendieck existence

theorem that this formal deformation can be algebraized and that the corresponding

line bundle ω(
∑

2Di ) is ample. Said differently the relative ampleness at a point is in-

deed true on a neighborhood of this point. �

We have a forgetful morphism of algebraic stacks Mg ,n(P1,~k) →Bg ,n that sends an

S-map in Mg ,n(P1,~k) to its underlying source marked curve.

1.3. Polar Curves. In this section we study the structure of bubbly n-marked S-curves

(C /S,~σ) enriched with global sections of PC ,~k = π∗OC (
∑n

i=1 ki Di )/OC . Unless stated

otherwise, a curve means a bubbly n-marked curve.

Let’s begin by giving a description of the stalks of PC ,~k at a point s ∈ S. The normal

sheaf N
∑

i ki Di is a direct sum ⊕n
i=1

Nki Di , consequently PC ,~k is the direct sum

PC ,~k =

n⊕

i=1

PC ,ki .

We thus limit our interest to the case where ~k has only one component and drop the

indices. Let s be a point in S. The stalk of OC (kD)/OC at a point x ∈ C over s is zero

unless x is supported on D. Since D is the image of a section σ of π there is only one

such point namely x = σ(s). Let now f be an equation of D in Ox , since D is étale over

S and is the image of an S-section of π the module Ox / f Ox is naturally identified with

Os . We have (NkD)x = ( f −kOx )/Ox . Since f is a non-zero divisor in Ox the induced

Os -module PC ,k ,s is a direct sum

PC ,k ,s =

(
f −kOσ(s)

Oσ(s)

)

Os

=

k⊕

ℓ=1

f −ℓ
Os .

This means that the stalk of a section ̺ of PC ,k on U ⊂ S at a point s ∈U can be uniquely

written as

(1.3) ̺s =
ak

f k
+

ak−1

f k−1
+·· ·+

a1

f

where each aℓ for ℓ ∈ {1, . . . ,k} are elements in Os . Thus each section PC ,ki is called

a polar part along (C ,σi ) and more generally each section of PC ,~k a polar part along

(C ,~σ). In the following when this brings no confusion we shall write polar part for po-

lar part along (C ,~σ). The collection of sheaves of polar parts P−,~k defines obviously a

locally free sheaf Pg ,~k of rank d on Bg ,n .

The coefficients aℓ for ℓ ∈ {1, . . . ,n} appearing in equation 1.3 depend on the choice

of a local coordinate f . However unlike other coefficients ak is of global nature. Indeed,

consider the quotient map
OC (kD)

OC

OC (kD)
OC ((k−1)D)

The right hand side is a sheaf supported on D and thus can be identified with the OD-

module OD(kD), its pushforward π∗OD(kD) is exactly L −k where L is the tautological

invertible sheaf along D (i.e. the conormal sheaf along D). Since the kernel of the pre-

vious quotient map OC ((k −1)D)/OC is supported on D the push forward by π gives a

surjective morphism

PC ,k L −kϑC ,k
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It is clear that locally around s and in terms of f which trivializes L the stalk of ϑC ,k (̺)

at s is given by ak . We will write ϑC ,~k for the direct sum ⊕n
i=1

ϑC ,ki .

Definition 1.3. Let ~̺ = (̺k1
, . . . ,̺kn ) be a polar part in PC ,~k defined on an open subset

U of S. The polar part ~̺ is said to be of order ki at s ∈U along Di if ϑC ,ki (̺i )s is invertible.

We say that ~̺ is of order~k at s ∈U if it is of order ki at s along Di for i ∈ {1, . . . ,n}. It is of

order~k if it is of order~k at each point of U .

Saying that a polar part ~̺ on an open subset U ⊂ S is of order ki at a point s ∈ U
is equivalent to ϑC ,ki ,s (̺i )⊗k(s) being nonzero in L

−ki
i ⊗k(s). Thus it is of order ki if

ϑC ,ki (̺) trivializes L
−ki

i on U . Thus, given a morphism φ ∈ Hom(T,S) and a polar part

~̺ ∈PC ,~k of order~k the pullback φ∗~̺ is a polar part of order~k as well.

One can easily check that ϑC ,~k commutes with base change. In particular, the the

collection ϑ−,~k defines a map of OBg ,n -modules ϑg ,~k from Pg ,~k on ⊕n
i=1

L
−ki

g ,i .

Definition 1.4 (Polar curve). A curve marked by a collection of polar parts—in short a

polar curve—over a scheme S ∈ Sch/k is the data given by a bubbly n-marked S-curve

(C /S,~σ) together with a polar part ~̺, a global section of PC ,~k of order~k along the fibers,

i.e., a polar part of exact order ki along σi . This data is written (C /S,~σ,~̺).

A morphism (C /S,~σ,~̺) → (B/S,~τ,~χ) means a morphism of pointed curves preserv-

ing the polar parts along the sections. Because of the invariance under any base change

of the order of a polar part, “being a polar curve” is local on the base and stable un-

der any base change. The category of polar curves as described previsouly is a category

fibered in groupoïds over Sch/k denoted Pg ,~k . A polar S-curve is given by a couple of

objects, one of which is a bubbly S-curve, the other being a global section of a locally

free sheaf Pg ,~k on S. The global section in question satisfies a condition expressed in

term of ϑg ,~k . This is an instance of a wider situation we shall only develop for the case

n = 1, the general case is a straightforward variation of this one.

Let M be an algebraic stack together with a morphism of locally free coherent OM-

modules ϑ : P → F where F is of rank one. Let ϕ ∈ Hom(T,S) and φ be a morphism

from ξ ∈M(T ) on ζ ∈M(S) over ϕ, we write αφ (resp. βφ) for the induced isomorphism

from ϕ∗ζ∗P on ξ∗P (resp. ϕ∗ζ∗F on ξ∗F ). Consider the category PM whose

• objects over a scheme S ∈ Sch/k are given by couples (ζ, s) where ζ is an object

S →M and s ∈Γ(S,ζ∗P) such that ζ∗ϑ(s) trivializes ζ∗F

• morphisms of PM over a morphism ϕ ∈ Hom(T,S) are given by morphisms φ

from ξ ∈M(T ) to ζ ∈M(S) such that αφ(ϕ∗s)= t .

The morphism of PM on Sch/k is the obvious one. This defines a category fibered in

groupoïd. Indeed, let (ζ, s) be an object of PM over S, ξ an object of M over T and φ a

morphism over ϕ ∈ Hom(T,S). The T -section (ξ∗ϑ)αφ(ϕ∗s) trivializes ξ∗F since

ξ∗ϑ◦αφ =βφ ◦ϕ
∗ζ∗ϑ.

Thus the couple (ξ,αφ(ϕ∗s)) defines a T -object of PM.

Proposition 1.5. The category fibered in groupoïds PM is an algebraic stack.

Proof. Let’s first show it is a stack. Let (ζ, s) and (ξ, t ) be objects of PM over S ∈ Sch/k.

We have a natural forgetful morphism δ : IsomS(ζ,ξ) → S. By pullback through φ we

get objects δ∗ζ and δ∗ξ over IsomS(ζ,ξ) together with sections δ∗s and δ∗t of the cor-

responding pullbacks. The sheaf IsomS((ζ, s), (ξ, t )) is represented by the subscheme of

IsomS(ζ,ξ) defined by δ∗s = δ∗t . Now descent data along an étale covering {Uℓ → S}ℓ at-

tached to objects (ζℓ, sℓ) ∈PM gives naturally descent data for ζℓ along {Uℓ → S}ℓ for M.
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By hypothesis this last descent data is effective and thus descends to an object ζ ∈M(S).

The sections sℓ define descent data for the quasi-coherent sheaf ζ∗PM, they glue to-

gether because of effectiveness of descent for quasi-coherent sheaves to give a section s
on ζ∗PM.

Now let’s come to algebraicity. If we drop the last condition, what we get is an S-

section of the vector bundle V(ξ∗P) = Spec(Sym(P∨)) over M. This vector bundle is

an algebraic stack. Moreover the surjection ϑ : P → F defines a morphism of vector

bundles θ :V(P) →V(F ). The last condition simply means that the image θ(s) is in the

complement of the zero section of F , which in turn yields PM = θ−1(V(F )\{0}). �

Corollary 1.6. The category Pg ,~k is an algebraic stack.

Proof. This is a consequence of 1.5 and 1.4. �

We now come to the study of automorphism groups of polar curves.

Proposition 1.7. A polar k-curve (C ,~p ,~̺) has a finite group of automorphism.

Proof. It is enough to look at bubble components of (C ,~p ,~̺). Indeed, a bubbly curve has

infinite automorphism group if and only it contains bubble components. Let (E , p,e) be

a bubble component of (C ,~p) where p comes from a marked point of C . Since E is

rational there exists an isomorphism of marked curves from (E , p,e) on (P1,∞,0). Given

two coordinates t0 and t∞ on P
1 an automorphism φ of (P1,∞,0) is given by an element

λ ∈ Gm . The global polar part ̺k is given by its local behaviour at ∞. Using the local

chart A1\{0} at infinity with coordinate t = t∞/t0 we have

̺k =

k∑

ℓ=1

aℓ

tℓ
, for ak 6= 0.

Using the description of P(φ)(̺k ) we have that

P(φ)(̺k ) =̺k ⇐⇒∀ℓ ∈ {1, . . . ,k}, aℓ = aℓλ
ℓ.

For ℓ equal to k this gives akλ
k = ak . Since ak 6= 0, λ is a root of unity and thus the group

of automorphism of such a component is finite. �

Remark 1. Conversely marked prestable curves together with a polar part at each marked

point and a finite automorphism group are precisely the polar curves. Following propo-

sition 1.3 this is exactly the locus of points (C ,~p ,~̺) in V(Pg ,~k ) such that ωC (
∑n

i=1 2pi ) is

ample.

