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1 Introduction

String vacua with N = 2 supersymmetry in four dimensions offer a fascinating vantage

point on the non-perturbative spectrum and symmetries of string theory. In the low energy

approximation, the dynamics around these vacua is described by the metric on the moduli

space parametrized by the massless scalar fields arising after compactification from ten

to four dimensions. This space factorizes into the direct product of the vector multiplet

(VM) moduli space MV and the hypermultiplet (HM) moduli space MH [1], which en-

code distinct properties of the internal manifold. Whereas the geometry of MV has been

under control for many years, a complete description of the geometry of MH at the non-

perturbative level is still missing. This is in part due to the fact that the metric on MH

must be quaternion-Kähler (QK) [2], a property which is far more complicated to enforce

than special Kähler geometry in the vector multiplet sector.

Nevertheless, remarkable progress was achieved in recent years in the context of type II

strings compactified on a Calabi-Yau (CY) threefold, based on the development of twistorial

methods for quaternion-Kähler geometry (see [3] for an extensive review). This approach

was developed in the mathematical literature in [4–6] along with projective superspace
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methods in the physics literature [7–10], and further tailored for string theory applications

in [11, 12]. By lifting the QK space to its twistor space, a CP 1 bundle endowed with

canonical complex and contact structures, this method provides an efficient parametriza-

tion of the quaternion-Kähler metric in terms of a set of holomorphic transition functions

between local Darboux coordinate systems, which play a role similar to the holomorphic

prepotential of special Kähler geometry. Using this formalism, it was understood how to

describe various quantum corrections to the geometry of MH consistently with supersym-

metry, starting with D1-D(-1)-instantons [13], further including all D-brane instantons at

the fully non-linear level1 [14, 15] and finally, NS5-brane instantons in the linear approxi-

mation [16] (see also [17–24] for closely related work). These advances took place in parallel

with related developments in the context of rigid N = 2 field theories [25–28].

Unlike the calculation of the one-loop correction to MH , which was found by a scatter-

ing amplitude calculation [29–31], the above results on instanton corrections were obtained

by postulating certain symmetries and dualities. Among those, the isometric action of the

modular group SL(2,Z), inherited from S-duality of type IIB string theory in ten dimen-

sions, played a central role [13, 16]. Nevertheless, it has not been verified so far that the

type IIA construction of the D-instanton corrections in [14, 15] was in fact consistent with

S-duality of the mirror formulation. In particular, in the limit where only D(-1), D1 and

D3 instantons are retained, the metric on MH must be modular invariant, which provides

a non-trivial constraint on the generalized Donaldson-Thomas invariants governing such

D-instantons.

One of the difficulties in demonstrating S-duality is an inherent ambiguity in the twistor

construction, namely the fact that the Darboux coordinates are only defined up to a local

complex contact transformation. Thus, while any isometry of MH can always be lifted to

a holomorphic action in twistor space, the Darboux coordinates need only be covariant up

to a local complex contact transformation. Thus, the condition for S-duality invariance

is that the set of holomorphic transition functions should commute with S-duality, up to

local complex transformations in each patch.

In this work we give a solution to this problem and provide a twistorial construction

of a general class of QK metrics preserving two continuous commuting isometries, which is

explicitly SL(2,Z)-invariant and parametrized by a suitably covariant family of transition

functions Gm,n. Physically, the two isometries correspond to the unbroken Peccei-Quinn

symmetries in the absence of D5 and NS5-brane instantons. For vanishing Gm,n, these

metrics reduce to the local c-map metrics [32, 33], which arise in the weak coupling, large

volume limit of type IIB string theory. Thus, this class of the metrics should contain the

quantum corrected HM moduli space in the limit where fivebrane instantons are exponen-

tially suppressed compared to D(-1), D1, D3 instantons. After taking a rigid limit, this

class should also contain the hyperkähler metric on the Coulomb branch of five-dimensional

N = 2 gauge theories compactified on a torus T 2, where the modular group of the torus

1The holomorphic transition functions specified in [14, 15] uniquely determine the metric on MH , pro-

vided the generalized Donaldson-Thomas invariants of the CY threefold are known. It is in general a

formidable task to compute these invariants.
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plays the role of S-duality. Thus, this construction should provide constraints on the con-

tributions of the monopole string instantons considered in [27].

To motivate this construction, we first reconsider the much simpler case of SL(2,Z)-

invariant toric QK spaces, i.e. 4n-dimensional spaces MH with n+1 commuting isometries.

Physically, this case arises when only D1-D(-1)-contributions (or equivalently (p, q)-string

instantons) are retained and, just like the undeformed c-map metric, is amenable to the

Legendre transform construction. This case was studied in detail in [34], where a set of ad

hoc local contact transformations was designed that bring the general type IIA construction

of [14] into a manifestly SL(2,Z)-invariant form. This invariance was then exploited in order

to obtain instanton corrections to the ‘mirror map’, relating the type IIB fields (covariant

under S-duality) with the type IIA fields (covariant under monodromies). However, the

geometric meaning of both the contact transformation and the quantum mirror map, had

remained unclear. Here we illuminate the ad hoc construction of [34], exposing the inner

workings of S-duality in the twistor space, and considerably streamlining the derivation of

the mirror map.

Having recast the construction of [34] in a manifestly S-duality invariant fashion, the

extension to S-duality invariant QK metrics with only two commuting isometries is then

relatively straightforward, despite the fact that such metrics are no longer amenable to the

Legendre transform construction. The key ingredient is the non-linear condition (4.4) on

the holomorphic transition functions Gm,n, which ensures the SL(2,Z)-invariance of the

QK metric. Identifying the functions Gm,n which are relevant in the context of D3-brane

instanton corrections to the the HM moduli space lies beyond the scope of this paper. In

subsequent work [35] we provide a detailed analysis of the modular properties of the type

IIA twistorial construction of [14], uncovering how S-duality is realized in this framework.

The organization of the paper is as follows. In section 2 we provide a brief review

of the HM moduli space both at classical and quantum level. In particular, we explain

how its QK geometry, corrected by D2-instantons of type IIA theory, is encoded in the

twistor data consisting of a covering of the twistor fiber and an associated set of holomor-

phic transition functions. Then in section 3 we study the realization of S-duality in the

dual type IIB formulation keeping contributions only from D1-D(-1)-instantons. By refin-

ing the construction of [34], we demonstrate how S-duality and the quantum mirror map

follow from the simple transformation property (3.15) of the transition functions encoding

instanton corrections. In section 4, we turn to the more general case of QK spaces with

two commuting isometries, and provide sufficient conditions on the covering of the twistor

sphere and holomorphic transition functions which ensure the SL(2,Z)-invariance of the

metric. We conclude with some open questions in section 5. Two appendices contain a

review of the twistorial description of QK spaces and a proof of the S-duality invariance of

the construction of section 4 in the linear approximation.

2 Hypermultiplet moduli space in CY string vacua

In this section, we briefly recall some basic facts about the hypermultiplet moduli space

MH in type II string theory compactified on a CY threefold. Since mirror symmetry
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identifies type IIA compactified on a Calabi-Yau threefold Y and type IIB compactified on

the mirror threefold Ŷ, the moduli space MH has two equivalent, dual descriptions. On

either side, it governs the dynamics of2

1. the four-dimensional dilaton r = eφ = 1/g24 or its ten-dimensional cousin gs;

2. the complex moduli za = ba+ ita parametrizing the moduli space KC(Y) of complex

structures on Y or the complexified Kähler structure of KK(Ŷ) — these two spaces

also describe the VM moduli space of the dual type II theory compactified on the

same CY threefold, and are identified by classical mirror symmetry;

3. the RR scalars ζΛ, ζ̃Λ or c0, ca, c̃a, c̃0 obtained as integrals of RR gauge potentials over

a symplectic basis of cycles in H3(Y,Z) or Heven(Ŷ,Z);

4. the NS axion σ or ψ, dual to the NS 2-form B in four dimensions.

On the type IIB side, the ten-dimensional string coupling τ2 ≡ 1/gs and the RR axion

τ1 ≡ c0 combine into the ten-dimensional axio-dilaton field τ = τ1 + iτ2. As a result,

the field basis
(

τ, ba, ta, ca, c̃a, c̃0, ψ
)

has simple transformation rules under S-duality. In

contrast, the field basis
(

φ, za, ζΛ, ζ̃Λ, σ
)

transform naturally under monodromies, which

are manifest on the type IIA side as they correspond to a change of symplectic basis in

H3(Y,Z). Thus, we refer to the latter field basis as the type IIA coordinates, and to the

former as the type IIB coordinates.

2.1 Classical metric

Supersymmetry constrains the moduli space MH to carry a quaternion-Kähler metric with

negative scalar curvature [2]. At classical level the metric on MH can be obtained from the

moduli space KC(Y) of complex structures on Y, or equivalently the moduli space KK(Ŷ)

of Kähler structures on Ŷ, via the local c-map construction [32, 33]. The space KC(Y) =

KK(Ŷ) is a special Kähler manifold characterized by a holomorphic prepotential F (XΛ),

homogeneous of degree 2 in the special complex coordinates XΛ such that Xa/X0 = za =

ba + ita. Thus, the classical metric is completely determined by the prepotential and is

given by [33]

ds2cl =
dr2

r2
+ 4ds2SK − 1

2r

(

dζ̃Λ − N̄ΛΣdζ
Σ
)

ImNΛΛ′
(

dζ̃Λ′ −NΛ′Σ′dζΣ
′
)

+
1

16r2

(

dσ + ζ̃Λdζ
Λ − ζΛdζ̃Λ

)2
,

(2.1)

where ds2SK is the metric on KC(Y) = KK(Ŷ) with Kähler potential K = − log[i(X̄ΛFΛ −
XΛF̄Λ)],

NΛΛ′ = τ̄ΛΛ′ + 2i
[ Im τ ·X]Λ[ Im τ ·X]Λ′

XΣ Im τΣΣ′XΣ′ , τΛΣ ≡ ∂XΛ∂XΣF (X). (2.2)

2Our conventions are such that the indices Λ,Σ, . . . (resp. a, b, . . . ) run from 0 (resp. 1) till h2,1(Y) =

h1,1(Ŷ).
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Here we expressed the metric in terms of the type IIA fields where it takes an especially

simple form. In particular, it is explicitly invariant under symplectic transformations and

the continuous shifts generating the Heisenberg algebra

TηΛ,η̃Λ,κ :
(

ζΛ, ζ̃Λ, σ
)

7→
(

ζΛ + ηΛ, ζ̃Λ + η̃Λ, σ + 2κ− η̃Λζ
Λ + ηΛζ̃Λ

)

. (2.3)

Moreover, the symplectic vector (XΛ, FΛ) is identified as the integral of the holomorphic

three-form on Y along a symplectic basis in H3(Y,Z), while NΛΣ and τΛΣ are the Weil and

Griffiths period matrices on the intermediate Jacobian H3(Y,R)/H3(Y,Z), respectively.

