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RANK PENALIZED ESTIMATION OF A QUANTUM SYSTEM

PIERRE ALQUIER1,4, CRISTINA BUTUCEA2,4, MOHAMED HEBIRI2, KATIA MEZIANI3

Abstract. We introduce a new method to reconstruct the quantum matrix ρ̄

of a system of n-qubits and estimate its rank d from data obtained by quantum

state tomography measurements repeated m times. The procedure consists

in minimizing the risk of a linear estimator ˆ̄ρ of ρ penalized by given rank

(from 1 to 2n), where ˆ̄ρ is previously obtained by the moment method. We

obtain simultaneously an estimator of the rank and the resulting state matrix

associated to this rank. We establish an upper bound for the error of penalized

estimator, evaluated with the Frobenius norm, which is of order dn(4/3)n/m

and consistency for the estimator of the rank. The proposed methodology is

computationnaly efficient and is illustrated with synthetic and real data sets.
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1. Introduction

The experimental study of quantum mechanical systems has made huge progress

recently. Producing and manipulating large quantum mechanical systems is easier

to achieve. Following such an experimental setup, we suppose that we have a

source of quantum systems which are identically prepared in some state. The goal

is to reconstruct this state via Quantum State Tomography (QST). The QST is

an experimental process where each system is repeatedly measured with different

elements of a projector-valued measure (PVM).

Most popular methods for estimating the state from such data are: linear inver-

sion [22], maximum likelihood [3], [11], [6] and Bayesian inference [1], [2], [5] (see

also references therein). Recently, different approaches brought up-to-date statis-

tical techniques in this field. The estimators are obtained via minimization of a

penalized risk. The penalization will subject the estimator to constraints. In [13]
1
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the penalty is the Von Neumann entropy of the state, while [9], [10] use the L1

penalty to implement the Lasso matrix estimator, under the assumption that the

state to be estimated has low rank. These last papers assume that the number of

measurements must be minimized in order to recover all the information that we

need. The ideas of matrix completion is indeed, that, under the assumptions that

the actual number of underlying parameters is small (which is the case under the

low-rank assumption) only a fraction of all possible measurements will be sufficient

to recover these parameters. The choice of the measurements is randomized and,

under additional assumptions, the procedure will recover the underlying density

matrix as well as with the full amount of measurements (the rates are within log

factors slower than the rates when all measurements are performed).

In this paper, we suppose that a reasonable amount m (e.g. m = 100) of data is

available from all possible measurements. We implement a method to recover the

whole density matrix and estimate its rank from this huge amount of data. Indeed,

more experiments deal nowadays with entanglement and the low-rank assumption

does not correspond to such experiments. Instead, all measurements are imple-

mented and for each one m independent, identically distributed (i.i.d.) random

variables are available. Our method is relatively easy to implement and computa-

tionally efficient. Its starting point is a linear estimator obtained by the moment

method (also known as the inversion method), which is projected on the set of

matrices with fixed, known rank. A data-driven procedure will help us select the

optimal rank and minimize the estimators risk in Frobenius norm. We proceed by

minimizing the risk of the linear estimator, penalized by the rank. When estimat-

ing the state matrix of a n-qubits system, our final procedure has the risk (squared

Frobenius norm) bounded by a term of order dn(3/4)n/m, where d between 1 and

2n is the rank of the matrix.

The inversion method is known to be computationally easy but less convenient

than constrained maximum likelihood estimators as it does not produce a density

matrix as an output. We revisit the moment method in our setup and argue that

we can still project the output on the set of density matrices, with the result that

the distance to the true state can only be decreased in the proper norm.

Moreover, the rank of the large density matrix is an indicator of entanglement

in the system. We shall indicate how to project the linear estimator of the state on

the space of matrices with fixed, known rank. Finally, we shall select the estimator

which fits best to the data in terms of a rank-penalized error. Additionally, the

rank selected by this procedure is a consistent estimator of the true rank d of the

state matrix.

We shall apply our procedure to the real data issued from experiments on systems

of 4 to 8 ions. Trapped ion qubits are a promising candidate for building a quantum

computer. An ion with a single electron in the valence shell is used. Two qubit

states are encoded in two energy levels of the valence electrons, see [4], [16].
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The structure of the paper is as follows. Section 2 gives notation and setup of the

problem. In Section 3 we present the moment method. We first change coordinates

of the state matrix in the basis of Pauli matrices and vectorize the new matrix. We

give properties of the linear operator which takes this vector of coefficients to the

vector of probabilities p(a, r). These are the probabilities to get a certain outcome

r from a given measurement indexed by a and that we actually estimate from

data at our disposal. We prove the invertibility of the operator, i.e. identifiability

of the model (the information we measure enables us to uniquely determine the

underlying parameters). Section 4 is dedicated to the estimation procedure. The

linear estimator will be obtained by inversion of the vector of estimated coefficients.