Proposition 1.8. The stack Pg ,~k is an algebraic tame stack in the sense of [AOV08]. It is
Deligne–Mumford if p doesn’t divide ki for each i ∈ {1, . . . ,n}.

Proof. The stack Pg ,~k is obtained as a fiber product of algebraic stacks. It is therefore

algebraic. For Pg ,~k to be a Deligne–Mumford stack it is equivalent to show that its di-

agonal morphism is formally unramified [DM69, §4]. Since Bg ,n is locally of finite pre-

sentation and Pg ,~k →Bg ,n as well, so is the case Pg ,~k . Hence, it is enough to show that

closed fibers of the diagonal are discrete and reduced. As these fibers are given by iso-

morphisms groups of objects of Pg ,~k , they are quasi-finite. To show they’re reduced it

is enough to check that automorphism groups of objects of Pg ,~k over Speck[ǫ]/(ǫ2) are

trivial. Let (Cǫ,~σ,~̺) be an object of Pg ,~k over Speck[ǫ]/(ǫ2). An automorphism of (Cǫ,~σ)

is equivalently given by an infinitisemal vector field fixing~σ. It is well known that stable

curves have no such vector fields ([DM69, 1.4]). Hence it is enough to check the case of

rational unstable components of (Cǫ,~σ). Let (E , p,e) be such a component. The space

of infinitisimal automorphisms of this data is equal to H 0(TE (−p − e)); its dimension is
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1. Fix an isomorphism of (E , p,e) with (P1,∞,0) and let t be a local parameter for p in

P
1. Let ∂ be a vector field on (E , p,e), up to multiplication it is given by the vector field

t ∂
∂t on A

1
t . Let λ ∈ k be such that ∂ = λt ∂

∂t . The condition on ∂ relative to ̺kp can be

tested locally around p . The polar part ̺kp is equal in the A
1
t = Speck[t ] neighborhood

of p to

̺kp =

kp∑

ℓ=1

aℓ

tℓ
.

The restriction of ∂ to this neighborhood gives an automorphism φ = id+ ǫ∂ of (A1
t , p).

The restriction on ∂ is equivalent to the fact that this local automorphism should fix ̺kp .

Explicitly, this is written

kp∑

ℓ=1

aℓ

tℓ
=

kp∑

ℓ=1

aℓ

tℓ+ǫ∂(tℓ)
=

kp∑

ℓ=1

aℓ

tℓ(1+λℓǫ)

which gives the relation
kp∑

ℓ=1

aℓ

tℓ
=

kp∑

ℓ=1

aℓ

tℓ
−λǫ

kp∑

ℓ=1

ℓaℓ

tℓ
.

Now we can see that ∂= 0 is equivalent to the fact that there exists a non-zero aℓ for an

ℓ which is not a multiple of p. Equivalently ∂ 6= 0 if and only if ℓ is a multiple of p for

each non-zero aℓ, i.e. ̺ is a power of p. In this worst case scenario the automorphism

group of ̺ is isomorphic to some µpm , which is a linearly reductive group scheme and

the result follows from [AOV08, 3.2].

Since akp is never 0 following what has been said, it is enough for ∂ to be zero to have

that kp is not a multiple of p . In this case we get a Deligne–Mumford stack. �

1.4. Stack Cone Structure of Pg ,~k over Mg ,n . Given a prestable marked curve there is

a contraction sending it to its marked stable model (see [Knu83, 1.6]). Restriction to

bubbly curves gives a morphism c : Bg ,n → Mg ,n . On the level of bubbly k-curves it

contracts an unstable component on a point and keeps track of this point. Contrac-

tion induces a Gm-invariant morphism Pg ,~k →Mg ,n , we aim at understanding the local

structure of this last morphism. It is clear that a good understanding of c is needed for

our purpose. We’ll be thus looking at fibers of c for objects in Mg ,n over relative schemes

in the topology of Mg ,n . In our case Zariski open subsets will be fine.

Lemma 1.9. Let (C /S,~σ) be an n-bubbly curve and let (C ⋆/S,~σ⋆) be its image by c. The
contraction c induces a natural morphism Nki Di →Nki D

⋆
i

for each i ∈ {1, . . . ,n} and thus
by direct sum a morphism N∑n

i=1 ki Di
→N∑n

i=1 ki D
⋆
i

.

Proof. This is just a refinement of the case of a morphism of marked curves. We start by

studying the single marked case. Since c commutes with D and D
⋆ we have D ⊂ c−1

D

and thus c defines a morphism of OB-modules c∗OC ⋆ (−kD⋆) → OC (−kD). Dualizing

we a get a morphism

OC (kD) HomOC
(c∗OC ⋆(−kD

⋆),OC ).

which by adjunction gives a morphism

c∗O(kD) HomO
C⋆ (O(−kD

⋆),c∗(OC )).

The right hand side is isomorphic to OC ⋆(kD
⋆) for c∗OC = OC ⋆ . We therefore get the

desired morphism from c∗NkD on NkD⋆ . The general case is now straightforward. �
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Let (C /S,~σ) be an n-bubbly marked curve and let (C ⋆/S,~σ⋆) be the stabilisation of

(C /S,~σ). We write Di and D
⋆
i for the respective images of the i t h components of ~σ

and~σ⋆. The bubbly curve (C /S,~σ) can be reconstructed as P(c∗OC (
∑n

i=1 Di )). The sec-

tion defining Di is given by the surjective morphism (σ⋆)∗c∗OC (Di )։ c∗NDi . It makes

sense since the push forward c∗NDi has support on D
⋆
i and coincides with π∗NDi hence

is invertible. These facts, including the surjectivity of the last morphism are treated in

[Knu83, §2] and specifically in [Knu83, proof 2.4 case 2]. Using the proof of 1.9 we have

a commutative diagram

(1.4)

0 OC ⋆ c∗OC (
∑n

i=1 Di ) ⊕n
i=1

c∗NDi 0

0 OC ⋆ OC ⋆(
∑n

i=1 D
⋆
i ) ⊕n

i=1
ND

⋆
i

0

α̂ α

where α̂ and α are the morphisms induced by c in the proof of 1.9. The right exactness

of the first row is due to the fact R1c∗OC = 0. Indeed, c is a proper morphism such that

c∗OC =OC ⋆ and has at most 1-dimensional rational fibers. Hence H 1(c−1(x),Oc−1(x)) is

zero at any point x ∈C
⋆ and using corollary 1.5 of [Knu83] we get R1c∗OC = 0. Diagram

1.4 is characterized by α, universality of pullback of Yoneda extensions gives a canonical

isomorphism of c∗OC (D) with OC ⋆ (D⋆)×N
D⋆ c∗ND commuting with α̂. The fiber of c∗

over (C ⋆/S,~σ⋆) is described by a stack whose objects are morphisms such as α. This is

the content of proposition 1.11.

Notation. Let (C ⋆/S,~σ⋆) be a stable marked curve. Given a map α : R → N∑n
i=1 D

⋆
i

of

OC ⋆- modules we write Eα for the fiber product

OC ⋆ (
n∑

i=1

D
⋆
i )×N∑n

i=1
D
⋆
i
R,

~σα for the S-sections of P(Eα) induced by

((σ⋆)∗Eα ։N∑n
i=1 Di

)n
i=1

and Dα,i for the image of each component of~σ⋆
α.

Lemma 1.10. Let (C ⋆/U ,σ⋆) be a single stable marked curve over an affine scheme U =

Spec(A) and write D
⋆ for the image of σ. Consider a morphism α : R → ND⋆ where R

is a locally invertible sheaf and let Eα be the product OC ⋆(D)×N
D⋆ R. Let f be a local

equation for D
⋆ at the neighborhood V = Spec(B ) of a point in the support of D

⋆. Since
D

⋆ is étale on U we identify B / f B with A and write c0(−) for the quotient B ։ A. Then
the restriction of Eα to V —written Eα—has a presentation

0 B B ⊕B Eα 0

(
−α

f

)

ϕ

where ϕ(b,b′) = ( f b +αb′,c0(b′)). Thus we have

SymB Eα =
B [x, y]

(−αx + f y)
.

Proof. The morphism α is given in the local situation by an element in A also written α.

By definition Eα is equal to B f −1 ×B A. This is exactly given by

Eα = {(b f −1, a)∈ B f −1
× A | c0(b)=αa} ≃ {(b, a) ∈ B × A | c0(b) =αa}.
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Any element (b, a) ∈ Eα can thus be written as (αa + f b′, a) for b′ ∈ B , hence (b, a) =

a(α,1)+b′( f ,0). Since both (α,1) and ( f ,0) are elements in Eα they generate Eα and de-

fine the above onto map ϕ. The kernel of ϕ is given by couples (b,b′) such that b′ = f b′′

and f b +α f b′′ = 0 hence b = −αb′′. We finally get Ker(ϕ) = B (−α, f ). The presen-

tation of SymB Eα is obtained by taking x = (1,0) and y = (0,1) thus ϕ(x) = ( f ,0) and

ϕ(y) = (α,1). �

Proposition 1.11. The fiber of c : Bg ,n →Mg ,n over an object (C ⋆ π⋆

−−→ S,~σ⋆) of Mg ,n is
isomorphic to the stack whose

• objects over T ∈ Sch/S are given by n-tuples of morphisms (αi : Ri → ND
⋆
i

)n
i=1

where each Ri is a locally invertible sheaf on T ,
• morphisms over φ ∈ HomS(T,T ′) are given for objects (αi : R → ND

⋆
i

)n
i=1

and
(βi : Si → ND

⋆
i

)n
i=1

by n isomorphisms Ri ≃ φ∗Si commuting with αi and βi

for i ∈ {1, . . . ,n}.

