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Abstract

In this paper, we study Gaussian multiplicative chaos in the critical case. We show
that the so-called derivative martingale, introduced in the context of branching Brow-
nian motions and branching random walks, converges almost surely (in all dimensions)
to a random measure with full support. We also show that the limiting measure has
no atom. In connection with the derivative martingale, we write explicit conjectures
about the glassy phase of log-correlated Gaussian potentials and the relation with the
asymptotic expansion of the maximum of log-correlated Gaussian random variables.

1. Introduction

1.1 Overview

In the eighties, Kahane [45] developed a continuous parameter theory of multifractal ran-
dom measures, called Gaussian multiplicative chaos. His efforts were followed by several
authors [3, 7, 11, 36, 66, 67, 68] coming up with various generalizations at different scales.
This family of random fields has found many applications in various fields of science, espe-
cially in turbulence and in mathematical finance. Recently, the authors in [30] constructed
a probabilistic and geometrical framework for Liouville quantum gravity and the so-called
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Knizhnik-Polyakov-Zamolodchikov (KPZ) equation [51], based on the two-dimensional
Gaussian free field (GFF) (see [23, 24, 26, 30, 38, 51, 61] and references therein). In this
context, the KPZ formula has been proved rigorously [30], as well as in the closely related
case of Gaussian multiplicative chaos [68] (see also [12] in the context of Mandelbrot’s
multiplicative cascades). This was done in the standard case of Liouville quantum gravity,
namely strictly below the critical value of the GFF coupling constant γ in the Liouville
conformal factor, i.e, for γ < 2 (in a chosen normalization). Beyond this threshold, the
standard construction yields vanishing random measures [29, 45]. The issue of mathemat-
ically constructing singular Liouville measures beyond the phase transition (i.e. for γ > 2)
and deriving the corresponding (non-standard dual) KPZ formula has been investigated
in [10, 28, 29], giving the first mathematical understanding of the so-called duality in Li-
ouville quantum gravity (see [4, 5, 21, 27, 32, 44, 48, 49, 50, 55] for an account of physical
motivations). However, the rigorous construction of random measures at criticality, that
is for γ = 2, does not seem to ever have been carried out.

As stated above, once the Gaussian randomness is fixed, the standard Gaussian mul-
tiplicative chaos describes a random positive measure for each γ < 2 but yields 0 when
γ = 2. Naively, one might therefore guess that −1 times the derivative at γ = 2 would be
a random positive measure. This intuition leads one to consider the so-called derivative
martingale, formally obtained by differentiating the standard measure w.r.t. γ at γ = 2,
as explained below. In the case of branching Brownian motions [62], or of branching ran-
dom walks [14, 57] (see also [1] for a recent different but equivalent construction), the
construction of such an object has already been carried out mathematically. In the con-
text of branching random walks, the derivative martingale was introduced in the study
of the fixed points of the smoothing transform at criticality (the smoothing transform is
a generalization of Mandelbrot’s ?-equation for discrete multiplicative cascades; see also
[15]). Our construction will therefore appear as a continuous analogue of those works in
the context of Gaussian multiplicative chaos.

Besides the 2D-Liouville Quantum Gravity framework (and the KPZ formula), many
other important models or questions involve Gaussian multiplicative chaos of log-correlated
Gaussian fields in all dimensions. Let us mention the glassy phase of log-correlated ran-
dom potentials (see [6, 16, 19, 37]) or the asymptotic expansion of the maximum of log-
correlated random variables (see [17, 25]). In all these problems, one of the key tools is
the derivative martingale at the critical point γ2 = 2d (where d is the dimension), whose
construction is precisely the purpose of this paper.

In dimension d, a standard Gaussian multiplicative chaos is a random measure that
can be written formally, for any Borelian set A ⊂ Rd, as

Mγ(A) =

∫
A
eγX(x)− γ

2

2
E[X2(x)] dx (1)

where X is a centered log-correlated Gaussian field:

E[X(x)X(y)] = ln+
1

|x− y|
+ g(x, y),

with ln+(x) = max(lnx, 0) and g a continuous bounded function over Rd ×Rd. Although
such an X cannot be defined as a random function (and may be a random distribution, like
the GFF) the measures can be rigorously defined all for γ2 < 2d using a straightforward
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limiting procedure involving an time-indexed family of improving approximations to X
[45], as we will review in Section 2. By contrast, it is well known that for γ2 > 2d the
measures constructed by this procedure are identically zero [45]. Other techniques are
thus required to create similar measures beyond the critical value γ2 = 2d [10, 28, 29].

Roughly speaking, the derivative martingale is defined as (recall that γ =
√

2d is the
critical value)

M ′(A) := − ∂

∂γ

[
Mγ(A)

]
γ=
√

2d
=
[∫

A

(
γE[X2(x)]−X(x)

)
eγX(x)− γ

2

2
E[X2(x)] dx

]
γ=
√

2d
. (2)

Here we have differentiated the measure Mγ in (1) with respect to the parameter γ to
obtain the above expression (2). Note that this is the same as (1) except for the factor(
γE[X2(x)]−X(x)

)
. To give the reader some intuition, we remark that we will ultimately

see that the main contributions toM ′(A) come from locations x where this factor is positive
but relatively close to zero (on the order of

√
E[X2(x)]) which correspond to locations x

where X(x) is nearly maximal. Indeed, in what follows, the reader may occasionally wish
to forget the derivative interpretation of (2) and simply view

(
γE[X2(x)]−X(x)

)
as the

factor by which one rescales (1) in order to ensure that one obtains a non-trivial measure
(instead of zero) when using the standard limiting procedure.

In a sense, the measures Mγ (1) become more concentrated as γ2 approaches 2d.
(They assign full measure to a set of Hausdorff dimension d−γ2/2, which tends to zero as
γ2 → 2d.) It is therefore natural to wonder how concentrated the γ2 = 2d measure will be.
In particular, it is natural to wonder whether it possesses atoms (in which case it could in
principle assign full measure to a countable set). This question is still open, even in the
similar case of discrete models like Mandelbrot’s multiplicative cascades or other measures
based on branching random walks [14]. In our context, we will answer in the negative.
Moreover, since our proof is based on a continuous version of the spine decomposition, as
developed in the context of branching random walks, we expect that it can be adapted to
these other models as well.

Roughly speaking, the reason that establishing non-atomicity in critical models is
non-trivial is that proofs of non-atomicity for (non-critical) multiplicative chaos usually
rely on the existence of moments higher than 1 (see [20]) and the scaling relations of
multifractal random measures (see, e.g., [3]). At criticality, the random measures involved
(cascades, branching random walks, or Gaussian multiplicative chaos) no longer possess
finite moments of order 1, and the scaling relations become useless.

To explain this issue in more detail, we recall that it is proved in [20] that a stationary
random measure M over Rd is almost surely non-atomic if (C stands here for the unit
cube of Rd)

∀δ > 0, ndP
(
M(n−1C) > δ

)
→ 0 as n→∞. (3)

When M = Mγ for 0 < γ2 < 2d, a computable property of Mγ is its power-law spectrum
ξ characterized by:

E
[(
Mγ(n−1C)

)q] ' Dqn
−ξ(q) as n→∞, (4)

for all those q making the above expectation finite, i.e. q ∈ [0, 2d
γ2 [. It matches

ξ(q) =
(
d+

γ2

2

)
q − γ2

2
q2. (5)
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By using the Markov inequality in (3), (4) obviously yields for q ∈ [0, 2d
γ2 [

ndP
(
Mγ(n−1C) > δ

)
.
Dq

δq
nd−ξ(q).

Therefore, the non-atomicity of the measure boils down to finding a q such that the power-
law spectrum is strictly larger than d:

• In the subcritical situation γ2 < 2d, the function ξ increases on [0, 1] from 0 to d.
Such a q is necessarily larger than 1 and a straightforward computation shows that
any q ∈]1, 2d

γ2 [ suffices.

• For γ2 = 2d, the above relations (4) and (5) should remain valid only for q < 1.
Therefore the subcritical strategy fails because the power-law spectrum achieves its
maximum d at q = 1. It is tempting to try to replace the gauge function x 7→ xq

by something that could be more appropriate at criticality like x 7→ x ln(1 + x)q,
etc. However, the fact that the measure does not possess a moment of order 1 (see
Proposition 5 below) shows that there is no way of changing the gauge so as to make
ξ go beyond d.

More sophisticated machinery is thus necessary to investigate non-atomicity at criticality.
Indeed, we expect the derivative martingale to assign full measure to a (random) Hausdorff
set of dimension 0, indicating that the measure is in some sense just “barely” non-atomic.

