Raphaël Bailly
email: raphael.bailly@lif.univ-mrs.fr

Spectral learning of graph distributions

We present an extension of the Hidden Markov Models, called Graphical Weighted Models (GWM), whose purpose is to model distributions over labeled graphs. We describe the spectral algorithm for GWM, which generalizes the previous spectral algorithms for sequences and trees. We show that this algorithm is consistant, and we provide statistical convergence bounds for the parameters estimate and for the learned distribution.

Introduction

Graphical Weighted Models (GWMs), and Directed Graphical Weighted Models (DGWMs), are probabilistic models which generalizes HMMs and Observable Operator Models (see [START_REF] Jaeger | Efficient estimation of ooms[END_REF]). They are related to graphical models with discrete latent variables. The vertices labels x i are distributed conditionnaly to their corresponding latent variable y i . One supposes that the hidden variables satisfy the Markov property w.r.t the graphical structure.

For any fixed graphical structure, these GWMs can model a distribution over vertices labels. Moreover, they can describe at the same time a distribution over all possible graphical structures.

We present a spectral algorithm which is a generalization of the spectral algorithm in [START_REF] Hsu | A spectral algorithm for learning hidden markov models -long version[END_REF]. This algorithm provides an estimate of the parameters which is consistant, and not prone to local extrema.

The section 2 describes some preliminary notions, section 3 introduces the Directed Graphical Weighted Model(DGWM), section 4 presents the spectral algorithm, and section 5 adresses the convergence results. The section 6 introduces the Graphical Weighted Model(GWM) and the spectral algorithm for GWM. We conclude with the section 7.

Preliminaries

The objects we consider in this paper are labeled DAGs (Directed Acyclic Graphs), and labeled graphs -i.e. each vertice is labeled with a symbol x belonging to an alphabet F. Each symbol has an incoming and an outgoing arity for the directed model, an overall arity for the undirected model. Each port (incoming or outgoing) has a port number. For instance, let us consider the alphabet F = {f 2, 3 1 , j 1,2 , h 1 , i 2 1 }, meaning that the symbol f has an incoming arity 2 (with port numbers 2 and 3) and an outgoing arity 1 (port number 1). Fig. 1 represents a DAG example built with F.

h f i i j 1 1 2 1 2 1 2 2 1 3 1 Figure 1: A Directed Acyclic Graph (DAG) g.

Sequences as DAGS

Sequences are particular cases of DAGs: the set of sequences built upon an alphabet Σ = {a, b, c . . . } will correspond to DAGs with

F = {i 1 , t 1 , a 2 1 , b 2 1 , c 2 1 . . . }.
The sequence aabca will correspond to the DAG represented Fig. 2. It is clear that any sequence built with Σ can be represented by a DAG built with F, and conversely, that any DAG built with F corresponds to a sequence built with Σ.

Trees as DAGS

Trees are also particular cases of DAGs: the set of trees built with an al- Again, it is clear that there is a bijection between trees built with Σ = {f 2 , b 1 , c 0 . . . } and DAGs built with

phabet Σ = {f 2 , b 1 , c 0 . . . } corresponds to a DAG with set of symbols F = {i 1 , f 2,
F = {i 1 , f 2,3 1 , b 2 1 , c 1 . . . }.
In the rest of the paper, one will use functional notation for trees and sequences, including the symbols i and t. For instance, the sequence aabca will be denoted i(a(a(b(c(a(t)))))), and the tree f (b(c), f (c, c)) will be denoted i(f (b(c), f (c, c))).

Directed Graphical Weighted Model

In this section, we extend HMMs to DAGs. To do this, one needs a fuctionnal notation for DAGs. Definition 1. Let g 1 , . . . , g k be I-DAGs.The I-DAG g = (g 1 , . . . , g k) is obtained by juxtaposing the I-DAGs g i , from the top to the bottom. The I-DAG g k is (g, . . . , g) repeated k times.

Definition 2. Let g 1 , . . . , g k be I-DAGs. The I-DAG g = g 1 g 2 . . . g k is obtained by juxtaposing the I-DAGs g i , from left to right. The incoming edges of g i corresponds to outgoing edges of g i+1 .