We describe the rank-penalized estimator and study its error bounds. We study

the numerical properties of our procedure on synthetic data and apply them to

real-data, in Section 5. The last section is dedicated to proofs.

2. Basic notation and setup

We have a system of n qubits. This system is represented by a 2n× 2n matrix ρ̄,

with coefficients in C. This matrix is Hermitian ρ̄∗ = ρ̄, semidefinite positive ρ̄ ≥ 0

and has Tr(ρ̄) = 1. It is the “state matrix” which fully describes the system of n

particles. The objective is to estimate ρ̄, from measurements of many independent

systems, identically prepared in this state.

For each system, the experiment provides random data from separate measure-

ments σx, σy, σz on each mode, where we use here the classical notation for the

Pauli matrices. The collection of measurements which are performed writes

(1) {σa = σa1
⊗ . . .⊗ σan

, a ∈ En = {x, y, z}n},

where a = (a1, . . . , an) is a vector taking values in En which identifies the experi-

ment.

The outcome of the experiment will be a vector r ∈ Rn = {−1, 1}n. It follows

from the basic principles of quantum mechanics that the outcome of any experiment

indexed by a is actually a random variable, say Ra, and that its distribution is given

by:

(2) ∀r ∈ Rn,P(Ra = r) = Tr
(

ρ̄ · P a1

r1 ⊗ · · · ⊗ P an

rn

)

,

where the matrices P ai
ri denote the projectors on the eigenvectors of σai

associated

to the eigenvalue ri, for all i from 1 to n.

For the sake of simplicity, we propose to introduce the notation

P a

r
:= P a1

r1 ⊗ · · · ⊗ P an

rn
.

As a consequence we have the shorter writing for (2): P(Ra = r) = Tr (ρ̄ · P a

r
).

The tomographic inversion method for reconstructing ρ̄ is based on estimating

probabilities p(a, r) := P(Ra = r) by p̂(a, r) from available data and solving the

linear system of equations

(3) p̂(a, r) = Tr
(
ˆ̄ρ · P a

r

)
.

It is known in statistics as the method of moments.
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We shall use in the sequel the following notation: ‖A‖2F = Tr(A⋆A) denotes the

Frobenius norm and ‖A‖ = supv∈Rd,|v|2=1 |Av|2 the operator sup-norm for any d×d

Hermitian matrix A, |v|2 is the Euclidean norm of the vector v ∈ Rd.

In this paper, we give an explicit inversion formula for solving (2). Then, we

apply the inversion procedure to equation (3) and this will provide us an unbiased

estimator ˆ̄ρ of ρ̄. Finally, we project this estimator on the subspace of matrices of

rank k (k between 1 and 2n) and thus choose, without any a priori assumption, the

estimator which best fits the data. This is done by minimizing the penalized risk

‖R− ˆ̄ρ‖2F + ν · rank(R),

where the minimum is taken over all Hermitian, positive semidefinite matrices R.

This optimization program has an explicit and easy to implement solution. The

procedure will also estimate the rank of the matrix which best fits data. We actually

follow here the rank-penalized estimation method proposed in the slightly different

problems of matrix regression. This problem recently received a lot of attention in

the statistical community [7, 12, 17, 19] and Chapter 9 in [14]. Here, we follow the

computation in [7].

In order to give such explicit inversion formula we first change the coordinates

of the matrix ρ̄ into a vector ρ ∈ R4n on a convenient basis. The linear inversion

also gives information about the quality of each estimator of the coordinates in ρ.

Thus we shall see that we have to perform all measurements σa in order to recover

(some) information on each coordinate of ρ. Also, some coordinates are estimated

from several measurements and the accuracy of their estimators is thus better.

To our knowledge, this is the first time that rank penalized estimation of a

quantum state is performed. Parallel work of Guta, Monz (private communication)

addresses the same issue via the maximum likelihood procedure. Other adaptive

methods include matrix completion for low-rank matrices [8, 9, 10, 15] and for

matrices with small Von Neumann entropy [13].

3. Identifiability of the model

A model is identifiable if, for different values of the underlying parameters, we

get different likelihoods (probability distributions) of our sample data. This is a

crucial property for establishing the most elementary convergence properties of any

estimator.

The first step to explicit inversion formula is to change coordinates and express

matrix ρ̄ on the basis provided by the measurements. More precisely, let us put

Mn = {I, x, y, z}n and σI = I. For all b ∈ Mn, denote similarly to (1)

(4) {σb = σb1 ⊗ . . .⊗ σbn , b ∈ Mn}.

Then, we have the following decomposition:

ρ̄ =
∑

b∈Mn

ρb · σb, with ρ(I,...,I) =
1

2n
.
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We can plug this last equation into (2) to obtain, for a ∈ En and r ∈ Rn,

P(Ra = r) = Tr (ρ̄ · P a

r
)

= Tr

(
∑

b∈Mn

ρb · σb · P a

r

)

=
∑

b∈Mn

ρbTr
(

(σb1 ⊗ · · · ⊗ σbn)
(

P a1

r1 ⊗ · · · ⊗ P an

rn

))

=
∑

b∈Mn

ρb

n∏

j=1

Tr(σbjP
aj

rj
).