Let us finally mention the interesting work of [73] where the author constructs on the
unit circle (d = 1) a classical Gaussian multiplicative Chaos given by the exponential of
a field X such that for each ε the covariance of X at points x and y lies strictly between
(2 − ε) ln+

1
|x−y| and 2 ln+

1
|x−y| when |x − y| is sufficiently small. In some sense, his

construction is a near critical construction, different from the measures constructed here.
This is illustrated by the fact that the measures in [73] possess moments of order 1 (and
even belong to L logL), which is atypical for the critical multiplicative chaos associated
to log-correlated random variables.

In this paper, we tackle the problem of constructing random measures at criticality
for a large class of log-correlated Gaussian fields in any dimension, the covariance kernels
of which are called ?-scale invariant kernels. This approach allows us to link the mea-
sures under consideration to a functional equation, the ?-equation, giving rise to several
conjectures about the glassy phase of log-correlated Gaussian potentials and about the
three-terms expansion of the maximum of log-correlated Gaussian variables.

Another important family of random measures is the class defined by taking X to be
the Gaussian Free Field (GFF) with free or Dirichlet boundary conditions on a planar
domain, as in [30] (see also [70] for an introduction to the GFF). The measures defined
in this way are also known as the (critical) Liouville quantum gravity measures, and are
closely related to conformal field theory, as well as various 2-dimensional discrete random
surface models and their scaling limits. Although the Gaussian free field is in some sense
a log-correlated random field, it does not fall exactly into the framework of this paper,
which deals with translation invariant random measures (defined on all of R2 or Rd) that
can be approximated in a particular way (via the ?-equation). Although some of the
arguments of this paper can be easily extended to settings where the strict translation
invariance requirement for X is relaxed (e.g., X is the Gaussian free field on a disk), we
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will still need additional arguments to show that the derivative martingale associates a
unique non-atomic random positive measure to a given instance of the GFF almost surely,
that this measure is independent of the particular approximation scheme used, and that
this measure transforms under conformal maps in the same way as the γ < 2 measures
constructed in [30]. For the sake of pedagogy, this other part of our work will appear in a
companion paper. For the time being, we just announce that all the results of this paper
are valid for the GFF construction.

1.2 Physics literature: history and motivation

It is interesting to pause for a moment and consider the physics literature on Liouville
quantum gravity. We first remark that the non-critical case, with d = 2 and γ < 2, was
treated in [30], which contains an extensive overview of the physics literature and an ex-
planation of the relationships (some proved, some conjectural) between random measures
and discrete and continuum random surfaces. Roughly speaking, when one takes a ran-
dom two-dimensional manifold and conformally maps it to a disk, the image of the area
measure is a random measure on the disk that should correspond to an exponential of
a log-correlated Gaussian random variable (some form of the GFF). From this point of
view, many of the physics results about discrete and continuum random surfaces can be
interpreted as predictions about the behavior of these random measures, where the value
of γ < 2 depends on the particular physical model in question.

There is also a physics literature focusing on the critical case γ = 2, which we expect to
be related to the measure constructed in this paper. This section contains a brief overview
of the results from this literature, as appearing in e.g. [18, 38, 39, 40, 41, 42, 47, 49, 53, 54,
56, 63, 64, 72]. Most of the results surveyed in this section have not yet been established
or understood in a mathematical sense.

The critical case γ = 2 corresponds to the value c = 1 of the so-called central charge c
of the conformal field theory coupled to gravity, via the famous KPZ result [51]:

γ =
1√
6

(
√

25− c−
√

1− c).

Discrete statistical physical models then include one-dimensional matrix models (also
called “matrix quantum mechanics” (MQM)) [18, 38, 39, 40, 42, 47, 49, 63, 64, 72], the
critical O(n = 2) model on a random planar lattice [53, 54, 56], and the critical Q = 4
Potts model on a random lattice [13, 22, 34]. In the continuum, a natural coupling also
exists between Liouville quantum gravity and the Schramm-Loewner evolution SLEκ for
γ =

√
κ, rigorously established for κ < 4 [31, 71]. Thus, the critical value γ = 2 corre-

sponds to the special SLE parameter value κ = 4, above which the SLEκ curve no longer
is a simple curve, but develops double points at all scales.

The standard c = 1, γ = 2 Liouville field theory [18, 38, 39, 40, 47, 49, 63, 64] involves
violations of scaling by logarithmic factors. For example, the partition function of genus
0 random surfaces of area A grows as [40, 47]

Z ∝ exp(µA)A−3(logA)−2,

where µ is a non-universal growth constant depending on the (planar lattice) regulariza-
tion. The area exponent (-3) is universal for a c = 1 central charge, while the subleading
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logarithmic factor is attributed to the unusual dependence on the Liouville field ϕ (equiv-
alent to X here) of the so-called “tachyon field” T (ϕ) ∝ ϕe2ϕ [47, 49, 64]. Its integral
over a “background” Borelian set A generates the quantum area A =

∫
A T (ϕ)dx, that we

can recognize as the formal heuristic expression for the derivative measure (2) introduced
above.

At c = 1, a proliferation of large “bubbles” (the so-called “baby universes” which
are relatively large amounts of area cut off by relatively small bottlenecks) is generally
anticipated in the bulk of the random surface [40, 44, 53], or at its boundary in the case
of a disk topology [54, 56]. We believe that this should correspond to the fact that the
measure we construct is concentrated on a set of Hausdorff dimension zero.

However, the introduction of higher trace terms [42, 49, 72] in the action of the c = 1
matrix model of two-dimensional quantum gravity is known to generate a “non-standard”
random surface model with an even stronger concentration of bottlenecks. (See also the
related detailed study of a MQM model for a c = 1 string theory with vortices in [47].)
As we shall see shortly, these non-standard constructions do not seem to correspond to
our model, at least not so directly. In these constructions, one encounters a new critical
behavior of the random surface, with a critical proliferation of spherical bubbles connected
one to another by microscopic “wormholes”. This is reminiscent of the construction for
c < 1, γ < 2 of the dual phase of Liouville quantum gravity [4, 5, 21, 32, 48, 49, 50], where
the associated random measure develops atoms [10, 28, 29].

The partition function of the non-standard c = 1 (genus zero) random surface then
scales as a function of the area A as [42, 47, 49, 72]

Z ∝ exp(µ′A)A−3,

with an apparent suppression of logarithmic terms. This has been attributed to the ap-
pearance for c = 1 of a tachyon field of the atypical form T (ϕ) ∝ e2ϕ [42, 47, 50]. Heuris-
tically, this would seem to correspond to a measure of type (1), but we know that the
latter vanishes for γ = 2. (See Proposition 19 below.) Furthermore, let us state here
that there also exists for γ = 2 a logarithmically renormalized measure built on (1), but
we expect it to converge (up to constant factor) to the same measure as the derivative
martingale (2). In order to model this “non-standard” theory, it might be necessary to
modify the measures introduced here by explicitly introducing “atoms” on top of them,
perhaps using the procedure described in [10, 28, 29] for adding atoms to γ < 2 random
measures. The rigorous definition and analysis of the random measure associated with
the non-standard c = 1, γ = 2 Liouville random surface with enhanced bottlenecks, as
described in [42, 47, 72], thus seem to remain open.

Finally, we note that the boundary critical Liouville quantum gravity poses similar
challenges. A subtle difference in logarithmic boundary behavior is predicted between the
so-called dilute and dense phases of the O(2) model on a random disk [54, 56], which
thus may differ in their boundary bubble structure. It also remains an open question
whether the results about the conformal welding of two boundary arcs of random surfaces
to produce SLE, as described in [71], can be extended to the case γ = 2.

6



2. Setup

2.1 Notations

For a Borelian set A ⊂ Rd, B(A) stands for the Borelian sigma-algebra on A. All the
considered fields are constructed on the same probability space (Ω,F ,P). We denote by
E the corresponding expectation.