-i.e. (1 k , g k k) = (g k k , 1 k) = g k k .
Definition 4. Let g be an I-DAG with n incoming ports and n * outgoing ports. Let σ be a permutation of {1, . . . n} and σ * be a permutation of {1, . . . n * }. One will denote [g] σ σ * the I-DAGs obtained by permutation of incoming ports (resp. outgoing) with σ (resp. σ *). (see Fig. 6)

I-DAGs (a 1,2 , b 1,2)(1 1 , f 3,4 1,2 , 1 1), [(f 3,4 1,2 , e 3,4 1,2)] 1324 and (a 1,2 , b 1,2)[(f 3,4 1,2 , e 3,4 1,2)] 1324
Proposition 1. Any DAG g can be written as

[(v 1,1 , . . . , v 1,k1)] σ1 σ * 1 • • • • • [(v n,1 , . . . , v n,kn)] σn σ * n where v i belongs to F ∪ {1}.
Proof. Let V be the set of vertices of g. One defines a partition of

V = V 0 ∪ • • • ∪ V k as: • V 0 = set of

vertices having only incoming edges

• V i+1 = set of vertices having only incoming edges, or outgoing edges towards vertices of

V 0 ∪ • • • ∪ V i .
Each V i is completed with k i symbols 1, in order to have the same number of incoming edges for V i and outgoing edges for V i+1 . One defines the I-DAG

g i = (v 1 i , . . . , v ni i) v j i ∈Vi
, and the permutations σ i such as the incoming ports of g i corresponds to outgoing ports of g i+1 . One define

g = [g 0] σ0 . . . [g k] σ k
There exists obviously several way to denote a particular DAG: the DAG g Fig. 1 can be written (h

1)(f 2,3 1)(i 2 1 , i 2 1)(j 1,2) or (h 1)(f 2,3 1)(i 2 1 , 1 1)(1 1 , i 2 1)(j 1,2
). When g is a tree or a sequence, this notation corresponds to the usual functional notation. Definition 5. A Directed Graphical Weighted Model (DGWM) is given by: • a rank d, an d-dimensionnal vector space E over R called state space, or residual space.

• for each symbol f belonging to the alphabet, with incoming arity n and outgoing arity n * , a real matrix f of dimensions (d n * , d n).

Definition 6. Let d be an integer, and let M be a (d n * , d n) matrix, let σ be a permutation of {1, . . . n}, and let σ * be a permutation of {1, . . . n * }. One will denote by [M] σ σ * the matrix satisfying, for any column vectors v 1 , . . . , v n and row vectors v * 1 , . . . , v * n * :

(v * 1 ⊗• • •⊗v * n *)•M •(v 1 ⊗• • •⊗v n) = (v * σ * (1) ⊗• • •⊗v * σ * (n *))•[M] σ σ * •(v σ(1) ⊗• • •⊗v σ(n))
This matrix is unique, and it can be deduced from M by a permutation of rows and columns. More precisely: Lemma 1. Let σ be a permutation of {1, . . . n}, and σ * be a permutation of {1, . . . n * }. There exists a column permutation σ and a row permutation σ * such that, for any

(d n * , d n) matrix M , one has [M] σ σ * = σ(σ * (M)).
Definition 7. Let g be a DAG. Let A be a DGWM of rank d over the symbols of g. Let I be the identity matrix of rank d. One defines the mapping

r A applied to g = [(v 1,1 , . . . , v 1,k1)] σ1 σ * 1 • • • • • [(v n,1 , . . . , v n,kn)] σn σ * n by: r A (g) = [(v 1,1 ⊗ • • • ⊗ v 1,k1)] σ1 σ * 1 • • • • • [(v n,1 ⊗ • • • ⊗ v n,kn)] σn σ * n Proposition 2.
The value r A (g) does not depend on the functional notation for g.

Proof. (Sketch) By induction. One uses the property (

A • B) ⊗ (C • D) = (A ⊗ C) • (B ⊗ D), thus (I ⊗ x 1 2) • (y 1 2 ⊗ I) = (y 1 2 ⊗ x 1 2).
4 Spectral Algorithm Definition 8. One will call n-order prefix (resp. suffix) an I-DAG, having n incomplete incoming ports (resp. n incomplete outgoing ports). A prefix (resp. suffix) is by default a 1-order prefix (resp. suffix). A missing vertice is denoted .

Example 1. The following objects are prefixes:

i(f (b(c), f (c,))), i(f (b(c), f (, c))), i(f (, f (c, c))).
Tree prefixes are also called contexts.

Example 2. The following objects are suffixes:

(f (b(c), f (c, c))), (f (c, c)).
Example 3. Prefixes and suffixes for sequences are 1-order. Tree suffixes are 1-order suffixes.

