
HAL Id: hal-00705825
https://hal.science/hal-00705825v1

Submitted on 8 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From the Sensor to Color Images
Olivier Losson, Eric Dinet

To cite this version:
Olivier Losson, Eric Dinet. From the Sensor to Color Images. Christine Fernandez-Maloigne,
Frédérique Robert-Inacio, Ludovic Macaire. Digital Color - Acquisition, Perception, Coding and
Rendering, Wiley, pp.149-185, 2012, Digital Image and Signal Processing series. �hal-00705825�

https://hal.science/hal-00705825v1
https://hal.archives-ouvertes.fr


Chapter 6

From the Sensor to Color Images

 

6.1 introduction 

In Chapter 5, we saw how color sensors convert a light radiation
into an electrical signal to build a digital image. It describes
the two currently most widespread sensor technologies (CCD
and CMOS) as well as the emerging technologies offered by
some manufacturers. These color sensors are nowadays ubiquitous
in the objects of everyday life, but the acquisition devices
equipped with three sensors are overwhelmingly confined to the
professional sectors and to very specific applications. Owing to the
complexity of their manufacture, these devices are costly and largely
unaffordable by the public. A whole range of so-called “hi-tech”
products such as digital cameras, mobile phones, and computers are
thus equipped with a single sensor to form a color image, and so are
many professional devices such as quality control cameras and video
surveillance cameras. One reason for this is the dramatic advances in
the operation aiming to obtain a color image from the sensor data.
The operation in question, known as demosaicing, is the subject of this
chapter.
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122 Digital Color

Devices equipped with a single sensor form a color image by
estimating it from the so-called raw image or color filter array (CFA)
image, in which each pixel is only characterized by a single bit of
color information. Specifically, the filter mosaic of the CFA samples
a single color component (red, green, or blue) at each photoreceptor,
and demosaicing aims to estimate the two missing components at the
corresponding pixel. This is a far from trivial operation, and the colors
estimated thus are less consistent with the color stimuli of the observed
scene than those provided by a three-sensor camera. Improving the
fidelity of the color image is still a current issue, on which scientists and
engineers are working. To obtain an image rendering the colors of the
scene as accurately as possible, other processings are typically integrated
into the acquisition system, foremost among which are calibration and
color correction.

In the following pages, we look at the formation of color images from
the data delivered by the sensor, and at the fidelity of these images to the
observed scene. The first three sections, largely inspired by the work of
Yanqin Yang [YAN 09], deal with the problem of demosaicing, while the
last part tackles the problem of color camera calibration. After setting
a few notations, in the first section, we present two principles used by
the majority of demosaicing methods. The second section presents the
key ideas of the main demosaicing algorithms. The issue of fidelity of
the estimated image is discussed in the third section, which presents
both the main measurement criteria and some results allowing us to
select a demosaicing method. Finally, we examine the need for and the
implementation of the processing known as white balance, usually done
before the demosaicing, to obtain a color image that is faithful to the
scene regardless of illumination conditions.

6.2. Presentation and formalization of demosaicing

After identifying the need for the demosaicing operation within
single-sensor cameras, a formalization is proposed to introduce the
notations useful in the following. Then, we introduce the problems
associated with color estimation, from a study based on a very simple
method using the interpolation of the available levels. This allows us to
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set the fundamental principles generally used in demosaicing methods,
which is discussed in the next section.

6.2.1. Need for demosaicing

As it was seen in Chapter 5, single-sensor color cameras use a
mosaic of spectrally selective color filters to sample a single color
component at each pixel (see Figure 6.1a). The camera manufacturers
have developed several types of filters, but the most widely used remains
that of Bayer [BAY 76]. This filter is the subject of most studies and is
considered in the following. It features twice as many green filters (G)
as red (R) or blue (B) filters, to properly estimate the luminance to which
the green component is often equated1. The data delivered by the sensor
is preprocessed to obtain the CFA image, which therefore contains twice
as many pixels whose levels represent the green as pixels representing
the red or the blue component. The demosaicing operation must then
estimate the levels of the two missing components at each pixel in the
CFA image to obtain the final color image.

As shown in Figure 6.1b, other operations are typically performed
after demosaicing within a single-sensor color camera [LUK 08]. They
aim, for instance, to correct the colors, to increase the image sharpness,
and to reduce the noise, to render a visually satisfactory color image to the
user. All these processes contribute to the quality of the rendered image,
and, ultimately, they are the important difference between the different
models of digital cameras, as manufacturers and sensor models are few in
number. Although the underlying algorithms have some commonalities,
the adjustment of their parameters determines the more or less significant
presence of residual errors (or artifacts) that characterize each camera
model.

1 The assimilation of the luminance to the component G, used especially to design
the Bayer CFA and in the first demosaicing methods, is based on the observation that
the curve of the luminous efficiency function of the human visual system in daylight
(or photopic) vision is similar to that of the colorimetric function of the green primary
proposed by the CIE for the reference observer.
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(b) Image acquisition in a single-CCD color camera (detailed diagram). Dotted steps are optional

Figure 6.1. Structure of a single-CCD color camera

6.2.2. Formalization

A digital image is represented by an array of pixels that we
individually note P(x, y), where x and y are the coordinates of the pixel
P in the image of size X × Y , with (x, y) ∈ N

2, 0 ≤ x ≤ X − 1 and
0 ≤ y ≤ Y − 1. When the image has only one plane, it is written I , and
I(P) is the level of each of its pixels. In the case of a color image, the
image denoted I consists of three component planes and I(P) is a color
point in a 3D color space. In the case of the RGB space that interests
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us, the three components of this vector are I(P) = (
IR(P), IG(P), IB(P)

)
,

where Ik(P), k ∈ {R, G, B}, is the level of the color component k at
the pixel P. To simplify the notations used for demosaicing and to
clarify the spatial coordinates, we similarly adopt in the remainder
one of the following simplified notations: I(P) = (IR

x,y, IG
x,y, IB

x,y) =
(Rx,y, Gx,y, Bx,y).

To establish a formalism for demosaicing, let us consider the
acquisition process of a color image as whether the camera features
three sensors or only one sensor (see Figure 6.2). A three-sensor camera
(Figure 6.2a) combines the data delivered by the three sensors to form the
color image of a scene. This color image I consists of three component
planes Ik , k ∈ {R, G, B}. In a single-sensor camera (Figure 6.2b), the
formation of a color image is quite different. The CFA image delivered by
the sensor has only one plane of levels, and can therefore be represented
by a 2D array of integer values (usually between 0 and 255). This image
ICFA is demosaiced (taking into account the known configuration of the
CFA) to estimate the three component planes of the color image Î.