Proof. Let’s start with the single marked case, the general case will be straightforward

once the single marked one is proved. The discussion preceding lemma 1.10 defines

on the level of objects a functor of fibered categories F which sends a bubbly curve

(C /T,σ) for T ∈ Sch/S on a morphism F (C ,σ) = αC : c∗ND → ND⋆ . Let’s define F
on morphisms. We keep the notation introduced in the discussion preceding lemma

1.10. Let T be a scheme in Sch/S and let (C /T,σ) and (B/T,τ) be two bubbly curves in

the preimage c−1(C ⋆/S,σ⋆). These bubbly curves give rise to a map of OT -modules

αC and αB . Looking back at the proof of lemma 1.9 it is clear an isomorphism of

(C /T,σ) on (B/T,τ) gives rise to an isomorphism of c∗ND on c∗NE commuting with

αC and αB . Now take φ ∈ HomS(T,T ′), two bubbly curves (C /T,σ) and (B/T ′,τ) and

a morphism Φ ∈ Hom((C /T,σ), (B/T ′,τ)) over φ. By definition Φ defines an isomor-

phism from (C /T,σ) on (φ−1(B)/T,φ−1τ). We thus have an isomorphism of c∗ND on

c∗Nφ−1E . But following the discussion preceding lemma 1.10 the formation of c∗Nφ−1E

commutes with any base change. We thus get an isomorphism µΦ of c∗ND on c∗Nφ−1E

commuting with αC and φ∗αB . By writing F (Φ) = µΦ we have defined a morphism

from c−1(C ⋆/S,σ⋆) on the category fibered in groupoïds overs Sch/S described in our

assertion. It is straightforward to see that F is fully faithful since conversely a morphism

from αC to αB over φ defines a morphisms from c∗OC (D) on c∗φ
∗OB(E )=φ∗c∗OB(E )

hence a C
⋆-morphism from P(c∗OC (D)) on φ−1

P(c∗OB(E )).

It remains to show that each morphism of OT -modules α : R → ND⋆ gives rise to a

bubbly T -curve in the preimage of (C ⋆,σ⋆) by c. Write (C /T,σ) for (P(Eα),σα). We need

to show that Eα is isomorphic to c∗OC (D) where D is the image of σ. This is true if and

only if R is isomorphic to c∗ND . Since c∗ND is isomorphic to σ∗OC (1) it is enough

to show that OC (1) is isomorphic to OC (D). The equation of D is given by the global

section OC → c∗Eα obtained out of the given one OC ⋆ → Eα =OC ⋆ ×N
D⋆ R. The former

gives naturally rise to a morphism OC → OC (1) giving the section D. We need to show

that this last global section coincides with the canonical morphism OC → OC (1). This

is local on both S and C . Using notation of lemma 1.10 locally D is contained in the

local chart D+(y) = Spec(B [t ]/(−αt + f )) for t =
x
y . In this local chart the morphism

OC → c∗Eα is given by ϕ(x) thus its image in OC (1) is exactly t = x
y which is what we

need. �

Corollary 1.12. Keep the previous notations. We have an isomorphism

c−1(C ⋆ π⋆

−−→ S,~σ⋆) ≃
n∏

i=1

[
VS(ND

⋆
i

)/Gm

]
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Proof. It is standard that objects and morphisms described proposition 1.11 are those

of this category fibered in groupoids. �

Corollary 1.13. Let U be an affinek-schemeU = Spec A for a local ring A and let (C ⋆/U ,~σ⋆)

be a n-marked stable curve. The fiber c−1(C ⋆/U ,~σ⋆) is isomorphic to the quotient stack
n∏

i=1

[
A

1
A/Gm

]

where each Gm action on A
1
A is of weight one.

Keep the notation of corollary 1.13. The fiber over a stable marked curve (C ⋆/S,~σ⋆)

of Pg ,~k →Mg ,n is now known to be isomorphic to the stack

Pg ,~k ×Bg ,n

n∏

i=1

[
VS (ND

⋆
i

)/Gm

]
=

n∏

i=1

(
Pg ,~k ×Bg ,n

[
VS (ND

⋆
i

)/Gm

])
.

It shows we only need to study the single marked case in order to understand the local

behaviour of Pg ,~k →Mg ,n .

Proposition 1.14. Keep the notation of 1.13. The fiber of Pg ,k →Mg ,n over (C ⋆/U ,σ⋆)

is isomorphic to the quotient stack [
A

k
A/µk

]

where the action of µk is given by weights (1,k −1,k −2, . . . ,1).

Proof. Let’s fix some notation first. We write v for the standard atlas V = VS (NcD⋆ ) →

[VS(ND)/Gm] and identify any morphism α from a V -scheme T to [V /Gm] with its cor-

responding OT -morphism from an invertible sheaf on ND (see proposition 1.11). The

fiber product Pg ,k ×Bg ,n [V /Gm] has objects over T ∈ Sch/V given by triples
(
T

α
−→ [V /Gm] , (C /T,σ,̺k )∈Pg ,k (T ), Φ : (P(Eα),σα) ≃ (C /T,σ)

)
.

It is straightforward to see that this fiber product has objects over T that correspond to

objects of the type
(
T

α
−→ [V /Gm] , ̺k ∈ H 0(PP(Ev ),k ) of order k

)
.

and whose morphisms over φ ∈ HomV (T,T ′) correspond to those of polar curves from

(P(Eα),σα, (T → V )∗̺k ) on (P(Eβ),σβ, (T ′ → V )∗̺k ). A morphism Φ of marked curves

from (P(Eα),σα) on (P(Eβ),σβ) over φ corresponds to a morphism µΦ from α on φ∗β′

(see proof of 1.11). The morphism µΦ induces a natural morphism on the level of po-

lar parts. Indeed following the proof of proposition 1.11 we know that for any γ : R →

[V /Gm] we have OP(Eγ)(1) is equal to OP(Eγ)(Dγ). Thus c∗OP(Eγ)(kDγ) is given by Symk Eγ

and we can see that as OR -modules we have

c∗

(
OP(Eγ)(kDγ)

OP(Eγ)

)
=PP(Eγ),k =

Symk (Eγ)

Oζk

where ζ is the global section given by the inclusion of OC ⋆×U R → Eγ. Let’s go back to

Φ. The map µΦ induces by pull back of extensions a morphism from Eα on Eβ the mor-

phism Symk (µΦ) is the one we’re looking for. The induced morphism from Symk (Eα)/Oζk
α

on Symk (Eβ)/Oζk
β

is clearly seen to be P(Φ). We can now say that Pg ,k ×Bg ,n [V /Gm] is

isomorphic to the stack whose objects over T ∈ Sch/T are
(
T

α
−→ [V /Gm] , ̺k ∈ H 0(PP(Ev ),k ) of order k

)
.
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and whose morphisms are given by morphisms µ in [V /Gm] such that P(Φµ)—with the

obvious notation—commutes with the polar parts. Now come to the local case. We use

the notation of corollary 1.13. Write u for the standard atlas U →
[
A

1
A/Gm

]
Following

lemma 1.10 Du is contained in the chart D+(y). A local equation for Du at the unique

closed point in the preimage of (π−1U )∩Du is given by t = x
y (see end of proof of 1.11).

In this local chart a global section of PP(Eu ),k is written as

̺k =

k∑

ℓ=1

aℓ

tℓ
, for aℓ ∈ A,

this section is of order k if ak is in A∗. Looking at relations in E u we have ut = f where

f is the corresponding local equation for D
⋆. We can write the previous polar part as

(1.5) ̺k =

k∑

ℓ=1

aℓ

(
u

f

)ℓ
, for aℓ ∈ A.

Let λ be an automorphism of u. The action of P(Φλ) on such a polar part is given by

(1.6) P(Φλ)(̺k )=
k∑

ℓ=1

λℓaℓ

(
u

f

)ℓ
=

k∑

ℓ=1

aℓ

(
λu

f

)ℓ
,

where λ is identified with an element of H 0(O∗
A) = A∗. Now each element aℓ for ℓ ∈

{1, . . . ,n} is given in this local context by a section of L −ℓ. Thus a polar part given locally

by sections (ak , ak−1, . . . , a1) is equivalently given by a map Spec(⊕ℓ≥0L
−ℓ) →A

k
A which

is equivariant for the action of Gm on A
k
A by weights (k ,k−1, . . . ,1). Such a polar part is of

order k if the projection on the first coefficient given by ak is invertible or, equivalently,

defines a trivialization of L −1 on U . The fiber product Pg ,k×Bg ,n

[
A

1
A/Gm

]
is—using the

local description (α, ak , ak−1, . . . , a1)—isomorphic to the open substack of
[
A

k+1
A

/Gm
]

given by ak 6= 0 and with Gm weights (1,k ,k −1, . . . ,1). This is a consequence of 1.6 since

the Gm action on u is precisely the one giving the action of Gm on (ak , ak−1, . . . , a1). But

this open substack is precisely the quotient stack
[
A

k
A/µk

]

given by coordinates (u, ak−1

ak
, ak−2

ak
, . . . , a1

ak
) and where µk acts with weights (1,k −1,k −

2, . . . ,1). �

Corollary 1.15. The stackPg ,~k is smooth and irreducible stack cone in the sense of [BF97,

1.8] over Mg ,n .

Proof. The fact it is a stack cone in the sense of [BF97] is obvious. Smoothness and

irreducibility are consequences of the previous proposition together with the fact that

this is the case for Mg ,n . �

1.5. Generalized Polar Parts. We give an alternative description of the cone Pg ,n over

Mg ,n which is closer to the original cone built in [ELSV01]. This cone was built by ex-

tending the notion of a polar part on a stable curve to what is called a generalized polar

part. No full proofs of our claims will be given in this section. One can refer to loc. cit. if

needed. We will restrict our attention to the single marked case (n = 1), the general case

reduces to this one.