Definition 9. Let p be an n-order prefix, and s 1 , . . . , s n be 1-order suffixes. One will denote by p[s 1 , . . . , s n] The DAG built by pluging symbols of p to symbols of each s i .

f i i g 1 2 1 2 1 2 2 1 3 1 Figure 7: A DAG prefix Example 4. Let p = i(f (b(c), f (, c))) and s = (f (c, c)), one has p[s] = i(f (b(c), f (f (c, c), c)))
Definition 10. The rank of a mapping r computed by a DGWM is the minimal rank of a DGWM computing r.

Definition 11. An n-order generalized prefix (resp. n-order generalized suffix) is a set of n-order prefixes (resp. set of n-order suffixes) having undefined vertices. A generalized prefix (resp. generalized suffix) is a 1-order generalized prefix (resp. 1-order generalized suffix). An undefined vertice is denoted •. The set of n-order generalized prefix (resp. n-order generalized suffix) is the set of any n-order prefix (resp. n-order suffix) obtained by replacing the • corresponding to an incoming port by any 1-order suffix, and the • corresponding to an outgoing port by any 1-order prefix.

Example 5. The generalized sequence prefix •(a(a())) is the set {i(a(a())); i(b(a(a()))); i(a(a(b(a(a()))))); . . It is the set of prefixes ending with a(a()).

Definition 12. Let U be a set of generalized prefixes, let V be a set of generalized suffixes. The Hankel matrix for the set U and V of a real-value mapping over DAGs r is the matrix X r U,V defined by (X r U,V) u,v = p∈U,s∈V r(p[s]).

(a(•)) (b(•, •)) (c) (d) i() •(a()) •(b(, •)) •(b(•,)) 0 B B @ 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 C C A
Let r be a fixed real-value mapping over DAGs built upon a set of symbols

F = {. . . x k k * . . . }.
Let p be a prefix, let s be a suffix, let P be the set of all generalized prefixes, and let S be the set of all generalized suffixes. One can define the following objects:

• p : S → R such that p(s) = r(p[s]) • s : P → R such that s(p) = r(p[s])
One can define the two following vector spaces:

• E * r =
)) = i,j r((p i 1 , . . . , p i k *)(x k k *)(s j 1 , . . . , s j k))
, where E ⊗k r is the tensor product of E r repeated k times.

Model properties

Let A be a DGWM over F = {. . . x k k * . . . }, with a state space E = R d . Each x k k * is a matrix which can be seen as a k-linear mapping E ⊗k → E ⊗k * . The dimension of E * r is the dimension of E r , and it is also the rank of the Hankel matrix X r .

The residual spaces E r and E * r can be seen as subspace of E, thus rank(X r) ≤ d. Definition 13. A DGWM A computing a mapping r A is called simple if the state space dimension is equal to the rank of the Hankel matrix X r A .

For the rest of the paper, we will make the assumption that the mapping we want to estimate is computed by a simple DGWM. This implies that E, E r and E * r have rank d, and that x k k * is entirely defined by its restriction to E ⊗k r × (E * r) ⊗k * . Let X be the Hankel matrix of r, and let X x k k * be the matrix defined by: (X x k k *) (p1,...,p k *),(s1,...,s k) = r((p 1 , . . . , p k *)(x k k *)(s 1 , . . . , s k))

Let v S be the coordinates of v ∈ E r in the basis S = { s1 . . . }, and v 1 P be the coordinates of v ∈ E * r in the basis 1 P = {1 p1 . . . }. X is a transformation matrix from S to 1 P . Let X + be a pseudo-inverse of X. The matrix X x k k * applied to (s 1) S , . . . , (s k) S represents the vector x k k * (s 1 , . . . , s k) 1 P in the basis 1 P . From this, one can say that the matrix X + X x k k * is the matrix of ẋk k * in the basis S. Proposition 3. Let r be a real-value mapping over DAGs built from F = {. . . x k k * . . . }. One defines the following operators:

ẋk k * = X + X x k k *
One then has:

r(g) = r([(v 1 , . . . , v k1)] σ1 σ * 1 • • • • • [(v 1 , . . . , v kn)] σn σ * n) = [(v1 ⊗ • • • ⊗ vk1] σ1 σ * 1 • • • • • [(v1 ⊗ • • • ⊗ vkn)] σn σ * n
The principle of the spectral algorithm is the following: one supposes that r is computed by a rank-d simple DGWM, and one performs the singular value decomposition (SVD) of X = W * ΣW T , with Σ a diagonal matrix of size d. One then has: Proposition 4. Let r a mapping computed by a simple DGWM over F = {. . . x k k * . . . }. Let X r = W * ΣW T . Then the DGWM defined by:

x k k * = (Σ -1 W *) ⊗k * X x k k * (W T) ⊗k computes r.
Proof. The proof is very similar to the proofs of corresponding results in other works, e.g. [START_REF] Hsu | A spectral algorithm for learning hidden markov models -long version[END_REF].