Considering the Bayer CFA whose arrangement is shown in
Figure 6.3a, the CFA image is defined at each pixel of coordinates (x, y)
by the single color component associated with it:

ICFA
x,y =

⎧⎨
⎩

Rx,y if x is odd and y even
Gx,y if x and y are of the same parity
Bx,y if x is even and y odd

[6.1]

Let Ik , k ∈ {R, G, B}, be the subset of pixels of ICFA at which the
available component is k (see Figures 6.3b to d):

IR = {P(x, y) ∈ ICFA | x odd and y even} [6.2]

IG = {P(x, y) ∈ ICFA | x and y of the same parity} [6.3]

IB = {P(x, y) ∈ ICFA | x even and y odd} [6.4]
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so that ICFA ≡ IR ∪IG ∪IB. To determine the color at each pixel P(x, y)
of the estimated color image, the demosaicing process (denoted D)
generally keeps the color component available at the same coordinates
in ICFA and estimates the other two components:

ICFA(P)
D−→ Î(P) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ICFA(P), ÎG(P), ÎB(P)

)
if P ∈ IR(

ÎR(P), ICFA(P), ÎB(P)
)

if P ∈ IG(
ÎR(P), ÎG(P), ICFA(P)

)
if P ∈ IB

[6.5]

In this equation, each triplet of color components contains the one
available at the pixel P in ICFA (i.e., ICFA(P)) and the other two components
estimated by demosaicing (two among ÎR(P), ÎG(P), and ÎB(P)).

Scene Optical device

R filter

G filter

B filter

Sensor

Sensor

Sensor

IR image

IG image

IB image

Color image
I

(a) Three-sensor camera

cfScene Optical device

CFA

Sensor

CFA image
ICFA

Demosaicing

Estimated
color image Î

(b) Single-sensor color camera

Figure 6.2. Acquisition of a color image according to the type
of camera (simplified diagrams)

6.2.3. Implemented principles

In the CFA image (see Figure 6.3a), there are four different spatial
neighborhood structures, shown in Figure 6.4 for a size of 3 × 3
pixels. These are denoted here by the color components available on
the center line containing the central pixel of analysis, namely {GRG},
{GBG}, {RGR}, and {BGB}. Demosaicing aims to estimate the two
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color components missing at the central pixel of each of these four
structures, by taking into account the levels of neighboring pixels and
the components that are available there. Note that {GRG} and {GBG}
are structurally similar, with the exception that the components R and
B are swapped. They can thus be treated in the same way, which also
applies to the {RGR} and {BGB} structures. To denote the levels in these
neighborhood structures, we use the notation in relative coordinates of
Figure 6.4. Thus, Rδx,δy denotes the level (a red level, in this case) of
the pixel at coordinates (δx, δy) with respect to the central pixel. The
coordinates of the central pixel (0, 0) are omitted to alleviate notations
in the following.

G0,4 R1,4 G2,4 R3,4 G4,4

B0,3 G1,3 B2,3 G3,3 B4,3

G0,2 R1,2 G2,2 R3,2 G4,2

B0,1 G1,1 B2,1 G3,1 B4,1

G0,0 R1,0 G2,0 R3,0 G4,0

...

...

...

...

...

... ... ... ... ...

(a) ICFA
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0,3 1,3 2,3 3,3 4,3

0,2 R1,2 2,2 R3,2 4,2

0,1 1,1 2,1 3,1 4,1

0,0 R1,0 2,0 R3,0 4,0

...

...

...

...

...

... ... ... ... ...

(b) IR
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0,3 G1,3 2,3 G3,3 4,3

G0,2 1,2 G2,2 3,2 G4,2

0,1 G1,1 2,1 G3,1 4,1

G0,0 1,0 G2,0 3,0 G4,0

...

...

...

...

...

... ... ... ... ...

(c) IG

0,4 1,4 2,4 3,4 4,4

B0,3 1,3 B2,3 3,3 B4,3

0,2 1,2 2,2 3,2 4,2

B0,1 1,1 B2,1 3,1 B4,1

0,0 1,0 2,0 3,0 4,0

...

...

...

...

...

... ... ... ... ...

(d) IB

Figure 6.3. CFA image and pixel subsets Ik , k ∈ {R, G, B}. To clarify the picture,
the pixels are colorized with the color component associated with them

B−1,1 G0,1 B1,1

G−1,0 R0,0 G1,0

B−1,−1 G0,−1 B1,−1

(a) {GRG}

R−1,1 G0,1 R1,1

G−1,0 B0,0 G1,0

R−1,−1 G0,−1 R1,−1

(b) {GBG}

G−1,1 B0,1 G1,1

R−1,0 G0,0 R1,0

G−1,−1 B0,−1 G1,−1

(c) {RGR}

G−1,1 R0,1 G1,1

B−1,0 G0,0 B1,0

G−1,−1 R0,−1 G1,−1

(d) {BGB}

Figure 6.4. 3 × 3 neighborhood structures of pixels in the CFA image. The spatial
coordinates are here relative to those of the central pixel

To introduce the principles generally used in demosaicing methods,
let us examine one of the oldest and simplest methods that uses bilinear
interpolation, as well as the artifacts it produces. Implemented as an
embedded processing since the mid-1980s [COK 86], demosaicing by
bilinear interpolation estimates the missing levels at a pixel by averaging
the levels available at the nearest neighboring pixels. This is achieved in
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each of the two main directions of the image plane and on each color
plane separately. More explicitly, the values of the missing components
at the central pixel are estimated using the following equations, according
to the structure in question:

– for {GRG}: {
B̂ = 1

4

(
B−1,−1 + B1,−1 + B−1,1 + B1,1

)
Ĝ = 1

4

(
G0,−1 + G−1,0 + G1,0 + G0,1

) [6.6]

– for {RGR}: {
R̂ = 1

2

(
R−1,0 + R1,0

)
B̂ = 1

2

(
B0,−1 + B0,1

) [6.7]

Figure 6.5 is an example of results obtained by bilinear interpolation.
To assess the demosaicing quality, a reference color image is used
(typically, an image that comes from a three-sensor camera such as the
one in Figure 6.5a). Its color components are sampled according to the
CFA mosaic to form the CFA image (Figure 6.5b). This one is then
demosaiced, and the obtained estimated image (Figure 6.5c) can then be
compared to the reference image. Demosaicing by bilinear interpolation
is simple and fast, but although it provides satisfactory results in image
regions of homogeneous colors, it generates erroneous colors at many
pixels in regions with high spatial frequencies.

To precisely investigate the causes of these artifacts, let us simulate
their generation using a synthetic image, like Chang and Tan [CHA 06].

(a) Reference image I (b) CFA image ICF A (c) Estimated image Î

Figure 6.5. Example of demosaicing by bilinear interpolation on a sample taken from
the “Houses” image from the Kodak database [KOD 91]
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In the reference image shown in Figure 6.6a, two homogeneous regions
are separated by a vertical transition, which reproduces the boundary
between two real objects characterized by different shades of gray. The
three color components of each pixel are thus equal. The levels of pixels
(labeled as l) representing the dark object on the left are lower than
those of pixels (labeled as h) representing the bright object on the right.
Demosaicing the corresponding CFA image by bilinear interpolation
yields the result illustrated in Figure 6.6b. On the color planes R and B,
this algorithm produces a column of pixels of intermediate levels, whose
values are the averages of the levels representing the two objects. On the
green plane, however, it generates an alternating pattern of pixels with
two intermediate levels around the boundary, one of low value 3

4 l + 1
4 h

and the other of high value 1
4 l + 3

4 h. Comparison of the marginal profiles
of the center line of pixels of both images reveals that the transition
located at the same horizontal positions for the three components of the
reference image is not reproduced identically for the three components
of the estimated image. This inconsistency generates false colors in
the estimated image. On each color plane of the reference image, the
transition corresponds to a sudden break of homogeneity along its normal
direction. After bilinear interpolation, averaging the component levels of
pixels located on both sides of the transition has the effect of making it
less sharp. Although established on an achromatic image, these findings
help to highlight two fundamental properties of color images that must
be respected to improve the result of demosaicing: spectral correlation
and spatial correlation.