Finally, elementary computations lead to Tr(IP t
s ) = 1 for any s ∈ {−1, 1} and

t ∈ {x, y, z}, while Tr(σtP
t′

s ) = s1t=t′ for any s ∈ {−1, 1} and (t, t′) ∈ {x, y, z}2.
For any b ∈ Mn, we denote by Eb = {j ∈ {1, . . . , n} : bj = I}. The above

calculation have proved the following result.

Proposition 3.1. For a ∈ En, and r ∈ Rn, we have

P(Ra = r) =
∑

b∈Mn

ρb ·
∏

j 6∈Eb

rj I(aj = bj).

Let us consider, for example, b = (x, . . . , x), then the associated set Eb is empty

and P(R(x,...,x) = r) is the only probability depending on ρ(x,...,x) among other

coefficients. Therefore, only the measurement (σx, . . . , σx) will bring information on

this coefficient. Whereas, if b = (I, I, x, . . . , x), the set Eb contains 2 points. There

are 32 measurements ((σx, ..., σx), ..., (σz , σz , σx, ..., σx)) that will bring partial

information on ρb. This means, that a coefficient ρb is estimated with higher

accuracy as the size of the set Eb increases.

For the sake of shortness, let us put in vector form:

ρ := (ρb)b∈Mn

p :=
(
p(r,a)

)

(r,a)∈(Rn×En)
= (P(Ra = r))(r,a)∈(Rn×En).

Our objective is to study the invertibility of the operator

R
4n → R

6n

ρ 7→ p.

Thanks to Proposition 3.1, this operator is linear. It can then be represented by

a matrix P = [P(r,a),b](r,a)∈(Rn×En),b∈Mn , we will then have:

(5) ∀(r, a) ∈ (Rn × En), p(r,a) =
∑

b∈Mn

ρbP(r,a),b

and from Proposition 3.1 we know that

P(r,a),b =
∏

j 6∈Eb

rj I(aj = bj).

We want to solve the linear equation Pρ = p. Recall that Eb is the set of indices

where the vector b has an I operator. Denote by d(b) the cardinality of the set

Eb.
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Proposition 3.2. The matrix PTP is a diagonal matrix with non-zero coefficients

given by

(PTP)b,b = 3d(b) 2n.

As a consequence the operator is invertible, and the equation Pρ = p has a unique

solution:

ρ = (PTP)−1PTp.

In other words, we can reconstruct ρ = (ρb)b∈Mn from p, in the following way:

ρb =
1

3d(b)2n

∑

(r,a)∈(Rn×En)

p(r,a)P(r,a),b.

This formula confirms the intuition that, the larger is d(b), the more measurements

σa will contribute to recover the coefficient ρb. We expect higher accuracy for

estimating ρb when d(b) is large.

4. Estimation procedure and error bounds

In practice, we do not observe P(Ra = r) for any a and r. For any a, we have a

set of m independent experiments, whose outcomes are denoted by Ra,i, 1 ≤ i ≤ m.

Our setup is that the Ra,i are independent, identically distributed (i.i.d.) random

variables, distributed as Ra.

We then have a natural estimator for p(r,a) = P(Ra = r):

p̂(r,a) =
1

m

m∑

i=1

1Ra,i=r.

We can of course write p̂ = (p̂(r,a))(r,a)∈(Rn×En).

4.1. Linear estimator. We apply the inversion formula to the estimated vector

p̂. Following Proposition 3.2 we can define:

(6) ρ̂ = (PTP)−1PT p̂.

Put it differently:

ρ̂b =
1

3d(b)2n

∑

(r,a)∈(Rn×En)

p̂(r,a)P(r,a),b

and then, the linear estimator obtained by inversion, is

(7) ˆ̄ρ =
∑

b∈Mn

ρ̂bσb.

The next result gives asymptotic properties of the estimator ρ̂ of ρ.

Proposition 4.1. The estimator ρ̂ of ρ, defined in (6) has the following properties:

(1) it is unbiased, that is E[ρ̂] = ρ;

(2) it has variance bounded as follows

V ar(ρ̂b) ≤
1

3d(b)4nm
;



RANK PENALIZED ESTIMATION OF A QUANTUM SYSTEM 7

(3) for any ε > 0,

P

(

∥
∥ ˆ̄ρ− ρ̄

∥
∥ ≥ 4

√

2

(
4

3

)n
n log(2)− log(ε)

m

)

≤ ε.

Note again that the accuracy for estimating ρb is higher when d(b) is large.

Indeed, in this case more measurements bring partial information on ρb.

The concentration inequality gives a bound on the norm ‖ ˆ̄ρ− ρ̄‖ which is valid

with high probability. The bound we obtain above depends on log(2n), which is

expected as 4n − 1 is the total number of parameters of a full rank system. This

factor appears in the matrix Hoeffding inequality that we use in order to prove this

bound.

