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Abstract

We show how the weak field magneto-conductance can be used as a tool to characterize epitaxial

graphene samples grown from the C or the Si face of Silicon Carbide, with mobilities ranging

from 120 to 12000 cm2/(V.s). Depending on the growth conditions, we observe anti-localization

and/or localization which can be understood in term of weak-localization related to quantum

interferences. The inferred characteristic diffusion lengths are in agreement with the scanning

tunneling microscopy. Finally a graphical representation of the pseudospin diffusion illustrates the

observed transition from localization to antilocalization.
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I. INTRODUCTION

Considerable progress has been achieved in the synthesis of two-dimensional graphene.

Since the seminal works [1, 2] which used exfoliated graphite flakes transferred onto SiO2

substrates, full wafers of epitaxial graphene can now be grown by high temperature graphi-

tization of Silicon Carbide (SiC) crystals starting either from their Carbon or Silicon face

[3]. More recently, MBE growth on SiC substrate [4] and CVD synthesis of large area

graphene films have also been achieved on the surface of transition metals in high vacuum

[5] or at ambient pressure [6, 7] and their subsequent transfer to a large variety of substrates.

These synthesis methods are scalable and offer some real perspectives for micro-electronic

applications. A number of characterization techniques are available for the grown layers:

STM, AFM, Raman, TEM/SEM and photo-emission have proven their usefulness. On the

other hand, the relationship between the growth conditions, the film morphologies and the

electronic properties have not yet been systematically investigated [8–16].

In this paper, low field magneto-resistance is used to correlate the transport properties,

the growth conditions and the morphologies of epitaxially-grown graphene films elaborated

from the different surfaces of 6H-SiC. The films studied have been grown with different

graphene layer numbers, both from the Si and C terminated faces, some in ultra-high vacuum

other in inert atmospheres. Depending on the SiC polytypes and on the growth conditions,

distinct surface morphologies can be observed which lead to very different magnetoresistance

behaviors (see figure 1). Exploiting the unique features of interference phenomena present

in magneto-transport, electronic properties can be related to the surface morphologies.

II. LOCALIZATION AND ANTI-LOCALIZATION IN GRAPHENE

Low field magneto-resistance is a sensitive probe for electronic transport as it measures

the effect of quantum interferences along closed paths [17]. Depending on the closed loop

size, the interferences can be constructive or destructive. For very small loops, it has been

demonstrated both theoretically [17, 18] and experimentally [19, 20] that interferences be-

tween identical time reversed paths are destructive in graphene leading to a negative mag-

netoconductance (positive magnetoresistance), which is characteristic of anti-localization

of electron waves. For graphene, electron wavefunctions have four components and may
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be characterized by two additional quantum numbers: the isospin and the pseudospin.

The isospin measures the relative wavefunction amplitude on the equivalent sites (A-B) in

graphene unit cell, while the pseudospin measures to which band valley K+ or K− the

quantum states belong [21]. Antilocalization is a characteristic feature of graphene as the

isospin (collinear to momentum) undergoes a full rotation on a closed loop, changing the

wavefunction sign and so forbidding the backscattering. As the loop size increases, scat-

tering mechanisms lead to additional rotations of the isospin, as well as to the scattering

between different valley states, such that the pseudospin need not be preserved on long paths.

Two lengthscales characterize this diffusion: the pseudospin is controlled by the interval-

ley diffusion length Li, and L∗ the intravalley diffusion length controls the isospin random

diffusion. The “overall” effect of these processes on the interferences along time-reversed

paths is to change their sign back to the “normal” positive magneto-conductance due to

coherent backscattering [17, 18] observed in other two-dimensional systems. Eventually, for

extremely long paths (of length greater then Lϕ, the phase coherence length) and/or high

temperatures, inelastic scattering kills interferences. The beauty of quantum interference is

that a characteristic magnetic field can be associated to every loop size, when half a flux

quantum is threaded within the loop area: hence the magnetic fields Bϕ,i,∗ = Φ0

4πL2
ϕ,i,∗

can be

associated to the lengthscales Lϕ,i,∗ =
√
Dτϕ,i,∗ respectively.