Data: A sample S = {s i , 1 ≤ i ≤ |S|} i.i.d. according to a distribution p, a rank d, an alphabet F, a set of prefixes U = {u 1 , . . . }, a set of suffixes V = {v 1 , . . . }. Result: A Graphical Weighted Model A computing an estimate of p begin X i,j ← p S (u i v j) for each x k k * ∈ F do X x,i1...i k * ,j1...j k ← p S ((u 1 , . . . , u k *)x k k * (v 1 , . . . , v k)) X = W * ΣW T for each x k k * ∈ F do x k k * ← (Σ -1 W * T) ⊗k * X x k k * (W) ⊗k return A = {x k k * } x k k * ∈F
end Algorithm 1: Spectral Algorithm for DGWMs

Concistency

Let p be a probability distribution over DAGs, computed by a simple DGWM of rank d. Let X be the Hankel matrix of p for U = {u 1 , . . . } and V {v 1 , . . . }. Let x be a prefix (resp . y be a suffix). Let

m V (x) = Card({v ∈ V |x ⊂ v} (resp. m U (x) = Card({u ∈ U |y ⊂ u}). Let m = max c∈V (|c|).max g∈G (m V (g)m U (g).
Let S be a sample of size N i.i.d. with respect to p. Let X S be the Hankel matrix of the empirical distribution p S . Let λ 1 ≥ • • • ≥ λ d . . . be the singular values of X, the lower beeing λ d .

Parameter estimate

Proposition 5. Let {x k k * } be a DGWM computing p, provided by the spectral algorithm on target values. Let {x S k k * } be a DGWM estimating p, provided by the spectral algorithm on empirical values. Let F be the Frobenius norm on matrices. Let δ be a confidence parameter. One then has, with probability 1 -δ:

x k k * -xS k k * F = O s m 3 d 2(k+k *)+1 k log(1 δ) N λ 2k+2 d !
Proof. (Sketch.) One first obtains a concentration inequality for the Hankel matrix, as in [START_REF] Hsu | A spectral algorithm for learning hidden markov models -long version[END_REF]. One then uses matrix perturbation results for singular values and singular vectors, as in [START_REF] Zwald | On the convergence of eigenspaces in kernel principal component analysis[END_REF].

Simple convergence

Proposition 6. Let {x k k * } be a DGWM computing p, provided by the spectral algorithm on target values. Let r S be the mapping computed by the DGWM provided by the spectral algorithm on empirical values. Let g be a DAG, and k the maximal arity of a symbol occuring in g. Let F be the Frobenius norm on matrices. Let M = max x∈F x F . Let δ be a confidence parameter. One then has, with probability 1 -δ:

|p(t) -rS(t)| = O M |t| s m 3 d 2k+1 k log(1 δ) N λ 2k+2
g T = ((Σ -1 W * T) ⊗ (Σ -1 W * T))X g T = 1.2361 -3.2361 -1.2361 -3.2361 , One can check that (a ⊗ b) • g = 1/2 , (a ⊗ a) • g = 1/4 , (b ⊗ a) • g = 1/4 , (b ⊗ b) • g = 0.
6 Undirected Graphical Weighted Model

We define here a GWM for undirected graphs. The idea is to consider a model which computes the same result, for any acyclic direction of a given graph.

Definition 14. A Graphical Weighted Model (GWM) is given by:

• a rank d, and a d-dimensional vector space E over C, called state space, or residual space.

• for each n-arity symbol f 1,...,n , a complex vector f = f 1,...,n of dimension d n .