4.2. Rank penalized estimator. We investigate low-rank estimates of ρ̄ defined

in (7). From now on, we follow closely the results in [7] which were obtained for

a matrix regression model, with some differences as our model is different. Let us,

for a positive real value ν study the estimator:

(8) ˆ̄ρν = argmin
R

[∥
∥R− ˆ̄ρ

∥
∥
2

F
+ ν · rank(R)

]

,

where the minimum is taken over all Hermitian matrices R. In order to compute

the solution of this optimization program, we may write it in a more convenient

form since

(9) min
R

[∥
∥R − ˆ̄ρ

∥
∥
2

F
+ ν · rank(R)

]

= min
k

min
R:rank(R)=k

[∥
∥R− ˆ̄ρ

∥
∥
2

F
+ ν · k

]

.

An efficient algorithm is available to solve the minimization program (9) as a

spectral-based decomposition algorithm provided in [18]. Let us denote by R̂k

the matrix such that ‖R̂k − ˆ̄ρ‖2F = minR:rank(R)=k

[∥
∥R− ˆ̄ρ

∥
∥
2

F
+ ν · k

]

. This is a

projection of the linear estimator on the space of matrices with fixed (given) rank

k. Our procedure selects automatically out of data the rank k̂. We see in the sequel

that the estimators R̂k̂ and ˆ̄ρν actually coincide.

We study the statistical performance from a numerical point of view later on.

Theorem 4.2. For any θ > 0 put c(θ) = 1 + 2/θ. We have on the event {ν ≥
(1 + θ)‖ ˆ̄ρ− ρ̄‖2} that

‖ ˆ̄ρν − ρ̄‖2F ≤ min
k






c2(θ)

∑

j>k

λ2
j (ρ̄) + 2c(θ)νk






,

where λj(ρ̄) for j = 1, . . . , 2n are the eigenvalues of ρ̄ ordered decreasingly.

Note that, if rank(ρ̄) = d, for some d between 1 and 2n, then the previous

inequality becomes

‖ ˆ̄ρν − ρ̄‖2F ≤ 2c(θ)νd.

Let us study the choice of ν in Theorem 4.2 such that the probability of the event

{ν ≥ (1 + θ)‖ ˆ̄ρ − ρ̄‖2} is small. By putting together the previous theorem and

Proposition 4.1, we get the following result:
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Corollary 4.3. For any θ > 0 put c(θ) = 1+2/θ and for some small ε > 0 choose

ν(θ, ε) = 32(1 + θ)

(
4

3

)n
n log(2)− log(ε)

m

Then, we have

‖ ˆ̄ρν(θ,ε) − ρ̄‖2F ≤ min
k






c2(θ)

∑

j>k

λ2
j (ρ̄) + 2c(θ)νk






,

with probability larger than 1− ε.

Again, if the true rank of the underlying system is d, we can write that, for any

θ > 0 and for some small ε > 0:

‖ ˆ̄ρν − ρ̄‖2F ≤ 64c(θ)(1 + θ)d

(
4

3

)n
n log(2)− log(ε)

m
,

with probability larger than 1−ε. If we renormalize the left-hand side with respect

to the dimension, note that the bound becomes:

1

2n
‖ ˆ̄ρν − ρ̄‖2F ≤ 64c(θ)(1 + θ)d

(
2

3

)n
n log(2)− log(ε)

m
.

The next result will state properties of k̂, the rank of the final estimator ˆ̄ρν .

Corollary 4.4. If there exists k such that λk(ρ̄) > (1 + δ)
√
ν and λk+1(ρ̄) <

(1− δ)
√
ν for some δ in (0, 1], then

P(k̂ = k) ≥ 1− P(‖ ˆ̄ρ− ρ̄‖ ≥ δ
√
ν).

From an asymptotic point of view, this corollary means that, if d is the rank

of the underlying matrix ρ̄, then our procedure is consistent in finding the rank.

Indeed, as
√
ν is an upper bound of the norm ‖ ˆ̄ρ− ρ̄‖, it tends to 0 asymptotically

and therefore the assumptions of the previous corollary will be checked for k = d.

With a finite sample, we deduce from the previous result that k̂ actually evaluates

the first eigenvalue which is above a threshold related to the largest eigenvalue of

the noise ˆ̄ρ− ρ̄.

5. Numerical performance of the procedure

In this section we implement an efficient procedure to solve the optimization

problem (9) from the previous section. We are interested in two aspects of the

method: its ability to select the rank correctly and the correct choice of the penalty.

First, we explore the penalized procedure on synthetic data and tune the parameter

ν conveniently. In this way, we evaluate the performance of the linear estimator

and of the rank selector. We then apply the method on real data sets.