It is useful to recall some of the general features of epitaxial graphene on SiC. Graphene

layers can be grown by Si sublimation at high temperature [22]. Electrical conduction is

known to be dominated by the completed layers closest to the interface [23]. When growing

from the SiC C-face, there is a rotation between successive layers which effectively decouples

the layers [24, 25]. This is to be contrasted from graphene layers grown from the Si face,

where Bernal stacking breaks the symmetry between the two (A-B) carbon sites [22]. In both

TABLE I: Characteristics and extracted parameters of the epitaxial samples studied.

Face growth layer # µ(m2/(V·s) D(m2/s) Lϕ(4K) Li L∗

C UHV ≤ 5 0.018 0.0025 72 nm 40 nm 26 nm

C etched ≤ 5 0.018 0.0025 70 nm 40 nm 25 nm

C Ar ≈ 50 1.2 0.159 740 nm

Si UHV 2 0.012 0.0022 140 nm 30 nm 18 nm
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FIG. 1: Overview of the magnetoresistance traces on a large field scale (5T) of 6 graphene epitaxial

samples grown in different conditions and measured at 4K. A positive magnetoresistance is observed

for the highest mobility (m) samples (grown from the SiC C-face), with different slopes for few

layers (FLG) (number of layers < 10) and multilayer (MLG) (number of layers >> 10) graphene,

while negative magnetoresistance are observed on samples grown from the SiC Si-face. All these

traces are analyzed quantitatively in this paper and related to the surface morphology.

cases, completed layers are continuous and ripples cover the SiC vicinal steps. Depending on

the growth condition, folds are also observed. On ripples or folds, there is a local stretching

of the graphene bonds. The other types of known defects arise at the graphene/SiC interface.

Defects far from the graphene layer (at distance d� a, where a is graphene lattice constant)

do not break the A-B symmetry and contribute only to intravalley elastic scattering. Sharp

potential variations (d ≈ a), may break the graphene A-B symmetry locally. This scattering

potential is time-reversal even and affects simultaneously the isospin and pseudospin and

contribute both to the inter and intravalley scattering [17, 18]. Ripples and folds stretch

bonds contribute equally to inter and intra valley scattering. Finally, trigonal warping

contributes only to intravalley scattering [17, 18].

These scattering processes govern the crossover from localization at low field to anti-

localization at high field. The quantum correction [17, 18] to the magneto-conductance
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δG = δGi + δG∗ of a single graphene layer can be split between the intervalley

δGi =
e2

π~

[
F

(
B

Bϕ

)
− F

(
B

Bϕ + 2Bi

)]
(1)

and the intravalley contributions

δG∗ = −2e2

π~

[
F

(
B

Bϕ +Bi +B∗

)]
, (2)

where the function F (x) = ln(x) + Ψ(1/2 + 1/x), and Ψ is the digamma function.

When the A-B symmetry is fully broken (for a bilayers on Si face, the two sublattices

A and B are no more equivalent) the intravalley contributions have the opposite sign δG =

δGi− δG∗: the magnetoconductance increases monotonously with field and antilocalization

disappears [17, 18].

III. RESULTS AND DISCUSSION

Figure 1 gives an overview of all the magnetoresistance behaviors observed at 4K over

a broader range of magnetic field. Films grown from the SiC C-face have larger mobilities

and positive magnetoresistance at high fields. Thick films grown from the C-face (top trace)

show a linear magnetoresistance at larger fields. The positive magnetoresistance observed

at high field for SiC C-face samples can be contrasted with the SiC Si-face graphene which

have lower mobilities and a negative magnetoresistance at all fields.

These differences can be understood in terms of weak localization and anti-localization

in graphene. Using the appropriate weak-localization formulae, the intervalley, intravalley

and phase coherence length can be obtained by fitting the magnetoconductance curves. All

the results are summarized in table I and are discussed in the rest of this article.