Let (π : C → S,σ) be a stable single marked S-curve. Let p be a point in the support of

D = Im(σ) and write s ∈ S for its image by π. Write Os (resp. Op ) for the local rings of S at

s (resp. C at p). Choose a local coordinate t ∈mp at p , since p is is given by a section σ

of π we identify Os to Op /(t ) using σ. Let Ûs be the group of Ôs -automorphisms of the



ADMISSIBLE COVERS AND THE ELSV COMPACTIFICATION 13

completion Ôp of Op with respect to its maximal ideal. There is a natural action of Ûs

on the quotient Ôs -module Ôp /Ôp (−(k +1)p). The image of this group in the group of

Ôs -automorphisms of Ôp /Ôp (−(k +1)p) is written Ûk ,s . Notice that Ôp /Ôp (−(k +1)p)

is an Os -module which is isomorphic to Op /Op (−(k +1)p). We thus drop the hat sym-

bol in the previous notation and write Uk ,s for the subgroup of Os -automorphisms of

Op /Op (−(k +1)p). In terms of the coordinate t this is just given by polynomial expres-

sions φ of the form

φ(t )= ut +λ1t 2
+λ2t 2

+·· ·+λk−1t k , λ1, . . . ,λk−1,∈Os , u ∈O
∗
s .

The group law in Uk is the one given by a change of coordinate, i.e., for ψ ∈ Uk we

(ψφ)(t ) =φ
(
ψ(t )

)
.

Write (C s , p) for the stable marked curve obtained over Spec(Os ) obtained by base

change from the natural morphism Spec(Os ) → S. We have a natural action from Uk ,s

on the sheaf of polar parts of order k centered at p . If ̺=
∑k

j=1 a j t− j for a1, . . . , ak ∈Os

is a polar part centered at p this action can be written as

φ . . .̺=

k∑

j=1

a j

φ(t ) j
.

This gives a right action of Uk ,s on Γ(PC s ,k ). It is elementary to check that this ac-

tion of Uk ,s on Γ(PC s ,k ) is transitive. The stabilizer of a section in Γ(PC s ,k ) is equal

to µk (Os ); this can be easily computed for (1/t )k . This means that we have an iso-

morphism between the groupoids given by on one side polar parts on C
s centered at

p and on the other side the groupoid given by sections of
[
Uk ,s/µk (Os )

]
. Isomorphisms

in both cases are given by automorphisms induced by those of (C s , p). Thus building

an affine cone on Mg ,n(Spec(Os )) extending polar parts can be reinterpreted by find-

ing affine embeddings of Uk ,s . Now notice that we have a natural surjective morphism

κ : Uk ,s → Gm(Os ) coming from the natural quotient morphism Op (−p)/Op (−(k +1)p)

on Op (−p)/Op (−2p) = N∨
p . It gives an exact sequence of groups

(1.7)
0 Ak ,s Uk ,s Gm(Os ) 0,

κ

where Ak ,s is a unipotent distinguished subgroup of Uk ,s given by change of variables

of the form t +O(t 2). The quotient κ is simply given by the map sending φ on its first

coefficient u ∈O∗
s . The choice of the coordinate t gives a section of κ and thus a decom-

position Uk ,s =Ak ,s ⋉Gm(Os ). Explicitly, we can write φ as

(1.8) φ(t )= (ut )︸︷︷︸
∈Gm (Os )

(t +u−2λ1t 2
+u−3λ2t 3

+ . . .u−kλk−1t k)︸ ︷︷ ︸
∈Ak,s

For short we write φ = uτ1,λ1,...,λk−1
. The previous semi-direct product means Uk ,s is

a solvable group and the image of the section of κ defines a maximal torus T in Uk ,s .

Using techniques due to [KKMSD73] one can build affine equivariant embeddings of

Uk ,s . The construction goes as follows : Take an affine embedding T → Xσ for a cone

σ in the group of characters of T (there are two such embeddings). Given this affine

embedding one can build an equivariant embedding

Yσ =Uk ,s ×
T Xσ.

In the case at hand we want for the action of Uk ,s on polar parts of order k to be com-

patible with its embedding in Yσ. Writing this down shows that the affine embedding

we’re looking for is given by σ=]−∞,0[ for the chosen coordinate t . We write Z for the

attached toroidal affine embedding. Now this construction boils down to the following
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local description. Locally Z is isomorphic to the affine space A(α,λ1, . . . ,λk−1) where

appearing coordinates correspond to those of 1.8. Let ψ(t ) for ψ ∈Uk ,s be another coor-

dinate at the neighberhood of p . Assume ψ= vτ1,ν1,...,νk−1
. Transition functions relating

the corresponding coordinates of A(u,λi ) and A(u∗,λ∗
i ) are given by

(1.9) u = u∗β−1, λi =
∑

ℓ+ j=i

λ∗
ℓu∗iQk−ℓ, j (ν1, . . . ,ν j ),

where Qi , j (X1, . . . , X j ) are the polynomials given by the relation

1

(
∑

j≥0 X j Y j )i
=

∑

j≥0

Qi , j (X1, . . . , X j )Y j .

One can get such relations by looking at the polar parts represented in terms of each

coordinates and writing the ψ(t ) polar part in terms of negative powers of t . These local

coordinates are what enables us to make sense of the relative case. We give the main

definitions and relation to Pg ,k .

Definition 1.5. Let (π : C → S,σ) be a stable single marked S-curve. Write D
(k) for the

subscheme of C given by the sheaf of ideals OC (−(k + 1)D). We call Uk ,S the group

AutOS (π∗OD(k) ).

It is easy to check that the S-group Uk ,S defined in this way is a smooth S-group which

is solvable, of relative dimension k and an extension of a torus by a unipotent subgroup.

This is an isotrivial group with unipotent fibers equal to U k
k ,s over s ∈ S. Using the pre-

vious procedure we can build étale locally affine equivariant embeddings of such an

S-group. These data glue to give an embedding globally over S and by extension over

Mg ,1 (refer to [KKMSD73] for more details). We call Zg ,k such an embedding.

Definition 1.6. A generalized polar part of (C /S,σ) along D is an S-object of
[
Zg ,k /µk

]
.

The following proposition gives the link between our construction and the one intro-

duced in [ELSV01].

Proposition 1.16. The stack of generalized polar parts over Mg ,n is isomorphic to Pg ,n .

Proof. In proof of proposition 1.14 we proved we had an isomorphism of stacks from

Pg ,n on the stack whose objects were given by triples (π : C ⋆→ S,σ⋆,̺ ∈ Symk (Eα)/OC⋆ζk )

with the corresponding notation. To prove our claim it is therefore enough to show that

Symk (Eα)/Oζk is isomorphic to the sheaf of generalized polar parts of order k . Using

1.10 Symk (Eα)/Oζk is locally equal to

B [x, y]k

B [x, y]k−1(−αx + f y)+B xk )
.

with notation of lemma 1.10. One can show that this is isomorphic to the direct sum

k−1⊕

j=0

Ax j yk− j .

There is a natural action of Uk on this A-module. Let φ= (u f )τ1,λ1,...,λk−1
∈Uk . The auto-

morphism attached to g for this action is defined by (x 7→ x, f 7→ g ( f ), y 7→ατ1,λ1,...,λk−1
).

The induced relations on coefficients of an element in ⊕k−1
j=0

Ax j yk− j after the action of

φ are exactly those given by relations 1.9. This ends the proof. �
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2. ELSV CONE

We begin this section by giving a closed substack Zg ,~k of Pg ,~k frislty introduced in

[ELSV01] in the case k=C. This substack is isomorphic to the quotient [Mg ,n(P1,~k)/Ga ]

where the Ga action on Mg ,n(P1,~k) is the standard one. Under a tame condition on

the base field, namely that the characteristic p is zero or greater than d and doesn’t

divide 2g −2+d +n, we can build a section of the quotient morphism Mg ,n(P1,~k) on

[Mg ,n(P1,~k)/Ga ]. It does enable us to embbed Zg ,~k as a closed substack of Mg ,n(P1,~k).

This is made possible by using the notion of generalized branch divisor built in [FP02].

Notation. For further use we write r for the natural number 2g −2+d +n.

2.1. The ELSV Cone Zg ,~k . Let (π : C → S,~σ,~̺) be a stable polar curve in Pg ,~k . There is a

long exact sequence in cohomology attached to this polar curve given by

(2.1)

0 OS π∗OC (
∑n

i=1 ki Di ) PC ,~k R1π∗OC R1π∗OC (
∑n

i=1 ki Di ) 0.
∇C (~k)

The theory of base change in cohomology for proper flat morphisms implies that PC ,~k ,

R1π∗OC and R1π∗OC (
∑n

i=1
ki Di ) commute with any base change and are locally free.

This is enough to ensure that ∇C (~k) commutes with any base change as well. Thus

to each S-object (C /S,~̺) in Pg ,n we get a global section ∇C (~k)(~̺) of R1π∗OC . This

is precisely giving a section ∇(~k) of the vector bundle defined over Pg ,~k by R1π∗O−.

Now following Grothendieck-Serre duality we have a canonical isomorphism R1π∗OC ≃

π∗ω
∨
C

. Following results of [Har66] (see also [Con00]) this isomorphism commutes with

any base change. The section ∇(~k) defines using this isomorphism a natural section

∇(~k)∨ of the pullback of the dual of the Hodge bundle on Mg ,n to Pg ,~k . We shall loosely

denote this bundle by E as is the case for the Hodge bundle on Mg ,n .