The algorithm for solving (9) is given in [18]. We adapt it to our context and

obtain the simple procedure.
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Algorithm:

Inputs: The linear estimator ˆ̄ρ and a positive value of the tuning parameter ν

Outputs: An estimation k̂ of the rank and an approximation R̂k̂ of the state matrix.

Step 1. Compute the eigenvectors V = [v1, . . . , v2n ] corresponding to the eigenval-

ues of the matrix ˆ̄ρ⋆ ˆ̄ρ sorted in decreasing order.

Step 2. Let U = ˆ̄ρV .

Step 3. For k = 1, . . . , 2n, let Vk and Uk be the restrictions to their k first columns

of V and U , respectively.

Step 4. For k = 1, . . . , 2n, compute the estimators R̂k = UkV
⋆
k .

Step 5. Compute the final solution R̂k̂, where, for a given positive value ν, k̂ is

defined as the minimizer in k over {1, . . . , 2n} of
∥
∥
∥R̂k − ˆ̄ρ

∥
∥
∥

2

F
+ ν · k.

The constant k in the above procedure plays the role of the rank and then R̂k

is the best approximation of ˆ̄ρ with a matrix of rank k. As a consequence, this

approach provides an estimation of both of the matrix ρ̄ and of its rank d by R̂k̂

and k̂, respectively.

Obviously, this solution is highly linked to the value of the tuning parameter ν.

Before dealing with how to calibrate this parameter, let us present a property that

should help us reduce the computational cost of the method.

The above algorithm is simple but requires the computation of 2n matrices in

Step 3 and Step 4. We present here an alternative which makes possible to com-

pute only the matrix R̂k that corresponds to k = k̂, and then reduce the storage

requirements.

Remember that k̂ is the value of k minimizing the quantity in Step 5 of the above

algorithm. Let λ1(ˆ̄ρ) > λ2(ˆ̄ρ) > ... be the ordered eigenvalues of
√

ˆ̄ρ⋆ ˆ̄ρ. According

to [7, Proposition 1], it turns out that k̂ is the largest k such that the eigenvalue

λk(ˆ̄ρ) exceeds the threshold
√
ν:

(10) k̂ = max{k : λk(ˆ̄ρ) ≥
√
ν}.

As a consequence, one can compute the eigenvalues of the matrix
√

ˆ̄ρ⋆ ˆ̄ρ and set k̂

as in (10). This value is then used to compute the best solution R̂k̂ thanks to Step

1 to Step 4 in the above algorithm, with the major difference that we restrict Step

3 and Step 4 to only k = k̂.

Synthetic Data

We build artificial state matrices ρ̄ with a given rank d in {1, . . . , 6}. These

matrices are 2n × 2n with n = 4 and 5. To construct such a matrix, we define ρ̄ as

the diagonal matrix with its first d diagonal terms equal 1/d, whereas the others

equal zero.

We aim at testing how often we select the right rank based on the method

illustrated in (10) as a function of the rank d, and of the number m of repetitions of

the measurements we have in hand. Our algorithm depends on the tuning parameter

ν. We use and compare two different values of the threshold ν: denote by ν
(1)
n
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and ν
(2)
n the values the parameter ν provided in Theorem 4.2 and Corollary 4.3

respectively. That is,

(11) ν(1)n = ‖ ˆ̄ρ− ρ̄‖2 and ν(2)n = 32(1 + θ)

(
4

3

)n
n log(2)

m
.

As established in Theorem 4.2, if the tuning parameter ν is of order of the parameter

ν
(1)
n , the solution of our algorithm is an accurate estimate of ρ̄. We emphasize the

fact that ν
(1)
n is nothing but the estimation error of our linear estimator ˆ̄ρ. We study

this error below. On the other hand, the parameter ν
(2)
n is an upper bound of ν

(1)
n

that ensures that the accuracy of estimation remains valid with high probability

(cf. Corollary 4.3). The main advantage of ν
(2)
n is that it is completely known by

the practitioner, which is not the case of ν
(1)
n .

Rank estimation. Our first goal consists in illustrating the estimation power of

our method in the selecting the true rank d based on the calibrations of ν given

by (11). We provide some conclusions on the number of repetitions m of the

measurements needed to recover the right rank as a function of this rank. Figure 5

illustrates the evolution of the selection power of our method based on ν
(1)
n (blue

stars) on the one hand, and based on ν
(2)
n (green squares) on the other hand.

Figure 1. Frequency of good selection of the true rank d with respect to

d, based on (10) with ν = ν
(1)
n (green squares) and with ν = ν

(2)
n (blue stars).