2.2 ?-scale invariant kernels

Here we introduce the Gaussian fields that we will use throughout the papers. We consider
a family of centered stationary Gaussian processes ((Xt(x))x∈Rd)t > 0 where, for each t > 0,
the process (Xt(x))x∈Rd has covariance given by:

Kt(x) = E[Xt(0)Xt(x)] =

∫ et

1

k(ux)

u
du (6)

for some covariance kernel k satisfying k(0) = 1, of class C1 and vanishing outside a com-
pact set (actually this latter condition is not necessary but it simplifies the presentation).
We also assume that the process (Xt(x) − Xs(x))x∈Rd is independent of the processes(
(Xu(x))x∈Rd

)
u 6 s

for all s < t. Put in other words, the mapping t 7→ Xt(·) has inde-

pendent increments. Such a construction of Gaussian processes is carried out in [3]. For
γ > 0, we consider the approximate Gaussian multiplicative chaos Mγ

t (dx) on Rd:

Mγ
t (dx) = eγXt(x)− γ

2

2
E[Xt(x)2]dx (7)

It is well known [3, 45] that, almost surely, the family of random measures (Mγ
t )t>0

weakly converges as t → ∞ towards a random measures Mγ , which is non-trivial if and
only if γ2 < 2d. The purpose of this paper is to investigate the phase transition, that is
γ2 = 2d. Remind that we have:

Proposition 1. For γ2 = 2d, the standard construction (7) yields a vanishing limiting
measure:

lim
t→∞

M
√

2d
t (dx) = 0 almost surely. (8)

Let us also mention that the authors in [3] have proved that, for γ2 < 2d, the measure
Mγ satisfies the following scale invariance relation, called ?-equation:

Definition 2. Log-normal ?-scale invariance. The random Radon measure Mγ is
lognormal ?-scale invariant: for all 0 < ε 6 1, Mγ obeys the cascading rule(

Mγ(A)
)
A∈B(Rd)

law
=
( ∫

A
e
γX

ln 1
ε

(r)− γ
2

2
E[X

ln 1
ε

(r)2]
εdMγ,ε(dr)

)
A∈B(Rd)

(9)

where Xln 1
ε

is the Gaussian process introduced in (6) and Mγ,ε is a random measure

independent from Xln 1
ε

satisfying the scaling relation

(
Mγ,ε(A)

)
A∈B(Rd)

law
=
(
Mγ(

A

ε
)
)
A∈B(Rd)

. (10)
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Intuitively, this relation means that when you zoom in the measure M , you should
observe the same behaviour up to an independent Gaussian factor. It has some canonical
meaning since it is the exact continuous analog of the smoothing transformation intensively
studied in the context of Mandelbrot’s multiplicative cascades [33] or branching random
walks [15, 58].

Observe that this equation perfectly makes sense for the value γ2 = 2d. Therefore, to
define a natural Gaussian multiplicative chaos at the value γ2 = 2d, one has to look for a
solution to this equation when γ2 = 2d and conversely, each random measure candidate
for being a Gaussian multiplicative chaos at the value γ2 = 2d must satisfy this equation.

Remark 3. The main motivation for considering ?-scale invariant kernels is the connec-
tion between the associated random measures and the ?-equation. Nevertheless, we stress
that our proofs can be easily adapted for any Gaussian multiplicative chaos of log-correlated
Gaussian fields “à la Kahane” [45]. In particular, we can construct the derivative mar-
tingale associated to exact scale invariant kernels [11, 67].

3. Derivative martingale

One way to construct a solution to the ?-equation at the critical value γ2 = 2d is to
introduce the derivative martingale M ′t(dx) defined by:

M ′t(dx) := (
√

2d t−Xt(x))e
√

2dXt(x)−dE[Xt(x)2]dx.

It is plain to see that, for each open bounded set A ⊂ Rd, the family (M ′t(A))t is a
martingale. Nevertheless, it is not nonnegative. It is therefore not obvious that such a
family converges towards a (non trivial) positive limiting random variable. The following
theorem is the main result of this section:

Theorem 4. For each bounded open set A ⊂ Rd, the martingale (M ′t(A))t > 0 con-
verges almost surely towards a positive random variable denoted by M ′(A), such that
M ′(A) > 0 almost surely. Consequently, almost surely, the (locally signed) random mea-
sures (M ′t(dx))t > 0 converge weakly as t→∞ towards a positive random measure M ′(dx).
This limiting measure has full support and is atomless. Furthermore, the measure M ′ is
a solution to the ?-equation (9) with γ =

√
2d.

Since M ′t(dx) is not uniformly non-negative when t < ∞, there are several complica-
tions involved in establishing its convergence to a non-negative limit (let alone the non-
triviality of the limit). We have to introduce some further tools to study its convergence.
These tools have already been introduced in the context of discrete multiplicative cascade
models in order to study the corresponding derivative martingale (see [14]).

We denote by Ft the sigma algebra generated by {Xs(x); s 6 t, x ∈ Rd}. Given a
Borelian set A ⊂ Rd and parameters t, β > 0, we introduce the random variables

Zβt (A) =

∫
A

(
√

2dt−Xt(x) + β)1I{τβ>t}e
√

2dXt(x)−dE[Xt(x)2] dx

Z̃βt (A) =

∫
A

(
√

2dt−Xt(x))1I{τβ>t}e
√

2dXt(x)−dE[Xt(x)2] dx,

8



where, for each x ∈ A, τβ is the stopping time adapted to the filtration Gt = σ(Xs(x); s 6 t, x ∈
Rd) defined by

τβ = inf{u > 0, Xu(x)−
√

2du > β}.

What is the relation between Zβt (A) and M ′t(A)? Roughly speaking, we will show that the
convergence of (M ′t(A))t towards a non-trivial object boils down to proving the convergence

of (Zβt (A))t towards a non-trivial object: we will prove that the difference Zβt (A)− Z̃βt (A)

almost surely goes to 0 as t→∞ and that Z̃βt (A) coincides with M ′t(A) for β large enough.

In particular, we will prove that Zβt (A) converges towards a random variable Zβ(A) which
itself converges as β → ∞ to the limit of M ′t(A) (as t → ∞). The details and proofs are
gathered in the appendix.

As a direct consequence of our method of proof, we get the following properties of
M ′(dx):

Proposition 5. The positive random measure M ′(dx) possesses moments of order q for
all q 6 0. It does not possess moments of order 1.

Proof. As a direct consequence of the fact that the measure M ′ satisfies the ?-equation,
it possesses moments of order q for all q 6 0. This is a straightforward adaptation of the
corresponding theorem in [8] (see also [12] for a proof in English). Since Zβ(dx) increases

towards M ′ as β goes to infinity, we have M ′(dx) > Zβ(dx) for any β. Since (Zβt )t is a

uniformly integrable martingale, we have E[Zβ(A)] = E[Zβ0 (A)] = β|A|, we deduce that
E[M ′(A)] = +∞ for every bounded open set A.

4. Conjectures

In this section, we present a few results we can prove about the ?-equation and some
conjectures related to these results.

4.1 About the ?-equation

Consider the ?-equation in great generality, that is:

Definition 6. Log-normal ?-scale invariance. A random Radon measure M is log-
normal ?-scale invariant if for all 0 < ε 6 1, M obeys the cascading rule(

M(A)
)
A∈B(Rd)

law
=
( ∫

A
eωε(r)M ε(dr)

)
A∈B(Rd)

(11)

where ωε is a stationary stochastically continuous Gaussian process and M ε is a random
measure independent from Xε satisfying the scaling relation(

M ε(A)
)
A∈B(Rd)

law
=
(
M(

A

ε
)
)
A∈B(Rd)

. (12)

Observe that, in comparison with (9) and (10), we do not require the scaling factor
to be εd. As stated in (11) and (12), it is proved in [3] that E[eωε(r)] = εd as soon as the
measure possesses a moment of order 1 + δ for some δ > 0. Roughly speaking, it remains
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Figure 1: Height landscape of the derivative martingale measure plotted with a logarithmic
scale color-bar, showing that the measure is very “peaked” (for t = 12, a multiplicative
factor of about 108 stands between extreme values, i.e., between warm and cold colors).

to investigate situations when the measure does not possess a moment of order 1 and we
will see that the scaling factor is then not necessarily εd.

Inspired by the discrete multiplicative cascade case (see [33]), our conjecture is that
all the non-trivial ergodic solutions to this equation belong to one of the families we will
describe below.

First we conjecture that there exists a α ∈]0, 1] such that

E[eαωε(r)] = εd.

Assuming this, it is proved in (see [3, 66]) that the Gaussian process αωe−t has a covariance
structure given by (6). More precisely, there exists some continuous covariance kernel k
with k(0) = 1 and γ2 6 2d such that

Cov
(
αωe−t(0), αωe−t(x)

)
= γ2

∫ et

1

k(ux)

u
du

10



We can then rewrite the process ω as

ωe−t(x) =
γ

α
Xt(x)− γ2

2α
t− d

α
t.

where (Xt)t is the family of Gaussian fields introduced in Section 2. We now consider four
cases, depending on the values of α and γ (cases 2,3,4 are conjectures):

1. If α = 1 and γ2 < 2d then the law of the solution M is the standard Gaussian
multiplicative chaos Mγ (see (7)) up to a multiplicative constant. This case has
been treated in [3].

2. If α = 1 and γ2 = 2d, then the law of the solution M is that of the derivative
martingale that we have constructed in this paper (Theorem 4), up to a multiplicative
constant.

3. If α < 1 and γ2 < 2d, then M is an atomic Gaussian multiplicative chaos as con-
structed in [10] up to a multiplicative constant. More precisely, the law can be
constructed as follows:

(a) sample a standard Gaussian multiplicative chaos

M̄(dx) = eγX(x)− γ
2

2
E[X(x)2] dx.

The measure M̄ is perfectly defined since γ2 < 2d.

(b) sample an independently scattered random measure N whose law, conditioned
on M̄ , is characterized by

∀q > 0, E[e−qN(A)|M̄ ] = e−q
αM̄(A).