A. Magneto-conductance on the Si-face of 6H-SiC

We first consider samples grown by graphitization of the SiC Si-face. The growth dy-

namics is slow and the average number of graphene layers can be controlled. When the

number of layers exceeds one, the layers stack as in graphite (Bernal) and break the A-B

symmetry. In the STM topographical image shown in Figure 2-a, the domains with differ-

ent number of layers can be precisely identified and labelled. On average, this sample has
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FIG. 2: Graphene sample grown from the SiC Si-face. Top left (a): STM topographic image

showing the terraces with different numbers of graphene layers (the labelling as ML for monolayer,

BL for bilayer is inferred from the step-height[26]). The average number of layers for this sample is

of the order 2 (bilayer). Top right (b): The temperature dependence of the phase coherence length

given by the the weak localization fits. The quadratic dependence observed suggests a phonon-

dominated dephasing process. Bottom (c): Bilayer magnetoconductance measured at different

temperatures (continuous line). The magneto-conductance increases monotonously with field at

low T : it fits the expected quantum correction to the conductance when the A-B symmetry is

broken (dashed line).

≈ 2 layers and a mobility of 120 cm2/(V.s). The magnetoconductance traces plotted in

units of 2e2/h for different temperatures are shown in Figure 2-c: the continuous increase

observed as a function of field saturates on the scale of e2/h. All curves can be fitted with

the weak-localization formulae [17, 18] δG = δGi − δG∗ appropriate for bilayers, assuming

that the phase coherence length Lϕ is the only temperature dependent parameter. The

characteristic field B∗ = 0.935 T obtained from the fits is close to twice Bi = 0.44 T. This

ratio has been observed in most samples studied. Using B∗, Bi, the intervalley Li and in-
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travalley L∗ diffusion lengths are found to be comparable to the size of the flat terraces.

This suggests that intervalley and intravalley scattering are dominated by the boundaries

between domains. The corresponding timescales τi,∗ = L2
ϕ,i,∗/(4D) are set by the diffusion

coefficient D for this 2D-sample. Using the fits, the dependence of the phase breaking rate

τ−1
ϕ on temperature, is shown in Figure 2-b. The T 2 behavior observed should be contrasted

with the linear dependence observed for the C-face [19]. A quadratic increase of τ−1
ϕ has

also been observed at high temperatures by Tikhonenko et al. [20]. The linear contribution

due to electron-electron dephasing appears to be quenched by the gap induced by Bernal

stacking, leaving another scattering mechanism, probably associated with phonons, as the

dominant one. For semiconductor 2D electronic systems, the electron-phonon scattering rate

is known both from theory and experiments to increase as T 3. For isolated graphene planes,

different regimes [27] have been identified depending on the relative value of the temperature

compared to the Bloch-Grüneisen temperature TBG = 2kFvph/kB (≈ 90K for this sample):

below TBG, the rate grows as T 4, while it is linear above [28]. How the SiC substrate affects

this behavior is not known. While the fits (Figure 2-c) are quite accurate at low fields,

deviations can be observed at high temperature and high fields: a negative component in

the magnetoresistance traces grows at large fields as the temperature is raised. The origin

of this classical-like behavior is not clear, but it is concomitant with the appearance of the

quadratic dephasing rate.

B. Magneto-conductance on the C-face of 6H-SiC

Samples grown from SiC C-face have notably different morphologies when grown in high

vacuum or in an inert atmosphere. When grown in ultra-high vacuum, flat terraces are

relatively small as shown on the topographic STM image (Figure 3-d top-left), typically of

order 60 nm with folds and ripples at their boundaries. When grown in an inert atmosphere,

the domains (and mobilities) are much larger (see figure 4).

As long as the number of layers is small (≤ 10), it is possible to analyze the magneto-

conductance in term of the weak localization-antilocalization effects discussed above, in

agrement with earlier studies [15, 19, 20]. This is illustrated in the bottom panel of Figure 3-f,

where the magnetoconductance traces of a UHV grown sample, scaled in units of 2e2/h, are

plotted for different temperatures. All traces can be fitted to the weak localization correction
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FIG. 3: Graphene sample grown from SiC C-face. Top left (d) : Derivative STM image (200

nm×200 nm) showing the surface morphology of a sample graphitized in UHV. The flat terraces

are of the order of 60 nm in size and are separated by ripples and folds. Top right (e): temperature

dependence of the dephasing rate on the carbon face. Bottom (f): The magnetoconductance traces

of C-face grown samples show a weak localization dip (probing the longest coherent loops) close

to zero field and a negative magnetoconductance at higher field (anti-localization for short loops).