To rewrite the metric (2.1) in type IIB variables, we use the fact that the holomorphic

prepotential can be written, in the limit where the volume of the mirror threefold Ŷ is

infinite, as3

F cl(XΛ) = −κabc
XaXbXc

6X0
, (2.4)

where κabc is the triple intersection product in H4(Ŷ,Z). Moreover, the type IIA fields are

related to the type IIB ones via the following classical ‘mirror map’ [36]

r =
τ22
2

V , za = ba + ita , ζ0 = τ1 , ζa = −(ca − τ1b
a) ,

ζ̃a = c̃a +
1

2
κabc b

b(cc − τ1b
c) , ζ̃0 = c̃0 −

1

6
κabc b

abb(cc − τ1b
c) ,

σ = −2(ψ +
1

2
τ1c̃0) + c̃a(c

a − τ1b
a)− 1

6
κabc b

acb(cc − τ1b
c) ,

(2.5)

where V is the volume of the threefold Ŷ in string units,

V =
1

6

∫

Ŷ

J ∧ J ∧ J =
1

6
κabct

atbtc. (2.6)

The virtue of the coordinate transformation (2.5) is to make manifest the invariance

of the metric (2.1) under the action of SL(2,Z) [30, 36]4

τ 7→ aτ + b

cτ + d
, ta 7→ ta|cτ + d| , c̃a 7→ c̃a ,

(

ca

ba

)

7→
(

a b

c d

)(

ca

ba

)

,

(

c̃0
ψ

)

7→
(

d −c
−b a

)(

c̃0
ψ

)

, ad− bc = 1,

(2.7)

which corresponds to the S-duality symmetry of type IIB supergravity in ten dimensions.

The metric (2.1) is in fact invariant under the continuous action of SL(2,R), but as we now

recall, this invariance is broken by quantum corrections.

3In general, the cubic prepotential (2.4) must be supplemented by a quadratic term 1
2
AΛΣX

ΛXΣ which

is necessary for consistency with charge quantization. This term can always be removed by working in a

non-integer symplectic basis, which we assume in this work.
4In [16] it was found that the transformation of c̃a must contain an additional constant shift proportional

to the second Chern class c2,a of Ŷ, which is necessary for consistency with charge quantization. This

subtlety is closely related to the quadratic correction to the prepotential mentioned in the previous footnote,

and can be safely ignored for the purposes of this paper.
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2.2 Quantum corrections

Away from the classical, large volume limit, the HM moduli space receives two types of

quantum corrections. The first type, namely α′-corrections, occur only in the type IIB

formulation. These effects preserve the c-map form (2.1) of the metric, and simply correct

the holomorphic prepotential (2.4) into F = F cl + Fw.s. where [37, 38]

Fw.s.(XΛ) = χ
Ŷ

ζ(3)(X0)2

2(2πi)3
− (X0)2

(2πi)3

∑

qaγa∈H
+
2 (Ŷ)

n(0)qa Li3

(

e2πiqaX
a/X0

)

. (2.8)

The first term, proportional to the Euler number χ
Ŷ

of Ŷ, corresponds to a pertur-

bative correction in the α′-expansion around the large volume limit. The second term

corresponds to a sum of worldsheet instantons, labeled by their effective homology class

qaγ
a ∈ H+

2 (Ŷ,Z) (i.e. qa ∈ Z
+ for all a, not all qa’s vanishing simultaneously), and weighted

by the genus zero Gopakumar-Vafa invariants n
(0)
qa ∈ Z. These effects contribute through

the tri-logarithm function Li3(x) =
∑∞

m=1m
−3xm, which takes into account multi-covering

effects. Note that the last two terms in (2.8) may be combined by including the zero class

qa = 0 in the sum and setting n
(0)
0 = −χ

Ŷ
/2. The metric on MH including the α′-

corrections is expressed as in (2.1) where F denotes now the full prepotential.

In contrast, the second type of quantum corrections, namely corrections in the string

coupling gs, take the metric outside the class of c-map metrics. At the perturbative level,

it can be argued that the only non-trivial correction occurs at one-loop, and is determined

solely by the Euler number χY = −χ
Ŷ
[12, 29, 30, 39]. Its effect on the metric was explicitly

evaluated in [39, 40], and will be described in twistorial terms in section 2.3.

At the non-perturbative level, the corrections to MH split again in two types. The

first type corresponds, on the type IIA side, to D2-branes wrapping special Lagrangian

cycles in Y, or, on the type IIB side, to D5-D3-D1-D(-1)-branes wrapping algebraic cycles

of the corresponding dimension (or more generally, coherent sheaves on Ŷ). In either case,

the correction takes the schematic form [41]

δds2|D2 ∼ Ω(γ, za) e−2π|Zγ |/gs−2πi(qΛζ
Λ−pΛζ̃Λ), (2.9)

where the charge vector γ = (pΛ, qΛ) = (p0, pa, qa, q0) takes value in H3(Y,Z) or

Heven(Ŷ,Z), the central charge function (z0 ≡ 1)

Zγ(z
a) = qΛz

Λ − pΛFΛ(z
a) (2.10)

measures the area of the supersymmetric cycle in the homology class γ, and Ω(γ, za) is

the corresponding Donaldson-Thomas invariant, which counts (with signs) the number of

supersymmetric cycles with charge γ. Due to their dependence on the RR axions ζΛ, ζ̃Λ,

or equivalently τ1, c
a, c̃a, c̃0, the D-instanton effects (2.9) break the continuous Heisenberg

symmetries (2.3) to a discrete subgroup. In the large volume limit on the type IIB side, this

breaking occurs in a hierarchical fashion, namely translations along τ1 are broken at leading

order, translations along ca at order O(e−V1/3
), translations along c̃a at order O(e−V2/3

)

and finally translations along c̃0 at order O(e−V).
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Finally, the last type of corrections is generated by Euclidean NS5-branes wrapping

the whole CY threefold. They contribute to the metric schematically as [41]

δds2|NS5 ∼ e−2π|k|V/g2s−iπkσ, (2.11)

and break the last continuous isometry along σ (or ψ) which remained after inclusion of

all D-instanton effects. Just like D5-branes, they are suppressed as O(e−V) in the large

volume limit.

What is the fate of S-duality at the quantum level? Firstly, the continuous SL(2,R)

symmetry (2.7) is certainly broken by the α′-corrections in (2.8). However, this symmetry

descends from the usual S-duality action in ten-dimensional string theory, and there is

overwhelming evidence that the modular subgroup SL(2,Z) remains a symmetry at the

quantum level (see [36, 42] and citations thereof). It is a priori unclear whether this

symmetry should remain intact after compactification on a Calabi-Yau three-fold Ŷ, but

this is supported by the fact that upon compactifying on S1, T-dualizing to type IIA string

theory and lifting to M-theory, this action becomes the usual large diffeomorphisms of the

torus in M-theory on Ŷ × T 2. Thus, it is natural to assume that quantum corrections

should preserve an isometric action of the discrete group SL(2,Z).

Furthermore, from (2.7) it is possible to distinguish two sectors which should be pre-

served by S-duality. The first one is obtained by setting all fivebrane charges to zero, i.e.

ignoring effects of order O(e−V) in the large volume limit, leaving only D3-D1-F1-D(-1)-

instantons. As noted above, in this approximation the moduli space has two continuous

isometries along ψ and c̃0. The second sector arises by further setting the D3-brane charge

pa = 0, i.e. ignoring effects of order O(e−V2/3
) or smaller in the large volume limit, leav-

ing only D1-F1-D(-1)-instantons. In this limit the number of isometries is increased to

h1,1(Ŷ) + 2 = n + 1, where 4n is the real dimension of MH . The aim of this paper is to

provide a manifestly S-duality invariant description of these two sectors.

2.3 Twistorial description of MH

To describe instanton corrections to the classical HM geometry, consistently with super-

symmetry, it is indispensable to use the twistor description of QK spaces, very briefly

summarized in appendix A. However, before going to the non-perturbative physics, one

should understand how the perturbative moduli space is encoded in this formalism. This

has been understood in [12, 14], based on the previous results of [17, 43].