The property of spectral correlation has been studied by
Gunturk et al. [GUN 02]. These authors show that the levels of the
three components are highly correlated in a natural color image, and
especially in areas of high spatial frequencies. To exploit this spectral
intra-pixel correlation for demosaicing, two principles are mainly used
in the literature: the local constancy of the ratio of color components,
and the local constancy of their difference. Historically, the first method
implementing spectral correlation is that of Cok [COK 87], which uses
the principle of local constancy of the “hue” (understood as the ratio
of the chrominance and luminance and equated to R/G or B/G). After
estimating all the missing green levels by bilinear interpolation, this
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Figure 6.6. Marginal images and profiles of levels of pixels located on the center
line A-A, for a reference image (a) and the corresponding image estimated by

bilinear interpolation (b). In the profiles, the color dots denote available
levels and the white dots denote estimated levels

method estimates the missing red (respectively blue) levels by weighting
the green level with the average “hue” values of neighboring pixels
where the red (respectively, blue) component is available. For instance,
to interpolate the blue level at the center of the {GRG} structure (see
Figure 6.4a), the following equation is applied. It uses the four diagonal
neighbors at which the blue component is available:

B̂ = Ĝ · 1

4

[
B−1,−1

Ĝ−1,−1

+ B1,−1

Ĝ1,−1

+ B−1,1

Ĝ−1,1

+ B1,1

Ĝ1,1

]
[6.8]

Such a bilinear interpolation of the color component ratios is based on
the fact that this ratio is locally constant in a homogeneous region, which
is justified by Kimmel [KIM 99] under the assumption of Lambertian
observed surfaces. Another simplified model of the inter-channel
correlation, also widely used in the literature, is based on the
local constancy principle of the difference of color components (see
justification in [LIA 07]). The interpolation step of the chrominance by
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Cok’s method is then rewritten using the component difference average,
and equation[6.8]  becomes:

B̂ = Ĝ+1

4

[
(B−1,−1 − Ĝ−1,−1) + (B1,−1 − Ĝ1,−1)

+(B−1,1 − Ĝ−1,1) + (B1,1 − Ĝ1,1)
] [6.9]

The two local consistency principles of the ratio and of the difference
of color components are generally consistent, but that using the ratio is
more prone to generate artifacts, particularly in the image regions where
the components R and/or B are saturated.

The spatial correlation property is easily understood by considering
a color image as composed of juxtaposed homogeneous regions. Within
a homogeneous region, all pixels are characterized by similar levels, and
this, for each color component. To estimate the missing levels of each
pixel in question, it is thus possible to use the levels of neighboring pixels.
However, that is more difficult at pixels located near transitions between
two distinct regions, where the local variation of color components is
strong. From the demosaicing point of view, the respect of the spatial
correlation property thus incites to avoid interpolating the missing
components of a pixel using neighboring pixels that do not belong to
the same homogeneous region. This principle is implemented in many
demosaicing methods, and the next section presents a few examples. It is
typically used–sometimes combined with that of spectral correlation–in a
first step of estimating the green component, since the green information
is the most dense in the CFA image and represents the luminance of the
image to be estimated (following Bayer’s idea). The estimation of the red
and blue components (considered the chrominance according to Bayer)
is done only in a second step, using the already interpolated luminance
and the spectral correlation property.

6.3. Demosaicing methods

The problem of estimating the levels missing in the CFA image arose
in the late 1970s, right after the invention of the first filter mosaics for
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single-sensor color cameras. Numerous demosaicing algorithms have
been developed since then, and it is impossible to draw up an exhaustive
list here. Highly comprehensive inventories are available in the literature
(such as [LI 08, LUK 08, LOS 10]) and online2. After the explanation
of the basics in the previous section, we now introduce some of the
most significant methods using a spatial analysis. The second subsection
focuses on the principle of frequency analysis, used by the currently
most efficient algorithms. We briefly present other approaches proposed
for demosaicing, as well as post-processing typically implemented to
improve the quality of the estimated image.

6.3.1. Methods based on a spatial analysis

Noting that the method based on the hue constancy suffers
from serious estimation errors in regions of high spatial frequencies
(see Figure 6.9b), Cok proposed the first edge-sensitive demosaicing
algorithm [COK 94]. Based on pattern recognition, this method improves
the green-level estimation by classifying (as edge, stripe or corner)
the 3 × 3 neighborhood of pixels where that level is missing, then by
adapting the interpolation formula according to the neighborhood class.
The criterion used to distinguish the three classes, which compares
the neighboring levels to their average, is very simple and not always
sufficient to correctly identify the actual shape. However, the idea can be
developed further, and it [CHA 06] marks a milestone because it opens
the way to methods adapting themselves to the local properties of the
image.

Many methods thus implement the property of spatial correlation in
demosaicing. Most of them exploit the principle of interpolating only
levels whose pixels belong to the same homogeneous region. In other
words, when the neighborhood of a pixel in question is located on the
transition between two homogeneous regions, it is necessary to estimate
the values missing at this pixel along the transition and not through
it. A key point is thus to correctly determine the transition direction
from the samples available in the CFA image. Computing a gradient

2 http://www.danielemenon.netsons.org/top/demosaicking-list.php.
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is a straightforward solution to this problem. The method proposed by
Hibbard [HIB 95] uses horizontal and vertical gradients to determine
the direction along which the interpolation provides the best estimation
of the green level. As an example, let us consider the {GRG} structure
again (see Figure 6.4a), in which the green level Ĝ of the central pixel
is estimated in two steps. The first is to compute an approximation of
the gradient norm (hereafter referred to as gradient for simplification
purposes) according to the horizontal and vertical directions:

�x = ∣∣G−1,0 − G1,0

∣∣ [6.10]

�y = ∣∣G0,−1 − G0,1

∣∣ [6.11]

The second step is to interpolate the green level using the equation:

Ĝ =

⎧⎪⎪⎨
⎪⎪⎩

(G−1,0 + G1,0)/2 if �x < �y

(G0,−1 + G0,1)/2 if �x > �y

(G0,−1 + G−1,0 + G1,0 + G0,1)/4 if �x = �y

[6.12a]

[6.12b]

[6.12c]

Laroche and Prescott [LAR 93] propose a variant of this
method that takes into account the levels available in a 5 × 5
neighborhood to determine the transition direction, for example �x =∣∣2R − R−2,0 − R2,0

∣∣. Hamilton and Adams [HAM 97] combine the two
previous approaches, using a first-order differentiation for the green
component and a second-order differentiation for the red and blue
components. For instance, to estimate the green level in the case of
the {GRG} structure (see Figure 6.7a), this method first computes the
following horizontal and vertical differences:

�x = ∣∣G−1,0 − G1,0

∣∣+ ∣∣2R − R−2,0 − R2,0

∣∣ [6.13]