The crossover regime occurs around the field B∗ ≈ 2Bi. At higher temperature, long loops are

cut-off (Lϕ decreases at higher T) reducing the weak localization contribution at low field. The

contrast with the Si face (Fig. 2-c) is quite clear.

discussed in equations 1 and 2. In particular, the weak localization dip observed at low field

(i.e. for the longest coherent retrodiffusion loops) turns into a negative magnetoconductance

at higher fields (anti-localization for small retrodiffusion loops). The characteristic field

B∗ ≈ 1.8 T is found to be nearly twice Bi ≈ 0.72 T as for the Si-face grown samples. The

corresponding intervalley Li and intravalley L∗ diffusion length are also of the order of the

size of the flat terraces (see the table I). All traces can be fitted assuming that only Lϕ varies

with temperature. The dependence of the dephasing rate τ−1
ϕ with T is shown in Figure
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3-e. The linear temperature dependence, also observed in Wu et al. [19] is consistent with

Altshuler-Aronov prediction for electron-electron interactions [29, 30] h
τϕ

= kBT
2π

R�
RK

ln
(
πRK
R�

)
with RK = h/e2 is the quantum resitance and R� is the square resistance. The measured

slope (≈ 8× 1010s−1K−1) is an order of magnitude larger than the expected value. Similar

discrepancies are not uncommon in other semiconducting 2DEG systems. Among the other

sources of dephasing, the Coulomb scattering of electrons in different layers have been shown

theoretically to be relevant [31]. Electron-phonon scattering may also contribute [27, 28].

C. Quantum wires

The 2D graphene films were etched in wires of width w ≈ 1 − 2µm with Hall probe

geometries and the temperature dependence of the magnetoconductance were measured

using four probes. The values of Li, L∗ and Lϕ extracted from the weak localization analysis

using the 2D formulae are remarkably close to the values obtained for un-etched films (see

table I). This is expected [18], since the crossover to a 1D behavior becomes perceptible

for wires narrower than Lϕ, when the characteristic field Bϕ becomes Bϕ → Φ0

4πwLϕ
. Since

the phase coherence length of our films is less than 100 nanometers, the crossover occurs for

very narrow wires. For larger width, the only effect of etching is in the additional scattering

induced by processing (wire edges, residues), which appears here to be small.

D. Thick graphene sample

We now turn to samples graphitized from the SiC C-face in an inert atmosphere which

have significantly different morphologies and transport behaviors. When graphitizing from

the SiC C-face, the number of layers increases rapidly and a larger number of graphene layers

(of order of 30-50 for the sample studied) is reached in a 10 minutes period. After annealing

at high temperature, the sample morphology (as shown in the AFM image 4-inset) shows

very large (several µm) domains separated by fold or ripples. The magnetoconductance

traces measured at different temperatures are shown in Figure 4. A narrow weak localization

dip close to zero field is clearly seen: its width is controlled by the phase coherence length

Lϕ (of the order of 750 nm at 4 K). The diffusion coefficient (1600 cm2/s) and mobilities

(104cm2/(V.s)) are also found to be much larger than in the UHV grown samples.
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FIG. 4: Magneto-conductance of a thick graphene stack, annealed at high temperature. A narrow

weak localization dip close to zero field is observed at low temperature. Above 0.05 T, the negative

magnetoconductance cannot be attributed to weak-localization alone. The data is consistent with

classical reduction of the longitudinal conductance for electron with relativistic dynamics (see text).

Inset: AFM image of the sample showing large (several microns) domains separated by ripples.

The holes (black dots) are about 30-40 nm deep.

Within this thick sample, the conduction is no longer limited to the layer closest to

the interface with the SiC. From the measured value of the diffusion coefficient, we infer a

large mean free path `e ≈ 300nm which comparable to Lϕ. A fit to the magnetoconduc-

tance shown in Fig. 4 gives a scattering time τL ≈ 0.05ps shorter than the mean-free time

τe ≈ 0.3ps suggesting other scattering processes are at play in a magnetic field (Coulomb

scattering between layers [31], tunneling between graphene plane) which contribute to the

broadening of Landau levels and shorten the effective scattering times. The amplitude of the

negative magnetoconductance above 0.05 T shown in Fig. 4 also exceeds e2/h and cannot

be attributed to quantum interference alone. Assuming relativistic electron dynamics, the

cyclotron radius rc = vF/ωc = `B/
√

2 becomes smaller than the mean free path for fields

exceeding (Bc ≈ 10−1 T). As seen in Fig. 4, the magnetoconductance turns negative above