As explained in appendix A, the twistor approach allows to encode a QK metric in

terms of a set of holomorphic functions H [ij]. They describe contact transformations be-

tween local Darboux coordinate systems for the complex contact one-form (A.2), which are

attached to various patches Ui of an open covering of the twistor fiber CP 1. To describe

the perturbative metric on MH , it is sufficient to cover CP 1 by two patches U+, U− cen-

tered around the north and south poles, t = 0 and t = ∞, and a third patch5 U0 which

surrounds the equator. The transition functions between these patches are given in terms

5The patch U0 could in principle be omitted but is very convenient for exposing symplectic invariance.
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of the holomorphic prepotential F (XΛ) by

H [+0] = F (ξΛ), H [−0] = F̄ (ξΛ). (2.12)

Using (A.4), we find that the Darboux coordinates in the patch U0 are given by [12, 43]

ξΛ = ζΛ +
1

2
τ2
(

t−1zΛ − t z̄Λ
)

,

ξ̃Λ = ζ̃Λ +
1

2
τ2
(

t−1FΛ − t F̄Λ

)

,

α̃ = σ +
1

2
τ2
(

t−1W − t W̄
)

+
iχY

24π
log t ,

(2.13)

where W denotes the ‘superpotential’

W (z) = FΛ(z) ζ
Λ − zΛζ̃Λ. (2.14)

The last, logarithmic term in α̃ encodes the effect of the one-loop gs-correction and corre-

sponds to an anomalous dimension c = χY/(96π) in the language of appendix A. In (2.13),

we have traded the Darboux coordinate α from appendix A for α̃ ≡ −2α− ξ̃Λξ
Λ, and the

integration constants AΛ, BΛ, Bα for

ζΛ = AΛ, ζ̃Λ = BΛ + ReFΛΣA
Σ, σ = −2Bα −AΛBΛ. (2.15)

Moreover, the contact potential Φ computed from (A.5) is related to the four- and ten-

dimensional string couplings by

r = eΦ =
τ22
16
e−K +

χY

192π
, (2.16)

which generalizes the first relation in (2.5).

The way to incorporate D-instanton corrections to the above twistor formulation of

MH was explained in [14, 15], in close analogy with the field theory construction of [25].

We shall refer to this construction as the ‘type IIA construction’, as it is manifestly in-

variant under symplectic transformations (i.e. monodromies), which are manifest on the

type IIA side. Later in this paper, we shall encounter a different ‘type IIB construction’

of the same twistor space, which makes S-duality manifest at the expense of obscuring

symplectic transformations.

To explain this construction, one should first recall that, instead of covering the twistor

space by open patches surrounded by closed contours, it is possible to consider a set of open

contours with associated holomorphic transition functions across them (see appendix A).

For a fixed value of the moduli za and any state of charge γ with Ω(γ, za) 6= 0, we then

consider the BPS ray

ℓγ = {t ∈ CP 1 : Zγ(z
a)/t ∈ iR−}, (2.17)

where Zγ(z
a) is the same central charge function as in (2.10). These rays extend from the

north to the south pole and divide the patch U0 into angular sectors. Across each BPS ray
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ℓγ , the Darboux coordinates are required to jump by the complex contact transformation

generated by [15]

Hγ = Gγ −
1

2
qΛp

Λ(G′
γ)

2, Gγ(Ξγ) =
Ω(γ)

(2π)2
Li2
(

σγ e
−2πiΞγ

)

, (2.18)

where G′
γ denotes the derivative with respect to Ξγ = qΛξ

Λ
[γ]−pΛξ̃

[γ]
Λ , Ω(γ) is the Donaldson-

Thomas invariant,6 and σγ is a certain phase factor depending only on the charge, known

as a quadratic refinement. The perhaps unfamiliar formula (2.18) is designed so as to

generate jumps of the Darboux coordinates (ξΛ, ξ̃Λ) across ℓγ given by the usual symplec-

tomorphism [44]

∆ξΛ =
1

2πi
Ω(γ) pΛ log

(

1− σγ e
−2πiΞγ

)

,

∆ξ̃Λ =
1

2πi
Ω(γ) qΛ log

(

1− σγ e
−2πiΞγ

)

.

(2.19)

The additional term proportional to (G′
γ)

2 in (2.18) arises upon integrating this symplecto-

morphism to a generating function H [ij], which depends on the coordinate ξΛ[i] in one patch

and the dual coordinate ξ̃
[j]
Λ in the other patch (see appendix A).

Unfortunately, except when all D-instantons are mutually local (i.e. 〈γ, γ′〉 = 0 for

any pair with non-vanishing Ω(γ),Ω(γ′)), the Darboux coordinates determined by these

gluing conditions cannot be expressed in closed form as in (2.13). Instead, they are de-

termined by integral equations (A.4) which upon substitution of (2.18) take the form of a

Thermodynamic Bethe Ansatz [25, 45]. Moreover, while the construction outlined above is

manifestly covariant under symplectic transformations, it is not manifestly invariant under

S-duality. In the presence of D5-brane instantons (i.e. p0 6= 0), this is of course expected

since S-duality mixes D5-branes with NS5-branes, which are not included in the construc-

tion above. In the absence of D5-branes however (more precisely, in the large volume limit

where both D5-branes and NS5-branes can be ignored), the metric should be invariant

under the discrete group SL(2,Z), yet this is far from obvious from the construction above.

This invariance has been shown in the D1-D(-1) sector [34], extending the results of the

earlier work [13], and our goal is to extend this construction to D3-D1-D(-1)-instantons.

Before doing so however, we return to the simpler case of D1-D(-1)-instantons, improving

on the earlier construction in [34].

3 S-duality and D1-D(-1)-instantons

In this section, we revisit the construction of the D1-D(-1)-instanton corrected metric on

the HM moduli space in type IIB Calabi-Yau vacua, emphasizing how S-duality is realized

in twistor space. In the process we considerably streamline the derivation of the ‘quantum

mirror map’ obtained in [34].

6The fact that these invariants also depend on the moduli za does not spoil the holomorphicity of (2.18)

because they are piecewise constant. Across a wall of marginal stability, the Ω’s jump and the BPS rays

exchange their order in such a way that the metric on MH remains continuous [24, 25].
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3.1 S-duality in the classical twistor space

Let us first recall how S-duality is realized in the twistor space Z of MH in the classical,

infinite volume limit. This twistor space is described by the Darboux coordinates (2.13),

upon dropping the last logarithmic term in α̃ and restricting the prepotential to its large

volume limit (2.4). To express them in terms of the type IIB fields, it is sufficient to

substitute the classical mirror map (2.5).

An important feature of the twistor space construction is that all isometries of a QK

manifold can be lifted to a holomorphic action on Z. In particular, the SL(2,R) symme-

try (2.7) ought to be realized as a holomorphic action on the Darboux coordinates ξΛ, ξ̃Λ
and α. This indeed turns out to be the case provided the fiber coordinate t transforms as

t 7→ 1 + tc,d− t

tc,d− − t
= − tc,d+ − t

1 + tc,d+ t
, (3.1)

where tc,d± denote the two roots of the quadratic equation cξ0(t) + d = 0,

tc,d± =
cτ1 + d∓ |cτ + d|

cτ2
, tc,d+ tc,d− = −1. (3.2)

Combining (3.1) with (2.7) and the expressions (2.13) for the Darboux coordinates in

terms of the type IIB fields then leads to the following non-linear holomorphic action on

the Darboux coordinates in the patch U0 [14]7

ξ0 7→ aξ0 + b

cξ0 + d
, ξa 7→ ξa

cξ0 + d
, ξ̃a 7→ ξ̃a +

c

2(cξ0 + d)
κabcξ

bξc − c2,aǫ(g),

(

ξ̃0
α

)

7→
(

d −c
−b a

)(

ξ̃0
α

)

+
1

6
κabcξ

aξbξc

(

c2/(cξ0 + d)

−[c2(aξ0 + b) + 2c]/(cξ0 + d)2

)

.

(3.3)

Under this action, the complex contact one-form (A.2) transforms by an overall holo-

morphic factor X [0] 7→ X [0]/(cξ0 + d), leaving the complex contact structure invariant.

Furthermore, the contact potential eΦ transforms with modular weight (−1
2 ,−1

2), which

ensures that the Kähler potential (A.3) varies by a Kähler transformation,

eΦ 7→ eΦ

|cτ + d| , KZ 7→ KZ − log(|cξ0 + d|). (3.4)

These properties ensure that S-duality is indeed a symmetry of the classical twistor space.

To illuminate the action (3.1) of S-duality on the fiber, it is useful to make a Cayley

transformation of the fiber coordinate and define8

z =
t+ i

t− i
, t = −i

1 + z

1− z
. (3.5)

7In general, since S-duality acts on the twistor fiber, it will map Darboux coordinates in one patch to

Darboux coordinates in another patch. The virtue of the patch U0 is that it is mapped to itself under

S-duality since it contains the points t = ±i, see the remark at the end of this subsection.
8We are grateful to J. Manschot for suggesting this redefinition.
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Under (3.1), this new coordinate transforms by the compensating U(1) rotation induced

by the right action on the coset U(1)\SL(2,R),

z 7→ cτ̄ + d

|cτ + d| z, (3.6)

i.e. z has modular weight (−1
2 ,

1
2). In particular, the points z = 0,∞ (corresponding to

t = ±i) stay invariant under SL(2,R), whereas the zeros (3.2) of cξ0 + d are now given by

zc,d± = ∓
√

cτ+d
cτ̄+d . Rewriting the Darboux coordinate ξ0 in terms of z,

ξ0 = τ1 + iτ2
z−1 + z

z−1 − z
, (3.7)

we recognize in ξ0 and z the analog of the ’canonical’ and ’twisting’ parameters introduced

in [46].

3.2 Type IIB twistorial construction of D1-D(-1)-instanton corrections

As discussed in section 2.2, upon including worldsheet instanton corrections and the one-

loop gs-correction to the metric (2.1), the continuous SL(2,R) action (2.7) is no longer

isometric. Nevertheless, it was shown in [13] that invariance under a discrete subgroup

SL(2,Z) may be restored by incorporating D1 and D(-1)-instanton corrections. This was

achieved in the framework of projective superspace by constructing a modular invariant

completion of the hyperkähler potential, a close cousin of our contact potential eΦ defined

on the Swann bundle [6] over MH . At the same time, these instanton corrections should

agree with the type IIA construction presented in section 2.3 restricted to the D1-D(-1)

sector, with pΛ = 0. This equivalence was demonstrated in [34], where the construction

of [13] was translated in the twistorial language, and shown to be related to the type

IIA construction by a certain complex contact transformation. Our aim is to revisit the

twistorial construction of [34] and expose its invariance under S-duality.