�y = ∣∣G0,−1 − G0,1

∣∣+ ∣∣2R − R0,−2 − R0,2

∣∣ [6.14]

then interpolates the green level using the equation:

Ĝ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
G−1,0 + G1,0

)
/2 + (

2R − R−2,0 − R2,0
)
/4 if �x < �y(

G0,−1 + G0,1
)
/2 + (

2R − R0,−2 − R0,2
)
/4 if �x > �y(

G0,−1 + G−1,0 + G1,0 + G0,1
)
/4

+ (
4R − R0,−2 − R−2,0 − R2,0 − R0,2

)
/8 if �x = �y

[6.15a]

[6.15b]

[6.15c]
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II

I

and

ICFA

Î (R = 71 ,Ĝ = 115, B̂ = 110)

(b) Example of demosaicing result

Figure 6.7. Hamilton and Adams’ method [HAM 97]. (a) One of the CFA neighborhood
structures used by this method (size 5 × 5 pixels, centered at R). (b) Exampleof

demosaicing result, on the same image sample as in Figure 6.5. The 5 × 5 detail has
the CFA neighborhood structure of figure (a) and the corresponding levels in the CFA

image are represented at the upper right, superimposed on the reference image. This
detail highlights the failure of the method to correctly determine the interpolation
direction: at its central pixel, since �x = 57 > �y = 48, the vertical neighboring

pixels are erroneously used to estimate Ĝ according to equation [6.15b] (see detail of
the estimated image at the lower right)

This algorithm yields much better results than Hibbard’s method, not
only because it computes the gradient more accurately by combining
the information from two color components, but also because it
exploits the spectral correlation to interpolate the green component3.
However, the criterion used to determine the interpolation direction
may be inappropriate and may provide unsatisfactory results in regions

3 The horizontal estimation of the green level (equation [6.15a]) can be rewritten as
the average of an interpolation term on the left Ĝl = G−1,0 + 1

2 (R − R−2,0) and of an

interpolation term on the right Ĝr = G1,0+ 1
2 (R−R2,0). Each of these terms expresses the

local constancy of the component difference, since and Ĝl −R = G−1,0 − 1
2 (R−2,0 +R)

and Ĝr − R = G1,0 − 1
2 (R + R2,0).

R−2,2 G−1,2 R0,2 G1,2 R2,2

G−2,1 B−1,1 G0,1 B1,1 G2,1

R−2,0 G−1,0 Rx,y G1,0 R2,0

G−2,−1B−1,−1 G0,−1 B1,−1 G2,−1

R−2,−2G−1,−2 R0,−2 G1,−2 R2,−2

(a) 5 × 5 CFA neighborhood cente-
red in R
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containing thin objects or textures. For instance, Figure 6.7b shows
that the approximation of horizontal and vertical differences (�x and
�y) does not always lead to the right decision for the interpolation
direction.

Wu and Zhang [WU 04] propose an approach to determine this
direction more reliably, again using a local neighborhood. Two candidate
levels are computed to interpolate the missing green value at a pixel:
one is determined with the horizontal neighbors, and the other with
the vertical neighbors. Then, the missing value R or B is estimated
according to the horizontal and vertical directions with each of these two
candidates for the G. Finally, the selected interpolation direction is that
for which the component differences (R −G) and (B −G) show minimal
variations. This interpolation direction allows us to select the levels
(previously computed) to take into account when estimating the missing
components of the pixel, thus ensuring the consistency of interpolation
directions between these components. Wu and Zhang’s method uses the
same formula as that of Hamilton and Adams to interpolate the missing
color levels, but improves the determination of the interpolation direction
by using a 3 × 3 neighborhood rather than a single row or column,
and by measuring the gradient of the component differences over this
neighborhood.

Other authors attempt to refine the selection of the interpolation
direction to still more accurately estimate the pixels representing the
observed scene. For example, Hirakawa and Parks [HIR 05] propose a
selection criterion using the number of pixels with homogeneous colors
in the neighborhood of a given pixel. By computing the color distances
between the pixel and its neighbors in the CIE space L∗a∗b∗, better
suited for the representation of human perception of colors than the
RGB space, these authors propose an adaptive thresholding homogeneity
criterion that allows us to reduce the color artifacts due to an improper
selection of the interpolation direction. Chung and Chan [CHU 06],
after showing that the interpolation of the green plane is crucial to
the quality of the estimated image, propose to estimate the variance
of the color component difference in a neighborhood to evaluate the
local homogeneity, and to choose the direction corresponding to the
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minimum variance. This criterion is used to refine the estimation of the
green component, especially in textured regions.

The methods mentioned above, whether Cok’s based on pattern
recognition or those using a directional gradient, require a classification
step of the neighborhood to perform the interpolation. Kimmel [KIM 99]
proposes a linear interpolation with adaptive weights that merges these
two steps. To each available level of the neighborhood, this method
associates a normalized weight that depends on a directional gradient.
The direction of that gradient is specific to each neighboring pixel.
For instance, to interpolate the green level at the center of the {GRG}
or {GBG} structure, the equation is the following:

Ĝ = w0,−1 · G0,−1 + w−1,0 · G−1,0 + w1,0 · G1,0 + w0,1 · G0,1

w0,−1 + w−1,0 + w1,0 + w0,1
[6.16]

where the coefficients wδx,δy are the weights computed over the
neighborhood of the pixel in question. To exploit spatial correlation,
these weights are adjusted to reflect the shape found in the neighborhood.
Thus, the interpolation automatically adapts to the transition present in
the image. Of course, the determination of these weights is crucial to the
quality of results provided by this method, and several authors [LU 03,
LUK 05] propose improvements to the formula originally used by
Kimmel for their computation.

Finally, another interpolation method without neighborhood
classification is worth mentioning. This original method is based on
the fact that demosaicing by interpolation exhibits strong similarities
with the super-resolution problem approach. With Orchard, Li [LI 01]
achieves demosaicing by adapting the algorithm he proposes in his
PhD thesis [LI 00] to increase the resolution of a gray scale image.
In both problems, conventional approaches by interpolation (bilinear
and bicubic) smooth the transitions and produce artifacts in regions
of high spatial frequencies. Li’s method exploits spatial correlation by
evaluating a local covariance of the levels to interpolate the missing
values with no directional gradient computation. To achieve demosaicing,
each subset Ik , k ∈ {R, G, B}, from the CFA image is considered
as a sub-sampling of the corresponding plane Î k of the image to be
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estimated. The main problem is to locally compute the covariance of
the levels in the high-resolution image from the known levels in the
low-resolution image. This is possible by exploiting the geometric duality
principle: since the covariance is computed over a local neighborhood
in the low-resolution image, the equivalent high-resolution covariance is
estimated by geometric duality by considering pairs of pixels at the two
resolutions according to the same direction of the image plane.

To close this section about methods based on spatial analysis, let
us recall that the green plane is often interpolated first. This estimation
is essential because the green component generally carries most of the
high-frequency information, particularly in edges or texture regions of
natural images. Once the green plane is completely determined, it is
used to estimate the chrominance. Hence, there is need to select a
method that successfully exploits spatial correlation. A detailed study
of the methods mentioned above [LOS 10] shows, in addition, that those
estimating the missing green levels only from CFA green levels (case
of Cok’s [COK 86], Li and Orchard’s [LI 01], and bilinear interpolation
methods) generally yield poorer results than others. The estimation of
the green plane is improved when using the information from the R and
B components. A powerful demosaicing method should therefore make
the most of spatial and spectral correlations, simultaneously and for each
color component.