0.05 T (> Bc). At larger field(> 0.4T ), a linear magnetoresistance regime is observed (the

top curve in Fig. 1), which is consistent with previous transport measurements on epitaxial

graphene [32]. Several routes to linear magnetoconductance have been previously consid-
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ered. For inhomogeneous and disordered materials, a classical resistor network model [33, 34]

accounts for the linear magnetoresistance observed in silver chalcogenides. Another mecha-

nism leading to a linear magnetoconductance has been considered by Abrikosov[35, 36] for

layered materials and small (and zero) gap 3d-semiconductors: in the quantum limit, when

the temperature and Fermi energy are smaller than the Landau band splitting, the mag-

netoresistance becomes linear. For a pure 2d system, the requirements for quantum linear

magnetoresistance coincide with the quantum Hall regime. On these samples, the onset of

the linear regime (0.5 T) which coincides approximatively to ωcτL ≥ 1 occurs well before the

Shubnikov-de Haas oscillations are observed. This indicates that tunneling between layers is

larger in these thick graphene samples compared to the few layer samples (number of layers

< 10. This makes the Abrikosov mechanism the most probable explanation for the linear

magnetoresitance, in agreement with Ref.[32].

From a device point of view, the transport characteristics of such thick graphene stack

are good. Gating effects measured on such thick graphene stacks have however been found

to be small.

E. General remarks

The quasiparticles of graphene can be described in the space of four-component wave

functions, |A〉K+, |B〉K+, |B〉K−, |A〉K− basis describing electronic amplitude on A and B

sites and in the valleys K+ and K−. In order to describe the microscopic scattering po-

tentials, we introduce two sets of 4X4 hermitian matrices : the isospin (~Σ = (Σx,Σy,Σz))

and the pseudospin (~Λ = (Λx,Λy,Λz)) [17, 18]. Then the electron hamiltonian in weakly

disorder graphene can be parameterized as

V (~r) = u0(~r)Î +
∑
i,j

ui,j(~r)ΛiΣj(i, j ≡ x, y, z) (3)

For each scattering potential ui,j(~r), there is a microscopic scattering rate τ−1
ij . Since x

and y are equivalent (⊥), there are only four microscopic scattering rates, τ−1
zz , τ

−1
z⊥ , τ

−1
⊥z and

τ−1
⊥⊥. If the sample is sufficiently disordered, it is plausible to assume that all the potential

uij and scattering rates τ−1
ij are comparable. In this limit, the inter and intravalley scattering

rates [18] τ−1
i = 4τ−1

⊥⊥ + 2τ−1
z⊥ ≈ 6τ−1

0 and τ−1
∗ = τ−1

i + 2τ−1
z ≈ 12τ−1

0 since τz = 2τ−1
zz + τ−1

⊥z .
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B∗ = Φ0

4πDτ∗
is found to be twice Bi = Φ0

4πDτi
in agreement with our experimental results,

and the weak localization correction depends only on B∗ as Bϕ
T→0−→ 0: there is a universal

scaling of the magnetoconductance in B/B∗ and all samples-magnetoconductances collapse

on this curve at low temperatures.

IV. BLOCH SPHERE REPRESENTATION

〈ΛΣ 〉z

〈Λ〉

z

x

y

FIG. 5: “Bloch representation” of the pseudospin rotations for a closed loop. The initial electron

state is in the K-isospin valley (ẑ). After forward propagation along the loop, the pseudospin 〈~Λ〉

rotates and its magnitude is less than unity. The vector 〈~ΛΣz〉 is perpendicular to 〈~Λ〉. Their

norms are such that |〈~Λ〉|2 + |〈~ΛΣz〉|2 = 1 for forward and backward propagation. The pseudospins

are not collinear for the two time-reversed propagation path and this affects their interferences.

For massive electrons, the effect of diffusion on the electron spins can be represented

as a random walk on the Bloch sphere [37, 38]. In this semicalssical picture, the spin-

diffusion length is reached when the spin has diffused over the entire Bloch sphere. For

graphene, there are two internal degrees of freedom, pseudospin (~Λ) and isospin (~Σ), which

are affected by intravalley and intervalley scattering when diffusing over time-reversed loops.