As explained in [34], the projective superspace construction of [13] can be cast in the

twistorial language by using a covering of the CP 1 fiber by six patches

Z = U+ ∪ U− ∪ U0+ ∪ U0− ∪ UR+ ∪ UR− . (3.8)

Here U± are, as usual, the patches around the north and south poles, UR± surround the

positive and negative real half-axes, and the patches U0± cover the upper and lower half-

planes, in particular, containing the S-duality invariant points t = ±i. The transition

functions between these patches are taken to be

H [+0±] = F (ξΛ), H [−0±] = F̄ (ξΛ), H [R+0±] = GIIB(ξ
Λ), H [R−0±] = ḠIIB(ξ

Λ),

(3.9)

with

GIIB(ξ
Λ) = − i

(2π)3

∑

qaγa∈H
+
2 (Ŷ)∪{0}

n(0)qa

∑

n∈Z

m>0

e−2πimqaξa

m2(mξ0 + n)
, (3.10)
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where n
(0)
qa are the same genus zero Gopakumar-Vafa invariants which govern the worldsheet

instantons (2.8).

It is important to note that the transition functions GIIB introducing instanton cor-

rections are independent of ξ̃Λ and α. This is necessary for the existence of the n + 1

commuting isometries corresponding to translations along c̃a, c̃0 and ψ, or equivalently

holomorphic translations along ξ̃Λ and α. By the moment map construction [47], these

n + 1 isometries lead to the existence of n + 1 O(2)-valued sections modulo rescalings,

which correspond to the Darboux coordinates (1, ξΛ). Thus the coordinates ξΛ are glob-

ally well-defined (up to rescalings) and given by their perturbative expressions (2.13) in

all patches.

The remaining Darboux coordinates, ξ̃Λ and α, determined by the transition func-

tions (3.9) were computed explicitly in [34]. In particular, it was shown that it is possible

to relate the coordinates AΛ, BΛ, Bα appearing in (A.4) and the type IIB fields in such a

way that the Darboux coordinates in the patch U0± transform under the combined action

of (2.7) and (3.1) according to the classical laws (3.3). This ensures that the twistor space

Z and the original moduli space MH carry an isometric action of SL(2,Z). Moreover, it

was also shown that this ‘type IIB’ twistorial construction is related to the usual ‘type

IIA’ construction presented in section 2.3 by a set of complex contact transformations. We

further discuss and clarify this relation in subsection 3.5.

While these results establish the invariance of the D1-D(-1)-instanton corrected metric

under S-duality, it is fair to say that the computation of the quantum corrected mirror

map in [34] was rather indirect and unilluminating. Moreover, it is highly desirable to

understand how S-duality is realized at the level of transition functions, without having

to compute the Darboux coordinates first and then check S-duality invariance. A more

conceptual understanding of these two problems is certainly required in order to address

D3-brane corrections, since unlike the D1-D(-1) case, the integral equations (A.4) cannot

be solved in closed form as soon as D3-instantons are included. In the rest of this section,

we disassemble the previous construction into its bare parts and expose the inner workings

of S-duality in twistor space.

3.3 The key observations

To understand why the above construction produces a modular invariant twistor space, it

is useful to separate the classical and instantonic parts of the construction, and examine

how S-duality reshuffles the latter. To this end, let us refine the covering (3.8) and consider

(see figure 1)

Z = U+ ∪ U− ∪ U0+ ∪ U0− ∪
(

∪′
m,nUm,n

)

, (3.11)

where m,n run over all pairs of integers9 different from (0, 0) and Um,n is an open set

around the point tm,n+ (3.2), which is one of the zeros of mξ0 + n. The transition functions

9This set of patches is highly redundant, since Ukm,kn = Um,n for any positive integer k. One could

avoid this redundancy by restricting to coprime integers (m,n), at the cost of introducing tri-logarithms in

the transition functions below, but we prefer to keep it for the sake of simplicity. In particular, note that

U0,k = U+ and U0,−k = U−.
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Figure 1. The covering and transition functions incorporating D1-D(-1)-instantons.

between these patches are chosen as

H [+0±] = F cl(ξΛ), H [−0±] = F̄ cl(ξΛ), H [(m,n)0±] = GD1
m,n(ξ

Λ), (3.12)

where F cl(X) is the tree-level, large volume prepotential (2.4) and

GD1
m,n(ξ

Λ) = − i

(2π)3

∑

qaγa∈H
+
2 (Ŷ)∪{0}

n(0)qa















e−2πimqaξa

m2(mξ0 + n)
, m 6= 0,

(ξ0)2
e2πinqaξ

a/ξ0

n3
, m = 0.

(3.13)

Thus, we simply introduced a distinct patch for each term in the sum over (m,n) in (3.10),

centered around the point where this term is singular. In addition, we have split the

prepotential F into its classical part F cl and its quantum part Fw.s. =
∑

n>0G
D1
0,n, which

arises in this construction as the contribution from m = 0 in (3.13).

The first two transition functions in (3.12) are the familiar ones arising in the twisto-

rial construction of the tree-level metric, which is known to be S-duality invariant (see

section 3.1). Therefore it is sufficient to concentrate on the patches Um,n and transition

functions GD1
m,n. The first crucial observation is that the patches Um,n are mapped into

each other under SL(2,Z)-transformations (3.1) according to

Um,n 7→ Um′,n′ ,

(

m′

n′

)

=

(

a c

b d

)

(m

n

)

, (3.14)

whereas the patches U0± stay invariant.

It is natural to expect that the functions GD1
m,n should similarly be reshuffled under

the transformations generated by (3.3). This turns out to be true, up to an important

subtlety: the transition functions GD1
m,n transform into each other under SL(2,Z), up to an
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overall factor of (cξ0 + d)−1 and up to terms which are regular in the patch Um′,n′ ,10

GD1
m,n 7→

GD1
m′,n′

cξ0 + d
+ regular at tm

′,n′

+ . (3.15)

This property is sufficient for S-duality because the regular terms appearing on the r.h.s.

of (3.15) can be canceled by a local contact transformation and do not contribute to the

contour integrals in eqs. (A.4).

Yet, a further difficulty is the fact the integration kernel t′+t
t′−t

dt′

t′ appearing in these

equations transforms in a complicated fashion, which seems to jeopardize S-duality. Our

second key observation is that this kernel can be supplemented with a t-independent term

1

2

t′ + t

t′ − t

dt′

t′
→ K(t, t′)

dt′

t′
≡ 1

2

(

t′ + t

t′ − t
+

1/t′ − t′

1/t′ + t′

)

dt′

t′
, (3.16)

in such a way that the resulting kernel becomes SL(2,Z)-invariant! Indeed, this invariance

becomes obvious after expressing (3.16) in terms of the Cayley-rotated coordinate z (3.5),

K(t, t′)
dt′

t′
=

(1 + tt′)

(t′ − t)(1/t′ + t′)

dt′

t′
=

1

2

z′ + z

z′ − z

dz′

z′
. (3.17)

Since the difference between the two kernels is t-independent, it can be absorbed into a

redefinition of the constant terms in the t-expansion of Darboux coordinates. Thus, to

write them in terms of the new kernel, it is sufficient to redefine ζΛ, ζ̃Λ and σ and, as we

will see in the next subsection, this redefinition is the origin of quantum corrections to the

mirror map.

3.4 The quantum mirror map revisited

Now we are ready to demonstrate the explicit invariance under SL(2,Z) without evaluating

explicitly the Penrose type integrals determining the instanton contributions and to derive

a simple expression for the mirror map. To this end, we write the integral expressions (A.4)

for Darboux coordinates by separating the classical contributions generated by H [±0±] from

the quantum corrections coming from H [(m,n)0±]. Since ξΛ are uncorrected, it is sufficient

to consider11

ξ̃
[0±]
Λ = ξ̃clΛ +∆ζ̃Λ − 1

2

∑

m,n

′
∮

Cm,n

dt′

2πit′
t′ + t

t′ − t
∂ξΛG

D1
m,n(t

′),

α[0±] = αcl − 1

2
∆σ − 1

2

∑

m,n

′
∮

Cm,n

dt′

2πit′
t′ + t

t′ − t

(

1− ξΛ∂ξΛ
)

GD1
m,n(t

′),

(3.18)

10For example, if both m and m′ = dm− cn are non zero,

e−2πimqaξ
a

m2(mξ0 + n)
7→

e
−2πiqaξ

a

(

m′
−c m′ξ0+n′

cξ0+d

)

(cξ0 + d)(m′ξ0 + n′)
(

m′ − c m′ξ0+n′

cξ0+d

)2 =
e−2πim′qaξ

a

m′2(cξ0 + d)(m′ξ0 + n′)
+O

(

(m′
ξ
0 + n

′)0
)

.

11Here and henceforth the primes on sums over m,n will denote that the value m = n = 0 is omitted.
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where we denoted by ξ̃clΛ , α
cl the Darboux coordinates (2.13) with the prepotential replaced

by its large volume limit F cl(XΛ) and the logarithmic one-loop correction dropped. Never-

theless, the type IIA fields ζ̃Λ and σ entering ξ̃clΛ and αcl are still defined by relations (2.15)

with the full prepotential F .12 This fact is at the origin of two additional contributions

in (3.18), given by

∆ζ̃Λ = −ζΣRe
∑

n>0

∂zΛ∂zΣG
D1
0,n(z

Λ),

∆σ = −ζΛζΣRe
∑

n>0

∂zΛ∂zΣG
D1
0,n(z

Λ).
(3.19)

Next, we perform the kernel replacement (3.16) in (3.18), thus rewriting the Darboux

coordinates in the following form

ξ̃
[0±]
Λ =

[

ξ̃clΛ − ζ̃ instΛ

]

−
∑

m,n

′
∮

Cm,n

dt′

2πit′
K(t, t′) ∂ξΛG

D1
m,n(t

′),

α[0±] =

[

αcl +
1

2
(σinst + ζ̃ instΛ ζΛ)

]

−
∑

m,n

′
∮

Cm,n

dt′

2πit′
K(t, t′)

(

1− ξΛ∂ξΛ
)

GD1
m,n(t

′),

(3.20)

where we combined all t-independent contributions into

ζ̃ instΛ = −1

2

∑

m,n

′
∮

Cm,n

dt′

2πit′
1/t′ − t′

1/t′ + t′
∂ξΛG

D1
m,n(t

′)−∆ζ̃Λ,

σinst = −ζΛζ̃ instΛ +
∑

m,n

′
∮

Cm,n

dt′

2πit′
1/t′ − t′

1/t+ t

(

1− ξΛ∂ξΛ
)

GD1
m,n(t

′)−∆σ.