Then the law of M is that of N up to a multiplicative constant.

4. If α < 1 and γ2 = 2d, then M is an atomic Gaussian multiplicative chaos of a new
type. More precisely, the law can be constructed as follows:

(a) sample the derivative Gaussian multiplicative chaos

M ′(dx) = (
√

2dE[X(x)2]−X(x))e
√

2dX(x)−dE[X(x)2] dx.

The measure M ′ is constructed as prescribed by Theorem 4.

(b) sample an independently scattered random measure N whose law, conditioned
on M ′, is characterized by

∀A ∈ B(Rd), ∀q > 0, E[e−qN(A)|M ′] = e−q
αM ′(A).

Then the law of M is that of N up to a multiplicative constant.

Notice that the results of our paper together with [3, 10] allow to prove existence of all
the random measures described above. Therefore it remains to complete the uniqueness
part of this statement.

11



Remark 7. The α < 1, γ2 < 2d case above has been used in [10, 28, 29] to give a
mathematical understanding of the duality in Liouville Quantum Gravity: this corresponds
to taking special values of the couple (α, γ). More precisely, we choose some parameter
γ̄2 > 2d. If the measure Mγ̄ was well defined, it would satisfy the scaling relation:(

Mγ̄(A)
)
A∈B(Rd)

law
=
( ∫

A
e
γ̄X

ln 1
ε

(r)− γ̄
2

2
E[X

ln 1
ε

(r)2]
εdM γ̄,ε(dr)

)
A∈B(Rd)

(13)

where M γ̄,ε is a random measure independent from Xε satisfying the scaling relation(
M γ̄,ε(A)

)
A∈B(Rd)

law
=
(
M γ̄(

A

ε
)
)
A∈B(Rd)

. (14)

Nevertheless, we know that M γ̄ yields a vanishing measure. The idea is thus to use the
?-equation to determine what the unique solution of this scaling relation is. Writing γ =
2d
γ̄ < 2d and α = 2d

γ̄2 , it is plain to see that

E
[(
e
γ̄X

ln 1
ε

(r)− γ̄
2

2
E[X

ln 1
ε

(r)2]
εd
)α]

= εd.

Therefore we are in situation 4, which yields a natural candidate for Liouville duality
[10, 28, 29].

4.2 Another construction of solutions to the critical ?-equation

Recall that the measures Mγ for γ < 2 are obtained as limits of (1) as X varies along
approximations to a limit field. The measure constructed in Theorem 4 is defined anal-
ogously except that one replaces (1) with (2), which is minus the derivative of (1) at
γ =

√
2d. If we could exchange the order of the differentiation and the limit-taking, we

would conclude that the measure constructed in Theorem 4 is equal to

− ∂

∂γ
[Mγ ]γ=

√
2d = lim

γ→
√

2d

1√
2d− γ

Mγ .

We will not fully justify this order exchange here, but we will establish a somewhat
weaker result. Namely, we show that one can at least obtain some solution to the ?-
equation as a limit of this general type. This construction is inspired by a similar con-
struction for discrete multiplicative cascades in [33]. More precisely, we have the following
(proved in Section A.2):

Proposition 8. There exist two increasing sequence (λn)n and (γn)n, with γ2
n < 2d and

γ2
n → 2d as n→∞, such that

λnM
γn(dx)

law→ M c(dx),

where M c is a positive random measure satisfying (9).

The following conjecture is a consequence of the uniqueness conjecture for the ?-
equation exposed in Section 4.1 above:

Conjecture 9. The construction of Proposition 8 gives the same measure as the one
described in Section 3 (up to some multiplicative constant). Moreover, the sequence (λn)n
can be chosen as λn = 1√

2d−γn
(in dimension d).

12



4.3 Glassy phase of log-correlated Gaussian potentials

The glassy phase of log-correlated Gaussian potentials is concerned with the behaviour
of measures beyond the critical value γ2 > 2d. More precisely, for γ2 > 2d, consider the
measure

Mγ
t (dx) = eγXt(x)− γ

2

2
E[Xt(x)2] dx.

The limiting measure, as t → ∞, vanishes as proved in [45]. Therefore, it is natural to
look for a suitable family of normalizing factors to make this measure converge. With the
arguments used in subsection B.1 to compare with the results obtained in [9, 59], we can
rigorously prove:

Proposition 10. The renormalized family(
t

3γ

2
√

2d e
t
(
γ√
2
−
√
d
)2

Mγ
t (dx)

)
t > 0

is tight. Furthermore, every converging subsequence is non trivial.

The above proposition can be obtained using the results in [9, 59] and Section B.1
(tightness statement). Using a result in [17] about the behaviour of the maximum of the
discrete GFF gives you that every converging subsequence is non trivial.

We now formulate a conjecture about the limiting law of this family. Assuming that the
above renormalized family converges in law (so we strengthen tightness into convergence),
it turns out that the limit Mγ of this renormalized family necessarily satisfies the following
?-equation

Mγ(dx) = e
γX

ln 1
ε

(x)−
√
d
2
γE[X

ln 1
ε

(x)2]
ε

√
d
2
γ
M

γ(dx
ε

)
where M

γ
is a random measure with the same law as Mγ and independent of the process

(Xt(x))x∈Rd . Setting α =
√

2d
γ ∈]0, 1[, this equation can be rewritten as

Mγ(dx) = e

√
2d
α
X

ln 1
ε

(x)− d
α
E[X

ln 1
ε

(x)2]
εd/αM

γ(dx
ε

)
.

Therefore, assuming that the conjectures about uniqueness of the ?-equation are true, we
have that:

Conjecture 11.

t
3γ

2
√

2d e
t
(
γ√
2
−
√
d
)2

Mγ
t (dx)

law→ cγNα(dx), as t→∞ (15)

where cγ is a positive constant depending on γ and the law of Nα is given, conditioned on
the derivative martingale M ′, by an independently scattered random measure the law of
which is characterized by

∀A ∈ B(Rd),∀q > 0, E[e−qNα(A)|M ′] = e−q
αM ′(A).

In particular, physicists are interested in the behaviour of the Gibbs measure associated
to Mγ

t (dx) on a ball B. It is the measure renormalized by its total mass:

∀A ∈ B(B), Gγt (dx) =
Mγ
t (dx)

Mγ
t (B)

.

13



From (15), we deduce

Gγt (dx)
law→ Nα(dx)

Nα(B)
, as t→∞. (16)

The size reordered atoms of the latter object form a Poisson-Dirichlet process as conjec-
tured by physicists [6, 19]. Nevertheless, we point out that this conjecture is more powerful
than the Poisson-Dirichlet conjecture since it also makes precise the spatial localization
of the atoms. We stress that this result has been proved in the case of branching random
walks [9], built on the work [59].

4.4 About the maximum of the log-correlated Gaussian random vari-
ables

It is proved in [17] (in fact d = 2 in [17] but this is general) that the family(
sup

x∈[0,1]d
Xt(x)−

√
2dt+

3

2
√

2d
ln t
)
t > 0

is tight. One can thus conjecture by analogy with branching random walk case ([2]):

Conjecture 12.

sup
x∈[0,1]d

Xt(x)−
√

2dt+
3

2
√

2d
ln t→ Gd, in law as t→∞

where the distribution Gd is given in terms of the distribution of the limit of the derivative
martingale M ′([0, 1]d. More precisely, there exists some constant c > 0 such that:

E[e−qGd ] =
1

cq
Γ(1 +

q√
2d

)E
[(
M ′([0, 1]d)

)− q√
2d
]

(17)

Here we give a heuristic derivation of identity 17 using the conjectures of the above
subsections. By performing an inversion of limits: (γ ↔ t and conjecturing

ln cγ
γ → ln c as

γ →∞):

E[e−qGd ] = lim
γ→+∞

lim
t→+∞

E
[

exp
[
−qγ−1 ln t

3γ

2
√

2d e
t
(
γ√
2
−
√
d
)2

Mγ
t ([0, 1]d)

]]
= lim

γ→+∞
E
[(
cγNα=

√
2d
γ

([0, 1]d)]
)− q

γ
]

=
1

cq
Γ(1 +

q√
2d

)E
[(
M ′([0, 1]d)

)− q√
2d
]

where, for x > 0, Γ(x) =
∫∞

0 tx−1e−tdt is the standard Gamma function. Therefore Gd
can be viewed as a modified Gumbel law. Otherwise stated, we conjecture:

lim
t→∞

P
(

sup
x∈[0,1]d

Xt(x)−
√

2dt+
3

2
√

2d
ln t 6 x

)
= E[e−ce

−xM ′([0,1]d)].

We point out that we recover in a heuristic and alternative way the result proved rigorously
in [2] for branching random walks.
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A. Proofs

A.1 Proofs of results from Section 3

We follow the notations of Section 3. We first investigate the convergence of (Zβt (A))t > 0:

Proposition 13. The process (Zβt (A))t > 0 is a continuous positive Ft-martingale and
thus converges almost surely towards a positive random variable denoted by Zβ(A).