6.3.2. Methods based on a frequency analysis

A demosaicing approach using the frequency domain4 is proposed
by Alleysson et al. [ALL 05]. This is the origin of a particularly
important family of demosaicing algorithms, as they are currently the
most efficient ones (see next section). Their principle is to represent a
CFA image as a combination of a luminance5 component at low spatial

4 The frequency mentioned here is the spatial frequency (in cycles/pixel) that is defined
as the inverse of the number of adjacent pixels representing the same series of levels,
along a preferred direction in the image (typically, the horizontal or vertical direction).
5 The “luminance” term denotes the achromatic component. It is re-used here from
publications about demosaicing methods by frequency analysis.
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frequencies and of two chrominance components modulated at high
spatial frequencies6, and then to estimate the color image by adequately
selecting the frequencies. To outline such an approach, we retain the
formalism proposed by Dubois [DUB 05].

Let us assume that each component k ∈ {R, G, B} of a color image
corresponds to an underlying signal f k . Demosaicing then involves
computing an estimation f̂ k (coinciding with Î k) at each pixel. Let us
also assume that there exists a signal, denoted as f CFA and called CFA
signal, underlying the CFA image (i.e. coinciding with ICFA at each pixel).
The CFA signal value at each pixel of coordinates (x, y) can be expressed
as the sum of the spatially sampled signals f k:

f CFA(x, y) =
∑

k=R,G,B

f k(x, y)mk(x, y) [6.17]

where mk(x, y) is the sampling function of the component k corresponding
to the Bayer CFA shown in Figure 6.3a:

mR(x, y) = 1
4

[
1 − (−1)x

] [
1 + (−1)y

]
[6.18]

mG(x, y) = 1
2

[
1 + (−1)x+y

]
[6.19]

mB(x, y) = 1
4

[
1 + (−1)x

] [
1 − (−1)y

]
[6.20]

By setting

⎡
⎣ f L

f C1

f C2

⎤
⎦ =

⎡
⎣ 1

4
1
2

1
4− 1

4
1
2 − 1

4− 1
4 0 1

4

⎤
⎦
⎡
⎣ f R

f G

f B

⎤
⎦, the expression

of f CFA becomes:

f CFA(x, y) = f L(x, y) + f C1 (x, y) (−1)x+y︸ ︷︷ ︸
ej2π (x+y)/2

+f C2 (x, y)
[
(−1)x − (−1)y

]︸ ︷︷ ︸
ej2πx/2−ej2πy/2

[6.21]

6 Bayer’s hypothesis is not used in this representation. Luminance is not assimilated to
the green component, nor chrominance to the red and blue components.
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The CFA signal can then be interpreted as the sum of a luminance
component f L at baseband, of a chrominance component f C1 modulated
at spatial frequencies (horizontal and vertical) (u = 0.5, v = 0.5), and
of another chrominance component f C2 modulated at spatial frequencies
(u = 0.5, v = 0) and (u = 0, v = 0.5)7. If it is possible to estimate the
functions f L, f C1 , and f C2 from the CFA signal at each pixel, the estimated
levels of the color components R, G, and B are then simply found as:⎡

⎢⎣ f̂ R

f̂ G

f̂ B

⎤
⎥⎦ =

⎡
⎣ 1 −1 −2

1 1 0
1 −1 2

⎤
⎦
⎡
⎢⎣ f̂ L

f̂ C1

f̂ C2

⎤
⎥⎦ [6.22]

The Fourier transform of the CFA signal can be expressed from
equation [6.21] as:

FCFA(u , v) = FL(u , v) + FC1 (u − 0.5, v − 0.5)

+ FC2 (u − 0.5, v) − FC2 (u, v − 0.5)
[6.23]

where the terms are the Fourier transforms of f L(x, y), of f C1 (x, y)(−1)x+y,
as well as of the two signals defined as f C2a(x, y) = f C2 (x, y)(−1)x and
f C2b(x, y) = −f C2 (x, y)(−1)y.

Observing the energy distribution of a CFA image in the frequency
plane (see example in Figure 6.8a) reveals a concentration in nine quite
distinct regions, centered on the spatial frequencies corresponding to
equation [6.23]. In particular, the energy of FC2 (u − 0.5, v) lies on the
horizontal frequency axis u and that of FC2 (u, v−0.5) lies on the vertical
frequency axis v. The energy of FL(u, v) is mainly concentrated at the
center of the frequency plane, while that of FC1 (u − 0.5, v − 0.5) is
located in the diagonal regions (called “corners”) of the plane. The key
of methods based on frequency selection thus lies in the design of filters
allowing us to effectively separate the components of luminance L and
of chrominance C1 and C2. The bandwidth of these filters should be

7 It is easy to verify that, on a gray scale image for which f R = f G = f B, the two
chrominance components of the CFA signal are zero.
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adjusted with particular care, given the mutual overlapping (aliasing) of
the three signal spectra.

Various proposals of selective filters have emerged. For instance,
the original article of Alleysson et al. [ALL 05] uses the filter whose
spectrum is reproduced on the upper part of Figure 6.8b to isolate the
luminance component. Dubois [DUB 05] proposes to form the estimation
of f C2 by giving more weight to the subcomponent (C2a or C2b) that is
less prone to spectral aliasing with the luminance. In a local region of
the image, such aliasing occurs mainly in either the horizontal direction
or the vertical direction.

Lian et al. [LIA 05] show that the estimation of the luminance by
these methods is sensitive to the bandwidth of the selective filters. Yet,
the parameters of these filters (r1 and r2 in Figure 6.8b) depend on the
image content and are difficult to adjust. In addition, the luminance
selection by low-pass filtering the CFA image causes the loss of the
high-frequency information located along the horizontal and vertical
directions, to which the human visual system is particularly sensitive.
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Figure 6.8. Frequency analysis of a CFA image (frequencies in cycles/pixel).
(a) Distribution, in the frequency plane, of the normalized energy (Fourier transform

module) of the “Lighthouse” CFA image (number 19 of the Kodak database) [ALL 05].
(b) Filters (spectrum and bandwidth) used to estimate the luminance, proposed

by Alleysson et al. [ALL 05] (top) and Lian et al. [LIA 07] (bottom)
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The same authors [LIA 07] point out that along these directions, the
spectrum associated with the filter used to estimate the component C2

is zero if the G locations of the CFA are solely considered. At these
locations, they hence apply a filter (see bottom of Figure 6.8b) whose
spectrum is zero in the “corners” of the frequency plane where the energy
of C1 is concentrated, which provides the spectrum of the luminance
FL at these G locations. The advantage of doing so is that L exhibits
less spectral overlapping with C1 than with C2, as it can be seen on the
example in Figure 6.8a. To estimate the luminance at R and B locations
of the CFA, as it is difficult to isolate the component C2, the authors use a
spatial analysis based on the component difference constancy (exploiting
spectral correlation) and a linear interpolation with adaptive weighting
(exploiting spatial correlation).