• for each symbol f i1...i k i k+1 ...in , a (d k , d n-k)-complex matrix f i1...i k i k+1 ...in which can be deduced from f , and satisfying, for any v 1 . . . v n ∈ E:

(v T i1 ⊗ • • • ⊗ v T i k)f i1...i k i k+1 ...in (v i k+1 ⊗ • • • ⊗ v n) = (v T 1 ⊗ • • • ⊗ v T n)f Example 8. f T = f T 1,2 = f 11 f 12 f 21 f 22 , f 2,1 = f 11 f 21 f 12 f 22 , f 1 2 = f 11 f 21 f 12 f 22
One can check that

(v T 1 ⊗ v T 2)f = v T 2 f 1 2 v 1 = f 2,1 (v 2 ⊗ v 1) Proposition 7.
Let g be a graph, and A be a GWM. Let g 1 and g 2 be two different DAGs corresponding to g. Then r A (g 1) = r A (g 2).

Proof. The proof is simple, though quite technical, and can be found in the longer version of this paper. It is mainly based on the property (x T ⊗I)•(I⊗y) = (y T ⊗ I) • (I ⊗ x).

Spectral algorithm for GWM

X i,j ← p S (u i u j) for each x k k * ∈ F do X x,i1...i k * ,j1...j k ← p S ((u 1 , . . . , u k *)x k k * (u 1 , . . . , u k)) X = U ΣU T for each x k k * ∈ F do x k k * ← (Σ -1/2 U T) ⊗k * X x k k * (U Σ -1/2) ⊗k return A = {x k k * } x k k * ∈F
end Algorithm 2: Spectral Algorithm for GWMs Using the same prefix and suffix sets U implies that X is symetric, and thus X can be written X = U ΣU T , with U -1 = U T . If one of the eigenvalues of X is negative, the provided GWM has complex parameters -though the computed value is real. Thus, the model provided is always a GWM. GWA provided by the spectral algorithm:

a = Xa • (V Σ -1/2) = 0.5205i -0.0759i -0.0759 -0.5205 b = Xb • (V Σ -1/2) = 0.1229i 0.3217i 0.3217 -0.1229 g T 1,2 = g 1,2 = X g 1,2 • (V Σ -1/2) ⊗ (V Σ -1/2) = -0.
(a⊗a)•g 1,2 = 1/4 , (a⊗b)•g 1,2 = 1/2 , (b⊗a)•g 1,2 = 1/4 , (b⊗b)•g 1,2 = 0
One can also check that

a • g 1 2 • a T = 1/4 , a • g 1 2 • b T = 1/4 , b • g 1 2 • a T = 1/2 , b • g 1 2 • b T = 0 7

Conclusion

In several previous works, it has been shown that the spectral methods can be efficient in practical applications, like in reinforcement learning ([START_REF] Boots | Closing the learning-planning loop with predictive state representations[END_REF]), or in natural language processing ([7]) -both in accuracy and computational time.

The spectral algorithm presented in this paper, as it is fast -the cost of a single thin SVD -and not prone to local extrema issues, should perform well in problems where graphical models are generally used in combination with EMlike learning methods for parameter estimate. It can also be used in a density estimation task for distributions on graphs.

One should also be able to extend this spectral algorithm to graphs with continuous observations, as in [START_REF] Song | Hilbert space embeddings of hidden markov models[END_REF], or consider online versions of the algorithm, like in [START_REF] Boots | An online spectral learning algorithm for partially observable nonlinear dynamical systems[END_REF]. Proof. The matrices x l ki and x li k can be written as:

x l ki = X kl , x li k = X T kl whith X kl =   
x kl1 . . .

x kld   
The same idea holds for y n jm and y jn m , whith Y j = (y mnj):

y n jm =    Y 1 . . .

1 Figure 2 :

 12 Figure 2: Sequence as a Directed Acyclic Graph (DAG).

3 1 , b 2 1 Figure 3 :

 13 Figure 3: Tree as a Directed Acyclic Graph (DAG).

1

 1

Figure 4 :

 4 Figure 4: I-DAGs examples: a 1,2 , c 1,2 and e 3,4 1,2 .

Figure 5 :Definition 3 .

 53 Figure 5: I-DAGs examples: (a 1,2 , b 1,2), (f 3,4 1,2 , e 3,4 1,2) and (a 1,2 , b 1,2)(f 3,4 1,2 , e 3,4 1,2)

 Figure 6:I-DAGs (a 1,2 , b 1,2)(1 1 , f 3,4 1,2 , 1 1), [(f 3,4 1,2 , e 3,4 1,2)] 1324 and (a 1,2 , b 1,2)[(f 3,41,2 , e 3,4 1,2)] 1324

Example 6 .