Proof. Proving that (Zβt (A))t > 0 is a martingale boils down to proving, for each x ∈ A,
that

E[(
√

2dt−Xt(x)+β)1I{τβ>t}e
√

2dXt(x)−dE[Xt(x)2]|Fs] = (
√

2ds−Xs(x)+β)1I{τβ>s}e
√

2dXs(x)−dE[Xs(x)2].

Let us first stress that, for each x ∈ A, the process (Xt(x))t > 0 is a Brownian motion.
Furthermore, we can use the (weak) Markov property of the Brownian motion to get

E[(
√

2dt−Xt(x) + β)1I{τβ>t}e
√

2dXt(x)−dE[Xt(x)2]|Fs]

= 1I{τβ>s}e
√

2dXs(x)−dE[Xs(x)2]F
(√

2ds−Xs(x) + β
)

where

F (y) = E[(
√

2d(t− s)−Xt−s(x) + y)1I{τ(X·(x)−
√

2d·)>t−s}e
√

2dXt−s(x)−dE[Xt−s(x)2]]

and, for a stochastic process Y , τ(Y ) is defined by

τ(Y ) = inf{u > 0;Yu > y}.

Using the Girsanov transform yields

F (y) = E[(−
√

2dXt−s(x) + y)1I{τ(
√

2dX·(x))>t−s}].

Hence we get

F (y) = E[(−
√

2dXt−s(x) + y)1I{τ(
√

2dX·(x))>t−s}] = E[(−
√

2dXt−s∧τ(X·(x))(x) + y)] = y

by the optional stopping theorem. This completes the proof.

Proposition 14. Assume that A is a bounded open set. Then, the martingale (Zβt (A))t > 0

is regular.

Proof. Without loss of generality, we may assume k(u) = 0 for |u| > 1 since k has a
compact support (so we just assume that the smallest ball centered at 0 containing the
support of k has radius 1 instead of R for some R > 0). We may also assume that
A ⊂ B(0, 1/2): indeed, any bigger bounded set can be recovered with finitely many balls
with radius less than 1

2 . Finally, we will also assume that x · ∇k(x) 6 0. This condition
need not be true over the whole Rd. Nevertheless, it must be valid in a neighborhood of
0 (and even x · ∇k(x) < 0 if x 6= 0) in order not to contradict the fact that k is positive
definite and non constant. Therefore, even if it means considering a smaller set A, we may
(and will) assume that this condition holds.
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Write for x ∈ Rd:

fβt (x) = (
√

2dt−Xt(x) + β)1I{τβ>t}e
√

2dXt(x)−dE[Xt(x)2].

Define then the analog of the rooted random measure in [30] (also called the “Peyrière
probability measure” in this context [45])

Θβ
t =

1

|A|β
fβt (x)dx dP.

It is a probability measure on B(A)⊗Ft. We denote by Θβ
t (·|G) the conditional expectation

of Θβ
t given some sub-σ-algebra G of B(A) ⊗ Ft. If y is a B(A) ⊗ Ft-measurable random

variable on A × Ω, we denote by Θβ
t (·|y) the conditional expectation of Θβ

t given the
σ-algebra generated by y.

We first observe that

Θβ
t (·|x) =

1

β
fβt (x) dP.

Therefore, under Θβ
t (·|x), the process (Xt(x) −

√
2dt − β)s 6 t has the law of (−βs)s 6 t

where (βs)s 6 t is a 3d-Bessel process starting from β. Let us now recall the following result
(see [60]):

Theorem 15. Let X be a 3d-Bessel process on R+ started from x > 0 with respect to the
law Px.

1. Suppose that φ ↑ ∞ such that
∫∞

1
φ(t)3

t e−
1
2
φ(t)2

dt < +∞. Then

Px
(
Xt >

√
tφ(t) i.o. as t ↑ +∞

)
= 0.

2. Suppose that ψ ↓ 0 such that
∫∞

1
ψ(t)
t dt < +∞. Then

Px
(
Xt <

√
tψ(t) i.o. as t ↑ +∞

)
= 0.

Therefore, we can choose R large enough such that the set

B =
{
∀t > 0;

√
t

R(ln(2 + t))2
6 βt 6 R(1 +

√
t ln(1 + t))

}
has a probability arbitrarily close to 1, say 1− ε.

We can now prove the uniform integrability of (Zβt (A))t, i.e.

lim
δ→∞

lim sup
t→∞

E[Zβt (A)1I{Zβt (A)>δ}] = 0.

Observe that
E[Zβt (A)1I{Zβt (A)>δ}] = β|A|Θβ

t (Zβt (A) > δ).

Therefore it suffices to prove that

lim
δ→∞

lim sup
t→∞

Θβ
t (Zβt (A) > δ) = 0.
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We have:

Θβ
t (Zβt (A) > δ)

=
1

|A|

∫
A

Θβ
t (Zβt (A) > δ|x) dx

=
1

|A|

∫
A

Θβ
t

(
Θβ
t

(
Zβt (A) > δ|x, (Xs(x))s 6 t

)
|x
)
dx

6 ε+
1

|A|

∫
A

Θβ
t

(
Θβ
t

(
Zβt (A) > δ|x, (Xs(x))s 6 t, B

)
|x
)
dx

6 ε+
1

|A|

∫
A

Θβ
t

(
Θβ
t

(
Zβt (B(x, e−t)) >

δ

2
|x, (Xs(x))s 6 t, B

)
|x
)
dx

+
1

|A|

∫
A

Θβ
t

(
Θβ
t

(
Zβt (B(x, e−t)c) >

δ

2
|x, (Xs(x))s 6 t, B

)
|x
)
dx

def
= ε+ Π1 + Π2.

We are now going to estimate Π1,Π2. Observe that the two quantities roughly reduces
to expressions like (K is a ball or its complementary)

Θβ
t

(
F
(∫

K
fβt (w) dw

)
|x, (Xs(x))s 6 t, B

)
.

To carry out our computations, we thus have to compute the law of the process (Xs(w))s 6 t

knowing that of the process (Xs(x))s 6 t. To that purpose, we will use the following lemma
whose proof is left to the reader since it follows from a standard (though not quite direct)
computation of covariances for Gaussian processes:

Lemma 16. For w 6= x and all s0, the law of the process (Xs(w))s 6 s0 can be decomposed
as:

Xs(w) = P x,ws + Zx,ws

where:
-P x,ws = −

∫ s
0 gx,w(u)Xu(x) du+K ′s(x−w)Xs(x) is measurable with respect to the σ-algebra

generated by (Xs(x))s 6 s0 and gx,w(u) = K ′′u(x− w),
-the process (Zx,ws )0 6 s 6 s0 is a centered Gaussian process independent of (Xs(x))0 6 s 6 s0

with covariance kernel

qx,w(s, s′)
def
= E[Zx,ws′ Zx,ws ] = s ∧ s′ −

∫ s∧s′

0
(K ′u(x− w))2 du.

We first estimate Π2 with the above lemma. It is enough to estimate properly the
quantity

Π̃2 = Θβ
t

(
Zβt (B(x, e−t)c) >

δ

2
|x, (Xs(x))s 6 t, B

)
. (18)

Notice that:

Π̃2 6
2

δ

∫
B(x,e−t)c

Θβ
t

(
fβt (w)|x, (Xs(x))s 6 t, B

)
dw. (19)
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For each w ∈ B(x, e−t)c, i.e. such that |w−x| > e−t, let us define s0 = ln 1
|x−w| . Notice that

s0 is the time at which the evolution of (Xs(w)−Xs0(w))s0 6 s 6 t becomes independent of

the process (Xs(x))0 6 s 6 t. Under Θβ
t , the process (Xs(w))s0 6 s 6 t can be rewritten as:

Xs(w) = Xs0(w) +Ws−s0

where W is a standard Brownian motion independent of the processes (Xs(x))0 6 s 6 t and
(Xs(w))0 6 s 6 s0 . This can be checked by a straightforward computation of covariance.
Therefore we get:

Θβ
t (fβt (w)|x, (Xs(x))s 6 t)

=
1

β
E
[
(
√

2dt−Xt(w) + β)1I{sup[0,t]Xu(w)−
√

2du 6 β}e
√

2dXt(w)−dt|x, (Xs(x))s 6 t

]
=

1

β
E
[
(
√

2ds0 +
√

2d(t− s0)−Xs0(w)−Wt−s0 + β)1I{sup[0,s0]Xu(w)−
√

2du) 6 β}

1I{sup[s0,t]
Xs0 (w)+

√
2ds0+Wu−s0−

√
2d(u−s0)) 6 β}e

√
2dXs0 (w)−ds0e

√
2dWt−s0−d(t−s0)|x, (Xs(x))s 6 t

]
=

1

β
E
[
(
√

2ds0 −Xs0(w) + β)1I{sup[0,s0] Xu(w)−
√

2du) 6 β}e
√

2dXs0 (w)−ds0 |x, (Xs(x))s 6 t

]
,

by the stopping time theorem. From Lemma 16, we deduce:

Θβ
t (fβt (w)|x, (Xs(x))s 6 t)

=
1

β
E
[
(
√

2ds0 − P x,ws0 − Z
x,w
s0 + β)1I{sup[0,s0] P

x,w
s0

+Zx,ws0 −
√

2du 6 β}e
√

2d(Px,ws0
+Zx,ws0 )−ds0 |x, (Xs(x))s 6 t

]
6

1

β
E
[(

(
√

2ds0 − P x,ws0 − Z
x,w
s0 + β)2 + 1

)
e
√

2d(Px,ws0
+Zx,ws0 )−ds0 |x, (Xs(x))s 6 t

]
=

1

β

(
(
√

2d(s0 − qx,w(s0, s0))− P x,ws0 + β)2 + qx,w(s0, s0)
)
e
√

2dPx,ws0
−d(s0−qx,w(s0,s0)). (20)

We make two observations. First, we point out that the quantity qx,w(s0, s0) is bounded
by a constant only depending on k since

qx,w(s0, s0) =s0 −
∫ s0

0
(K ′u(x− w))2 du

=

∫ s0

0

[
1−

(
k(eu(x− w))

)2]
du

=

∫ 1

|x−w|

(
1− k

(
y
x− w
|x− w|

)2)1

y
dy

6 C

where C can be defined as supz∈B(0,1)
1−k(z)2

|z| . So the quantity qx,w(s0, s0) won’t play a
part in the forthcoming computations.

Second, we want to express the random variable P x,ws0 as a function of the Bessel process
(Xu(x)−

√
2du− β)u in order to use the fact that we can control the paths of this latter
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process (we will condition by the event B). Therefore we set

Y x,w
s0 =−

∫ s0

0
gx,w(u)(Xu(x)−

√
2du− β) du (21)

=−
∫ s0

0
gx,w(u)Xu(x) du−

√
2dKs0(x− w) + β

(
k(es0(x− w))− k(x− w)

)
=P x,ws0 −

√
2dKs0(x− w) + β

(
k(es0(x− w))− k(x− w)

)
.

Therefore we can write:
Y x,w
s0 = P x,ws0 −

√
2ds0 + θx,w(s0)

for some function θx,w that is bounded independently of x,w, t since k is bounded over
Rd. Plugging these estimates into (20), we obtain:

Θβ
t (fβt (w)|x, (Xs(x))s 6 t, B)

=
1

β

(
(θx,w(s0)− Y x,w

s0 )2 + qx,w(s0, s0)
)
e
√

2dY x,ws0
+ds0+dqx,w(s0,s0)−

√
2dθx,w(s0)

6
1

β

(
(C − Y x,w

s0 )2 + C)
)
e
√

2dY x,ws0
+ds0+C (22)

for some constant C that does not depend on x,w, t, A. Now we plug the exact expression
of gx,w:

gx,w(u) =

d∑
i=1

(x− w)ie
u∂ik(eu(x− w))

into the definition (21) of Y x,w
s0 :

Y x,w
s0 =

∫ ln 1
|x−w|

0

d∑
i=1

(x− w)ie
u∂ik(eu(x− w))

(√
2du+ β −Xu(x)

)
du

=

∫ 1

|x−w|
y
x− w
|x− w|

· ∇k
(
y
x− w
|x− w|

)(√
2d ln

y

|x− w|
+ β −Xln y

|x−w|
(x)
)
dy

Moreover the constraint for the Bessel process, valid on B,

∀u > 0,

√
u

R(ln(2 + u))2
6 β −Xu(x) +

√
2du 6 R(1 +

√
u ln(1 + u)) (23)

implies that (here we use the relation x · ∇k(x) 6 0)

Y x,w
s0 > R

∫ 1

|x−w|
y
x− w
|x− w|

· ∇k
(
y
x− w
|x− w|

)
)
(

1 +

√
ln

y

|x− w|
ln
(
1 + ln

y

|x− w|
))
dy (24)

Y x,w
s0 6 R

∫ 1

|x−w|
y
x− w
|x− w|

· ∇k
(
y
x− w
|x− w|

) √
ln y
|x−w|

ln
(

2 + ln y
|x−w|

)2 dy. (25)

Using rough estimates yields

− CR
(

1 +

√
ln

1

|x− w|
ln
(
1 + ln

1

|x− w|
))
du 6 Y x,w

s0 6 − CR

√
ln 1
|x−w|

ln
(

2 + ln 1
|x−w|

)2 (26)
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for some constant CR depending on R and on the function x 7→ x · ∇k(x). Plugging these
estimates into (22) yields (the constant C may change, depending on the value of CR)

Θβ
t (fβt (w)|x, (Xs(x))s 6 t, B) 6

eC

β|x− w|d
G(ln

1

|x− w|
) (27)

where

G(y) =
(

1 +
√
y ln

(
1 + y

))2
e

−
√

2dC
√
y

ln

(
2+y

)2

Finally, by gathering the above estimates (18), (19) and (27) and then making successive
changes of variables, we obtain (Vd stands for the area of the unit sphere of Rd):

Π2 =
1

|A|

∫
A

Θβ
t

(
Θβ
t

(
Zβt (B(x, e−t)c) >

δ

2
|x, (Xs(x))s 6 t, B

)
|x
)
dx

=
1

|A|

∫
A

Θβ
t

(
Π̃2|x

)
dx

6
2

|A|δ

∫
A

∫
B(x,e−t)c

eC

β|x− w|d
G(ln

1

|x− w|
) dxdw

6
2Vd
δ

∫ 1

e−t

eC

βrd
G(ln

1

r
)rd−1 dr

6
2Vde

C

δβ

∫ t

0
G(u) du.

Since G is integrable, this quantity is obviously bounded by a quantity that goes to 0 when
δ becomes large uniformly with respect to t. This concludes estimating Π2.

We now estimate Π1. Once again, it is enough to estimate the quantity

Π̃1 = Θβ
t

(
Zβt (B(x, e−t)) >

δ

2
|x, (Xs(x))s 6 t, B

)
, (28)

which is less than

Π̃1 6
2

δ

∫
B(x,e−t)

Θβ
t

(
fβt (w)|x, (Xs(x))s 6 t, B

)
dw. (29)

This time, for |w − x| < e−t, there is no need to ”cut” the process (Xs(w))s 6 t at level
s = ln 1

|x−w| . We can directly use Lemma 16 to get:

Θβ
t (fβt (w)|x, (Xs(x))s 6 t, B)

=
1

β
E
[
(
√

2dt− P x,wt − Zx,wt + β)1I{sup[0,t] P
x,w
t +Zx,wt −

√
2du 6 β}e

√
2d(Px,wt +Zx,wt )−dt|x, (Xs(x))s 6 t, B

]
6

1

β
E
[(

(
√

2dt− P x,wt − Zx,wt + β)2 + 1
)
e
√

2d(Px,wt +Zx,wt )−dt|x, (Xs(x))s 6 t, B
]

=
1

β

(
(
√

2d(t− qx,w(t, t))− P x,wt + β)2 + qx,w(t, t)
)
e
√

2dPx,wt −d(t−qx,w(t,t)).

Once again, the quantity qx,w(t, t) is bounded by a constant only depending on k (not on
t). Second, for s 6 t, we define the process

Y x,w
s =−

∫ s

0
gx,w(u)(Xu(x)−

√
2du− β) du+K ′S(x− w)(Xs(x)−

√
2ds− β),
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which turns out to be equal to

Y x,w
s =P x,ws −

√
2ds+ θx,w(s)

for some function θx,w that is bounded independently of x,w, s, t, A. We deduce:

Θβ
t (fβt (w)|x, (Xs(x))s 6 t, B)

=
1

β

(
(θx,w(t)− Y x,w

t )2 + qx,w(t, t)
)
e
√

2dY x,wt +dt+dqx,w(t,t)−
√

2dθx,w(t)

6
1

β

(
(C − Y x,w

t )2 + C)
)
e
√

2dY x,wt +dt+C (30)

for some constant C that does not depend on x,w, t. Once again on B, the Bessel process
evolves in the strip (23), implying that the process Y x,w is bound to live in the strip (we
stick to the previous notations)

− CR
(

1 +
√
t ln
(
1 + t

))
du 6 Y x,w

t 6 − CR
√
t

ln
(

2 + t
)2 (31)

for some constant CR. Plugging these estimates into (30) yields (the constant C may
change, depending on the value of CR)

Θβ
t (fβt (w)|x, (Xs(x))s 6 t, B) 6

eC

β
G(t)edt (32)

where the function G is still defined by

G(t) =
(

1 +
√
t ln
(
1 + t

))2
e

−
√

2dC
√
t

ln

(
2+t

)2

.

Notice that this estimate differs from that obtained for Π̃2 because of the edt factor. It
will be absorbed by the volume of the ball B(x, e−t) that we will integrate over. Finally,
by using (32), we obtain:

Π1 =
1

|A|

∫
A

Θβ
t

(
Θβ
t

(
Zβt (B(x, e−t)) >

δ

2
|x, (Xs(x))s 6 t, B

)
|x
)
dx

=
1

|A|

∫
A

Θβ
t

(
Π̃2|x

)
dx

6
2

|A|δ

∫
A

∫
B(x,e−t)

eC

β
G(t)edt dxdw

6
2

δ

eC

β
G(t)

Since G is bounded, this quantity is obviously bounded by a quantity that goes to 0 when
δ becomes large uniformly with respect to t. This concludes estimating Π1. The proof is
complete.

We are now in position to prove:
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Theorem 17. For each bounded open set A ⊂ Rd, the martingale (M ′t(A))t > 0 con-
verges almost surely towards a positive random variable denoted by M ′(A), such that
M ′(A) > 0 almost surely. Consequently, almost surely, the (locally signed) random mea-
sures (M ′t(dx))t > 0 converge weakly as t→∞ towards a positive random measure M ′(dx),
which has full support and is atomless. Furthermore, the measure M ′ is a solution to the
?-equation (9) with γ =

√
2d.

Proof. We first observe that the martingale (Zβt (A))t > 0 possesses almost surely the same

limit as the process (Z̃βt (A))t > 0 because

|Zβt (A)− Z̃βt (A)| = β

∫
A

1I{τβ>t}e
√

2dXt(x)−dE[Xt(x)2]dx 6 βM
√

2d
t (A) (33)

and the last quantity converges almost surely towards 0 since M
√

2d
t (dx) almost surely

converges towards 0 as t goes to ∞ (see Proposition 19 below). Furthermore this conver-
gence towards 0 also implies that maxx∈AXt(x)−

√
2dt→ −∞ in probability as t goes to

infinity (see Proposition 19 again). Therefore, almost surely, we have:

sup
t∈R+

max
x∈A

Xt(x)−
√

2dt < +∞,

which obviously implies

∀t, M ′t(A) = Z̃βt (A)

for β (random) large enough.

Since the family of random measures (Zβt (dx))t > 0 are positive and (Zβt (A))t > 0 almost
surely converges for every bounded open set A, it is plain to deduce that, almost surely,
the family (M ′t(dx))t > 0 weakly converges towards a positive random measure.

Let us prove that the support of M ′ is Rd. We first write the relation, for s < t,

Zβt (dx) =(
√

2ds−Xs(x) + β)1I{τβ>t}e
√

2dXt(x)−dE[Xt(x)2] dx (34)

+ (
√

2d(t− s)−Xt(x) +Xs(x) + β)1I{τβ>t}e
√

2dXt(x)−dE[Xt(x)2] dx.

By using the same arguments as throughout this section, we pass to the limit in this
relation as t→∞ and then β →∞ to get

M ′(dx) =e
√

2dXs(x)−dE[Xs(x)2]M
′,s(dx) (35)

where M
′,s is defined as

M
′,s(dx) = lim

β→∞
lim
t→∞

Zβ,st (dx)

and Zβ,st (dx) is almost surely defined as the weak limit of

Zβ,st (A) =

∫
A

(√
2d(t−s)−Xt(x)+Xs(x)+β

)
1I{τβs >t}

e
√

2d(Xt(x)−Xs(x))−d
(
E[Xt(x)2]−E[Xs(x)2]

)
dx

where
τβs = inf{u > 0;Xu+s(x)−Xs(x)−

√
2du > β}.
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Let us stress that we have used the fact that the measure

(
√

2ds−Xs(x) + β)1I{τβ>t}e
√

2dXt(x)−dE[Xt(x)2] dx

goes to 0 (it is absolutely continuous w.r.t. to M
√

2d
t (dx)) when passing to the limit in

(34). Therefore M ′ is a solution to the ?-equation (9). From (35), it is plain to deduce
that the event {M ′(A) = 0} (A open non-empty set) belongs to the asymptotic sigma-
algebra generated by the field {(Xt(x))x; t > 0}. Therefore it has probability 0 or 1 by
the 0 − 1 law of Kolmogorov. Since we have already proved that it is not 0, this proves
that P(M ′(A) = 0) = 0 for any non-empty open set A.

Finally, we prove that the measure is atomless. The proof is based on the computa-
tions made during the proof of Proposition (14). We will explain how to optimize these
computations to obtain the atomless property. Of course, we could have done that directly
in the proof of Proposition (14) but we feel that it is more pedagogical to separate the
arguments. Let us roughly explain how we will proceed. Clearly, it is sufficient to prove
that the positive random measure

Zβ(dx) = lim
t→∞

Zβt (dx).

does not possess atoms. To that purpose, by stationarity, it is enough to prove that (see[20,
Corollary 9.3 VI])

∀δ > 0, lim
n
ndP

(
Zβ(In) > δ

)
= 0

where In is the cube [0, 1
n ]d. From know on, we stick to the notations of Proposition 14.

We have to prove that:

∀δ > 0, lim
n

lim sup
t

Θβ
t

(
Zβt (In) > δ

)
= 0.

Therefore, let δ > 0 and ε > 0 be two fixed positive real numbers. We choose R and
the associated event B of probability 1− ε as in Proposition 14. We have:

lim sup
t

Θβ
t

(
Zβt (In) > δ

)
6 ε+ lim sup

t
Π1 + lim sup

t
Π2.

First note that lim supt Π1 = 0; we also have the following bound for lim supt Π2:

lim sup
t

Π2 6
2Vde

C

δβ

∫ ∞
n ln 2

G(u) du,

which goes to 0 as n goes to ∞. In conclusion, we get:

lim
n

lim sup
t

Θβ
t

(
Zβt (In) > δ

)
6 ε,

which is the desired result.
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A.2 Proof of result from Section 4

Here, we prove Proposition 8. For notational simplicity, we further assume that the
dimension d is equal to 1 and that k(u) = 0 for all |u| > 1. Generalization to all other
situations is straightforward.

Let C be the interval [0, 1]. Let us denote by φ(·, γ) the Laplace transform of Mγ(C)

φ(λ, γ) = E[e−λM
γ(C)].

Since P(Mγ(C) > 0) = 1 the range of the mapping λ ∈ R+ 7→ φ(λ, γ) is the whole
interval ]0, 1]. Choose a strictly increasing sequence (γn)n converging towards

√
2. Choose

a sequence (λn)n such that

φ(λn, γn) =
1

2
. (36)

Let us denote byM c(C) a random variable taking values in [0,+∞] such that λnM
γn(C)→

M c(C) vaguely as n→∞ (eventually up to a subsequence). Let us define the function

ϕ(θ) = E[e−θM
c(C),M c(C) <∞]

for θ > 0 and ϕ(0) = 1. Then φ(θλn, γn)→ ϕ(θ) for all θ so that, in particular, ϕ(1) = 1
2 .

Let us choose ε small enough in order to have ln 1
ε even integer larger than 4. Because of

(9), we have

φ(θλn, γn) = E
[

exp
[
−θλn

∫
C
e
γnXln 1

ε
(r)− γ

2
n
2
E[X

ln 1
ε

(r)2]
Mγn,ε(dr)

]]
Let us denote by Ck the interval [ k

ln 1
ε

, k+1
ln 1
ε

] for k ∈ Aε
def
= {0, . . . , ln 1

ε − 1}. By the

Cauchy-Schwartz inequality and stationarity, we have

φ(θλn, γn) 6 E
[

exp
[
−2θλn

∑
k∈Aε
even

∫
Ck

e
γnXln 1

ε
(r)− γ

2
n
2
E[X

ln 1
ε

(r)2]
Mγn,ε(dr)

]]

By the Kahane convexity inequality and because the mapping x 7→ e−sx is convex for any
s ∈ R, we deduce

φ(θλn, γn) 6 E
[

exp
[
−2θλn

∑
k∈Aε
even

∫
Ck

e

√
2X

ln 1
ε

(0)−E[X
ln 1
ε

(0)2]
Mγn,ε(dr)

]]

= E
[

exp
[
−2θλne

√
2X

ln 1
ε

(0)−E[X
ln 1
ε

(0)2] ∑
k∈Aε
even

Mγn,ε(Ck)
]]
.

Because the sets Ck are separated by a distance of at least 1
ln(1/ε) , the random variables

(Mγn,ε(Ck))k∈Aε
even

are i.i.d. with common law εMγn(C) because of (9). We deduce:

φ(θλn, γn) 6 E
[
φ
(

2θλnεe

√
2X

ln 1
ε

(0)−E[X
ln 1
ε

(0)2]
, γn

) 1
2

ln 1
ε
]
.
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By taking the limit as n→∞, we deduce

ϕ(θ) 6 E
[
ϕ
(

2θεe

√
2X

ln 1
ε

(0)−E[X
ln 1
ε

(0)2]
) 1

2
ln 1
ε
]
.

By letting θ go to 0, we deduce

ϕ(0+) 6 ϕ(0+)
1
2

ln 1
ε .

Because 1
2 ln 1

ε > 2, we are left with two options: either ϕ(0+) = 0 or ϕ(0+) > 1. But
ϕ(0+) 6 1 because e−θx 6 1 for all x > 0. Furthermore ϕ(0+) > ϕ(1) = 1

2 . Therefore
ϕ(0+) = 1 and M c(C) < +∞ almost surely. M c(C) is not trivial because ϕ(1) = 1

2 . We
have proved that the sequence (λnM

γn(C))n is tight and that the limit of every converging
subsequence is non trivial.

Of course, we can carry out the same job for every smaller dyadic interval. But the
normalizing sequence may depend on the size of the interval. Let us prove that it does
not. To this purpose, it is enough to establish that

1

2
6 lim inf

n
E[e−λnM

γn (Ck)] 6 lim sup
n

E[e−λnM
γn (Ck)] < 1.

for every dyadic interval Ck of size 2−k. The left-hand side is obvious becauseMγn(Ck) 6Mγn(C).
By using (9) with ε = 2−k and the Kahane convexity inequality, we deduce:

lim sup
n

E
[

exp
[
−λnMγn(Ck)

]
6 lim sup

n
E
[

exp
[
−λnMγn(C)2−ke

√
2Xk ln 2(0)−E[Xk ln 2(0)2]

]]
= E

[
ϕ
(
2−ke

√
2Xk ln 2(0)−E[Xk ln 2(0)2]

)]
.

The last quantity is strictly less than 1. Indeed, if not, then ϕ
(
2−ke

√
2dXk ln 2(0)− 2d

2
E[Xk ln 2(0)2]

)
=

1 almost surely, that is ϕ(θ) = 1 for all θ, hence a contradiction.
To sum up, the sequence (λnM

γn(C))n is tight for all dyadic intervals. By the Ty-
chonoff theorem and the Caratheodory extension theorem, we can extract a subsequence
and find a random measure M c(dx) such that (λnM

γn(C1), . . . , λnM
γn(Cp))n converges

in law towards (M c(C1), . . . ,M c(Cp))n for all dyadic intervals C1, . . . , Cp. Finally, by
multiplying both sides of (9) by λn and passing to the limit as n→∞, we deduce:

(
M c(A)

)
A∈B(R)

law
=
( ∫

A
e

√
2X

ln 1
ε

(r)−E[X
ln 1
ε

(r)2]
M c,ε(dr)

)
A∈B(R)

(37)

where (
M c,ε(A)

)
A∈B(R)

law
= ε

(
M c(

A

ε
)
)
A∈B(R)

. (38)

B. Auxiliary results

We first state the classical “Kahane’s convexity inequalities” (originally written in [45] ,
see also [3] for a proof):
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Lemma 18. Let F : R+ → R be some convex function such that

∀x ∈ R+, |F (x)| 6M(1 + |x|β),

for some positive constants M,β, and σ be a Radon measure on the Borelian subsets of Rd.
Given a bounded Borelian set A, let (Xr)r∈A, (Yr)r∈A be two continuous centered Gaussian
processes with continuous covariance kernels kX and kY such that

∀u, v ∈ A, kX(u, v) 6 kY (u, v).

Then

E
[
F
(∫

A
eXr−

1
2
E[X2

r ] σ(dr)
)]

6 E
[
F
(∫

A
eYr−

1
2
E[Y 2

r ] σ(dr)
)]
.

If we further assume
∀u ∈ A, kX(u, u) = kY (u, u)

then for each increasing function F : R+ → R:

E
[
F
(

sup
x∈A

Yx
)]

6 E
[
F
(

sup
x∈A

Xx

)]
.

B.1 Chaos associated to cascades

We use Kahane convexity inequalities (see proposition 18) to compare the small mo-
ments of the Gaussian multiplicative chaos with those of a dyadic lognormal Mandelbrot’s
multiplicative cascade. Let us briefly recall the construction of lognormal Mandelbrot’s
multiplicative cascades. We consider the 2d-adic tree

T = ({1, 2}d)N.

For t ∈ T , we denote by πk(t) (k ∈ N) the k-th component of t. We equip T with the
ultrametric distance

∀s, t ∈ T, d(t, s) = 2−2n, where n = sup{N ∈ N; ∀k 6 N, πk(t) = πk(s)}.

Let us define

∀s, t ∈ T, pn(t, s) =

{
u if d(t, s) 6 2−nd

0 if d(t, s) > 2−nd.
.

The kernel pn is therefore constant over each of the 2dn cylinders defined by the prescription
of the first n coordinates (in what follows, we will denote by In(t) that cylinder containing
t). For each n, we denote by (Yn(t))t∈T a centered Gaussian process indexed by T with
covariance kernel pn. We assume that the processes (Yn)n are independent. We set

∀s, t ∈ T, qn(t, s) =

n∑
k=1

pk(t, s) (39)

Notice that

∀s, t ∈ T, qn(t, s) =
u

2 ln 2
ln

1

d(t, s) ∨ 2−dn
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and

qn(t, s)→ u

2 ln 2
ln

1

d(t, s)
as n→∞.

We define the centered Gaussian process

∀t ∈ T,Xn(t) =
n∑
k=1

Yk(t)

with covariance kernel qn. Let us denote by σ the uniform measure on T , ie σ(In(t)) =
2−dn. We set

M
u
n =

∫
T
eXn(t)− 1

2
E[Xn(t)2]σ(dt).

This corresponds to the lognormal multiplicative cascades framework. The martingale
(M

u
n)n converges towards a non trivial limit off u < 4 ln 2. The boundary case corresponds

to u = 4 ln 2. It is proved in [46] that, for u = 4 ln 2, limnM
u
n(dx) = 0 almost surely.

It turns out that the 2d-adic tree can be naturally embedded in the unit cube of Rd
by iteratively dividing a cube into 2d cubes with equal size length. So we set K0 = [0, 1]d

and for each n > 1 and x ∈ [0, 1]d, we let Kn(x) stand for the cube of n-th generation
containing x. Notice that the uniform measure on the tree is then sent to the Lebesgue
measure by this embedding. We also stress that the dyadic distance on the cube [0, 1]d is
greater than the Euclidian distance on that cube:

∀s, t ∈ [0, 1]d, |t− s| 6 2d(t, s)
1
d .

This allows many one-sided comparison results between lognormal cascades and Gaussian
multiplicative chaos.

So, taking u = 4 ln 2 in the kernel qn of (39), we claim for all s′, s ∈ [0, 1]d, ∀n ∈ N:

qn(s, s′)− C 6 2dKn ln 2(s− s′) (40)

for some constant C > 0 that does not depend on n (only on k).
We are now in position to prove

Proposition 19. For γ2 = 2d, the standard construction yields a vanishing limiting
measure:

lim
ε→0

M
√

2d = 0 almost surely. (41)

Furthermore, for any bounded open set A,

sup
x∈A

Xt(x)−
√

2dt→ −∞ as t→∞. (42)

Proof. The family (Mγ
t ) is a positive martingale. Therefore it converges almost surely.

We just have to prove that the limit is zero.
From Kahane’s concentration inequalities (Lemma 18), we deduce that for all increas-

ing bounded concave function F and for all n ∈ N (we stick to the notations introduced
just above):

E
[
F (ZM

√
2d

n ln 2([0, 1]d))
]
6 E

[
F (

∫
T
eXn(t)− 1

2
E[Xn(t)2] dt)

]
(43)
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where Z ∼ eN (−C/2,C). Since the right-hand side goes to F (0) as n → ∞, so does the

left-hand side. This shows that M
√

2d
n ln 2([0, 1]d) goes to 0 in probability as n→∞. Since we

already know that the martingale (M
√

2d
t ([0, 1]d))t converges almost surely, this completes

the proof of the first statement.
Let us focus on the second statement. Observe that in the case of the 2d-adic tree the

convergence of the martingale (M
2d
n )n towards 0 implies that

max
t∈T

Xn − dn→ −∞ as n→∞

since obviously

2−dnemaxt∈T Xn−2dn ln 2 6M
2d
n .

By using the second statement of Lemma 18 and by arguing as above we complete the
proof of Proposition 19.

Acknowledgements

The authors wish to thank J. Barral, J.P. Bouchaud, K. Gawedzki, I. R. Klebanov, I.
K. Kostov and O. Zindy for fruitful discussions and comments that have led to the final
version of this manuscript.

References
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