Definition 2.1. Let ∇(~k)∨ be the natural section of E∨ given by 2.1. The ELSV cone Zg ,~k

is defined as the zero locus of ∇(~k)∨. This is a closed substack of Pg ,~k .

let (π : C → S,~σ,~̺) be a polar S-curve in Zg ,~k , let {Uℓ → S}ℓ be an open affine cover of

S and write Cℓ for the restriction of C /S to Uℓ = Spec(Aℓ). If we pull back exact sequence

2.1 on Cℓ we get as part of the long exact sequence in cohomology

0 Aℓ H 0
(
OCℓ

(
∑n

i=1 ki Dℓ,i )
)

H 0(PCℓ,~k ) H 1(OCℓ
).

Thus ~̺ℓ can be lifted to a section in H 0(OCℓ
(
∑n

i=1 ki Dℓ,i )) meaning we have local lifts

of ~̺ to π∗OC (
∑n

i=1 ki Di ). Let’s focus for the time being on the local case at hand. We

shall drop the indices and write (CU ,~σ,~̺) for the restriction of our initial polar curve

to U = Spec(A). Assume for simplicity that A is local of maximal ideal m and residue

field k . Write U = Spec(A) for the spectrum of A and let (CU ,~σ,~̺) be a polar U -curve

in Zg ,~k . Write 1 for the canonical section of OCU (
∑n

i=1
ki Di ). The set of lifts of ~̺ to

H 0(OCU (
∑n

i=1 ki Di )) is a torsor under the additive action of A along 1. This is indeed

a torsor because a lift of ~̺ can never be colinear to 1 because of the hypothesis on the

order of ~̺. Now fix a lift ζ of ~̺. Each lift ζ+α1 for α ∈ A defines a surjective morphism

O⊕2
CU

OCU (
∑n

i=1 ki Di ) 0.

attached to the sections {1,ζ+α1}. These give morphisms Φζ+α1 from CU on P
1
A sending

markings D1, . . . ,Dn on the ∞ section of P1
A . Locally at a point along Di the map Φζ+α1

is given by the regular function (ζ+α1)−1 and away from infinity it is locally given by
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ζ+α1. This makes it clear that the Ga action on lifts of ~̺ corresponds to the Ga action

on attached maps to P
1
A fixing the section at ∞.

Lemma 2.1. The maps Φζ+α1 for α ∈ A are stable maps of degree d.

Proof. By construction the restriction of Φζ+α1 on the fiber C of the closed point of A is

constant on irreducible components of C containing no marked points and dominant

on those containing any of the marked points. Since each unstable component of C
contains at least a marked point Φζ+α1 ⊗ k can’t be unstable. The degree of Φζ+α1 is

equal to the dominant coefficient in the Hilbert polynomial of Φ∗
ζ+α1

(O
P

1
A

(1)) which is

written (Φ∗
ζ+α1

(O
P

1
A

(1))). By definition we have

χ(Φ∗
ζ+α1OP

1
A

(ℓ)) = ℓ(Φ∗
ζ+α1(OP

1
A

(1)))+χ(OC ).

Thus the degree is constant along the fibers of π. On a fiber C of π the previous degree is

equal to the sum of the degrees of restrictions of (Φζ+α1⊗k)∗(OP1 (1)) to each irreducible

component of C . Since this degree is zero on contracted components the sum takes

place only on components of C having a marked point. This means the degree is equal

to
∑n

i=1 ki = d . �

Let φ : C →P
1
S be an S-map in Mg ,n(P1,~k). This map is given by a unique meromor-

phic function ζφ in MC /S . This meromorphic function is the extension to the whole of

C of the regular function on C \Supp(
∑

i=1 Di ) defining φ. In terms of ζφ we recover φ

by looking at the moprhism from O⊕2
C

to OC (
∑n

i=1 ki Di ) =φ∗O
P

1
S
(1) given by the collec-

tion of sections {1,ζφ}. This means we get a morphism of stacks form Mg ,n(P1,~k) on

Zg ,~k by sending φ on the polar curve (C ,~σ,ζφ) where ζφ is the image of ζφ in Γ(PC ,~k ).

Proposition 2.2. The previous morphismMg ,n(P1,~k) →Zg ,~k is a Ga-torsor. In particular
[
Mg ,n(P1,~k)/Ga

]
≃Zg ,~k .

Proof. This is a straightforward consequence of discussion following definition 2.1 and

lemma 2.1. �

Corollary 2.3. The quotient
[
Mg ,n(P1,~k)/(Gm ⋉Ga)

]

is proper.

Proof. This follows from the fact that
[
Mg ,n(P1,~k)/(Gm ⋉Ga)

]
≃PZg ,~k .

�

2.2. Branch Morphism and Modular Interpretation of Zg ,~k . There is a more conve-

nient way of looking at objects of Zg ,~k . It does however need a restriction on the charac-

teristic of the base field.

Tame Assumption 2.1. For the sequel of the paper we assume that the characteristic of

the base field p is zero or greater than d and doesn’t divide r .

Under this assumption there is a natural way of attaching a stable S-map to an S-

object of Zg ,~k . This gives a closed embedding of Zg ,~k into Mg ,n(P1,~k).

This embedding is given by a section of the forgetful morphism Mg ,n(P1,~k) → Zg ,~k

constructed with the help of the generalized branch morphism due to [FP02]. It is to
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mention that results in [FP02] are stated in the case of a characteristic 0 base field. Fol-

lowing a remark at the beginning of section [FP02, 1.1] this condition is only needed (at

least for the first three sections) in [FP02, 9] to prove that given a stable S-map F : X → Y
the complex

RF∗

[
F∗ωY /S →ωX /S

]

is a perfect torsion complex on Dcoh (Y ). One can lighten the previous hypothesis on p.

Indeed using lemmas [FP02, 5 & 7] (which do not depend on the characteristic see[FP02,

1.1]) it is enough to prove our claim for moduli points. Following the proof of [FP02, 9]

it is obvious that what is needed is generic smoothness of F on non-contracted compo-

nents of X . This is true since F is finite on such components as soon as F restricted to

each of these components is separable. To ensure this is always the case we need either

p = 0 or p > d and both are guaranteed by the assumption 2.1. We shall therefore use

needed results of [FP02] in this generality.

Following [FP02] we have a morphism

Mg ,n(P1,d ,∞) Div2g−2+2d
P

1Br

which sends a stable map in Mg ,n(P1,d ,∞) on an effective Cartier divisor on P
1. It does

coincide on the locus of Mg ,n(P1,d ,∞) given by dominant smooth maps with the clas-

sical branch morphism.

Let (CU ,~σ,~̺) be a polar U -curve in Zg ,~k for an affine scheme U that is the spectrum

of a local ring A of maximal ideal m and residue field k .

Lemma 2.4. Fix a lift ζ of ~̺ to H 0(CU ,
∑n

i=1 ki Di ). The restriction Br0(Φζ) of Br(Φζ) to
the affine chart A1

U of P1
U given by the complement of the section at infinity is a relative

effective Cartier divisor of degree r = 2g −2+d +n.

Proof. Since Br(Φζ) is effective, its restriction to an open subset of P1 is so as well. To

show that Br0(Φζ) is relative Cartier it is enough to check it on the closed fiber of CU /U .

The map Φζ ⊗k is a stable map attached to the polar k-curve (C ,~p ,~̺⊗k) obtained by

base change. Write Φℓ for the restriction of Φζ⊗k to an irreducible component Cℓ of C
and write N for the Weil divisor of nodal points of C . Following [FP02, 3.1] the branch

divisor of Φζ⊗k is given by

Br(Φζ⊗k) =
( ∑

{ℓ |Φℓ is constant}

Br(Φℓ)
)
+2Φζ∗N+

( ∑

{ℓ |Φℓ is dominant}

Br(Φℓ)
)
.

For an irreducible component Cℓ such that Φℓ is dominant the branch divisor Br(Φℓ) is

the classical branch divisor. Thus for such a component Br(Φℓ) contains the Cartier divi-

sor (
∑

{i |pi∈Cℓ}(ki −1))∞. By summing up over all non contracted components Br(Φζ⊗k)

always contains the Cartier divisor (d−n)∞. Which finally gives that Br(Φζ⊗k)−(d−n)∞

is an effective Cartier divisor of degree 2g −2+d +n equal to Br0(Φζ⊗k). �

Lemma 2.5. Let I be an ideal in A[t ] defining a relative Cartier divisor, i.e. A[t ]/I is flat
over A, then I is principal.

Proof. Write S = Spec(A) and let D be the Cartier divisor with defining ideal I . It is well

known that the Picard group of A1
S is trivial since A is a local ring, which in turn gives the

result. �

Proposition 2.6. Keep notation of lemmas 2.4 and 2.5. There is a unique lift ζ(~̺) of ~̺ to
H 0(OCU (

∑n
i=1 ki Di )) such that Br0(Φζ(~̺)) is given by a polynomial in A[t ] having a zero

coefficient in degree r −1.
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Proof. Let ζ be any lift of ~̺. Since invertible elements in A[t ] are those in A∗ the condi-

tion appearing in the lemma on the vanishing of the coefficient of a polynomial defining

Br0(Φζ) doesn’t depend on the choice of this polynomial. Let α be an element in A and

write τα for the automorphism of P1
A such that τα(t )= t +α where t is the coordinate of

P
1
A centered at 0. By definition

Br(τα ◦Φζ) =Div
(
R(τα ◦Φζ)∗

[
(τα ◦Φζ)∗ω

P
1
A

/U →ωC /U
])

.

Since the complexes [τα◦Φ
∗
ζ
ω
P

1
A /U →ωC /U ] and [Φ∗

ζ
ω
P

1
A /U →ωC /U ] are isomorphic and

τα is an automorphism we get that

Br(τα ◦Φζ) = Div
(
τα∗

(
RΦζ∗

[
(Φζ)∗ω

P
1
A

/U →ωC /U
]))

,

= τα∗ Div
(
RΦζ∗

[
(Φζ)∗ω

P
1
A

/U →ωC /U
])

,

= τα∗ Br(Φζ).