6.3.3. Other methods and post-processing

This section is a supplement to the presentation of demosaicing
methods. We very briefly talk about the classical post-processing
performed by the algorithms already mentioned to remove demosaicing
artifacts, as well as alternative approaches.

A post-processing is often performed on the estimated image to
correct the estimated colors, usually by increasing iteratively the
spectral correlation among the three color components. The median
filter, typically used to remove impulse noise in a gray scale image,
was historically highly used for its ability to effectively remove
false colors without damaging the local variations. Freeman [FRE 88]
is the first to take advantage of this filter by applying it to the
estimated planes of component differences R − G and B − G (that
generally contain few high spatial frequencies), which improves the
bilinear interpolation estimation quite significantly. Several authors
also include this filter to remove the demosaicing artifacts, such
as Hirakawa and Parks [HIR 05], Lu and Tan [LU 03] or Chang
and Tan [CHA 06]. A common approach to these last two works
is to pre-identify the image regions that may contain artifacts, then
to apply the median filter only on those regions. Among other
interesting corrective procedures, the reader can refer to that incorporated
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into (previously described) Kimmel’s method [KIM 99], or to that
of Menon et al. [MEN 06] taking into account the local edge
direction.

Demosaicing methods known as “by regularization” may be viewed as
sophisticated correction approaches of the estimated colors. They indeed
require an initial estimation Ĩ generated by a simple method (for example,
Hamilton and Adams’), that is then iteratively improved by exploiting the
spectral correlation principle. In this way, Keren and Osadchy [KER 99]
apply a regularization by minimizing (with a finite element method) a cost
function that includes a spatial smoothing term and a color correlation
term:

Cost =
∫ ∫ ∑

k=R,G,B

⎡
⎣(∂2 Ĩ k

∂x2

)2

+ 2

(
∂2 Ĩ k

∂x∂y

)2

+
(

∂2 Ĩ k

∂y2

)2
⎤
⎦dxdy

+ γ

∫ ∫ (
Ĩx,y − Īx,y

)
C−1

x,y

(
Ĩx,y − Īx,y

)t
dxdy

[6.24]

where Īx,y and Cx,y are the average color and the color covariance
matrix respectively at pixel (x, y), and where γ is a positive constant.
Gunturk et al. [GUN 02] propose a method that gradually homogenizes
the high-frequency characteristics among the three component planes,
while keeping the data available in the CFA image. These objectives are
fulfilled thanks to two convex sets of constraints on which the algorithm
alternately projects the estimated data. The first set, called “Observation”,
ensures the consistency with the data available in the CFA image. The
second, called “Detail”, is based on a decomposition of each plane R,
G, and B into four frequency sub-bands resulting from the filter bank
approach. This algorithm yields excellent demosaicing results, and it
has been considered as a performance comparison benchmark for many
years. However, it is complex and relatively expensive in computing time
(see Table 6.1), and the final quality partly depends on that of the original
estimation. A summary of existing regularization approaches is available
in the article of Menon et al. [MEN 09].

A last important family of methods, following Taubman’s
idea [TAU 00], considers demosaicing as a generalized inverse
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problem [RIB 08]. Here, we take up Chaix de Lavarène’s [CHA 07]
formulation and notations, regarding images as random variables in this
Bayesian framework. The CFA image X is viewed as the transform of
the reference color image Y by the sampling process, represented as a
projection operator Pr, that is X = Pr Y. Assuming that the reference
data is a linear combination of the acquired CFA data, and that the
acquisition process is spatially invariant, the estimation problem can
be solved by a Wiener approach. The demosaicing problem thus boils
down to finding a matrix D allowing us to estimate the color image
Ŷ = D X from the CFA image X, while minimizing the mean square
error to the reference image e = E[‖Y − Ŷ‖2]. Wiener’s solution is
written as:

D = (
E[Y Xt]) (E[X Xt])−1

[6.25]

where E[·] represents the mathematical expectation. Note that
this equation requires a dataset of reference images Y that are
representative of images that will be demosaiced later using the
matrix D. This inverse problem approach also allows us to perform
other operations in parallel with the demosaicing. For instance,
Condat [CON 10] uses it to perform a demosaicing–denoising
by a variational approach that minimizes the total variation
under the constraint of consistency with the acquired data.
Soulez and Thiébaut [SOU 09] jointly achieve deblurring and
demosaicing. To be as complete as possible on the resolution of
this underdetermined problem of demosaicing, let us finally mention
that some methods use neural networks [KAP 00] or Hidden Markov
fields [MUK 01].

6.4. Quality of the estimated image

Evaluating the quality of the estimated image (and thus the
performance of the demosaicing method used) can be achieved in
various ways: subjectively or objectively, with or without reference,
using different metrics, etc. (see Chapter 9 on the evaluation of the
quality of color images). We focus here on the objective evaluation of the
estimated image by assuming the availability of the reference image, as
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it is performed in the vast majority of articles on demosaicing8. Several
metrics have been proposed for this evaluation according to the objective.
In addition to conventional fidelity metrics based on the RGB color space,
there are:

– metrics based on perceptually uniform spaces, designed to better
reflect the quality of an image as the human visual system perceives
it [CHU 06, ZHA 97];

– metrics based on the analysis of the artifacts generated in the
estimated image, designed to assess their impact on low-level processing
applied later on this image [LU 03, YAN 09].

In the context of color image formation, we are solely interested in
fidelity metrics of the estimated image relative to the reference image.
The first subsection presents the usual procedure and criteria used to
carry out this evaluation. Results are presented in the second subsection,
which allow us to discuss the performance of the different demosaicing
methods detailed in this chapter.

6.4.1. Fidelity criteria of the estimated image

To objectively assess the quality of the demosaicing result, the
experimental protocol already mentioned in the previous section is still
followed. The CFA image is first simulated from the reference color
image by selecting only one color component among the three according
to the CFA mosaic arrangement. A demosaicing method is next applied to
the CFA image to provide the estimated image. The objective evaluation
of the demosaicing quality is then based on the pixel-to-pixel comparison
between the reference image and the estimated image. Classically,
objective evaluation metrics sum up the errors between the pixel levels
in both images. At each pixel, the error between the reference image
and the estimated image is quantified using a color distance between two
color points in a 3D space.

8 To our knowledge, only the article of Longère et al. [LON 02] describes the experiment
of a subjective assessment of the demosaicing quality, involving human observers and
regulated by a series of experimental protocols.
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Classical fidelity criteria are restricted to the RGB space. The
demosaicing literature uses three main criteria, the last being deduced
from the second:

1) Mean absolute error (MAE).
The MAE criterion estimates the mean absolute error between the

reference image I and the estimated image Î as:

MAE(I, Î) = 1

3XY

∑
k=R,G,B

X−1∑
x=0

Y−1∑
y=0

∣∣∣Ik
x,y − Î k

x,y

∣∣∣ [6.26]

Let us recall that Ik
x,y denotes the level of the color component k at

the pixel located at spatial coordinates (x, y) in image I, X and Y being
the numbers of columns and rows of that image. The value of the MAE
criterion varies between 0 and 255, and the lower it is, the better is the
demosaicing.