(3.21)

Finally, using the property (3.15), it is easy to show that the derivatives of GD1
m,n,

appearing in (3.20) transform under S-duality as

∂ξaG
D1
m,n 7→ ∂ξaG

D1
m′,n′ + reg.

∂ξ0G
D1
m,n 7→ d ∂ξ0G

D1
m′,n′ − c (1− ξΛ∂ξΛ)G

D1
m′,n′ + reg.

(1− ξΛ∂ξΛ)G
D1
m,n 7→ a (1− ξΛ∂ξΛ)G

D1
m′,n′ − b ∂ξ0G

D1
m′,n′ + reg.

(3.22)

Using this result and noting that the regular contributions disappear under the contour

integrals, the second term in the expression (3.20) for ξ̃a is manifestly invariant, whereas

the second terms in (ξ̃0, α) transform as a doublet under S-duality, consistently with the

classical transformation properties (3.3). Thus, to establish that the twistor space carries a

holomorphic action of SL(2,Z), it remains to ensure that the first terms in (3.20) transform

as the Darboux coordinates in the classical limit. For this purpose, it suffices to modify

12The relations (2.15) are not affected by D-instantons with vanishing pΛ [14] so that they provide

the correct definitions of the type IIA fields in our case. For pΛ 6= 0, they receive additional instanton

contributions, see eq. (3.10) in [15].
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the classical mirror map relations (2.5) into

ζ0 = τ1 , ζa = −(ca − τ1b
a) ,

ζ̃a = c̃a +
1

2
κabc b

b(cc − τ1b
c) + ζ̃ insta , ζ̃0 = c̃0 −

1

6
κabc b

abb(cc − τ1b
c) + ζ̃ inst0 ,

σ = −2

(

ψ +
1

2
τ1c̃0

)

+ c̃a(c
a − τ1b

a)− 1

6
κabc b

acb(cc − τ1b
c) + σinst .

(3.23)

The relation between r = eφ and τ2 can be obtained by evaluating the contact potential.

In our case, the formula (A.5) gives

eφ =
τ22
2

V − τ2
16π

∑

m,n

′
∮

Cm,n

dt

t

(

t−1zΛ − tz̄Λ
)

∂ξΛG
D1
m,n. (3.24)

Again using (3.22), one may check that the integrand times
√
τ2 is invariant under SL(2,Z)

transformations up to a total derivative. As a result, the contact potential (3.24) transforms

exactly as required in (3.4).

The formulas (3.21) and (3.24) encode in a nice and compact way the quantum cor-

rections to the mirror map. They can be shown to be consistent with previously known

results. Indeed, evaluating the integrals by residues, one can verify that (3.24) coincides

with the contact potential found in [13, 34], while the quantum corrections (3.21) reproduce

the results in eq. (5.2) [34] up to

δζ̃ inst0 =
∑

qa≥0

n(0)qa

∑

m,n

′
mδm,n, δσinst = −

∑

qa≥0

n(0)qa

∑

m,n

′
(mτ1 + 2n)δm,n, (3.25)

where

δm,n =
in

(0)
qa

16π3
τ22

|mτ + n|4 (1 + 2πqat
a|mτ + n|) e−Sm,n,qa . (3.26)

Nevertheless, these contributions are harmless since the corresponding corrections to the

Darboux coordinates, which can be written as
(

δξ̃′0
δα′

)

=
∑

qa≥0

n(0)qa

∑

m,n

′

(

m

n

)

δm,n, (3.27)

transform as a doublet and preserve the transformation properties (3.3). Thus, the ad-

ditional contributions (3.25) represent an inherent ambiguity of the quantum mirror map

and can be dropped at will.

3.5 Equivalence between IIA and IIB constructions

The type IIB construction of the twistor space Z outlined above is manifestly invariant

under S-duality, however its equivalence to the type IIA construction described in sec-

tion 2.3 is not manifest. In appendix A.2 of [34], it was shown that the type IIA Darboux

coordinates differ from their type IIB counterpart by a complex contact transformation

ξ̃
[i]
Λ 7→ ξ̃

[i]
Λ − ∂ξΛH

[i] , α[i] 7→ α[i] −H [i] + ξΛ∂ξΛH
[i] . (3.28)
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In each of the four quadrants on CP 1 (in the t coordinate), away from the real and imagi-

nary axes, this transformation is generated by

H [I] = GD1
− , H [II] = −GD1

+ , H [III] = ḠD1
− , H [IV] = −ḠD1

+ , (3.29)

where we defined

GD1
± (ξΛ) =

1

(2π)2

∑

(qa,q0)
q0+qaba>0, ±qata≥0

n(0)qa Li2

(

e−2πiqΛξ
Λ
)

+
χY

96
, (3.30)

More succinctly, in all quadrants (3.30) may be written as

H = sgn [Re (t) Im (t)]









1

(2π)2

∑

qΛ∈Z
(q0+qaba) Im t>0, (taqa)Re (t)≤0

Li2

(

e−2πiqΛξ
Λ
)

+
χY

96









.

(3.31)

To understand the origin of this complex contact transformation, it is useful to recall

the structure of the BPS rays ℓγ in the D1-D(-1) sector. These rays extend from the north

to the south pole along the meridian

arg t =
π

2
+ arg [(q0 + qab

a) + iqat
a] . (3.32)

The conditions (q0+ qab
a) Im t > 0, (taqa)Re (t) < 0 select precisely those BPS rays which

pass through the quadrant where t is located. Thus, the complex contact transforma-

tion generated by (3.31) is the product of the elementary contact transformations (2.19)

associated with each of the BPS rays encountered in interpolating from a point t in the

vicinity of the real axis to the point t = i if Im t > 0, or to the point t = −i if Im t < 0.

One can therefore interpret the type IIB Darboux coordinates as the standard Darboux

coordinates in the angular sector containing the S-duality invariant points t = ±i, whereas

the type IIA Darboux coordinates are the standard Darboux coordinates in the angular

sectors containing the (positive or negative) real axis. This is consistent with the fact

that the initial step in the computation of [34] was to move all the BPS rays along the

positive or negative imaginary axis, before performing the Poisson resummation over the

D(-1)-instanton charge q0. Had one chosen instead to move all BPS rays along the positive

or negative real axis, such a contact transformation would not have arisen.

4 S-duality in twistor space with two isometries

In this section we propose a twistorial construction of a general class of quaternion-Kähler

metrics, which consists of non-linear deformations of the c-map metric (2.1) which pre-

serve two translational isometries along the coordinates ψ and c̃0 and carry the isometric

action (2.7) of SL(2,Z). This class of metrics includes the D1-D(-1)-instanton corrected

hypermultiplet metric, and generalizes the type IIB twistorial construction described in

section 3. It is tailored for describing D3-instanton corrections in a manifestly S-duality
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invariant fashion, with the coordinates ψ and c̃0 playing the role of the axions dual to

the D5 and NS5-instantons. However, the identification of the D3-instanton corrected HM

metric within this class goes beyond the scope of this work.

Since the continuous isometries along ψ and c̃0 lift to translations along the complex

Darboux coordinates α and ξ̃0, the holomorphic transition functions appearing in this

construction are allowed to depend on ξ0, ξa and ξ̃a in an arbitrary fashion (except for

some global constraints following from S-duality). As a result, the Darboux coordinate

ξ0 is (projectively) globally well defined as the moment map of the Killing vector ∂c̃0 ,

and given in all patches by the same O(2) section as in (2.13). In contrast, the Darboux

coordinates ξa, ξ̃Λ, α are defined only locally.

Let Z be the 2n + 1-complex dimensional contact manifold defined by the infinite

covering

Z = U+ ∪ U− ∪ U0 ∪
(

∪′
m,nUm,n

)

, (4.1)

and transition functions

H [+0] = F cl(ξΛ[+]), H [−0] = F̄ cl(ξΛ[−]), H [(m,n)0] = Gm,n(ξ
0, ξa[m,n], ξ̃

[0]
a ) , (4.2)

where F cl(X) = −κabc X
aXbXc

6X0 is an arbitrary cubic prepotential, a = 1, . . . n − 1, Λ =

0, 1, . . . n− 1. Here U± are the usual patches around the poles of CP 1, Um,n is a set of

patches which are mapped to each other under SL(2,Z)-transformations, and U0 covers the

rest. They must be chosen so that U0 is mapped to itself under the antipodal map and

S-duality, whereas Um,n are mapped to each other according to

τ [Um,n] = U−m,−n, Um,n 7→ Um′,n′ ,

(

m′

n′

)

=

(

a c

b d

)

(m

n

)

. (4.3)

The local holomorphic functions Gm,n are assumed to transform under the SL(2,Z) ac-

tion (3.3) as

Gm,n 7→ Gm′,n′

cξ0 + d
− c

2

κabc∂ξ̃[0]a
Gm′,n′∂

ξ̃
[0]
b

Gm′,n′

(cξ0 + d)2

(

ξc[m′,n′] −
2

3
∂
ξ̃
[0]
c
Gm′,n′

)

+ reg. (4.4)

where +reg. denotes equality up to terms which are regular in Um′,n′ . Then the following

statements hold:

1. The Darboux coordinates in the patch U0 satisfy the following integral equations:

ξ0 = ζ0 +
τ2
2

(

t−1 − t
)

,

ξa[0] = ζacl + t−1Y a − tȲ a +
∑

m,n

′
∮

Cm,n

dt′

2πit′
K(t, t′) ∂

ξ̃
[0]
a
Gm,n,

ξ̃
[0]
Λ = ζ̃clΛ + t−1F cl

Λ (Y )− tF̄ cl
Λ (Ȳ )−

∑

m,n

′
∮

Cm,n

dt′

2πit′
K(t, t′) ∂ξΛ

[m,n]
Gm,n, (4.5)

α[0] = −1

2
(σ̃ + ζΛζ̃Λ)

cl −
(

t−1 + t
)

(

t−1F cl(Y ) + tF̄ cl(Ȳ )
)
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−ζΛcl
(

t−1F cl
Λ (Y )− tF̄ cl

Λ (Ȳ )
)

−
∑

m,n

′
∮

Cm,n

dt′

2πit′

[

K(t, t′)
(

1− ξΛ[m,n](t
′)∂ξΛ

[m,n]

)

Gm,n

+
(tt′)−1F cl

a (Y ) + tt′F̄ cl
a (Ȳ )

1/t′ + t′
∂
ξ̃
[0]
a
Gm,n

]

,

where Cm,n are contours on CP 1 surrounding Um,n counter-clockwise and

(τ2, Y
a, ζ0, ζacl, ζ̃

cl
a , σ̃

cl) are coordinates on M.