A Bloch representation of their diffusive motion cans still be used using two vectors, 〈~Λ〉,
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the expectation value of the pseudospin and a second vector 〈~ΛΣz〉.

For sake of simplicity, we assume that, in Eq.3, the scattering potentials uz⊥ and u⊥⊥

equal and approximately equal to zero . The remaining terms uzz account for the local

A-B symmetry breaking while u⊥z describes a local graphene bond stretching. The local

scattering potential becomes

V (~r) = u0(~r)Î + u(~r)n̂ · ~ΛΣz. (4)

The dominant first term accounts for potential diffusion while the second term specifies the

relative magnitude of bond stretching potential to the symmetry breaking potential leading

to intra and intervalley scattering.

As shown explicitly in the appendix, the pseudospin 〈~Λ〉 and 〈~ΛΣz〉 rotate at each colli-

sion, but stay always orthogonal to each other for this generic scattering potential. Further-

more, their norm is preserved to unity

〈~Λ〉 · 〈~ΛΣz〉 = 0, (5)

|〈~Λ〉|2 + |〈~ΛΣz〉|2 = 1 (6)

so the two vectors are always inside the Bloch sphere.

For valley eigenstates, 〈~Λ〉 = (0, 0,±1) and 〈~ΛΣz〉 = 0. After a diffusion sequence along

a closed path, this vector rotates off the ẑ axis (see Figure 5), and 〈~ΛΣz〉 become non-zero

and orthogonal to 〈~Λ〉.

When diffusing on the time reversed path, the order of successive pseudo-spin rotation

is not the same, and T 〈~Λ〉T , T 〈~ΛΣz〉T are not collinear with the forward propagation image

〈~Λ〉 and 〈~ΛΣz〉 respectively. If the pseudo-spin rotation remains small (short loops), these

vectors remains close to valley eigenstates (ẑ) and the interference (antilocalization) is not

affected. On the other hand, for longer loops, intravalley and intervalley scattering both

contribute in the interference term, leading to the change of sign predicted by diagrammatic

theory and discussed in the experiment.

V. CONCLUSIONS

In this paper, an overview of weak localization properties on a variety of epitaxially grown

samples has been presented. For all types of few-layers graphene samples, the measured
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characteristic lengthscales for iso and pseudo-spin diffusion (intra/intervalley scattering)

coincide with the terrace and or domain sizes identified on the samples STM or AFM images.

For most samples, the magnitude of the intervalley and intravalley scattering rates have a

ratio of 2. Such a ratio is found when all scattering rates τ−1
ij induced by the scattering

potentials (cf. Eq. 3) τ−1
ij (i, j ≡, z,⊥) are of similar magnitude. This suggests that most of

the diffusion occurs at the edges of the terraces where all types of scattering processes are

present.

A graphic representation of the pseudospin diffusion on a Bloch sphere can be constructed

in analogy with the one used for spin-diffusion in ordinary metals. This picture is fully

consistent with the diagrammatic analysis [17, 18].

Appendix: Pseudospin diffusion

di�usion
loop

p
j

p
i
p

o,

FIG. 6: Sequence of momentum scattering events on defects, showing explicitly the interfering

time-reversed paths which add coherently and contribute to weak (anti)localization. The size of

the contributing loops are cut off by the coherence length, Lφ =
√
Dτφ

The opposite momenta eigenstates in each pseudospin valley are also isospin eigenstates

which is collinear with the momentum direction. If ~p makes an angle φ with respect to the

axis x̂ the momenta eigenstates in each valley are

|~p〉K± = e(i
~p·~r
~ )e(−i

φ
2

Σz)|x̂〉K±

| − ~p〉K± = e(−i
~p·~r
~ )e(−i

φ
2

Σz)| − x̂〉K± (A.1)

where |x̂〉K± = 1√
2
(±1, 1) are the isospin eigenstates pointing the x̂ direction. Explic-

itly, in the isospin/pseudospin space (|A〉K+, |B〉K+, |B〉K−, |A〉K−) the momenta eigen-
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states can be written for the K+ valley, |~p〉K+ = e(i
~p·~r
~ )
(
e−i

φ
2 , ei

φ
2 , 0, 0

)
, | − ~p〉K+ =

e(−i
~p·~r
~ )
(
−e−iφ2 , eiφ2 , 0, 0

)
and for K− the valley, |~p〉K− = e(i

~p·~r
~ )
(

0, 0, ei
φ
2 ,−e−iφ2

)
, |−~p〉K− =

e(−i
~p·~r
~ )
(

0, 0, e−i
φ
2 , e−i

φ
2

)
.

The isospin ~Σ and pseudospin ~Λ operators commute with each-other and are genera-

tors for rotation in the isospin and pseudospin spaces. Their matrix representations in

isospin/pseudospin space are

Λx =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 ,Λy =


0 0 −i 0

0 0 0 i

1 0 0 0

0 −i 0 0

 (A.2)

Λz =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 ,Σz =


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 (A.3)

A weak localization-loop in momentum space, shown in 6, is a sequence of momenta

ending with momentum ~po in the opposite direction as the initial momentum ~pi. For each

scattering ~p→ ~p′ event, the scattering amplitudes on the iso/pseudospin can be represented

by

F op
~p′,~p ≈ f~p′,~p

(
1 + i

χ

2
n̂j · ~ΛΣz

)
(A.4)

where we have assumed that the scalar term in 4 dominates the scattering amplitude (χ�

1). n̂j is a local axis describing the nature (intra/intervalley) of the pseudospin diffusion

occurring at site j.

The operators ~Λ and ~ΛΣz form a Lie algebra [ΛαΣz,ΛβΣz] = iεαβγΛγ [Λα,ΛβΣz] =

iεαβγΛγΣz, and can be used to represent the effect of rotations in the isospin/pseudospin

space.

At each collision j, the elementary rotation can be represented by the unitary operator

(~Λ and Σz commute)

D(χj, n̂j) = ei
χj
2
n̂·~ΛΣz = cos

χj
2

+ in̂j · ~ΛΣz sin
χj
2
. (A.5)

Starting from the eigenstate |p〉K+ for which 〈~Λ〉 = ẑ and 〈~ΛΣz〉 = 0, this state becomes

D(χ, n̂)|p〉K+ after a collision. After completing a weak localization loop, the cumulative
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effect on the iso/pseudospin is a product matrix of the sequence of D(χj, n̂j), which can

be decomposed in elementary ones, because ~Λ and ~ΛΣz form a Lie algebra. This leads to

rotations of the expectation value of 〈~Λ〉 and 〈~ΛΣz〉. These vectors can be used to represent

graphically the effect of collision in iso/pseudospin space. For any series of collisions, they

are orthogonal vectors 〈~Λ〉 · 〈~ΛΣz〉 = 0 and the norm |〈~Λ〉|2 + |〈~ΛΣz〉|2 = 1 is preserved.

The effect of scattering on iso/pseudospin variables can therefore be tracked by plotting the

expectation values of ~Λ, ~ΛΣz and ~Σ after each collision.

When propagating over the time-reversed path, isospin and pseudospins do not rotate in

the same direction because the ~Λ and ~ΛΣz do not commute: T 〈~Λ〉T , T 〈~ΛΣz〉T are not collinear

with the forward propagation image. An arbitrary rotation in real space is the product

of three elementary rotation: a rotation by an angle α around the ẑ axis (representing an

intravalley diffusion), a rotation by an angle χ around the line of node x̂′, (representing a pure

intervalley diffusion) and a final rotation by an angle β around ẑ′. Using the parametrization

of the iso-pseudospin diffusion in term of the isospin rotation angles α, β and the pseudospin

rotation angle χ, the interference term between the amplitudes of two time-reversed closed

paths threaded by a magnetic flux Φ is

2 cos 2ϕ(1− cosχ)− 4 cos (α + β + χ+ 2ϕ) , (A.6)

where ϕ = 2π Φ
Φ0

is the loop Aharonov-Bohm phase. The first term in A.6 depends only on

the pseudospin rotation angle (intervalley) and leads to the intervalley (Eq. 1) contribution

to weak-localization. The second term depends on intravalley and intervalley in the same

way as Eq. 2. For small loops, all angles α, β and χ are small: the last term dominates

yielding weak-antilocalization. In the other limit, this last term averages to zero and normal

localization is recovered.
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