Following lemma 2.5 Br0(Φζ) is generated by a single polynomial in A[t ]. Thus if P(t ) ∈

A[t ] is an equation for Br0(Φζ) then P(t +α) is an equation for Br0(Φζ+α1). The degree of

P(t ) is that of Br0(Φζ) and that is r . Write P(t ) as

P(t ) =
r∑

ℓ=0

βℓtℓ, βr ∈ A∗.

The branch divisor of Φζ~k+α1 is written

P(t +α) =
r∑

ℓ=0

βℓ(t +α)ℓ =
r∑

ℓ=0

ℓ∑

q=0

(
ℓ

q

)
βℓt qαl−q

=

r∑

ℓ=0

(
r∑

q=ℓ

(
q

ℓ

)
βqα

q−ℓ

)
tℓ.

In particular the coefficient of degree r −1 is given by βr−1 + rβrα. Since r and βr are

invertible in A∗ we get that there is a unique α for which the branch divisor of Φζ+α1 has

an equation with zero r −1 coefficient. �

This justifies the following definition

Definition 2.2. Let φ : C → P
1
S be a stable S-map of degree d . We say that φ is normal-

ized if locally any equation of Br0(φ) has zero coefficient in degree r −1.

Corollary 2.7. Given a polar S-curve (C ,~σ,~̺) in Zg ,~k there is a unique lift ζ(~̺) of ~̺ to
H 0(OC (

∑n
i=1 ki Di )) that is normalized.

Proof. We only need to justify that the condition expressed in 2.6 is local on the base

and stable under base change. It is indeed local on the base. Being stable under base

change is a consequence of the fact that the branch divisor is so. Indeed, keep notation

introduced in the proof of 2.6 and let ψ : B → A be a morphism of k-algebras. Since Br

commutes with any base change the polynomial giving the branch morphism of ψ∗ζ is

given by P(t )⊗1B . And this last polynomial has a zero degree r −1 coefficient. �

Corollary 2.8. We have a natural closed embedding of Zg ,~k into the space of stable maps
of profile~k

Proof. This embedding is given by the section of Mg ,n(P1,~k) → Zg ,~k sending a polar

S-curve in (C ,~σ,~̺) on the S-map Φζ(~̺). �

Corollary 2.9. We have a branch morphism Br0 : Zg ,~k → Div2g−2+d+n
A

1 that sends an
object in Zg ,~k on an effective relative Cartier divisor whose support is in P

1\{∞}.
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Proof. This is the composition of the previous embedding with the generalized branch

morphism following [FP02]. �

Remark 2. The previous branch morphism should be thought of as the L L mapping

introduced in [ELSV01]. The use of the generalized branch morphism in the sense of

[FP02] avoids showing that the notion of finite critical values of a map from a smooth

curve to P
1 extends to the case of a nodal domain curve.

2.3. Natural Strata of Zg ,~k . Let Γ be a modular graph in the sense of [BM96] that cor-

responds to a bubbly curve. There is a natural stratification of Bg ,n by locally closed

substacks Mg (Γ) given by curves of type Γ (see [BM96]). Taking the fiber product

Zg (Γ) =Mg (Γ)×Bg ,n Zg ,~k

we get a natural stratification on Zg ,~k . Our aim is to give estimates on the dimension

of these strata. For this purpose we introduce slight variants of the stack Zg (Γ). Let LΓ

be a choice of extra legs for Γ. Write Γ(LΓ) for the resulting modular graph and write

Mg (Γ,LΓ) for the stack of curves of types Γ(LΓ) together with the subset LΓ of legs of

Γ(LΓ). Contracting these legs and stabilizing unstable rational components having no

marked points in LΓ we get a forgetful morphism Mg (Γ,LΓ) → Mg (Γ). This is a vari-

ant of the stabilization morphism where an S-curve (π : C → S,D1, . . . ,Dn ,E1, . . . ,Em) ∈

Mg (Γ,LΓ) is sent on the Proj of

π∗ωC /S

( n∑

i=1

2Di +

m∑

j=1

E j

)
.

This variant does not contract bubbles of C . We callZg (Γ,LΓ) the fiber productMg (Γ,LΓ)×Mg (Γ)

Zg (Γ). If we look at the special case of a one vertice modular graph having n +m halfs

legs we get objects of Zg ,n having smooth underlying curves and m extra markings. In

this case such a stack will be simply written Zg (−,n;m). All of the previous stacks are

defined as fiber products of algebraic stacks, they’re algebraic as well.

Notation. Given a relative curve C /S denote AC the set of relative maps C → P
1
S up to

the Ga action on P
1
S fixing the section at ∞.

Lemma 2.10. Let ∆ be a modular tree. Take a point (C ,~p) in Mg (∆) and assume we have
on each irreducible component Cv an element fv ∈ACv . Then there is a unique element
f ∈AC whose restriction to each component Cv is equal to fv .

Proof. Make a choice of representatives f̂v for each fv ∈ ACv . If e is an edge of ∆ we

write {v+(e), v−(e)} for its set of adjacent vertices. We denote xe the nodal point of C at-

tached to the edge e . Let E be the set of edges e in ∆ such that f̂v+(e)(xe ) and f̂v−(e)(xe )

do not coincide. We’re going to show that one can always decrease ♯E by choosing

different representatives of fv . Take a leaf v0 ∈ ∆. If E 6= ; then there exists a ver-

tex vm+1 and a unique shortest path v0,e0, v1,e1, . . . ,em , vm+1 of length m +1 such that

f̂v j (xe j ) 6= f̂v j+1
(xe j ) only if j = m. Let ∆(v0, vm+1) be the subgraph of ∆ generated by the

vertices in the connected component of ∆\{vm+1} containing v0. Exchange each rep-

resentative f̂v of fv for v a vertex of ∆(v0, vm+1) by f̃v = f̂v + f̂vm+1
(xem )− f̂vm+1

(xem ). For

such a choice f̃vm (xem ) = f̂vm+1
(xem ) and we do not change coincidence relations at edges

of ∆(v0, vm+1). In such a way we have reduced ♯E by 1. Now if we take two representa-

tives of extensions of { fv }v to the whole of C , there difference on each component Cv

is a constant map to P
1. The condition on edges forces this map to be constant on the

whole of C which ends the proof. �
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Let ∆ be a subgraph of Γ and let L∆ be the set of legs obtained out of edges in Γ\∆.

Take an S-object (C /S,~̺) in Zg (∆,L∆) and let e+ and e− be two legs in L∆ coming from

the same edge in Γ\∆. Let f be a morphism to P
1
S coming from a lift of ~̺ to a global

section of OC (
∑

i ki Di ). It is clear that the S-section of P1
S given by f ◦τe+ − f ◦τe− where

τe+ and τe− are the S-markings attached to e− and e− does not depend on the lift f .

Hence, once we’ve numbered legs of L∆ by e1,+,e1,−, . . . ,eℓ∆,+,eℓ∆,− we get a well defined

evaluation morphism evL∆
: Zg (∆,L∆) → (P1)ℓ∆ . Take a look at the fiber ev−1

L∆
{(0, . . . ,0)}.

Its objects are precisely those of Zg (Γ) but a point in ev−1
L∆

{(0, . . . ,0)} has in general less

automorphisms than a point in Zg (Γ). However in both cases automorphisms groups

of points are finite thus dimension of ev−1
L∆

{(0, . . . ,0)} and Zg (Γ) are equal. Thus if ∆ is a

maximal tree in Γ the stratum Zg (Γ) can be embedded as a closed substack of Zg (∆,L∆)

of codimension at most ℓ∆ = 1+ e(Γ)− v(Γ). Estimates on the dimension of Zg (Γ) are

thus given by estimates on the dimension of Zg (∆,L∆) where ∆ is a tree and L∆ is a set

of extra legs.

Remark 3. For the following proposition to be meaningful it is necessary to point out

that we can always make sense of the stack Z0({pt },1;1) even though (g ,n) is equal to

(0,1). Ignoring the case of (g ,n) = (0,1) or (0,2) was to keep homogenous the treatment

of the stack cone structure over Mg ,n that is void for these entries. If we consider such a

question irrelevant, disqualifying the single marked case of genus 0 was due to the fact

prestable rational curves having only 1 polar part could have an infinite automorphism

group. However, in the case of Z0({pt },1;1) we’re looking at rational curves having two

marked points one of which has a polar part. The automorphism group of such an ob-

ject is following proof of 1.7 finite. We get thus an algebraic stack that is obviously of

dimension k1.

Proposition 2.11. Let ∆ be a modular tree having only n ordered legs and write V for the
set of vertices of ∆ containing at least one leg. Take an extra set of legs L∆ for ∆. We have a
finite morphism

(2.2)

∏
v∈VZgv (v,nv ;ℓv )×

∏
v∈∁VMgv ,ℓv Zg (∆,L∆)

where gv is the genus attached to the vertex v, nv is the number of legs incident to v and
ℓv the number of edges and of legs of L∆ out of v.

Proof. Consider the natural clutching morphism attached to ∆

∏
v∈VMgv ,nv+ℓv ×

∏
v∈∁VMgv ,ℓv Mg (∆,L∆).

A collection of marked curves in the left hand side are attached along half edges in a

manner respecting incidence relations in ∆. This clutching morphism is representable

and finite. Details can be found in [ACG11, 12.10]. Let X be the fiber product obtained

out of the previous morphism and of the forgetful one Zg (∆,L∆) →Mg (∆,L∆). We have

a natural finite morphism X→ Zg (∆,L∆). It is enough to show that X is isomorphic to

the left hand side of 2.2 to prove our claim. Take an S-object

({πv : Cv → S,~̺v }v∈V, {πv : Cv → S}v∈∁V)

in the left hand side of 2.2. This S-object naturally induces data (π : C → S, {~̺v }v∈V)

where each ~̺v defines an element in ACv . Notice that we can attach a constant map

in ACv to each component Cv for v ∈ ∁V by choosing an S-section of P1
S . Thus we do

have a collection of elements in ACv for each v ∈ V (Γ). Proof of lemma 2.10 obviously

generalizes to this relative case. Hence we get out of the latter data a unique element in
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AC whose restriction to each Cv gives back ~̺v . As soon as we unravel the definition of

X as a fiber product we see this correspondance defines an isomorphism from the left

hand side of 2.2 on X. �

The coming corollary uses results of section 3.2.

Corollary 2.12. Let ∆ be a maximal tree in Γ and write L∆ for the set of half edges in Γ\∆.
Then we have

dimZg (∆,L∆) =
(
3g∆−3+n +d

)
− g∆−e(∆)+

∑

v∈∁V

gv .

In particular we get that

dimZg (Γ) ≥ (3gΓ−3+n +d )− gΓ−e(Γ)+
∑

v∈∁V

gv .

Proof. The second inequality is a consequence of the fact that dimZg (Γ) ≥dimZg (∆,L∆)−

1− v(Γ)+ e(Γ). It is therfore enough to compute the dimension of Zg (∆,L∆). Following

proposition 2.11 we have

dimZg (∆,L∆)=
∑

v∈V

dimZg (v,nv ; lv )+
∑

v∈∁V

3gv −3+ lv .

It is a consequence of propositions 3.8 and 3.12 that dimZg (v,nv ; lv ) = (3gv −3+nv +

lv +dv )− gv where dv is the sum of ki for i a marking on v . We therefore have

dimZg (∆,L∆)= 3g∆−3v(Γ)+n +d + ♯L∆+2e(Γ)−
∑

v∈V

gv ,

= (3gΓ−3+n +d )+3(g∆− gΓ)−2
(
v(Γ)−e(Γ)−1

)
+1−v(Γ)−

∑

v∈V

gv + ♯L∆,

since v(Γ)−e(Γ)−1 = g∆− gΓ we get

dimZg (∆,L∆) = (3gΓ−3+n +d )+ g∆− gΓ+1−v(Γ)−
∑

v∈V

gv + ♯L∆,

but ♯L∆ = 2(1−v(Γ)+e(Γ)), hence

dimZg (∆,L∆) = (3gΓ−3+n +d )− gΓ−e(Γ)+
∑

v∈∁V

gv +
(
1−v(Γ)+e(Γ)

)
,

which is what we need. �

3. BOUNDARY POINTS OF THE ELSV COMPACTIFICATION

We build a contraction from the stack of admissible covers of rational curves by genus

g curves on PZg ,~k . Points in the closure H g ,~k of Hg ,~k in PZg ,~k are those in the image of

this contraction.

3.1. Rigidified admissible covers. We shall only be concerned by covers having genus 0

target curves and specific ramification behaviour. Details about the stack of admissible

covers can be found for instance in [HM82] and [BR11]. We shall fix here the type of

admissible covers we’re interested in.

Let τ j for j ∈ {1, . . . ,r } be partitions of d . Write H(~k)g ,τ1,...,τr for the stack of admissible

covers having closed points given by finite surjective maps of marked nodal curves φ :

C → R satisfying

• φ−1(Si ngR) = Si ngC ,

• let C̃ and R̃ be the respective normalizations of C and R . Write φ̃ : C̃ → R̃ for the

morphism induced by φ. Ramification indexes of φ̃ at points lying over the same

nodal point of C are equal,
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• R is a genus 0 curve marked by ∞, q1, . . . , qr and C is a genus g curve marked

by p1, . . . , pn and points in the fibers of each q1, . . . , qr . Marked points over each

q1, . . . , qr not being ordered.

• both R and C are stable with respect to the previous marking,

• φ is étale away from ∞, q1, . . . , qr , has a profile given by τ j over q j for each j ∈

{1, . . . ,r } and satisfies scheme theoretically

φ−1
∞=

n∑

i=1

ki pi .

This last condition implies φ has a profile given by k1, . . . ,kn over ∞.

The stack H(~k)g ,τ1,...,τr is a compactification of the classical Hurwitz stack H(~k)g ,τ1,...,τr

whose points are admissible covers of H(~k)g ,τ1,...,τr having smooth source curve. The

stack H(~k)g ,τ1,...,τr contains H(~k)g as a dense open substack. This means every admissi-

ble cover is smoothable. Following the description of [HM82] of the versal deformation

of an admissible cover one can check that H(~k)g ,τ1,...,τr is a reduced stack. On the bad

side H(~k)g ,τ1,...,τr is in general a singular stack that is not even normal. Its normalization

is however a smooth stack. There were different modular descriptions of this normal-

ization, see for instance [Moc95], [ACV03] and [BR11].

We write H(~k)g for the simply ramified case away from ∞. A result of [Waj96] states

that H(~k)g is irreducible. We denote H(~k)g ,• the disjoint union

H(~k)g ,• =
⊔

(τ1,...,τr )

H(~k)g ,τ1,...,τr ,

where the disjoint union takes place over all r -tuples of partitions of d .

In the following, curves in M0,r+1 are marked by r +1 sections one of which is special

and thus indexed by ∞. Let (R ,~η) be an r + 1-marked stable genus 0 curve and write

R1, . . . ,Rν for irreducible components of R . The nodal curve defined by R is a tree of

genus 0 smooth curves. Following [OS79, 10.2] we have isomorphisms

Pic(R)≃
ν∏

j=1

Pic(R j ) ≃Z
ν.

An invertible sheaf F on R is thus given by the ν-tuple of its degrees on R1, . . . ,Rν, we

call it the multidegree of F and write it degm(F ). The invertible sheaf on R of mul-

tidegree ~d is written OR (~d). For example the canonical line bundle on R is given by

(−2+n(R1), . . . ,−2+n(Rν)) where n(Ri ) is the number of special nodal points on Ri .

Lemma 3.1. Keep previous notation. Assume ~d is an ν-tuple of natural numbers. We
have h1(OR (~d)) = 0 and h0(OR (~d )) = ‖~d‖+1.

Proof. Using Serre duality h1
(
OR (~d )

)
= h0

(
ωR (−~d )

)
. If R is smooth ωR (−~d ) is of nega-

tive degree and thus H 0
(
ωR (−~d )

)
= 0. When this is not the case take a component R j

of R that is a leaf of its dual graph. Since R j is a leaf it can only have one nodal point.

This means the restriction of ωR (−~d ) on R j is still of negative degree and any section in

H 0
(
ωR (−~d )

)
is zero on R j . Let R∗

j be the closure of R\R j in R , we thus get an isomor-

phism of H 0
(
ωR (−~d )

)
with H 0

(
ωR (−~d )|R∗

j

)
. Since R∗

j is a nodal genus 0 curve having

ν−1 irreducible components we conclude by induction. The expression for h0
(
OR (~d )

)

is a direct consequence of [OS79, 10.4]. �

Let q1, . . . , qr , q∞ be the images of η1, . . . ,ηr ,η∞. Write R∞ for the irreducible com-

ponent of R containing η∞. Consider the case of the invertible sheaf OR (q∞). Since
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restriction to R∞ gives an isomorphism H 0(OR (q∞)) = H 0(OR∞
(q∞)) the sheaf OR (q∞)

is base point free. Following 3.1 h0(OR∞
(q∞)) = 2 and

⊕ℓ≥0H 0(OR (ℓq∞)) ≃ Sym H 0(OR (q∞)).

This induces a morphism R → Proj H 0(OR (q∞)). The choice of a basis of H 0(OR (q∞))

gives a morphism from R to P
1. Each moduli point φ : C → R in H(~k)g ,• has target that is

a genus 0 r +1-marked stable marked curve (R ,~η). If we choose a basis of H 0(OR (q∞))

following the previous steps we can get out of φ a morphism ϕ : C → P
1. This is a com-

plete intersection morphism having smooth target. In a fashion similar to what has

been done in 2.2 we’re going to impose a condition on admissible choices of a basis

of H 0(OR (q∞)). Once this is done we built a stack whose moduli points are couples of

covers in H(~k)g ,• together with a good choice of a basis of H 0(OR (q∞)).

Take an S-objectφ : C →R and let (π : R → S,~η) be its target inM0,r+1. Let Q1, . . . ,Q∞

be the images of the sections given by~η. Let E∞ be the direct image π∗O(Q∞). Follow-

ing lemma 3.1 we have h0(ORs (Qs,∞)) is 2 and h1(ORs (Q∞)) = 0. By [Knu83, 1.5] we get

that E∞ is a locally free sheaf of rank 2 that commutes with any base change. Attached

to (R,~η) we have by push forward an exact sequence

(3.1)
0 OS E∞ L −1

∞ 0.
κ

We write 1 ∈ Γ(E∞) for the image of the canonical unity section of OS . This is a nowhere

vanishing section of Γ(E∞).

Definition 3.1. A rigidification of φ is given by the choice of a global section ξ of E∞

such that {1,ξ} trivializes E∞.

A rigidification is precisely given by the choice of a global non-zero section of L −1
∞

and a section of κ. Two sections of κ differ by an element of the form µ1 for µ ∈Γ(S,OS)

and two global sections trivializing L −1
∞ by λ ∈ Γ(S,O∗

S ). This means that given a rigidi-

fication ξ ∈Γ(E∞) any other rigidification is of the formλξ+µ1 for (λ,µ) ∈Γ(O∗
S )×Γ(OS ).