2. Upon identifying these coordinates with the following combinations of the type IIB

fields (τ1, τ2, t
a, ba, ca, c̃a, c̃0, ψ),

ζ0 = τ1, ζacl = −(ca − τ1b
a),

ζ̃cla = c̃a +
1

2
κabc b

b(cc − τ1b
c), ζ̃cl0 = c̃0 −

1

6
κabc b

abb(cc − τ1b
c),

σ̃cl = − 2

(

ψ +
1

2
τ1c̃0

)

+ c̃a(c
a − τ1b

a)− 1

6
κabc b

acb(cc − τ1b
c) +

τ22
3
κabcb

abbbc,

Y 0 =
τ2
2
, Y a =

τ2
2
(ba+ita) +

∑

m,n

′
∮

Cm,n

dt

2πit2

∂
ξ̃
[0]
a
Gm,n

(1/t+ t)2
,

(4.6)

the Darboux coordinates (4.5) transform under the SL(2,Z) transformations (2.7)

and (3.1) according to the classical laws (3.3).

3. The same transformation rules also hold for the Darboux coordinates in the patches

Um,n, with the understanding that the Darboux coordinates appearing in the r.h.s.

are those attached to the patch Um′,n′ , e.g. ξa[m,n] 7→ ξa[m′,n′]/(cξ
0 + d).

4. The contact potential is given by

eΦ =
2

3τ2
κabc ImY a ImY b ImY c (4.7)

− 1

16π

∑

m,n

′
∮

Cm,n

dt

t

[

(

t−1Y Λ − tȲ Λ
)

∂ξΛ
[m,n]

Gm,n

+
(

t−1F cl
a (Y )− tF̄ cl

a (Ȳ )
)

∂
ξ̃
[0]
a
Gm,n

]

and transforms under SL(2,Z) as in (3.4).

5. As a result, the 4n-dimensional quaternion-Kähler manifold M associated to the

twistor space Z carries an isometric action of SL(2,Z).

6. Upon freezing the moduli τ1, τ2 and ignoring the Darboux coordinates α, ξ̃0, the

remaining ones, ξa and ξ̃a, determine a one-parameter family of (4n−4)-dimensional

hyperkähler metrics Mτ , with τ taking values in the Poincaré upper half plane, such

that Mτ and M(aτ+b)/(cτ+d) are identified isometrically under (2.7).
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Some comments are in order:

• The key transformation law (4.4) expresses the fact that S-duality should commute

with the holomorphic transition functions up to local contact transformations, i.e.

that the following diagram should be commutative:

U0
S−→ U0

Gm,n ↓ ↓ Gm′,n′

Um,n S−→ Um′,n′

(4.8)

Here the horizontal arrows correspond to the holomorphic action (3.3) of S-duality

on twistor space, which maps the Darboux coordinates in U0 (resp., Um,n) to Dar-

boux coordinates in the same patch U0 (resp., in the transformed patch Um′,n′).

The quadratic and cubic terms in (4.4) have the same origin as the quadratic term

in (2.18), namely the fact that the generating function of the contact transformation

must be expressed in terms of the coordinates ξΛ in the original patch and of the

coordinates ξ̃Λ in the final patch. In principle, the condition (4.4) determines all

Gm,n in terms of G(gcd(m,n),0), although the non-linearities in (4.4) prevent us from

writing a closed expression. In the one-instanton approximation, the quadratic and

cubic terms can be omitted, and the transformation law (4.4) simply expresses the

invariance of a Cech cocycle in H1(Z,O(2)) under SL(2,Z). It may be summarized

by saying that the formal sum
∑′

m,nGm,n transforms as a holomorphic modular form

of weight −1.

• The equations (4.5) are simply the translation of the general integral equations (A.4)

for the specific choice of contours and transition functions (4.2), after performing

the change of kernel (3.16). In particular the last term in the square bracket in

the expression for α[0] originates from the transition functions H [±0] and may be

rewritten as [t−1K(0, t′)F cl
a − tK(∞, t′)F̄ cl

a ]∂ξ̃[0]a
Gm,n. The kernel substitution does

not affect the discontinuity along the contours, and can be reabsorbed by the change

of coordinates (4.6).

• If Gm,n is independent of ξ̃
[0]
a , we recover the construction of the D1-D(-1)-instanton

corrected metric in section 3. In that case the patches Um,n were centered around the

zeros of mξ0 + n, which we denoted by tm,n± , and the transition functions are given

in (3.13). Their transformation law (3.15) is a particular case of (4.4).

• Instead or in addition to the closed contours Cm,n surrounding open patches Um,n,
one can include open contours similar to the BPS rays appearing in the construction

of section 2.3. In fact, all previous statements hold for an arbitrary set of contours

Cm,n mapped unto each other by SL(2,Z). For example, Cm,n can be an open con-

tour from tm,n+ to tm,n− . In this case however the structure of patches might be more

complicated. The only requirement on the covering is that it should be invariant

under the antipodal map and SL(2,Z) transformations so that a patch Ui is mapped
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to some patch Ui′ . The Darboux coordinates in each patch are given by the formu-

las (4.5) and transform under S-duality by (3.3) where the coordinates on the r.h.s.

are from the patch Ui′ . Moreover, if the function Gm,n is associated with an open

contour, the regular terms in the transformation rule (4.4) are no longer allowed, as

they would otherwise not disappear under integration and therefore spoil S-duality.

• Note that the coordinate change (4.6) is almost identical to the classical mirror

map (2.5), up to two differences. First, the coordinate σ̃cl differs from σ in (2.5)

by the last term
τ32
3 κabcb

abbbc. Although this is a classical contribution, we chose to

absorb it into σ̃cl in order to simplify the expression for α in terms of Y a. Second

and more importantly, Y a receives instanton corrections away from its classical value

Y a = τ2
2 z

a. This may be viewed as an instanton correction to the mirror map, how-

ever note that the notion of mirror map only makes sense for the specific choice of

Gm,n corresponding to D3-brane instantons. In that case, the full quantum mirror

map will require specifying also ζa, ζ̃Λ, σ in terms of ζacl, ζ̃
cl
a , σ̃

cl.

• The identifications (4.6) are not the only possible ones which lead to manifest SL(2,Z)

invariance. We already met an example of such an ambiguity in (3.25) when studying

D1-D(-1)-instanton corrections to the mirror map. Another simple example can be

found in appendix B, eq. (B.13), and many other examples can be constructed (see

e.g. [35]). Fortunately, all these ambiguities just represent a freedom in the choice of

coordinates and do not affect the geometry of the QK manifold.

• The modular invariant family of 4n − 4-dimensional HK manifolds Mτ arises as

a rigid limit of the QK space M, using the same philosophy as in the QK/HK

correspondence studied in [24]. Namely, the two isometries ∂c̃0 and ∂ψ on M can be

lifted to triholomorphic isometries of the Swann bundle S (a C
× bundle over Z), with

moment maps η♭ and η0 = ξ0η♭ in the notations of [12]. The hyperkähler quotient of S
with respect to these two isometries is obtained by enforcing the D-term constraints,

i.e. freezing the O(2) multiplets η♭ and η0, and quotienting by the action of ∂c̃0 and

∂ψ. It produces a family of (4n−4)-dimensional hyperkähler metrics, parametrized by

the moment maps η♭ and η0. The former can be fixed to an arbitrary non-zero value

by a suitable SU(2) rotation, while the latter yields one complex parameter τ which

is extracted from the components of the O(2) multiplet ξ0. For fixed value of τ , the

HK metric is then coordinatized by ta, ba, ca, c̃a, or by the Darboux coordinates ξa, ξ̃a.

This class of modular invariant HK metrics should include the Coulomb branch of

five-dimensional N = 2 gauge theories compactified on T 2, where the modular group

of T 2 plays the role of S-duality [27] and the monopole strings play the role of D3-

instantons.

We emphasize that the statements (1.-6.) hold to all orders in the instanton expansion.

It is a tedious, but straightforward exercise to verify them. To this end, one first brings the

integral equations (A.4) to the form (4.5) and the contact potential (A.5) to the form (4.7).

This can be done by evaluating the integrals with H [±0] and by a suitable identification
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of AΛ, BΛ, Bα with ζΛcl , ζ̃
cl
Λ , σ̃

cl. Then SL(2,Z) transformations of the Darboux coordinates

and the contact potential can be checked by using the transformation properties of the

derivatives of Gm,n, which provide a generalization of (3.22) and can be easily obtained

from (4.4),

∂
ξ̃
[0]
a
Gm,n 7→

∂
ξ̃
[0]
a
Gm′,n′

cξ0 + d
+ reg.