The results are established on 20 repetitions. A value equal to 1 in the y-axis

means that the method always selects the good rank, whereas 0 means that it

always fails. Left: m = 50 measurements – Right: m = 100 measurements
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Two conclusions can be made. First, the method based on ν
(1)
n is powerful. It

almost always selects the right rank. It outperforms the ν
(2)
n -based algorithm. This

is an interesting observation. Indeed, ν
(2)
n is an upper bound of ν

(1)
n . It seems that

this bound is too large and can be used only for particular settings. Note however

that in the variable selection literature, the calibration of the tuning parameter is a

major issue and is often fixed by Cross-Validation or other empirical methods, see

e.g. the simulation study in [20]. We have chosen here to illustrate only the result

based on our theory and we will provide later an instruction to properly calibrate

the tuning parameter ν.
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The second conclusion goes in the direction of this instruction. As expected, the

selection power of the method (based on both ν
(1)
n and ν

(2)
n ) increases when the

number of repetition m of the measurements increases. Compare the left (m = 50

repetitions) to the right (m = 100 repetitions) picture in Figure 5. Moreover, up

to a certain rank, the methods always select the good rank. For larger ranks, they

perform poorly. For instance with m = 50 (a small number of measurements), we

observe that the algorithm based on ν
(2)
n performs poorly when the rank d ≥ 4,

whereas the algorithm based on ν
(1)
n is still excellent.

Actually, the bad selection when d is large does not mean that the methods perform

poorly. Indeed our definition of the matrix ρ̄ implies that the eigenvalues of the

matrix decrease with d. They equal to 1/d. Therefore, if
√
ν is of the same order

as 1/d, finding the exact rank becomes difficult since this calibration suggests that

the eigenvalues are of the same order of magnitude as the error. Hence, in such

situation, our method adapts to the context and finds the effective rank of ρ̄. As

an example, let us consider our study with n = 4, m = 50 and d = 6. Based on 20

repetitions of the experiment, we obtain a maximal value of ν
(1)
n = ‖ ˆ̄ρ− ρ̄‖2 equal

to 0.132. This value is quite close to 0.167, the value of the eigenvalues of ρ̄. This

explains the fact that our method based on ν
(1)
n failed in one iteration (among 20)

to find the good rank. In this context ν
(2)
n is much larger than 0.167 and then the

selection of the rank d is not efficient with this calibration and in this setting.

Let us also mention that we explored numerous experiments with other choices of

the diagonal matrix ρ̄. The same conclusion remains valid. When the error of the

linear estimator ˆ̄ρ which is given by ν
(1)
n = ‖ ˆ̄ρ − ρ̄‖2 is close to the square of the

smallest eigenvalue of ρ̄, finding the exact rank is a difficult task. However, the

method based on ν
(1)
n is still good, but fails sometimes.

Figure 2. Evaluation of the operator norm

√

ν
(1)
n = ‖ ˆ̄ρ − ρ̄‖. The results

are established on 20 repetitions. Left: n = 4, m = 50 repetitions of the

measurements ; we compare the errors when d takes values betwenn 1 and 6 –

Center: n = 5, m = 100 ; we compare the errors when d takes values between

1 and 6 – Right: the rank equals d = 4 and compare the error for m = 50 and

100.
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Evaluation of the estimation error (n=4 and d=4)

Calibration of the tuning parameter ν. The quantity ν
(1)
n = ‖ ˆ̄ρ − ρ̄‖2 seems

to be very important to provide a good estimation of the rank d (or more precisely

of the effective rank). Then it is interesting to observe how this quantity behaves.

Figure 5 (Left m = 50 and d = 4, and Center m = 100 and d = 5) illustrates
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how ν
(1)
n varies when the rank increases. Except for d = 1, it seems that the value

of ν
(1)
n is quite stable. These graphics are obtained with particular values of the

parameters m and d, but similar illustrations can be obtained if these parameters

change.

The main observation according to the parameter ν is that it decreases with m

(see Figure 5 - Right) and is actually independent of the rank d (with some strange

behavior when d = 1). This is in accordance with the definition of ν
(2)
n which is an

upper bound of ν
(1)
n .

Real-data analysis

In the next paragraph, we propose a 2-steps instruction for practitioners to use

our method in order to estimate a matrix ρ̄ (and its rank d) obtained from the data

Ra,i we have in hand with a ∈ {x, y, z} and i ∈ {1, . . . ,m}.

Real Data Algorithm:

Inputs: for any measurement a ∈ {x, y, z} we observe Ra,i, i = 1, . . . ,m.

Outputs: k̂ and R̂k̂, estimations of the rank d and ρ̄ respectively.

The procedure starts with the linear estimator ˆ̄ρ and consists in two steps:

Step A. Use ˆ̄ρ to simulate repeatedly data with the same parameters n and m as

the original problem. Use the data to compute synthetic linear estimators and the

mean operator norm of these estimators. They provide an evaluation of the tuning

parameter ν̃
(1)
n .

Step B. Find k̂ using (10) and construct R̂k̂.

We have applied the method to real data sets concerning systems of 4 to 6 ions.

In Figure 5 we plot the eigenvalues of the linear estimator and the threshold given

by the penalty. In each case, the method selects a rank equal to 2, which possibly

means that the system is not entangled.