Equivalently, the set of rigidifications of φ is a torsor underGa⋊Gm. Let ϕ(ξ) : C →P
1
S be

the morphism attached to ξ, the morphism ϕ(λξ+µ) attached to λξ+µ is obviously ob-

tained from ϕ(ξ) composing with the automorphism of (P1,∞) given by (λ,µ) ∈Gm⋉Ga .

Lemma 3.2. Keep previous notation. Let ξ be a rigidification of φ. There is a unique
rigidification ξ̂ lift κ(ξ) such that the induced morphism R → P

1 is normalized in the
sense of definition 2.2.

Proof. The morphism ϕ attached to φ has relative complete intersection source and rel-

ative smooth target. In our case this is the only needed assumptions to define the branch

divisor in the sense of [FP02]. Following the proof of proposition 2.6 step by step we get

the result. �

Definition 3.2. A rigidification of φ satisfying such that its induced morphism R →P
1 is

normalized is said to be normalized.

Definition 3.3. Let H(~k)
r i g
g ,• be the stack whose S-objects are given by an S-object in

H(~k)g ,• together with a normalized rigidification. Morphisms of H(~k)
r i g
g ,• are those of

H(~k)g ,• fixing the rigidification. We write H(~k)
r i g
g ,τ1,...,τr

and H(~k)
r i g
g for the obvious vari-

ants of H(~k)
r i g
g ,• .
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It is obvious to see that the set of normalized rigidifications of φ is a Gm-torsor. This

says that the forgetful morphism H(~k)
r i g
g ,• →H(~k)g ,• makes of H(~k)

r i g
g ,• a Gm-torsor over

H(~k)g ,•. Since H(~k)g ,τ1,...,τr is of dimension r −2 the dimension of H(~k)
r i g
g ,τ1,...,τr

is r −1.

Proposition 3.3. The stack H(~k)
r i g
g ,• is a Gm-torsor over H(~k)g ,•. It is the one defined by

the line bundle L∞.

Proof. A normalized rigidification of an S-object φ in H(~k)
r i g
g ,• is given by the choice of

a global nonvanishing S-section of L −1
∞ . Equivalently an S-section of SpecS(⊕ℓ∈ZL ℓ

∞).

�

Corollary 3.4. We have an isomorphism H(~k)g ,• ≃

[
H(~k)

r i g
g ,• /Gm

]
.

3.2. Hurwitz Projection. Let (φ : C → R,ξ) be an admissible cover in H(~k)
r i g
g ,• over a

scheme S. Rigidification defines a morphism of marked curves from R onto P
1
S . Com-

posing with φ we get a morphism ϕ : C →P
1
S .

Lemma 3.5. The map ϕ is of degree d.

Proof. Following the proof of lemma 2.1 it is enough to look at closed fibers ϕs . In this

case Rs → P
1 is an isomorphism on Rs,∞ and contracts any other component on a

point. This implies the degree of ϕs : Cs → P
1 is equal to the degree of φs|Rs,∞

which is,

in turn, equal to the degree of φs on any other component for φs is admissible. Hence

ϕs is of degree d . �

Keep previous notation. The map ϕ is a map between stable marked curves. There

is a forgetful morphism that only keeps on mind the marking of P1 at ∞ and markings

of C given by the sections σ1, . . . ,σn going on ∞. This forgetful morphism can destroy

stability of the map ϕ. Let ψ : (C̃ ,~σ) → (P1
S ,∞) be the stabilization of ϕ.

Lemma 3.6. ψ is a stable map of profile~k .

Proof. This is a statement on closed fibers. Let s be a point in S. We need to show that

locally around each point σs,ℓ the map ψs is of profile kℓ. But each such point comes

from a point on Cs that lie on a component going on R∞, i.e. a component that is

not contracted on P
1. Hence the local behaviour of ψs at σs,ℓ is the one of φs at the

neighborhood of this same point and this ends the proof. �

Definition 3.4. Let ρ~τ be the functor from H(~k)
r i g
g ,τ1,...,τr

on Mg ,n(P1,~k) defined in the

previous fashion. Write ρ for the case of H(~k)
r i g
g and ρ• for H(~k)

r i g
g ,• . This last morphism

is called the Hurwitz projection.

Proposition 3.7. The projection ρ• factors through the embedding of Zg ,~k as a closed
substack of Mg ,n(P1,~k) built in section 2.2.

Proof. Let ρ̂• be the composition of ρ• with the natural quotient Mg ,n(P1,~k) → Zg ,~k

followed by the its section built in section 2.2. By definition of rigidification it is obvious

that ρ• and ρ̂• coincide onH(~k )
r i g
g ,• . This means they’re equal on an open dense substack

of H(~k)
r i g
g ,• . Since Mg ,n(P1,~k) is separated, the locus where ρ• and ρ̂• are equal is closed

in H(~k)
r i g
g ,• . But since H(~k)

r i g
g ,• is reduced such a substack is the whole of H(~k)

r i g
g ,• (see

[The, 050A]). �
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Obviously ρ• is Gm-equivariant for the action of Gm on the rigidification of an object

in H(~k)
r i g
g ,• . Thus ρ• defines a morphism ̺• :H(~k)g →PZg ,~k .

Let Hg ,~k ,• be the open substack of Zg ,~k given by objects having smooth underlying

curves and write Hg ,~k,• for the closure of Hg ,~k ,• in Zg ,~k . Write Hg ,~k be the open substack

of Hg ,~k ,• corresponding to points of Zg ,~k having simple ramification away from ∞. One

can check that the quotient of Hg ,~k by the natural Gm-action written PHg ,~k is the stack

Hg ,~k mentioned in the introduction to this paper. The ELSV compactification H g ,~k is

equal to the quotient PHg ,~k .

Proposition 3.8. The restriction of ρ• to H(~k)
r i g
g ,• is a trivial Sr -torsor over Hg ,~k,•.

Proof. Taking the image of an S-object (φ : C → D,ξ) ∈H(~k)
r i g
g ,• involves no contraction

on the target curve and thus no contraction on the source. The choice of ξ makes sure

the resulting stable map ρ•(φ) is in the embedding of Zg ,~k in Mg ,n(P1,~k) described in

section 2.2. Now take an S-object ψ : C →P
1 in Hg ,~k ,• and choose an order on its branch

points outside ∞. This data defines a unique S-object in H(~k)
r i g
g ,• by taking for rigidifica-

tion the one defined by x∞ where x∞ is the coordinate in the neighborhood of ∞. �

Corollary 3.9. The open substack of Zg ,~k given by Hg ,~k ,• is smooth. In particular it is a
local complete intersection in Pg ,~k .

Proof. This is the case for H(~k)
r i g
g ,• . �

Lemma 3.10. The morphism ρ• is surjective on Hg ,~k,•.

Proof. It is enough to show this on moduli points of Hg ,~k ,•. Any point φ : C → P
1 living

in Hg ,~k ,• has got—by definition—a smoothing family φA : CA → P
1
A over a discrete val-

uation ring A. This means the central fiber of φA is equal to φ and that φA is a finite

morphism of smooth curves on the generic fiber. Now the generic fiber is precisely an

object in H(~k)g ,•. Since H(~k)g ,• is proper it can be extended uniquely to an A-object of

H(~k)g ,•. Because Zg ,~k is separated the image of this extension under ρ• gives precisely

on the central fiber φ. �

Proposition 3.11. The restriction ρ of ρ• to H(~k)
r i g
g is surjective on Hg ,~k ,•.

Proof. This is as well a claim on moduli points. Following proposition 3.10 it is enough to

show that any point φ : C → D in H(~k)
r i g
g ,τ1,...,τr

can be obtained from a point ψ : B → E by

contracting rational components on the base and target of ψ. Take a branch point q of D
that is not simple. It’s fiber is given by m points q1, . . . , qm with multiplicities m1, . . . ,mm .

Attach a rational curve at each of the points q, q1, . . . , qm . Write E for the rational curve

at q and Dℓ for the rational curve at qℓ. Take on each Dℓ a simply ramified map to P
1

except at the point qℓ where it has ramification of order mℓ. Making such choices for

each branch point of D gives a simply ramified admissible cover whose image by ρ gives

back φ. �

Using the previous proof one can see that ρ is surjective on Hg ,~k as well. This means

that both closures Hg ,~k ,• and Hg ,~k are equal. In particular Hg ,~k is dense in Hg ,~k ,•. In par-

ticular one gets that Hg ,~k is dense in PHg ,~k ,•. This means that there are no restrictions

on the branch divisor of boundary points of the ELSV compactification.

Corollary 3.12. Hg ,~k ,• is irreducible of codimension g in Pg ,~k .
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Proof. It is well known that H(~k)
r i g
g is irreducible. We’ve just seen that Hg ,~k is dense in

Hg ,~k,•. The dimension of Hg ,~k is equal to the one of H(~k)
r i g
g which is r −1 = 2g −2+n +

d −1 = (3g −3+n +d )− g . �

It is natural to wonder whether Hg ,~k ,• is the whole of Zg ,~k or not. The answer is no. A

stratum Zg (Γ) for a modular graph Γ cannot be a substack of Zg (Γ) unless its dimension

is less that the stratum of Hg ,~k ,• given by maps to P
1 of source curve of type Γ. This is the

image of the corresponding stratum in H(~k)
r i g
g ,• and is thus of dimension 3g −3+n+d −

g −e(Γ). Using 2.12 we get that for Zg (Γ) to be included in Hg ,~k ,•

(3g −3+n +d )− g −e(Γ)+
∑

v∁V

gv ≤dimZg (Γ) ≤ (3g −3+n +d )− g −e(Γ).

This implies any point in such Zg (Γ) must contract only rational curves and this is not

the case of all points in Zg ,~k as soon as g 6= 0.
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