∂ξa
[m,n]

Gm,n 7→ ∂ξa
[m′,n′]

Gm′,n′ −
c κabc∂ξ̃[0]b

Gm′,n′

cξ0 + d

(

ξc[m′,n′] −
1

2
∂
ξ̃
[0]
c
Gm′,n′

)

+ reg.

∂ξ0Gm,n 7→ d ∂ξ0Gm′,n′ − c
(

1− ξΛ[m′,n′]∂ξΛ
[m′,n′]

)

Gm′,n′ (4.9)

−
c2κabc∂ξ̃[0]a

Gm′,n′

2(cξ0 + d)

(

ξb[m′,n′]ξ
c
[m′,n′] − ξb[m′,n′]∂ξ̃[0]c

Gm′,n′

+
1

3
∂
ξ̃
[0]
b

Gm′,n′∂
ξ̃
[0]
c
Gm′,n′

)

+ reg.

In appendix B, we explain in detail how the construction works in the one-instanton ap-

proximation, i.e. to first order in Gm,n.

5 Discussion

In this work we have provided a twistorial construction for a class of quaternion-Kähler

metrics which admit two commuting, continuous isometries and an isometric action of

SL(2,Z). These metrics are non-linear deformations of the standard c-map metric de-

rived from a cubic prepotential. They are parametrized by an infinite set of holomorphic

functions Gm,n(ξ
Λ, ξ̃a) subject to the transformation rule (4.4) and tailored for describ-

ing D3-instanton corrections to the QK metric on the HM moduli space MH in type IIB

string theory compactified on a Calabi-Yau threefold. As a special case, one recovers the

D1-D(-1)-instanton corrected metric on MH constructed in [13, 34], whose manifest S-

duality invariance is now revealed. Upon taking a rigid limit, the same construction also

yields a class of modular invariant hyperkähler metrics (where the modulus τ is now a

parameter rather than a coordinate), which should describe the Coulomb branch of five-

dimensional N = 2 gauge theories compactified on T 2, with monopole strings playing the

role of D3-instantons.

Clearly, an outstanding question is to determine the set of holomorphic functions Gm,n
which describes D3-instanton corrections (or similarly, the monopole string instantons)

to the real HM moduli space. For this purpose one should find an adequate complex

contact transformation which would cast the type IIA construction of the twistor space

outlined in section 2.3 into the manifestly S-duality invariant type IIB construction of

section 4. This is an important problem, since it would prove that D3-instanton corrections

are indeed consistent with S-duality, and it would allow to compute quantum corrections

to the mirror map.

An indication that this translation can be done is the fact that, in the one-instanton

approximation, the formal sum of transition functions Hγ in (2.18) over all D3-D1-D(-1)
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charges is formally identical to the partition function of D4-D2-D0 black holes in type IIA

string theory compactified on the same CY threefold Ŷ. The latter is a Jacobi form and

admits a natural Poincaré series representation [48–52]. Unfortunately, there are technical

difficulties in implementing this idea due to the fact that, for fixed D3-brane charge, the

formal sum over D1-instantons leads to an indefinite theta series of signature (1, b2(Ŷ) −
1) which is divergent. Moreover, Poincaré series of negative weight are also divergent

and need to be regularized, leading to holomorphic or modular anomalies. In [35], we

attack this problem from a different angle, and show that the instanton corrections to the

type IIA Darboux coordinates, in the large volume limit, are governed by certain Mock

theta series. In the analogous problem of the Coulomb branch of N = 2 five dimensional

gauge theories, the monopole string instantons are described by the elliptic genus of the

(0, 4) superconformal field theory with target space given by the ADHM moduli space of

monopoles, which is also expected to be modular invariant [27]. It would be very interesting

to see if some of the difficulties of string theory are alleviated in the gauge theory set-up.

Another outstanding problem is to remove the assumption that the metric has two

commuting Killing vectors, and to construct a general class of SL(2,Z) invariant QKmetrics

with no continuous isometries as non-linear perturbations of the c-map metric. Similar to

the construction in section 4, this class should be parametrized by functions Gm,n which

are now allowed to depend on all Darboux coordinates ξΛ, ξ̃Λ, α. At the linear level, S-

duality is again ensured by the condition (4.4) where only the first term on the r.h.s.

should be retained. An example of such construction was given in [16], where NS5-brane

instanton corrections were inferred by S-duality from the D5-brane instantons and shown

to be governed by a set of transition functions transforming with modular weight −1 as

in (4.4). However, an extension of this construction beyond the linear level appears to be

highly non-trivial.
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A Twistorial description of quaternion-Kähler manifolds

A 4n-dimensional Riemannian manifold M is quaternion-Kähler if it has restricted holon-

omy group USp(n) × SU(2) ⊂ SO(4n). The Ricci scalar R is then constant, and the

curvature of the SU(2) part of the Levi-Civita connection, rescaled by 1/R, provides a

triplet of quaternionic 2-forms ~ω. While R can take either sign, hypermultiplet moduli

spaces in N = 2 supergravity or string theory models have R < 0.

A QK manifold M can be described analytically in terms of its twistor space Z, the

total space of the CP 1 bundle over M twisted with the projectivized SU(2) connection on

M. Z is a Kähler-Einstein space equipped with a canonical complex contact structure,

given by the kernel of the one-form

Dt = dt+ p+ − ip3t+ p−t
2, (A.1)
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where t is a complex coordinate on CP 1, and p±, p3 is the SU(2) part of the Levi-Civita

connection on M. Note that Dt is defined only projectively, as it rescales under SU(2)

rotations. More precisely, it is valued in the O(2) line bundle on CP 1 [4].

Locally, on a patch of an open covering {Ui} of Z, one can always find complex Dar-

boux coordinates (ξΛ[i], ξ̃
[i]
Λ , α

[i]) such that the contact one-form (A.1), suitably rescaled by

a function eΦ
[i]
, takes the form

X [i] ≡ 4 eΦ
[i] Dt

it
= dα[i] + ξ̃

[i]
Λ dξΛ[i] . (A.2)

The function Φ[i], which we refer to as the ‘contact potential’, is holomorphic along the

CP 1 fiber and defined up to an additive holomorphic function on Ui. It provides a Kähler

potential for the Kähler-Einstein metric on Z [12]:

K
[i]
Z = log

1 + tt̄

|t| + ReΦ[i] . (A.3)

Globally, the complex contact structure on Z can be specified by a set of generating

functions H [ij](ξΛ[i], ξ̃
[j]
Λ , α

[j]) for complex contact transformations between Darboux coordi-

nates on overlaps Ui ∩ Uj , subject to cocycle and reality conditions [12].

In the case when M has a quaternionic isometry ∂σ, one may choose the Darboux

coordinates such that the Killing vector lifts to the holomorphic action ∂α. As a re-

sult, the transition functions H [ij] become independent of the coordinate α[j], and the

contact potential Φ[i] becomes real and constant on CP 1 [14], equal to log-norm of the

moment map associated to the isometry. The twistorial construction of such QK manifolds

with one quaternionic isometry then becomes isomorphic to the twistorial construction of

HK manifolds with one rotational isometry, a relation known as the QK/HK correspon-

dence [24, 53]. In this case the Darboux coordinates are determined by the following system

of integral equations:

ξΛ[i](t) = AΛ + t−1Y Λ − t Ȳ Λ − 1

2

∑

j

∫

Cj

dt′

2πit′
t′ + t

t′ − t
∂
ξ̃
[j]
Λ

H [ij],

ξ̃
[i]
Λ (t) = BΛ +

1

2

∑

j

∫

Cj

dt′

2πit′
t′ + t

t′ − t
∂ξΛ

[i]
H [ij], (A.4)

α[i](t) = Bα +
1

2

∑

j

∫

Cj

dt′

2πit′
t′ + t

t′ − t

(

H [ij] − ξΛ[i]∂ξΛ
[i]
H [ij]

)

+ 4ic log t.

Here the complex variables Y Λ, up to an overall phase rotation which can be absorbed

into a phase rotation of t, and the real variables AΛ, BΛ, Bα serve as coordinates on M. It

is convenient to fix the phase freedom in Y Λ by requiring Y 0 ≡ R to be real. Moreover,

Bα is related to the coordinate σ along the isometric direction, ∂Bα ∼ ∂σ. Finally, c is

a real constant known as the anomalous dimension [12], which characterizes the singular

behavior of the Darboux coordinate α at the north and south poles of CP 1. It plays an

important physical role in describing the one-loop correction to the hypermultiplet moduli

space metric in type II string compactifications.

– 24 –



J
H
E
P
0
8
(
2
0
1
2
)
1
1
2

The integrals in (A.4) are taken around closed contours Ci surrounding the patches

Ui in the counter-clockwise direction. Nevertheless, the construction is still meaningful if

some of the contours are taken to be open. Typically such open contours appear as the

degeneration of closed contours in the presence of branch cut singularities in the transition

functions H [ij]. The holomorphic functions associated with that open contours are then

equal to the discontinuity of H [ij] across the branch cut [11]. In particular, this is the case

for twistorial constructions of D-brane instantons in type IIA [14, 15] as well as fivebrane

instantons in type IIB [16].

Thus, the metric on M is completely determined by a constant c and a set of open or

closed contours in CP 1, together with associated holomorphic functions. The procedure

to extract the metric from the solutions of (A.4) was outlined in [12, 14]. An important

ingredient in this calculation is the contact potential, which can be computed from the

transition functions H [ij] and the solutions of (A.4) using

eΦ =
1

16π

∑

j

∫

Cj

dt

t

(

t−1Y Λ − t Ȳ Λ
)

∂ξΛ
[i]
H [ij] − c. (A.5)

B S-duality invariance at linear order

In this appendix we show the consistency of the construction of section 4 in the one-

instanton approximation. Our aim is to prove that the Darboux coordinates (4.5) transform

under S-duality as in (3.3), provided the coordinates (τ2, Y
a, ζ0, ζacl, ζ̃

cl
a , σ̃

cl) are related to

the type IIB fields (τ1, τ2, t
a, ba, ca, c̃a, c̃0, ψ) as in (4.6).