Figure 3. Eigenvalues of the linear estimator in increasing order and the

penalty choice; m = 100 and n = 4, 5 or 6, respectively.
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6. Appendix

Proof of Proposition 3.2. Actually, we can compute

(PTP)b1,b2
=

∑

(r,a)

∏

j 6∈Eb1

rj I(aj = b1,j)
∏

k 6∈Eb2

rk I(ak = b2,k).

In case b1 = b2 = b, we have

(PTP)b,b =
∑

(r,a)




∏

j 6∈Eb

rj I(aj = bj)





2

=
∑

(r,a)

∏

j 6∈Eb

I(aj = bj) = 3d(b)2n.

In case b1 6= b2, we have either Eb1
= Eb2

or Eb1
6= Eb2

. If we suppose Eb1
= Eb2

,
∏

j 6∈Eb1

rj I(aj = b1,j)
∏

k 6∈Eb2

rk I(ak = b2,k) = 0.

Indeed, if this is not 0 it means a = b1 = b2 outside the set Eb1 , that is b1 = b2

which contradicts our assumption.

If we suppose Eb1
6= Eb2

, we have either b1 6= b2 on the set EC
b1

∩ EC
b1

and

in this case one indicator in the product is bound to be 0, or we have b1 66= b2

on the set EC
b1

∩ EC
b1

. In this last case, take j0 in the symmetric difference of sets

Eb1
∆Eb2

. Then,

(PTP)b1,b2
=

∑

(r,a)

∏

j 6∈Eb1

rj I(aj = b1,j)
∏

k 6∈Eb2

rk I(ak = b2,k)

=
∑

(r,a)

∏

j 6∈Eb1

I(aj = b1,j)
∏

k 6∈Eb2

I(ak = b2,k)
∏

j∈Eb1
∆Eb2

rj

=
∑

rj0∈{−1,1}

rj0
∑

r6=rj0

∑

a

∏

j 6∈Eb1

I(aj = b1,j)

∏

k 6∈Eb2

I(ak = b2,k)
∏

j∈Eb1
∆Eb2

/j0

rj = 0.

�

Proof of Proposition 4.1. It is easy to see that ρ̂ is an unbiased estimator. We write

its variance as follows:

V ar(ρ̂b) =
1

32d(b)4n

∑

a∈En

V ar

(
∑

r∈Rn

1

m

m∑

i=1

1Ra,i=rP(r,a),b

)

=
1

32d(b)4nm2

∑

a∈En




∑

r∈Rn

mp(r,a)P
2
(r,a),b −m

(
∑

r∈Rn

p(r,a)P(r,a),b

)2




=
1

32d(b)4nm

∑

(r,a)∈(Rn×En)

p(r,a)
∏

j 6∈Eb

I(aj = bj)

− 1

m

∑

a∈En




1

3d(b)2n

∑

r∈Rn

p(r,a)
∏

j 6∈Eb

rjI(aj = bj)





2

≤ 1

3d(b)4nm
.

Finally, let us prove the last point. We will use the following result due to [21].
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Theorem 6.1 (Matrix Hoeffding’s inequality [21]). Let X1, ..., Xp be indepen-

dent centered self-adjoint random matrices with values in Cd×d, and let us as-

sume that there are deterministic self-adjoint matrices A1, ..., Ap such that, for all

i ∈ {1, ..., p}, A2
i −X2

i is a.s. nonnegative. Then, for all t > 0,

P

(∥
∥
∥
∥

p
∑

i=1

Xi

∥
∥
∥
∥
≥ t

)

≤ d exp

(−t2

8σ2

)

where σ2 = ‖
∑p

k=1 A
2
k‖.

We have:

ˆ̄ρ− ρ̄ =
∑

b

(ρ̂b − ρb)σb

=
∑

b

∑

r

∑

a

P(r,a),b

3d(b)2n
(p̂r,a − pr,a)σb

=
∑

b

∑

r

∑

a

∑

i

P(r,a),b

3d(b)2nm
(1Ri,a=r − pr,a)σb

=
∑

a

∑

i

Xi,a

where
∑

i

Xi,a :=
∑

b

∑

r

P(r,a),b

3d(b)2n
(1Ri,a=r − pr,a)σb.

Note that the Xi,a, for i ∈ {1, ...,m} and a ∈ En, are independent self-adjoint

centered random matrices. Moreover, we have:

‖Xi,a‖ =

∥
∥
∥
∥
∥

∑

b

∑

r

P(r,a),b

3d(b)2nm
(1Ri,a=r − pr,a)σb

∥
∥
∥
∥
∥

≤
∑

b

∑

r

∣
∣
∣
∣

P(r,a),b

3d(b)2nm

∣
∣
∣
∣
|1Ri,a=r − pr,a| ‖σb‖

︸ ︷︷ ︸

=1

≤
∑

b

∏

j /∈Eb
1aj=bj

3d(b)2nm

[
∑

r

1Ri,a=r

︸ ︷︷ ︸

=1

+
∑

r

pr,a

︸ ︷︷ ︸

=1

]

≤ 2

2nm

∑

b

1

3d(b)

∏

j /∈Eb

1aj=bj ≤ 2

2nm

n∑

ℓ=0

∑

b such that

d(b) = ℓ

∀j /∈ Eb, aj = bj

1

3ℓ

=
2

2nm

n∑

ℓ=0

(
n

ℓ

)
1

3ℓ
=

2

2nm

(

1 +
1

3

)n

=
2

m

(
2

3

)n

.