2) Mean square error (MSE).
The MSE criterion estimates the mean square error between the

reference image I and the estimated image Î as:

MSE(I, Î) = 1

3XY

∑
k=R,G,B

X−1∑
x=0

Y−1∑
y=0

(Ik
x,y − Î k

x,y)2 [6.27]

The value range for this metrics is
[
0, 2552

]
and the interpretation of its

values is identical to that of the MAE criterion: the optimal demosaicing
quality corresponds to the zero value of the MSE criterion.

3) Peak signal-noise ratio (PSNR).
The PSNR is a set of distortion metrics particularly used in image

compression. It quantifies the encoder performance by measuring the
reconstruction quality of the compressed image relative to the original
image. Many authors (e.g. [ALL 05, HIR 05, LIA 07, WU 04]) apply this
criterion to quantify the demosaicing performance. Usually expressed in
decibels, its definition is:

PSNR(I, Î) = 10 · log10

(
d2

MSE

)
[6.28]
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where d is the maximum possible level for the two compared images.
In the standard case of an image whose color components are coded on
8 bits, d equals 255. The better is the demosaicing quality, the higher
is the PSNR value. The PSNR value of images estimated by classical
demosaicing methods usually varies between 30 and 40 dB, which
corresponds to values between 65.03 and 6.50 for the MSE criterion.

Note that these three criteria can also be used to measure the errors on
each color component plane. On the green plane, for instance, the mean
square error is expressed as:

MSEG(I, Î) = 1

XY

X−1∑
x=0

Y−1∑
y=0

(IG
x,y − ÎG

x,y)2 [6.29]

The peak signal-noise ratio on the green plane is then computed
by using MSEG in equation [6.28]. These marginal criteria are useful
for assessing the degradation due to demosaicing on each component,
especially on the green plane (often estimated first, thus crucial to
estimate the red and blue planes).

6.4.2. Fidelity results and discussion

To give an insight into the performance of demosaicing methods, we
select the main ten among those presented in sections 6.2 and 6.3. These
are listed in the legend of Figure 6.9 and repeated in Table 6.19. The
images used for these tests are the commonly encountered ones in the

9 The source code is available online for some of these methods:

– Bilinear, C. hue, Cok and Hamilton (by Ting Chen): http://scien.stanford.
edu/pages/labsite/1999/psych221/projects/99/tingchen/main.htm,

– Li, Gunturk: http://www.csee.wvu.edu/ xinl/demo/demosaic.html,

– Dubois (with [VAN 07]): http://lcavwww.epfl.ch/reproducible_research/VandewalleKAS07.
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demosaicing literature, namely the twelve natural images from Kodak
database [KOD 91]10.

(a) Bilinear (b) C. hue (c) Cok (d) Hamilton (e) Wu

(f) Kimmel (g) Li (h) Dubois (i) Lian (j) Gunturk

(k) Reference Image (l) CFA Image

Figure 6.9. Demosaicing results obtained by ten demosaicing methods on a sample
of the image “Houses”(k)(number 8 of Kodak database): (a) by bilinear

interpolation [COK 86], (b) under the assumption of constant hue [COK 87],
(c) by pattern recognition [COK 94], (d) using a gradient [HAM 97], (e) using
component consistency of interpolation directions [WU 04], (f) with adaptive
weighting [KIM 99], (g) using the local covariance [LI 01], (h) by frequency

selection [DUB 05], (i) by frequency and spatial analyses [LIA 07],
(j) by alternating projection of components [GUN 02]

Figure 6.9 gives a visual overview of the results provided by the
ten methods on a sample of the image “Houses”. We can first note that
all the estimated images display demosaicing artifacts. No method is

10 Kodak database is available at http://www.math.purdue.edu/ lucier/PHOTO_CD, and
the selected twelve images show a significant diversity of colors and of textured regions.
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able to perfectly reproduce the reference image shown in Figure 6.9k.
Indeed, the presence of fine details makes this image particularly
difficult to estimate: in regions of high spatial frequencies, the CFA
sampling causes a spectrum aliasing, which means an inevitable loss of
information under the Nyquist-Shannon theorem. Demosaicing artifacts
are of three main types.

– the blurring effect is characterized by an attenuation of transitions
and a loss of very fine details. This effect is especially marked for the
image estimated by bilinear interpolation because this method performs a
low-pass filtering (for instance, see the texture of the wall in Figure 6.9a),
but it is also found in most of the other methods (see the attenuation of
the transoms of the opened window side);

– the zipper effect is a typical demosaicing artifact. It appears as a
repeating (high and low levels alternation) and colored (cyan or orange)
pattern that mainly occurs along the horizontal, vertical, or diagonal
transitions. The main cause of this artifact is an interpolation of levels
that belong to homogeneous regions representing different objects. It is
particularly noticeable in the images estimated by bilinear interpolation
(Figure 6.9a) and under the assumption of constant hue (Figure 6.9b),
along the uprights and the lower edge of the window;

– the false color artifact corresponds to a high deviation between
the estimated and reference colors of a pixel. Occurring as a visually
aberrant color, this effect typically derives from a loss of correlation
among the color components (see section 6.2.3 and Figure 6.6b),
leading in particular to a poor estimation of the components R and/or B.
This artifact can be interpreted in the frequency domain as related to
the mutual overlapping of the estimated luminance and chrominance
spectra, due to a bad design of the selective filters used to estimate these
components. All demosaicing methods tend to generate false colors,
sometimes jointly with the zipper effect. Such aberrant colors are visible
in the shutter slats, or at the upper-left corner of the window (notably in
Figures 6.9 c, d, f and i).

The fidelity criteria described in section 6.4.1 allow us to objectively
assess the demosaicing quality and to compare the relative performance
of the methods. Table 6.1 shows the numerical results of fidelity obtained
by the ten demosaicing methods under the PSNR criterion. The results
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��������Method
Image

6 7 8 9 11 16 19 20 21 22 23 24
Rank
sum

PSNR
(dB) Operations

Bilinear 10 10 10 10 10 10 10 10 10 10 9 10 119 30.89 6
C. hue 9 9 9 9 9 9 9 9 9 9 8 8 106 33.26 11
Cok 8 7 7 7 7 8 8 7 7 7 7 6 86 34.58 43
Hamilton 5 4 5 5 4 5 5 4 5 4 5 5 56 38.20 21
Wu 4 5 4 4 5 4 4 5 4 5 4 4 52 38.62 80
Kimmel 6 6 6 6 6 6 6 6 6 6 10 6 76 35.61 300
Li 7 8 8 8 8 7 7 8 8 8 7 9 93 34.39 >1300
Dubois 1 2 1 2 1 1 2 3 2 2 2 1 20 41.16 145
Lian 3 1 3 1 3 3 3 1 3 1 1 2 25 40.49 65
Gunturk 2 3 2 3 2 2 1 2 1 3 3 3 27 40.82 384

Table 6.1. Evaluation of the demosaicing fidelity under the peak signal-noise ratio
(PSNR) criterion for twelve color images from Kodak database. In addition to the
average values in the penultimate column, the table shows the performance ranks

achieved by the same ten demosaicing methods as those in Figure 6.9. The last column
shows the average number of operations required to estimate the color of a pixel

under the MSE (whose PSNR is the logarithmic form) and MAE criteria
are not reported here, but it should be noted that the latter provides very
similar rankings. The relative performances of the methods are given
as their rank for each image, rather than the actual PSNR values that
are less synthetic. The average actual values are, however, given in the
penultimate column of the table, and it is possible to notice that their
classification coincides with that provided by the rank sum computed in
the previous column.