We start with the Darboux coordinate ξa[0]. Under an SL(2,Z) transformation, the

kernel K(t, t′)dt′/t′ is invariant but the derivative ∂
ξ̃
[0]
a
Gm,n(t

′) transforms with an overall

factor of 1/(cξ0(t′) + d) (see (4.9)). Remarking that t−1 + t transforms as

t−1 + t 7→ |cτ + d|
cξ0 + d

(

t−1 + t
)

, (B.1)

we see that the factor 1/(cξ0(t′) + d) can be converted into 1/(cξ0(t) + d) by inserting an

additional factor of (t−1 + t)/(t′−1 + t′) in the integrand. This is the purpose of the field

redefinition of Y a in (4.6). Indeed, by expressing Y a in terms of za = ba+ita in the second

line of (4.5) we arrive at

ξa[0] = ζacl +
τ2
2

(

t−1za − tz̄a
)

+ δξa, (B.2)

where

δξa =
∑

m,n

′
∮

Cm,n

dt′

2πit′
1/t+ t

1/t′ + t′
K(t, t′) ∂ξ̃aGm,n. (B.3)

Both terms then manifestly transform as in (3.3), under the assumption that ζacl is related

to ca as in (4.6).
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To investigate the other Darboux coordinates in (4.5), we first rewrite them in terms

of the type IIB Kähler moduli za as

ξ̃[0]a = ζ̃cla − τ2
4
κabc

(

t−1zbzc − tz̄bz̄c
)

+ δξ̃a,

δξ̃a = −
∑

m,n

′
∮

Cm,n

dt′

2πit′

(

K(t, t′) ∂ξaGm,n + κabc
(tt′)−1zb − tt′z̄b

(1/t′ + t′)2
∂ξ̃cGm,n

)

,

ξ̃
[0]
0 = ζ̃cl0 +

τ2
12
κabc

(

t−1zazbzc − tz̄az̄bz̄c
)

+ δξ̃0,

δξ̃0 = −
∑

m,n

′
∮

Cm,n

dt′

2πit′

(

K(t, t′) ∂ξ0Gm,n − κabc
(tt′)−1zazb − tt′z̄az̄b

2(1/t′ + t′)2
∂ξ̃cGm,n

)

,

α[0] = − 1

2
(σ + ζΛζ̃Λ)cl +

τ22
8

(

z̄ΛF cl
Λ (z) + zΛF̄ cl

Λ (z̄)
)

− τ22
4

(

t−2F cl(z) + t2F̄ cl(z̄)
)

− τ2ζ
Λ

2

(

t−1F cl
Λ (z)− tF̄ cl

Λ (z̄)
)

+ δα,

δα = −
∑

m,n

′
∮

Cm,n

dt′

2πit′

(

K(t, t′)
(

1− ξΛ(t′)∂ξΛ
)

Gm,n − κabc
V ab(t, t′)

(1/t′ + t′)2
∂ξ̃cGm,n

)

,

(B.4)

where, in the last expression for δα,

V ab(t, t′) = − ca
(

bb
1− (tt′)2

tt′
+ itb

1 + (tt′)2

tt′

)

+
τ1
2

(

babb + tatb
) 1− (tt′)2

tt′

+
τ2
4

(

t−1 + t+ t′−1 + t′
)

(

(

babb − tatb
) 1 + (tt′)2

tt′
+ 2ibatb

1− (tt′)2

tt′

)

.

(B.5)

It may be checked by a direct but tedious calculation that each of these Darboux coordinates

transforms as in (3.3), provided ζ̃clΛ , σcl are related to ca, c0, ψ as in (4.6).

This computation is however best performed by introducing first the following linear

combinations of the instanton contributions

δ̂ξ̃a = δξ̃a + κabc

(

bb + itb
1/t− t

1/t+ t

)

δξc,

δ̂+α = δα+ τ δξ̃0 −
1

2
κabc

(

ba + ita
1/t− t

1/t+ t

)(

ξb − cb + τbb − 2tb(ξ0 − τ)

1/t+ t

)

δξc,

δ̂−α = δα+ τ̄ δξ̃0 −
1

2
κabc

(

ba + ita
1/t− t

1/t+ t

)(

ξb − cb + τ̄ bb +
2tb(ξ0 − τ̄)

1/t+ t

)

δξc .

(B.6)

These combinations have been designed such that the complicated transformation rules of

δξ̃Λ, δα, obtained by linearizing (3.3), translate into the simple properties

δ̂ξ̃a 7→ δ̂ξa, δ̂+α 7→ δ̂+α

cτ + d
, δ̂−α 7→ δ̂−α

cτ̄ + d
, (B.7)

which we now need to prove for the instanton contributions given by (B.4). To this end, we

note that the result (4.9) implies that −∂ξ̃aG, ∂ξaG, (1−ξ
Λ∂ξΛ)G transform in the same way
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as δξa, δξ̃Λ, δα. Due to this, from these derivatives one can form similar linear combinations

∂̂ξaG = ∂ξaG− κabc

(

bb + itb
1/t− t

1/t+ t

)

∂ξ̃cG, (B.8)

Ĝ+ = (1−ξΛ∂ξΛ+τ∂ξ0)G+
1

2
κabc

(

ba + ita
1/t− t

1/t+ t

)(

ξb − cb+τbb− 2tb(ξ0 − τ)

1/t+ t

)

∂ξ̃cG,

Ĝ− = (1−ξΛ∂ξΛ+τ̄ ∂ξ0)G+
1

2
κabc

(

ba+ita
1/t− t

1/t+ t

)(

ξb−cb+τ̄ bb+2tb(ξ0 − τ̄)

1/t+ t

)

∂ξ̃cG,

which satisfy the same transformation laws as in (B.7),

∂̂ξaG 7→ ∂̂ξaG, Ĝ+ 7→ Ĝ+

cτ + d
, Ĝ− 7→ Ĝ−

cτ̄ + d
. (B.9)

Using (B.4) to express (B.6) in terms of (B.8), one finds

δ̂ξ̃a = −
∑

m,n

′
∮

Cm,n

dt′

2πit′

[

K(t, t′) ∂̂ξaG− 2i
κabct

b∂ξ̃cGm,n

(1/t′ + t′)2

]

, (B.10)

δ̂+α = −
∑

m,n

′
∮

Cm,n

dt′

2πit′

[

K(t, t′) Ĝ+ + 2iκabc

(

(1 + tt′)τ2t
a

(t− i)(t′ − i)
−(ca−τba)

)

tb∂ξ̃cGm,n

(1/t′ + t′)2

]

,

δ̂−α = −
∑

m,n

′
∮

Cm,n

dt′

2πit′

[

K(t, t′) Ĝ− − 2iκabc

(

(1 + tt′)τ2t
a

(t+ i)(t′ + i)
+(ca−τ̄ ba)

)

tb∂ξ̃cGm,n

(1/t′ + t′)2

]

.

In each of these expressions, the first term in the square bracket manifestly transforms as

in (B.7). To see that this is also true for the remaining terms, we rewrite them in terms of

the Cayley-rotated coordinate z as

δ̂(2)ξ̃a = − κabct
b
∑

m,n

′
∮

Cm,n

dz′

8π2z′2
(1− z′2)∂

ξ̃
[0]
c
Gm,n,

δ̂
(2)
+ α = − κabct

a
∑

m,n

′
∮

Cm,n

dz′

8πz′2

(

cb − τbb − 1

2
(z + z′)τ2t

b

)

(1− z′2)∂
ξ̃
[0]
c
Gm,n,

δ̂
(2)
− α =κabct

a
∑

m,n

′
∮

Cm,n

dz′

8πz′2

(

cb − τ̄ bb +
1

2

z + z′

zz′
τ2t

b

)

(1− z′2)∂
ξ̃
[0]
c
Gm,n.

(B.11)

Given that, under S-duality,

(1− z2)∂ξ̃aG 7→
(1− z2)∂ξ̃aG

cτ + d
, (B.12)

our claim trivially follows. It is interesting to note that the contribution δ̂(2)ξ̃a can be

removed by adjusting the mirror map (4.6) by a further shift of ζ̃a by

∆ζ̃a = −κabctb
∑

m,n

′
∮

Cm,n

dt

πt

∂
ξ̃
[0]
c
Gm,n

(1/t+ t)2
. (B.13)
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However, such a correction is modular invariant by itself and thus represents an inherent

ambiguity in the definition of the mirror-map.

Finally, we turn to the contact potential (4.7). In the one-instanton approximation,

taking into account the correction to Y a coming from (4.6), we find

eΦ =
τ22
2

V(ta)− 1

16π

∑

m,n

′
∮

Cm,n

dt

t
A, (B.14)

where

A =
(

t−1Y Λ − tȲ Λ
)

∂ξΛGm,n +
(

t−1Fa(Y )− tF̄a(Ȳ )
)

∂ξ̃aGm,n

+ 2τ2κabct
atb

t−1 − t

(t−1 + t)2
∂ξ̃cGm,n.

(B.15)

Using the transformation properties

dt

t
7→ |cτ + d|

cξ0 + d

dt

t
,

t−1 − t

(t−1 + t)2
7→ (cξ0 + d)2

|cτ + d|2
t−1 − t

(t−1 + t)2
− cτ2

2

cξ0 + d

|cτ + d|2 ,

A 7→ (cξ0 + d)

|cτ + d|2 A+
c(cξ0 + d)

|cτ + d|2 t∂t

(

t−1 + t

cξ0 + d
Gm′,n′

)

+ reg.

(B.16)

we see that the integrand transforms by a total derivative, and therefore that the contact

potential transforms as in (3.4).
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