This proves that A2
i,a−X2

i,a is nonnegative where Ai,a = 2
m

(
2
3

)n
I. So we can apply

Theorem 6.1, we have:

σ2 = ‖
∑

i,a

A2
i,a‖ =

4

m

(
4

3

)n



RANK PENALIZED ESTIMATION OF A QUANTUM SYSTEM 15

and so

P
(∥
∥ ˆ̄ρ− ρ̄

∥
∥ ≥ t

)
= P





∥
∥
∥
∥

∑

i,a

Xi,a

∥
∥
∥
∥
≥ t



 ≤ 2n exp

(−t2m

32

(
3

4

)n)

.

We choose t such that

ε = 2n exp

(−t2m

32

(
3

4

)n)

,

this leads to:

P

(

∥
∥ ˆ̄ρ− ρ̄

∥
∥ ≥ 4

√

2

(
4

3

)n
n log(2)− log(ε)

m

)

≤ ε.

�

Proof of Theorem 4.2. From the definition (8) of our estimator, we have, for any

Hermitian, positive semi-definite matrix R,
∥
∥ ˆ̄ρν − ˆ̄ρ

∥
∥
2

F
+ νrank(ˆ̄ρν) ≤

∥
∥R− ˆ̄ρ

∥
∥
2

F
+ νrank(R).

We deduce that
∥
∥ ˆ̄ρν − ρ̄

∥
∥
2

F
≤ ‖R− ρ̄‖2F + 2Tr((ˆ̄ρ− ρ̄)⋆(R− ˆ̄ρν)) + ν(rank(R)− rank(ˆ̄ρν))

≤ ‖R− ρ̄‖2F + 2νrank(R) + 2‖ ˆ̄ρ− ρ̄‖ × ‖R− ˆ̄ρν‖1
−ν(rank(R) + rank(ˆ̄ρν)).

Further on, we have

‖R− ˆ̄ρν‖1 ≤ (rank(R) + rank(ˆ̄ρν))
1/2‖R− ˆ̄ρν‖F

≤ (rank(R) + rank(ˆ̄ρν))
1/2(‖ρ̄− ˆ̄ρν‖F + ‖R− ρ̄‖F )

We apply two times the inequality 2A ·B ≤ ǫA2+ ǫ−1B2 for any real numbers A, B

and ǫ > 0. We actually use ǫ = 1 + θ/2 and ǫ = θ/2, respectively, and get
∥
∥ ˆ̄ρν − ρ̄

∥
∥
2

F
≤ ‖R− ρ̄‖2F + 2νrank(R)− ν(rank(R) + rank(ˆ̄ρν))

+(1 + θ)(rank(R) + rank(ˆ̄ρν))‖ ˆ̄ρ− ρ̄‖2

+(1 +
θ

2
)−1

∥
∥ ˆ̄ρν − ρ̄

∥
∥
2

F
+ (

θ

2
)−1‖R− ρ̄‖2F .

By rearranging the previous terms, we get that for any Hermitian matrix R
∥
∥ ˆ̄ρν − ρ̄

∥
∥
2

F
≤ c2(θ)‖R − ρ̄‖2F + 2c(θ)νrank(R),

provided that ν ≥ (1 + θ)‖ ˆ̄ρ − ρ̄‖2. By following [7], the least possible value for

‖R − ρ̄‖2F is
∑

j>k λ
2
j (ρ̄) if the matrices R have rank k. Moreover, this value is

obviously attained by the projection of ρ̄ on the space of the eigenvectors associated

to the k largest eigenvalues. This helps us conclude the proof of the theorem.

�

Proof of Corollary 4.4. Recall that k̂ is the largest k such that λk(ˆ̄ρ) ≥ √
ν. We

have

P(k̂ 6= k) = P(λk(ˆ̄ρ) ≤
√
ν or λk+1(ˆ̄ρ) ≥

√
ν).

Now, λk(ρ̄) ≤ λk(ˆ̄ρ) + ‖ ˆ̄ρ− ρ̄‖ and λk+1(ρ̄) ≥ λk+1(ˆ̄ρ)− ‖ ˆ̄ρ− ρ̄‖. Thus,

P(k̂ 6= k) ≤ P(‖ ˆ̄ρ− ρ̄‖ ≥ min{λk(ρ̄)−
√
ν,
√
ν − λk+1(ρ̄)})
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and this is smaller than P(‖ ˆ̄ρ− ρ̄‖ ≥ δ
√
ν), by the assumptions of the Corollary. �
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