We find that the two methods taking advantage of the frequency
domain (i.e. those of Dubois and Lian et al.) consistently provide better
results than methods using only a neighborhood in the image plane.
Moreover, the method proposed by Dubois on the basis of the work of
Alleysson et al. is often classified in the first two, and achieves the highest
scores on average over the twelve images. Gunturk et al.’s method by
alternate projection of components also provides excellent results. In
contrast, the “historical” methods (by bilinear interpolation and using
hue constancy) achieve scores well behind, which confirms the visual
assessment of Figure 6.9. Moreover, globally, those rankings obtained
for the twelve images coincide both with each other and roughly with
the subjective quality found on image number 8 alone. A reservation
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concerns the ranking of Kimmel’s method for image number 23, whose
highly saturated colors cause the generation of artifacts during the
iterative correction phase based on a component ratio.

In the perspective of an implantation of one of these algorithms, a
fortiori for an embedded processing of real-time demosaicing, we think
it useful to add an overview of their respective complexity in the last
column of Table 6.1. Due to the variety of implementations that we have
(Matlab, C, etc.) and being unable to assess their optimization level, we
estimate the computational complexity of the methods as the number of
operations required rather than as their execution time11. Observed in
conjunction with those of fidelity, these results suggest a quality/speed
compromise. We can notably point out that Hamilton and Adams’ method
yields satisfactory results despite its simplicity, while Li and Orchard’s
method is prohibitive due to the extremely high computational cost
of the matrix inversion used. Iterations, such as those integrated to
Kimmel’s and Gunturk et al.’s methods12, are highly detrimental in
terms of computational complexity. Finally, Lian et al.’s method probably
provides the best balance between the result fidelity and the computation
time.

6.5. Color camera calibration

The signals emitted by an acquisition system should be transformed
appropriately to match a faithful representation of the colors as they
appear to the human observer. Such a transformation is often called
calibration and is based on a more or less sophisticated color model
whose role is to make the connection between the output of the sensor(s)
(after demosaicing in the case of single-sensor color cameras) and the
color information of the acquired scene.

In general, such a color model is different from an acquisition system
to another, mainly due to the variability of spectral sensitivities of

11 For simplicity, all the basic operations (addition, multiplication, comparison, and
absolute value) are accounted equally.
12 Let us note, however, that an implementation of Gunturk et al.’s method requiring
only one pass was recently proposed [LU 10].
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the device channels and of all the nonlinearities that may arise. In
addition, we should not forget that the spectral characteristics of the
illuminant used is directly involved in the acquisition process. This
suggests that, ideally, a different color model per illuminant should be
used. Except under very controlled illumination, the huge diversity of
concrete situations makes it unrealistic to have as many color models as
possible acquisition configurations. In practice, most systems address the
problem by adjusting the gain values of each channel during a process
commonly known as white balance.

As suggested by its name, a white balance adjusts the output signals
of the different channels depending on the spectral characteristics of
the light sources, so that achromatic regions of the acquired scene are
actually represented as such. For instance, with an incandescent lamp, it
is necessary to increase the sensitivity of the channels dedicated to low
wavelengths of the visible spectrum relative to that of channels dedicated
to high wavelengths, to prevent white objects from appearing artificially
yellowish.

The major difficulty in white balancing is to determine which parts of
the acquired scene can be considered achromatic. The reliable way is of
course to use a Lambertian test pattern of the same reflection coefficient
for all wavelengths in the visible spectrum. However, if this approach
is ideally suited in a professional context, it is much more difficult to
implement in a general public context. In the latter case, methods are
deployed to estimate the color temperature of the illuminant.

One of these methods uses a set of photodiodes typically coated with
RGB filters. The photodiodes are placed in the acquisition device so
that they directly receive the incident light [HAN 83]. Unfortunately,
this approach may provide incorrect results due to spurious reflections
from colored areas of the scene. Furthermore, additional components
may induce a significant additional cost.

Better results are usually obtained by estimating the white balance
adjustment from the raw data of the sensor(s). The acquired image is
divided into a more or less important number of regions (typically at
least 20). For each region, the average signal value of each channel is
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computed. The obtained average values are then differentiated according
to a given algorithm to search for specific signatures allowing to select,
within a set of previously identified light sources, the most likely to
illuminate the acquired scene [MOR 90, LIU 95, SPA 98]. Once the most
likely source is selected, the different channels are weighted accordingly
to adjust their relative contributions to the spectral distribution of energy
of the incident light.

Whatever the method used to perform white balance, this operation
is not in itself a complete color model [LAM 05]. The color information
captured should be correlated with what an observer perceives. In
other words, care should be taken to minimize the differences between
digital colors and perceived colors. This refers to the problems of color
appearance that has been dealt with in Chapter 3 of this book. In
practical terms, the color model can be built following a white balance
by performing an acquisition of a set of reference colors under the same
shooting conditions as the scene to be imaged. The issue is then to
determine the transformation(s) required to correlate the output values
of the acquisition system with the reference colors.

The general principle is to match the observations of the selected
samples with their values in a standardized color space such as XYZ .
The underlying assumption is that the knowledge of the correspondence
between a number of well-chosen colors in two spaces linked
by a transformation allows us to deduce an approximation of the
transformation for a richer and more extensive colors set. This implies
that the so-called Luther condition is met, according to which a linear
transformation exists between the acquisition space and the selected
normalized space [HOR 84]. In practice, the Luther condition is generally
not strictly fulfilled, but the general approach, however, gives satisfactory
results.

The color model aims to link the values provided by the sensor(s)
and the colors perceived by the observer. The values it provides can
be encoded in multiple ways in color spaces that are dependent or
independent of the material, depending on the applications and devices
to which the acquisition system is led to be related.
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6.6. Conclusion

This chapter focuses on one of the fundamental processings
performed in a single-sensor color camera: demosaicing. We have seen
why and how the color image is estimated from the raw data sampled from
the sensor. The main principles underlying most demosaicing methods
are presented here along with the outstanding algorithms that implement
them. Among these, we mainly identify two families: methods based on
a spatial analysis of the image, and those using the frequency domain.
Other recently proposed approaches are also mentioned briefly.

The multiplicity and diversity of demosaicing methods reflect the
acuteness of this problem, while the latest ones show its topicality. The
steady expansion of the research on this topic for over 30 years has
allowed significant progress in the quality of the estimated image, and
more precisely in its fidelity to the observed scene. The brief fidelity
study presented here, which is performed on a representative sample of
the methods mentioned and on a representative set of images, highlights
the superiority of approaches analyzing the CFA signal in the frequency
domain. Indeed, these provide the most accurate results under the signal-
noise ratio criterion, for a relatively low computational cost.

In the context of color image formation within single-sensor color
devices, we strictly confined ourselves here to a fidelity study of the
estimated image. It would be interesting to extend the quality study of
this image in the context of its display or reproduction. This requires
a complete control over the acquisition conditions and the use of other
quality metrics, better correlated with the human visual perception, as
well as subjective quality tests.
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