 6 Let t = i(b(a(a(c)), b(c, d))))) be a tree, let U = {i(), •(a()), •(b(, •)), •(b(•,))} and let V = { (a(•)), (b(•, •)), (c) (d)}, and let r be the counting mapping of the set S = {t} (i.e r(t) = Card(t ∈ S|t = t)). The Hankel matrix X r U,V is:

1 «

 1 Sketch.) One uses the linearity of matrix product and tensor product, with the propertiesM •N F ≤ M F N F and M ⊗N F = M F N F .Example 7. Sample: {(a, a)g; (a, b)g; (a, b)g; (b, a)g}. Prefixes:{a, b}. Suffixes:{(, a)g, (, b)g}. X = W * ΣW T . = `1/4 1/2 ´, X b = `1/4 0 ´, X T g = `1/4 DGWA provided by the spectral algorithm: a = Xa • W = -0.5568 -0.0502 , b = Xb • W = -0.1314 0.2127

 Data: A sample S = {s i , 1 ≤ i ≤ |S|} i.i.d. according to a distribution p, a rank d, an alphabet F , a set of prefixes U = {u 1 , . . . }. Result: A Weighted Model A computing an estimate of p begin

Example 9 .

 9 Prefixes:{a; b; (, a)g 1,2 ; , b)g 1,2 }. Suffixes:{a; b; (, a)g 1,2 ; , b)g 1,2 }. Sample: {(a, a)g 1,2 ; (a, b)g 1,2 ; (a, b)g 1,2 ; (b, a)g 1,2 }. X = V ΣV T .

1 Figure 8 :

 18 Figure 8: I-DAG 1 and I-DAG 2.

Y 1 

 1 jn m = Y 1 . . . Y dOne then has the following equalities:x l ki ⊗ I ⊗|n| = X kl ⊗ I ⊗|n| , x li k ⊗ I ⊗|m| = X T kl ⊗ I⊗|m| and I ⊗|l| ⊗y n jm = . . . Y d 0 . . . 0 0 . . . 0 0 . . . 0 Y 1 . . . Y d 0 . . . 0 0 . . . 0 0 . . . 0 Y 1 . . . Y d  This boils down to show the following equality for any i, j: 1 . . . Y d • X kl ⊗ I ⊗|n| which are both equal to i x kli Y i

 vector space spanned by {p} p∈P • E r = vector space spanned by {s} s∈S

	For each symbol x k k * ∈ F one can define a mapping ẋk k)(x k k *)(s 1 , . . . , s k)), which extends naturally to a (k+k *)-linear mapping ẋk k * : (E * r) ⊗k * ×(E r) ⊗k → R defined by ẋk k * (i (p i 1 , . . . , pi k *), j (s j 1 , . . . , sj k

* : P k * × S k → R defined by ẋk k * ((p 1 , . . . , p k *), (s 1 , . . . , s k)) = r((p 1 , . . . , p k *

Let g be a DAG. We use notations of Proposition 1. Let us remark that one can split any set of the partition

By sorting correctly the incoming and outgoing ports, one has:

This comes directly from the property (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD):

((

Consequently, by splitting all classes into singles, one can choose any total order of the vertices v 0 < v 1 < • • • < v k consistant with the partial order induced by the orientation, and computing the value with that order (meaning by that V i = {v i }) does not depend on the chosen order.

We will first expose some simple results about graphs:

Let G be a graph, and D an acyclic direction of the edges. From D, one can deduce a partial order of the vertices V which can be completed into a total order. Conversly, any total order on the set of vertices leads to a direction D.

Proof. Let us take the convention that an edge from

Acyclicity implies that it is an order relation.

Lemma 3.

Let O and O be two total orders on a finite set. One can go from O to O with a combination of transposition of contiguous elements.

Lemma 4. A transposition of contiguous elements in the total order of the set of contiguous vertices corresponds to flipping the direction of the edge between those two vertices (thus preserving acyclicity).

From the former lemmas, one can check that it is sufficient to prove the claim in the case of flipping the direction of an edge while preserving acyclicity.

Combinig this with the former remark that one can choose a total order to perform the computing, the assertion boils down to showing the following lemma: Lemma 5. Let x be a symbol, k and l are two sets of indices, i is supposed to be the last indice of x's ports. Let y be a symbol, m and n are two sets of indices, j is supposed to be the last indice of y's ports. The rank of the model is d. |n| is the size of the set of indices n. One has the following equality: