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Generalized eigenfunctions of Markov kernels and application

to the convergence rate of discrete random walks

Denis GUIBOURG, Loïc HERVÉ, and James LEDOUX ∗

June 6, 2012

Abstract

Let (Xn)n∈N be a Markov chain on a measurable space X with transition kernel P
and let V : X→[1,+∞). Under a weak drift condition, the size of generalized eigen-

functions of P is estimated, where P is here considered as a linear bounded operator on

the weighted-supremum space BV associated with V . Then combining this result and

quasi-compactness arguments enables us to derive upper bounds for the geometric rate

of convergence of (Xn)n∈N to its invariant probability measure in operator norm on BV .

Applications to discrete Markov random walks are presented.

AMS subject classification : 60J10; 47B07

Keywords : Geometric ergodicity, quasi-compactness, Drift condition, Birth-and -Death
Markov chains.

1 Introduction

Let (X,X ) be a measurable space with a σ-field X , and let (Xn)n≥0 be a Markov chain with
state space X and transition kernels {P (x, ·) : x ∈ X}. Let V : X→[1,+∞). Assume that
(Xn)n≥0 has an invariant probability measure π such that π(V ) :=

∫
X
V (x)π(dx) <∞. This

paper is based on the connection between spectral properties of the Markov kernel P and the
so-called V -geometric ergodicity [MT93] that is the following convergence property for some
constants cρ > 0 and ρ ∈ (0, 1):

sup
|f |≤V

sup
x∈X

∣∣E[f(Xn) | X0 = x]− π(f)
∣∣

V (x)
≤ cρ ρ

n. (1)

Let us introduce the weighted-supremum Banach space (BV , ‖ · ‖V ) composed of measurable
functions f : X→C such that

‖f‖V := sup
x∈X

|f(x)|
V (x)

<∞.

∗INSA de Rennes, IRMAR, F-35042, France; CNRS, UMR 6625, Rennes, F-35708, France; Université
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Then (1) reads as ‖Pnf − π(f)1X‖V ≤ cρρ
n for any f ∈ BV such that ‖f‖V ≤ 1, and there is

a great interest in obtaining upper bounds for the convergence rate ρV (P ) defined by

ρV (P ) := inf
{
ρ ∈ (0, 1), sup

‖f‖V ≤1
‖Pnf − π(f)1X‖V = O(ρn)

}
. (2)

For irreducible and aperiodic discrete Markov chains, criteria for the V -geometrical ergodicity
are well-known from the literature using either the equivalence between geometric ergodicity
and V -geometric ergodicity of N-valued Markov chains [HS92, Prop. 2.4], or the strong drift
condition. For instance, when X := N (with V (n)→+∞ as n→+∞), the strong drift
condition is

PV ≤ ̺V + b 1{0,1,...,n0}

for some ̺ < 1, b < ∞ and n0 ∈ N (see [MT93]). Estimating ρV (P ) from the parameters
̺, b, n0 is a difficult issue. This often leads to unsatisfactory bounds, except for stochastically
monotone P (see [MT94, LT96, Bax05] and the references therein).

This work presents a new procedure to study the convergence rate ρV (P ) under the fol-
lowing weak drift condition

∃N ∈ N
∗, ∃d ∈ (0,+∞), ∃δ ∈ (0, 1), PNV ≤ δN V + d 1X. (WD)

The V -geometrical ergodicity clearly implies (WD). Conversely, such a condition with N = 1
was introduced in [MT93, Lem. 15.2.8] as an alternative to the drift condition [MT93, (V4)]
to obtain the V -geometrical ergodicity under suitable assumption on V . Note that, under
Condition (WD), the following real number δV (P ) is well defined:

δV (P ) := inf
{
δ ∈ [0, 1) : ∃N ∈ N

∗, ∃d ∈ (0,+∞), PNV ≤ δN V + d 1X
}
.

Our procedure is based on quasi-compactness arguments and on the next statement (Theo-
rem 1) which is the main result of the paper. Under Condition (WD), for any λ ∈ C such
that δ ≤ |λ| ≤ 1, and for any p ∈ N

∗, the following property holds with β(λ) := ln |λ|/ ln δ:

f ∈ BV ∩Ker(P − λI)p ⇒ ∃c ∈ (0,+∞), |f | ≤ c (lnV )
p(p−1)

2 V β(λ). (3)

In particular, if λ is an eigenvalue such that |λ| = 1, then any associated eigen-function f is
bounded on X. By contrast, if |λ| is close to δV (P ), then |f | ≤ c V β(λ) with β(λ) close to 1.

When the Markov kernel P has an invariant probability distribution, the connection be-
tween the V -geometric ergodicity and the quasi-compactness of P is recalled in Subsection 2.1
(Proposition 1). Namely, P is V -geometrically ergodic if and only if P is a power-bounded
quasi-compact operator on BV for which λ = 1 is a simple eigenvalue and the unique eigen-
value of modulus one. In this case, if ress(P ) denotes the essential spectral radius of P on BV

(see (7)) and if V denotes the set of eigenvalues λ of P such that ress(P ) < |λ| < 1, then the
convergence rate ρV (P ) is given by:

ρV (P ) = ress(P ) if V = ∅ and ρV (P ) = max{|λ|, λ ∈ V} if V 6= ∅. (4)

Property (4) is relevant to study the convergence rate ρV (P ) provided that, first an ac-
curate bound of ress(P ) is known, second the above set V is available. Bounds of ress(P )
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related to drift conditions can be found in [Wu04] and [HL12] under various assumptions (see
Subsection 2.1). In view of our applications, let us just recall that ress(P ) = δV (P ) in case
X := N and limn V (n) = +∞. However, even if the state space is discrete, finding the above
set V is difficult. Our main result (3) may be of great interest to solve this issue. In Section 3,
this is illustrated in the case X := N, in particular, for birth-and-death Markov kernel P
defined by P (0, 0) := a and P (0, 1) := 1− a for some a ∈ (0, 1) and by

∀n ≥ 1, P (n, n− 1) := p, P (n, n) := r ∈ [0, 1), P (n, n+ 1) := q, (5)

where p, q, r ∈ [0, 1] are such that p+ r + q = 1, p > q > 0. Setting γ̂ :=
√
p/q and assuming

that
∑

n≥0 P (0, n) (γ̂)
n < ∞, the convergence rate ρV (P ) with respect to V := (γ̂n)n∈N is

computed in Subsection 3.2. When r := 0, such a result has been obtained for a < p in
[RT99] and [Bax05, Ex. 8.4] using Kendall’s theorem, and for a ≥ p in [LT96] using the
stochastic monotony of P . Our method gives a unified and simpler computation of ρV (P )
which moreover encompasses the case r 6= 0. Another example concerning a random walk on
X := N with unbounded increments is investigated in Subsection 3.3.

2 Quasi-compactness on BV and V -geometric ergodicity

We assume that P satisfies (WD). Then P continuously acts on BV , and iterating (WD)
shows that P is power-bounded on BV , namely supn≥1 ‖Pn‖V <∞, where ‖ · ‖V also stands

for the operator norm on BV . Thus we have r(P ) := limn ‖Pn‖1/nV = 1 since P is Markov.

2.1 From quasi-compactness on BV to V -geometrical ergodicity

Let I denote the identity operator on BV . Recall that P is said to be quasi-compact on BV

if there exist r0 ∈ (0, 1) and m ∈ N
∗, λi ∈ C, pi ∈ N

∗ ( i = 1, . . . ,m) such that:

BV =
m
⊕
i=1

Ker(P − λiI)
pi ⊕H, (6a)

where the λi’s are such that

|λi| ≥ r0 and 1 ≤ dimKer(P − λiI)
pi <∞, (6b)

and H is a closed P -invariant subspace such that

sup
h∈H, ‖h‖V ≤1

‖Pnh‖V = O(r0
n). (6c)

Concerning the essential spectral radius of P , denoted by ress(P ), here it is enough to have
in mind that, if P is quasi-compact on BV , then we have (see for instance [Hen93])

ress(P ) := inf
{
r0 ∈ (0, 1) such that (6a) (6b) (6c) hold

}
. (7)

As mentioned in Introduction, the essential spectral radius of Markov kernels acting on
BV is studied in [Wu04, HL12]. For instance, under Condition (WD), the following result is
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proved in [HL12, Th. 1]: if P ℓ is compact from B0 to BV for some ℓ ≥ 1, where (B0, ‖ · ‖0)
is the Banach space composed of bounded measurable functions f : X→C equipped with the
supremum norm ‖f‖0 := supx∈X |f(x)|, then P is quasi-compact on BV with

ress(P ) ≤ δV (P ).

Moreover, equality ress(P ) = δV (P ) holds in many situations, in particular in the discrete
state case with V (n)→∞ (see Proposition 2).

Next we recall a result which makes explicit the relationship between the quasi-compactness
of P and the V -geometric ergodicity of the Markov chain (Xn)n∈N with transition kernel P .
Moreover, we provide an explicit formula for ρV (P ) in terms of the spectral elements of
P . Note that for any r0 ∈ (ress(P ), 1), the set of all the eigenvalues of λ of P such that
r0 ≤ |λ| ≤ 1 is finite (use (7)).

