
HAL Id: hal-00705635
https://hal.science/hal-00705635

Submitted on 8 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Second Year Cloud-like Management of Grid Sites
Research Report

Henar Muñoz Frutos, Ignacio Blasco Lopez, Juan Carlos Cuesta Cuesta,
Eduardo Huedo, Rubén Montero, Rafael Moreno, Ignacio Llorente

To cite this version:
Henar Muñoz Frutos, Ignacio Blasco Lopez, Juan Carlos Cuesta Cuesta, Eduardo Huedo, Rubén
Montero, et al.. Second Year Cloud-like Management of Grid Sites Research Report. 2012. �hal-
00705635�

https://hal.science/hal-00705635
https://hal.archives-ouvertes.fr

Enhancing Grid Infrastructures with

Virtualization and Cloud Technologies

Second Year Cloud-like Management

of Grid Sites Research Report

Deliverable D6.6 (V1.0)

4 June 2012

Abstract

This report presents the results of the research and technological development ac-

tivities undertaken during the second phase of the project by the three tasks in

which WP6 is divided. Mainly, this work has been focused on management of

complex multi-tier applications, scaling, monitoring and balancing them to face

peaks in demand. In addition, advanced networking (network isolation and fire-

walling) and storage capabilities (datastore abstraction and new transfer drivers)

have been developed. TCloud as monitoring API and OCCI and Deltacloud as

Virtual Machine Manager APIs have been implemented. Finally, an Inter-Cloud

connector component has been introduced in StratusLab providing federation and

brokering among sites.

StratusLab is co-funded by the

European Community’s Seventh

Framework Programme (Capacities)

Grant Agreement INFSO-RI-261552.

The information contained in this document represents the views of the

copyright holders as of the date such views are published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED

BY THE COPYRIGHT HOLDERS “AS IS” AND ANY EXPRESS OR IM-

PLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-

PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE MEMBERS OF THE STRATUSLAB COLLABORATION, INCLUD-

ING THE COPYRIGHT HOLDERS, OR THE EUROPEAN COMMISSION

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-

EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-

VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright c© 2012, Members of the StratusLab collaboration: Centre Na-

tional de la Recherche Scientifique, Universidad Complutense de Madrid,

Greek Research and Technology Network S.A., SixSq Sàrl, Telefónica In-

vestigación y Desarrollo SA, and The Provost Fellows and Scholars of the

College of the Holy and Undivided Trinity of Queen Elizabeth Near Dublin.

This work is licensed under a Creative Commons

Attribution 3.0 Unported License

http://creativecommons.org/licenses/by/3.0/

2 of 31

http://creativecommons.org/licenses/by/3.0/

Contributors

Name Partner Sections

Muñoz Frutos,

Henar

TID 1, 2, 3, 4, 5, 7

Ignacio Blasco

Lopez

TID 3, 5, 7

Juan Carlos Cuesta

Cuesta

TID 3, 5

Huedo, Eduardo UCM 1, 2, 4, 5, 7

Montero, Rubén S. UCM 4, 5

Moreno, Rafael UCM 4, 5

Llorente, Ignacio

M.

UCM 4, 5

Document History

Version Date Comment

0.1 02 May 2012 Skeleton with initial information.

0.2 20 May 2012 Main chapters contribution.

0.3 30 May 2012 Executive summary, introduction and

conclusions.

0.4 3 June 2012 Peer review of the document.

1.0 4 June 2012 Final edition.

3 of 31

Contents

List of Figures 6

1 Executive Summary 7

2 Introduction 8

3 Dynamic Provision of Grid Services 10

3.1 Service Scalability. 10

3.2 Service Balancing . 11

3.3 Advanced Monitoring Techniques 11

3.3.1 Monitoring Installation by StratusLab contextualization . . 12

3.3.2 KPI types . 12

4 Scalable and Elastic Management of Grid Site Infrastructure 14

4.1 Virtual Resource Placement Heuristics 14

4.1.1 Placement Policy Definition 14

4.2 Cloud-Aware Image Management Techniques 14

4.2.1 Support for User Data Injection in VMs 14

4.2.2 Improved Storage Management 15

4.3 Cloud-Aware Network Management Techniques 16

4.3.1 Improved Network Management 16

4.3.2 Network Isolation and Firewall Management 17

4.4 Cloud Bursting . 17

5 Cloud like-Interfaces Specific for the Scientific Community 19

5.1 Cloud IaaS API . 19

5.1.1 OCCI and Deltacloud as the OpenNebula APIs 19

4 of 31

5.1.2 TCloud as the Claudia API 20

5.1.3 TCloud as Monitoring API 20

5.2 Authentication and Authorization 21

5.3 VM Template Repository 22

5.4 Cloud Federation . 22

5.5 Cloud Brokering. 23

6 Advanced management and scalability use case 24

6.1 StratusLab Solution . 24

7 Conclusions 27

References 30

5 of 31

List of Figures

4.1 OpenNebula datastores. 15

5.1 OCCI implementation in OpenNebula. 20

5.2 Accessing OpenNebula through Deltacloud. 21

6.1 Scenario functionalities and StratusLab architecture v2.0 26

6 of 31

1 Executive Summary

Grid infrastructures are typically static, with limited flexibility for changing appli-

cation parameters: OS, middleware and resources in general. By introducing Cloud

management capabilities, grids can become dynamic. Adding standard tools, such

as virtual machines (VMs), resources can be repurposed on demand to meet the

requirements of high priority applications. The Cloud platform controls which ap-

plication images should be running and when. This means dynamic application

stacks on top of the available infrastructure, such that any physical resource can be

quickly repurposed on demand for additional capacity [6]. This document presents

the work done on Cloud-like Management of Grid Sites (WP6) during the second

year of the StratusLab project in the three main tasks.

• During the second year in the Dynamic Provisioning of Grid Service task,

balancing mechanisms have been implemented in the Service Manager to

configure the load balancers, new scalability policies have been included,

and an advanced monitoring framework has been introduced for monitoring

service KPIs.

• In the Scalable and Elastic Management of Grid Site Infrastructure task,

StratusLab has improved the storage capabilities of OpenNebula with the

datastore abstraction and new transfer drivers, its network management with

network isolation and firewalling, and its technology for Cloud bursting.

• In the task for Cloud-like Interfaces Specific for the Scientific Community,

TCloud for Claudia and monitoring, and OCCI and Deltacloud APIs for

OpenNebula have been updated, authentication and authorization in Open-

Nebula have been improved, as well as the technology for Cloud federation

and brokering.

Finally, most of the work done in WP6 has been tested by the advanced manage-

ment and scalability scenario defined and implemented in WP2. This scenario

involves the management of a business e-tier application and requires advanced

Cloud functionality provided by StratusLab: multi-tier service management, KPI-

driven scalability, load balancing, monitoring, secure networking and multi-Cloud

deployments.

7 of 31

2 Introduction

The Joint Research Activity (JRA), carried out in WP6, develops advanced tech-

nology and features for application deployment on existing Cloud infrastructures

through automatic deployment and dynamic provision of grid services as well as

scalable Cloud-like management of grid site resources. In the second year, this

objective has expanded to include requirements coming from commercial services,

not just grid services. Along these lines, WP6 has provided the deployment and

management of both grid services and commercial ones.

The present document reports about the work done in WP6 in the second year

of the project. The developed software was already documented in D6.5 Cloud-

like Management of Grid Sites 2.0 Software [11], whose design was defined in

D6.4 Cloud-like Management of Grid Sites 2.0 Design Report [9].

In general, the work done in this work package for year two has involved:

• The inclusion of Cloud-like interfaces and a language based on standards

(such as TCloud, OCCI, OVF or DeltaCloud) to increase the interoperability

in Cloud service management.

• The introduction of a Service Manager, on top of the current Virtual Machine

Manager, which is able to control and configure grid services as a whole

providing scalability mechanism at the service-level (as part of the Service

Manager) to scale up and down grid service components according to some

Key Performance Indicators (KPIs) and hardware usage.

• Advanced networking capabilities that provide added features such that users

can more dynamically create and configure deployment-specific virtual net-

works, in order to provide finer control and isolation of their system deployed

in the cloud.

• Storage capabilities such as the OpenNebula datastores. There are other

components related to storage capabilities in the StratusLab architecture, like

the Marketplace and the Persistent Disk Service, but they have not been im-

plemented as part of WP6.

• Monitoring systems at the physical, virtual hardware and grid service lay-

ers for regular administration tasks, accounting purposes and for triggering

scalability mechanisms.

8 of 31

• The capability of interfacing a given Cloud site with another through the

Inter-Cloud Connector, providing Cloud bursting, federation and brokering.

These objectives have been implemented in the three defined tasks of WP6.

Task T6.1 Dynamic Provision of Grid Services has been working towards the

provisioning of services in a Cloud environment, where advanced management ca-

pabilities have been included. Multi-tier applications, which are defined in the OVF

format, are deployed and configured automatically by using StratusLab contextual-

ization. In addition, advanced management of these services is carried out to meet

the dynamic needs of an application. Balancing and scalability capabilities are

included to face peaks in demand. Finally this dynamism requires advanced mon-

itoring techniques that deliver the required data to an intelligent element making

the appropriate (re-)provisioning decisions. This work is explained in Chapter 3.

Task T6.2 Scalable and Elastic Management of Grid Site Infrastructure has

adapted an open-source Virtual Machine Manager (OpenNebula) to the typical op-

erations of a grid site, in particular virtual resource placement heuristics have been

added to optimize different infrastructure metrics (e.g. utilization or energy con-

sumption), Cloud-aware techniques for image and network management have been

developed, and components for Cloud bursting have been improved. Chapter 4 de-

scribes the work performed in this task.

Task T6.3 Cloud-like Interfaces Specific for the Scientific Community has de-

fined and developed the Cloud interfaces for the system for accessing to the differ-

ent StratusLab components: Service Manager, Virtual Machine Manager, monitor-

ing systems and the Inter-Cloud Connector. This work is described in Chapter 5.

Most of this work has been tested by the advanced management and scalabil-

ity scenario defined and implemented in WP2, which is described in Chapter 6.

This scenario is a multi-tier e-business application used as a proof of concept for

demonstrating advanced capabilities that a Cloud platform can provide: multi-tier

service management, KPI-driven scalability, load balancing, monitoring, secure

networking and multi-Cloud deployments.

9 of 31

3 Dynamic Provision of Grid Services

Task 6.1 Dynamic Provision of Grid Services has been working towards the provi-

sion of services in a cloud environment (including grid and commercial services).

Multi-tier services are deployed and configured automatically using descriptions in

the OVF format [5] and by using the StratusLab contextualization (see D6.3[8]). In

addition, advanced management of these services is carried out in order to face the

dynamism of the application. Balancing and scalability capabilities are included

to face peaks of demand and distribute the load for the right usage of the service.

Finally this dynamism requires advanced monitoring techniques that deliver the

required data to an intelligent element making the appropriate (re-)provisioning

decisions.

3.1 Service Scalability
Services deployed over cloud technologies should benefit from scalability at ser-

vice level, which conceals low level details from the user. StratusLab can provide

scalability in each layer of the multi-tier application.

Claudia, the Service Manager, controls the service monitoring events and scal-

ability rules. In addition, it is responsible for dynamically requesting virtualized

resources from a Virtual Machine Manager like OpenNebula, trying to avoid over

or under-provisioning and over-costs based on SLAs and business rules protection

techniques.

As described in D6.4 [9] and D6.3 [8] , Claudia provides a means for users

to specify their application’s behavior in terms of adding or removing hardware

resources [2] by means of elasticity rules [3]. The elasticity rules follow the Event-

Condition-Action approach, where automated actions to scale up or down virtual

machines can be executed. In relation to it, in StratusLab scalability policies have

been defined to specify the number of nodes to be scaled, the chosen node to be

removed and so on.

Taking into account the number of nodes to be scaled, we can have three dif-

ferent policies:

• 1-scale: This is the policy by default. It involves scaling up or down a node.

• n-scale: Scaling a number n of nodes. This is specified by the properties

SCALE UP NUM NODES and

10 of 31

SCALE DOWN NUM NODES (in the ProductSection of the OVF) for scal-

ing up and down.

• %-scale: Scaling a percentage of the currently deployed nodes. This is spec-

ified by the properties in the ProductSection SCALE UP PERCENTAGE

and SCALE DOWN PERCENTAGE for scaling up and down.

In case a VM has to be undeployed, it is possible to configure the service for

choosing the policy by the property SCALE DOWN POLICY in the ProductSec-

tion:

• random: A VM randomly chosen to be undeployed.

• lastly: The last VM deployed is undeployed.

• balancer: The load balancer decides which VM is to be undeployed, taking

into account the node’s activity.

3.2 Service Balancing
Service scalability requires the existence of a load balancer situated in front of

the node to be scaled. This balancer is going to manage different virtual machine

replicas of each type (for example different instances of Tomcat, JBoss, etc.) and

balance the load among these replicas. In the commercial use case, which we are

working on in WP2, the balancer is using a round robin algorithm, but any other

algorithms can be used.

In addition, the balancer requires to be reconfigured when new replicas are

deployed or undeployed. Claudia is in charge of this reconfiguration through the

information collected in the OVF description. The following OVF extract illus-

trates how to configure the balancer in the virtual system specifying that it is a

balancer and the management port.

<VirtualSystem ovf:id="balancer"

rvr:balancer="true"

rvr:lbport="8088">

The following extract shows how it is possible to relate a virtual machine to its load

balancer.

<VirtualSystem ovf:id="apache"

rvr:balanced="balancer">

3.3 Advanced Monitoring Techniques
In order to evaluate the VM execution status, the monitoring mechanisms con-

stantly check the performance of the system. Monitoring systems evaluate hosts,

virtual machines and services with respect to hardware, software and Key Perfor-

mance Indicators (KPI) metrics.

11 of 31

Compared to the work from the project’s first year, the monitoring systems have

been extended to include any kind of probes (not just hardware information, but

also service KPI), any kind of monitoring software (not just ganglia, for instance

also collectd) and its framework has been designed to contain all the elements for

monitoring (probes, collector, aggregator, database, API).

When a VM is deployed, the monitoring software and probes are introduced,

installed, and configured in the virtual machine via the standard contextualization

process. Once configured, the probes in each virtual machine report KPI informa-

tion to the collector, which stores it in the database. Finally, it is possible to access

to the information via the TCloud API (see 5.1.3).

3.3.1 Monitoring Installation by StratusLab contextualization

The contextualization mechanisms used for monitoring are the same ones utilized

by Claudia (see [8]). This is specified in the ProductSection in the OVF file by

using the Property section. Concretely, by using the the SCRIPT LIST name of

the property, it is possible to specify a set of scripts to be executed by StratusLab

contextualization, as shown in the following extract (whitespace added for clarity):

<Property ovf:key="SCRIPT_LIST"

ovf:value="monitoring_rubisdb.sh/

collectd_ubuntu.tgz/

PluginTailBE.conf"/>

Claudia translates the SCRIPT LIST property into the SCRIPT EXEC in the

CONTEXT of the OpenNebula template. With the SCRIPT EXEC property, it is

possible to execute scripts passed by contextualization. In addition, all the files and

scripts are passed by contextualization to the VM.

SCRIPT_EXEC="monitoring_rubisdb.sh;"

Basic monitoring scripts are provided by StratusLab that install the monitoring

systems software (collectd), configure them with the collector information, and

ensure the right probes are executed.

3.3.2 KPI types

In addition to the metrics provided by the collectd software, it is possible to include

any kind of plug-in (Mysql, Apache and so on) and also any ad hoc probe. Some

metrics used in the use cases of StratusLab have involved:

Hardware information Information about hardware resources such as CPU, RAM,

disk or network. DisksUsed, memoryUsed, cpuIdleSeconds are examples of

this kind of monitoring information.

Apache, JBoss Some metrics for Apache or JBoss have been added by specific

probes. It includes metrics like Apache CPU, heap or permGen.

12 of 31

Response time metrics Metrics for measuring the response time of the requests to

Apache, Tomcat or JBoss. Metrics measured are requestDelay (for current

response time) and requestDelayTotal (total response time).

Number of connections The number of established connections, like for exam-

ple, HAEstablishedCons in the HAProxy load balancer.

13 of 31

4 Scalable and Elastic Management of Grid

Site Infrastructure

Task T6.2 Scalable and Elastic Management of Grid Site Infrastructure has adapted

an open-source VIM (Virtual Infrastructure Manager), OpenNebula [7], to the typ-

ical operations of a grid site. In particular, virtual resource placement heuristics

have been added to optimize different infrastructure metrics (e.g. utilization or en-

ergy consumption), cloud-aware image and network management techniques have

been developed, and the technology for Cloud bursting has been improved.

4.1 Virtual Resource Placement Heuristics

4.1.1 Placement Policy Definition

The placement of the VMs can now be defined on a VM-basis (restricted to oneadmin

user) or globally for the datacenter. This allows admins to set a global optimization

policy to meet specific goals. Four predefined policies have been included:

• Packing: Minimize the number of hosts in use by packing the VMs in the

hosts to reduce VM fragmentation.

• Striping: Maximize resources available for the VMs by spreading the VMs

in the hosts.

• Load-aware: Maximize resources available for the VMs by using those nodes

with less load.

• Custom: Use a custom RANK expression.

4.2 Cloud-Aware Image Management Techniques

4.2.1 Support for User Data Injection in VMs

A common requirement for VM contextualization is the ability to push user spe-

cific data into the VM, most notably access keys. This requires first the ability to

store arbitrary data associated with each user, and then a flexible method to select

and include user data in the context device. Both requirements are now met by

OpenNebula.

14 of 31

Figure 4.1: OpenNebula datastores.

4.2.2 Improved Storage Management

The storage capabilities of OpenNebula have been improved in StratusLab with the

addition of the Datastore abstraction. A datastore is an abstraction of any storage

medium for VM disk images (see Figure 4.1). Datastores are distributed to the

hosts with specific transfer drivers. This allows a single host to include multiple

datastores of different types.

OpenNebula 3.4 includes the following datastore types:

• System: to hold images for running VMs. Depending on the storage tech-

nology used, these temporal images can be complete copies of the original

image, qcow deltas or simple filesystem links.

• fs: to store disk images in a file form. The files are stored in a directory

mounted from a SAN/NAS server.

• iscsi: to store disk images in a block device form. Images are presented

to the hosts as iSCSI targets.

• vmware: a datastore specialized for the VMware hypervisor that handles

the vmdk format.

The system has been architected to be highly modular, so these base types can be

easily adapted to any specific deployment.

Hosts are not tied to a single transfer mechanism (transfer driver) and now

can access images from different datastores in different ways. A single VM can

include disks from different datastores. Also the transfers associated with persis-

tent or save as images have been simplified. There are also new drivers to use

in combination with the datastores: qcow2, iscsi and an improved version of

15 of 31

vmware that uses the vmdkfs tools, which add to the shared and ssh drivers in

OpenNebula 3.4.

Nevertheless, in StratusLab 2.0, which includes OpenNebula 3.2, the Market-

place and the Persistent Disk services are still integrated using transfer drivers.

4.3 Cloud-Aware Network Management Techniques

4.3.1 Improved Network Management

When a new Virtual Machine is launched, OpenNebula will connect its network in-

terfaces to the bridge or physical device specified in the Virtual Network definition.

This will allow the VM to have access to different networks–public or private.

The OpenNebula administrator must take into account that although this is a

powerful setup, it should be complemented with mechanisms to restrict network

access only to the expected VMs, to avoid situations in which an OpenNebula

user interacts with another user’s VM. This functionality is now provided through

Virtual Network Manager drivers. The OpenNebula administrator may associate

one of the following drivers to each host:

• dummy: Default driver that doesn’t perform any network operation. Fire-

walling rules are also ignored.

• fw: Firewall rules are applied, but networking isolation is ignored.

• 802.1Q: restrict network access through VLAN tagging, which also re-

quires support from the hardware switches.

• ebtables: restrict network access through Ebtables rules. No special

hardware configuration required.

• ovswitch: restrict network access with Open vSwitch Virtual Switch.

• vmware: uses the VMware networking infrastructure to provide an isolated

and 802.1Q compatible network for VMs launched with the VMware hyper-

visor.

Therefore, network operations are now coupled with the VM lifecycle. This

simplifies the management of networking (no hooks are needed) and solves previ-

ous issues with VLANs when migrating and restoring VMs. The network drivers

define three actions (pre, post and clean) that can be easily customized if

needed.

On the other hand, networks can be now defined with an arbitrary range in-

cluding an starting and ending IP address, network and network mask, or CIDR

notation. It is possible also to define a network and a starting IP address to lease

addresses.

Finally, network leases can now be put on hold to reserve them. This comes in

handy when there are some IP addresses within the VLAN already assigned (e.g.

16 of 31

.1 to the gateway). When a lease is put on hold, OpenNebula will not use it for a

VM, until it is released.

4.3.2 Network Isolation and Firewall Management

As mentioned before, StratusLab has included support for host-managed VLANs

to restrict network access through VLAN tagging. This mechanism is compliant

with the IEEE 802.1Q standard, but it requires support from the hardware switches.

Additionally, StratusLab has developed network access restriction through VLAN

tagging with Open vSwitch, a production quality, multilayer virtual switch.

Alternatively to the use of VLAN tagging, it is possible to restrict network

access through ebtables rules. The ebtables program enables transparent filtering

of network traffic passing through a Linux bridge. This complements the previous

automatic setup of simple firewall rules for TCP/UDP ports and ICMP traffic.

4.4 Cloud Bursting
Cloud bursting consists of combining local resources from a Private Cloud with

remote resources from a Public Cloud, thus creating a Hybrid Cloud. The Public

Cloud provider is usually a commercial Cloud service, such as Amazon EC2 or

ElasticHosts.

OpenNebula supports Hybrid Cloud deployments fully transparent to infras-

tructure users, being the infrastructure administrator who takes decisions about

the scale out of the infrastructure according to infrastructure or business policies.

Therefore, there is no modification in the operation of OpenNebula to integrate

Cloud services. A Cloud service is managed as any other host, but it may provide

“infinite” capacity for the execution of VMs.

OpenNebula currently provides support for building Hybrid Clouds with Ama-

zon EC2, ElasticHosts and RedHat Deltacloud. StratusLab has improved the driver

to create hybrid clouds with Amazon EC2, to support most of the EC2 features like

tags, security groups or VPC (Virtual Private Cluster).

However, each provider uses different formats to store images. Fortunately,

as described in Section 4.2.2, OpenNebula shows a pluggable architecture based

on the datastore abstraction that allows the integration of any storage backend. In

particular, Amazon S3 could be integrated by means of a special datastore, so it

would be possible to download, contextualize and integrate S3 images in a local

image repository. Due to time restrictions, this kind of datastores for hybrid storage

has not been developed in StratusLab.

Since VMs deployed on different clouds have to communicate through the In-

ternet, a suitable communication channel (usually a VPN) has to be established

between them. In the case of virtualizing a computing cluster, the virtual cluster

front-end should be deployed in the Private Cloud with Internet connectivity to

be able to communicate with those worker nodes deployed in the Public Cloud.

The worker nodes could communicate with the front-end through a private local

area network. Local worker nodes should be connected to this vLAN through a

17 of 31

virtual bridge configured in every physical host. External worker nodes should

be connected to the vLAN with an OpenVPN tunnel, which has to be established

between each remote node (OpenVPN clients) and the cluster front-end (Open-

VPN server). With this configuration, every worker node (either local or remote)

could communicate with the front-end and could use the common network services

transparently.

18 of 31

5 Cloud like-Interfaces Specific for the Sci-

entific Community

Task T6.3 Cloud-like Interfaces Specific for the Scientific Community defined the

Cloud interfaces for the system to provide a Grid as a Service. During this year

this task has involved the improvement of the Cloud IaaS API: TCloud for Service

Manager and OCCI and Deltacloud for Virtual Machine Manager. In addition,

TCloud has been chosen and implemented for monitoring. Also, OpenNebula’s

security has been improved, with cloud partitioning, improved logging and a new

CloudAuth driver; a VM template repository has been developed, offering a pre-

defined set of VMs (instance types) that users may instantiate; and the technology

for Cloud federation and brokering has been created or improved.

5.1 Cloud IaaS API
StratusLab has to complement existing grid services by exposing Cloud-like APIs

to users of the grid infrastructure. StratusLab works towards the use of Cloud-

like Application Programming Interfaces (APIs) for managing Cloud Computing

capabilities including resource sharing.

5.1.1 OCCI and Deltacloud as the OpenNebula APIs

The OpenNebula OCCI API is a RESTful service to create, control and monitor

Cloud resources based on the OGF OCCI 0.8 API specification. The OpenNebula

OCCI service, as shown in Figure 5.1, is implemented upon the new OpenNebula

Cloud API (OCA) layer that exposes the full capabilities of an OpenNebula private

cloud; and Sinatra1, a widely used light web framework.

OpenNebula’s OCCI API has been extended to include VM types, that can

now be defined in the server configuration file and tagged with arbitrary informa-

tion, like size, QoS parameters or price. These VM types can be programatically

queried through the API. Also, OCCI provides user/group information in resources

and extended information of resources. Finally, in order to support the new VLAN

features in OpenNebula, the OCCI networks can now be defined through a tem-

plate, as for VMs.

Apache Deltacloud is a REST-based API that abstracts the differences between

1www.sinatrarb.com

19 of 31

www.sinatrarb.com

Figure 5.1: OCCI implementation in OpenNebula.

clouds, enabling the management of resources in different IaaS clouds using a sin-

gle API. A series of back-end drivers translate the request to each Cloud provider’s

native API. Currently, all major Cloud service providers are supported. The Open-

Nebula back-end driver in Deltacloud has been updated to interact with OpenNeb-

ula 3.x clouds. This way, StratusLab sites could be accessed through the Deltacloud

API, using different tools (see Figure 5.2).

5.1.2 TCloud as the Claudia API

The TCloud API [12] is a RESTful, resource-oriented API accessed via HTTP

which uses XML-based representations for information interchange. It constitutes

an extension of some of the main standardization initiatives in Cloud management,

such as the Open Virtualization Format (OVF), defined by the DMTF, and the

vCloud specification [5], published by VMware and submitted to the DMTF for

consideration. TCloud API defines a set of operations to perform actions over: i)

Virtual Appliances (VApp), which are Virtual Machines running on top of a hyper-

visor, ii) Hardware, the virtual hardware resources that the VApp contains, iii) Net-

work, both public and private networks, and iv) Virtual Data Center (VDC), as a set

of virtual resources (e.g. networks, computing capacities) which incarnate VApps.

The TCloud API defines operations to perform actions over the listed resources

categorized as follows: Self-Provisioning operations to instantiating VApps and

VDC resources and Self-Management to manage the instantiated VApps (power

on a VApp). In addition, it provides extensions for monitoring, storage, and so on.

StratusLab incorporates an implementation of the TCloud specification, the

tcloudserver as the Claudia API.

5.1.3 TCloud as Monitoring API

The TCloud API also contains a set of extensions, like monitoring. This includes

capabilities for obtaining information about the virtual resources used by VApps,

20 of 31

Figure 5.2: Accessing OpenNebula through Deltacloud.

VDCs or Organizations. Some examples include obtaining the amount of memory

used by a Virtual Machine or obtaining the consumed bandwidth for a VDC.

It involves the operations admitted by Cloud resources for monitoring actions.

Each operation is described using the same notation as TCloud API core opera-

tions. URIs are abbreviated using the <item-uri> form, where item may be an

organization, a VDC, a service, a BB instance, or anything that can be measured.

5.2 Authentication and Authorization
One of the main characteristics of an IaaS cloud is its multi-tenancy nature. In order

to efficiently implement a multi-tenant system, a flexible user system is needed,

which allows the definition of user groups and access control lists to define specific

access rights to each virtual resource. Therefore, the user system of OpenNebula

has been extended to support groups. A user now is part of a user group. By default

users in the same group can list and share (if labeled as public) any resource type

(network, VMs, disk images etc.). The access control to each resource has been

also improved with the addition of ACLs. An ACL express the user (or set of users)

that may perform a given operation (e.g. create, delete or deploy) on a given virtual

resource or set of them (e.g. VMs, networks, hosts or images).

Also, Cloud requests can be routed to an specific cluster with its own storage

and network resources to better isolate public Cloud users. Usually medium to

large Cloud sites structure their resources on multiple clusters, each with its own

storage and networking systems. Cloud users are assigned to an specific cluster to

prevent image thrashing across large datacenters. This feature extends the previous

cluster concept available in OpenNebula 3.0.

Some attributes in VM Templates (DISK/SOURCE, CONTEXT/FILES, NIC/MAC

21 of 31

and NIC/VLAN ID) have been restricted, because they can be easily used to gain

oneadmin access or to compromise VMs of another user. There are new au-

thentication drivers for LDAP (with base and group filtering), for Cloud API and

OpenNebula front-end servers (server-based drivers). Also, as some of the drivers

may take some time to authenticate a request (e.g. LDAP), session tokens can

now be cached by OpenNebula. Finally, a new permission set has been included

to manage access control to virtual resources. The new permissions overcome the

limitations of the previous PUBLIC attribute and allow users to share resources in

multiple ways. Combined with the ACL system (also simplified to match the new

permissions), this allows the implementation of multiple roles.

The OpenNebula authentication and authorization system has been extended

in three areas. First, it now avoids some potential security holes when the end-

user may choose the driver to authenticate with OpenNebula, specially when using

X.509 certificates. Second, the security of public Cloud API has been strengthened

by including special server accounts to run the services, these server processes can

use symmetric cryptographic ciphers or X.509 to authenticate with OpenNebula.

And third, there have been improvements in the X.509 and SSH authentication

methods like native support for proxies or better support for DN strings.

Also, a new framework has been included to add logging information to the

servers. In particular, the logging facilities of the OpenNebula’s Cloud API have

been extended to ease the maintenance and deployment of several services like the

Sunstone graphical interface or the OCCI API server (also used by the Deltacloud

API drivers).

Finally, there is a new CloudAuth driver that delegates the authentication to the

OpenNebula core. Therefore any OpenNebula auth driver can be used to authenti-

cate Cloud users or the Sunstone web UI.

5.3 VM Template Repository
Usually IaaS clouds offer a predefined set of VMs (instance types) that users may

instantiate. This leads to a simplification of the provisioning interface for final

users that are only allowed to instantiate a predefined error-free set of VMs. The

predefined instances may include different OS types, packed with multiple soft-

ware stacks (i.e. virtual appliances). This mechanism is even more robust in com-

bination with the new group and user access control lists. In this way, access to

a given instance type can be granted only to a specific set of users. Therefore,

OpenNebula has been extended to include a new Template Repository that allows

OpenNebula administrators and users to register VM definitions in the system, to

be instantiated later. These templates can be instantiated several times, and also

shared with other users.

5.4 Cloud Federation
Cloud federation is very similar to Cloud bursting, described in Section 4.4, but

in this case the remote Cloud provider is a partner infrastructure, such as another

22 of 31

StratusLab site running a different OpenNebula instance. Therefore, the exchange

of resources can be made in both ways.

The technology to perform Cloud federation is very similar to the Cloud burst-

ing case, but using the public Cloud interface of StratusLab sites. For computing,

it is possible to access other OpenNebula instances using the Deltacloud adaptor,

leveraging the Deltacloud API for OpenNebula that has been updated in StratusLab

(see Section 5.1.1), or the ONE2ONE adapter, which has been entirely developed

in StratusLab. For storage, in this case there is no need to import or export images,

but just to use the same Markeplace service for them. For networking, the solution

based on VPNs is still suitable.

5.5 Cloud Brokering
Cloud service brokering is a form of Cloud service intermediation, in which a

company or other entity adds value to one or more Cloud services on behalf of

one or more consumers of that service [4]. The broker role does many of the same

things that a traditional IT services provider does in a service aggregator role, but

also addresses additional complexities, particularly relevant to Cloud Computing

and to achieving specific IT outcomes. The brokering service can provide a set of

functionalities:

• Integration brokerage – integration of different Cloud providers

• Governance – policy compliance of Cloud service consumption

• Community management – manage the provisioning of services and con-

sumers among the different Cloud providers

In Stratuslab, Claudia assumes the role of this brokering service. Claudia is a

Service Manager and can work on top of several Cloud providers. By an aggre-

gated API (TCloud), Claudia can invoke each provider in the same way. Then, the

aggregated API is in charge of translating from the TCloud API and model to the

Cloud provider API.

In order to work on this mode, a new module has added to the Claudia distri-

bution. This is placement decision module, which drives the placement decisions

among different sites. This module is based on a set of business rules which defines

the user’s policies in the OVF. Depending of these rules, the services and virtual

machines are deployed in a particular Cloud infrastructure.

23 of 31

6 Advanced management and scalability use

case

Cloud services potentially allow enterprises to outsource their storage, networking

and processing needs so that they do not have to invest in the infrastructure, con-

verting capital expenses into operating expenses. By hosting their application in

the cloud, instead of on their own installations, they can more easily face peaks

in demand, while maintaining high service availability and only paying for the

resources actually used.

Modern internet applications are complex software implemented in several lay-

ers, differentiating the user front-end, the business logic and the database. These

are multi-tier applications, for which any Internet web application serves as an

example.

As explained in D2.3 deliverable [10], the advanced management and scalabil-

ity scenario, renamed from commercial application, is focused on the deployment

and management (including scalability) of a multi-tier application. Concretely, the

application deployed is the website of a shopping mall. As any SaaS application,

it is composed by three tiers:

1. Presentation tier: The presentation layer represents the interface between

the user and the rest of the application. In order to guarantee performance

during peak demand, this layer will scale. It is implemented by an Apache

web server which hosts the webpages of the application.

2. Business Logic tier: It has the business logic of the application. It is im-

plemented by a JBoss and a set of ears. This layer can be scaled if needed,

consequently, a load balancer will be included.

3. Back-end tier: All the data in the database or in the storage service belong to

this tier. MySQL is the database management system in charge of the data.

6.1 StratusLab Solution
Nowadays, Cloud providers are only focusing on the deployment and management

of single VMs, their scalability according to hardware information (CPU, RAM or

disk) or deployment on a single datacenter (e.g. Amazon site regions [1]). Stra-

tusLab goes beyond the state of the art providing a set of high Cloud services

24 of 31

which can provide advanced functionality such us multi-tier application manage-

ment, scalability and balancing, advanced security, and multi-Cloud deployment.

Concretely, these StratusLab components are:

OpenNebula This is the Virtual Machine Manager in charge of controlling VMs.

It is the core of StratusLab and has been extended to provide this advanced

functionality for networking and storage.

Claudia This is the Service Manager responsible for controlling complex multi-

tier applications. It includes their deployment, scalability based on service

KPIs and customers’ requests and balancing among different replicas.

Advanced networking capabilities They involve firewalling and virtual local area

networks, which isolate the service from others deployed in the Cloud.

Advanced storage capabilities Management of data through services, like using

the persistent disk service to store the application database.

Advanced monitoring techniques Scalability requires monitoring information based

on application KPIs, not just hardware information.

Marketplace Repository of stock images to store the individual services (Apache,

JBoss, MySQL) to be used in the application.

Inter-Cloud Connector This is the component is charge of Cloud federation and

brokering, so that, services can be deployed on multiple sites for redundancy

or access to more resources.

Standards Standard APIs and format descriptions allow for interoperability. TCloud

is used as Service Manager and monitoring API, OCCI as Virtual Machine

Manager API, and OVF is utilized as service description language.

It is possible to see that most of StratusLab components are required for provid-

ing the functionality that e-business applications are demanding. Figure 6 specified

the features used in the use case located them in the StratusLab architecture v2.0.

These high level Cloud services have been tested and validated by this scenario.

Some conclusions and lessons learned are explained in Deliverable D2.5 [10].

25 of 31

Figure 6.1: Scenario functionalities and StratusLab architecture v2.0

26 of 31

7 Conclusions

This document has provided an overview of the work done within the scope of

WP6 in the second year of the project, concerning the dynamic provision of grid

services, the development of a scalable and elastic management of grid site and

Cloud like-interfaces specific for the scientific community.

In this second year, commercial services have been deployed in the Cloud.

These services have been defined by OVF and deployed by using Claudia. New

scaling rules have been added this year for driving the scalability of the service

(considering scale down policies and the number of nodes affected by scaling).

Claudia has also implemented some functionality to configure the balancers for the

virtual machine replicas. This scalability is driven by KPIs which are collected in

the monitoring systems.

In addition some work has been done in order to adapt OpenNebula to the

typical operations of a grid site. In particular, the development of Cloud-aware

image management techniques, with the new datastore abstraction and new transfer

drivers; the development of Cloud-aware network management techniques, with

network isolation and firewalling; and the improvement of technology for Cloud

bursting.

The task related to Cloud-like interfaces uses as standard interfaces TCloud,

OCCI and Deltacloud. OpenNebula’s security has been improved, with Cloud par-

titioning, improved logging and a new CloudAuth driver; a VM template repository

has been developed, offering a predefined set of virtual machines (instance types)

that users may instantiate; and technology for Cloud federation and brokering has

been created or improved.

Most of the work implemented in the WP6 is demonstrated by the advanced

management and scalability use case in WP2, where a multi-tier service is de-

ployed, managed, scaled, and balanced, even across multiple clouds.

27 of 31

Glossary

ACL Access Control List

Appliance Virtual machine containing preconfigured software or services

APEL Accounting Processor for Event Logs

Appliance Repository Repository of existing appliances

CDDLM Configuration Description, Deployment, and Lifecycle

Management

CE Compute Element

DHCP Dynamic Host Configuration Protocol

DMTF Distributed Management Task Force

Front-End OpenNebula server machine, which hosts the VM manager

Hybrid Cloud Cloud infrastructure that federates resources between

organizations

IaaS Infrastructure as a Service

IP Infrastructure Provider

Instance a deployed Virtual Machine

JRA Joint Research Activity

KPI Key Performance Indicator

Machine Image Virtual machine file and metadata providing the source for Virtual

Images or Instances

NFS Network File System

Node Physical host on which VMs are instantiated

OASIS Organization for the Advancement of Structured Information

Standards

OCCI Open Cloud Computing Initiative

OGF Open Grid Forum

OVF Open Virtualization Format

Public Cloud Cloud infrastructure accessible to people outside of the provider’s

organization

Private Cloud Cloud infrastructure accessible only to the provider’s users

Regression Features previously working which breaks in a new release of the

software containing this feature

Service Manager/SM A toolkit to provides Service Providers to dynamically control the

Service provisioning and scalability

Service Provider/SP The provider who offers the application to be deploy in the Cloud

SMI Service Manager Interface

28 of 31

SLA Service Level Agreement

SE Storage Element

SSD Solution Deployment Descriptor

Virtual Machine / VM Running and virtualized operating system

TCloud It is a RESTful API use for Cloud service management

VMI Virtual Manager Interface

VIM Virtual Infrastructure Manager

VO Virtual Organization

VOMS Virtual Organization Membership Service

Web Monitor Web application providing basic monitoring of a single

StratusLab installation

Worker Node Grid node on which jobs are executed

29 of 31

References

[1] Amazon. Amazon elastic compute cloud (amazon ec2). Online resource.,

2012. http://aws.amazon.com/ec2/.

[2] J. Cáceres, L. M. Vaquero, L. Rodero-Merino, A. Polo, and J. J. Hierro.

Service Scalability over the Cloud. In B. Furht and A. Escalante, edi-

tors, Handbook of Cloud Computing, pages 357–377. Springer US, 2010.

10.1007/978-1-4419-6524-0 15.

[3] C. Chapman, W. Emmerich, F. G. Márquez, S. Clayman, and A. Galis. Soft-

ware architecture definition for on-demand cloud provisioning. In HPDC ’10:

Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing, pages 61–72, New York, NY, USA, 2010. ACM.

[4] D. M. Smith (Gartner Inc.). Hype Cycle for Cloud Computing, 2011.

[5] DMTF. Open virtualization format specification. Specification

DSP0243 v1.0.0d. Technical report, Distributed Management

Task Force, Sep 2008. https://www.coin-or.org/OS/publications/

optimizationServicesFramework2008.pdf.

[6] E. Huedo, R. Moreno-Vozmediano, R. Montero, and I. Llorente. Architec-

tures for Enhancing Grid Infrastructures with Cloud Computing. In M. Cafaro

and G. Aloisio, editors, Grids, Clouds and Virtualization, Computer Commu-

nications and Networks, chapter 3, pages 55–69. Springer, 2011.

[7] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. T. Foster. Virtual Infras-

tructure Management in Private and Hybrid Clouds. IEEE Internet Comput-

ing, 13(5):14–22, 2009.

[8] Stratuslab Consortium. Deliverable 6.3 Cloud-like Management of Grid Sites

1.0 Research Report. Online resource., 2011. http://stratuslab.eu/lib/exe/

fetch.php/documents:stratuslab-d6.3-v1.0.pdf.

[9] Stratuslab Consortium. Deliverable 6.4 Cloud-like Management of Grid Sites

2.0 Design Report. Online resource., 2011. http://stratuslab.eu/lib/exe/

fetch.php/documents:stratuslab-d6.4-v2.0.pdf.

30 of 31

http://aws.amazon.com/ec2/
10.1007/978-1-4419-6524-0_15
https://www.coin-or.org/OS/publications/optimizationServicesFramework2008.pdf
https://www.coin-or.org/OS/publications/optimizationServicesFramework2008.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.3-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.3-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.4-v2.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.4-v2.0.pdf

[10] Stratuslab Consortium. Deliverable 2.5 Report on Evaluation of StratusLab

Products. Online resource., 2012. http://stratuslab.eu/lib/exe/fetch.php/

documents:stratuslab-d2.5-v1.0.pdf.

[11] Stratuslab Consortium. Deliverable 6.5 Cloud-like Management of Grid Sites

2.0 Software. Online resource., 2012. http://stratuslab.eu/lib/exe/fetch.

php/documents:stratuslab-d6.5-v1.0.pdf.

[12] Telefónica. TCloud API Specification, Version 0.9.0. Online resource., 2010.

http://www.tid.es/files/doc/apis/TCloud API Spec v0.9.pdf.

31 of 31

http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d2.5-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d2.5-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.5-v1.0.pdf
http://stratuslab.eu/lib/exe/fetch.php/documents:stratuslab-d6.5-v1.0.pdf
http://www.tid.es/files/doc/apis/TCloud_API_Spec_v0.9.pdf

	List of Figures
	Executive Summary
	Introduction
	Dynamic Provision of Grid Services
	Service Scalability
	Service Balancing
	Advanced Monitoring Techniques
	Monitoring Installation by StratusLab contextualization
	KPI types

	Scalable and Elastic Management of Grid Site Infrastructure
	Virtual Resource Placement Heuristics
	Placement Policy Definition

	Cloud-Aware Image Management Techniques
	Support for User Data Injection in VMs
	Improved Storage Management

	Cloud-Aware Network Management Techniques
	Improved Network Management
	Network Isolation and Firewall Management

	Cloud Bursting

	Cloud like-Interfaces Specific for the Scientific Community
	Cloud IaaS API
	OCCI and Deltacloud as the OpenNebula APIs
	TCloud as the Claudia API
	TCloud as Monitoring API

	Authentication and Authorization
	VM Template Repository
	Cloud Federation
	Cloud Brokering

	Advanced management and scalability use case
	StratusLab Solution

	Conclusions
	References