Proposition 1 Let P be a transition kernel which has an invariant probability measure π
such that π(V ) <∞. The two following assertions are equivalent:

(a) P is V -geometrically ergodic.

(b) P is a power-bounded quasi-compact operator on BV , for which λ = 1 is a simple eigen-
value (i.e. Ker(P − I) = C · 1X) and the unique eigenvalue of modulus one.

Under any of these conditions, we have ρV (P ) ≥ ress(P ). In fact, for r0 ∈ (ress(P ), 1),
denoting the set of all the eigenvalues λ of P such that r0 ≤ |λ| < 1 by Vr0 , we have:

• either ρV (P ) ≤ r0 when Vr0 = ∅,
• or ρV (P ) = max{|λ|, λ ∈ Vr0} when Vr0 6= ∅.

Moreover, if Vr0 = ∅ for all r0 ∈ (ress(P ), 1), then ρV (P ) = ress(P ).

The V -geometrical ergodicity of P obviously implies that P is quasi-compact on BV with
ρV (P ) ≥ ress(P ) (see e.g. [KM03]). This follows from (7) using H := {f ∈ BV : π(f) = 0}
in (6a)-(6c). The property that P has a spectral gap on BV in the recent paper [KM11]
corresponds here to the quasi-compactness of P (which is a classical terminology in spectral
theory). The spectral gap in [KM11] corresponds to the value 1 − ρV (P ). Then, [KM11,
Prop. 1.1]) is a reformulation, under ψ-irreducibility and aperiodicity assumptions, of the
equivalence of properties (a) and (b) in Proposition 1 (see also [KM11, Lem. 2.1]). Details
on the proof of Proposition 1 are provided in [GHL11]. For general quasi-compact Markov
kernels on BV , the result [Wu04, Th. 4.6] also provides interesting additional material on
peripheral eigen-elements.

2.2 Size of generalized eigenfunctions of P

Theorem 1 Assume that the weak drift condition (WD) holds true. If λ ∈ C is such that
δ ≤ |λ| ≤ 1, with δ given in (WD), and if f ∈ BV ∩ Ker(P − λI)p for some p ∈ N

∗, then
there exists c ∈ (0,+∞) such that

|f | ≤ c V
ln |λ|
ln δ (lnV )

p(p−1)
2 .
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The proof of Theorem 1 is based on the following lemma.

Lemma 1 Let λ ∈ C be such that δ ≤ |λ| ≤ 1. Then

∀f ∈ BV , ∃c ∈ (0,+∞), ∀x ∈ X, |λ|−n(x)
∣∣(Pn(x)f)(x)

∣∣ ≤ c V (x)
ln |λ|
ln δ (8)

with, for any x ∈ X, n(x) :=
⌊− lnV (x)

ln δ

⌋
, where ⌊·⌋ denotes the integer part function.

Proof. First note that the iteration of (WD) gives

∀k ≥ 1, P kNV ≤ δkN V + d
( k−1∑

j=0

δjN
)
1X ≤ δkN V +

d

1− δN
1X. (9)

Let g ∈ BV and x ∈ X. Using (9), the positivity of P and |g| ≤ ‖g‖V V , we obtain with
b := d/(1− δN ):

∀k ≥ 1, |(P kNg)(x)| ≤ (P kN |g|)(x) ≤ ‖g‖V (P kNV )(x) ≤ ‖g‖V
(
δkNV (x) + b

)
. (10)

The previous inequality is also fulfilled with k = 0. Next, let f ∈ BV and n ∈ N. Writing
n = kN + r, with k ∈ N and r ∈ {0, 1, . . . , N − 1}, and applying (10) to g := P rf , we obtain
with ξ := max0≤ℓ≤N−1 ‖P ℓf‖V (use Pnf = P kN (P rf)):

∣∣(Pnf)(x)
∣∣ ≤ ξ

[
δkNV (x) + b

]
≤ ξ

[
δ−r

(
δnV (x) + b

)]
≤ ξ δ−N

(
δnV (x) + b

)
. (11)

Using the inequality

− lnV (x)

ln δ
− 1 ≤ n(x) ≤ − lnV (x)

ln δ

and the fact that ln δ ≤ ln |λ| ≤ 0, Inequality (11) with n := n(x) gives:

|λ|−n(x)
∣∣(Pn(x)f)(x)

∣∣ ≤ ξ δ−N

((
δ|λ|−1

)n(x)
V (x) + b |λ|−n(x)

)

= ξ δ−N

(
en(x)(ln δ−ln |λ|) elnV (x) + b e−n(x) ln |λ|

)

≤ ξ δ−N

(
e(

lnV (x)
ln δ

+1) (ln |λ|−ln δ) elnV (x) + b e
lnV (x)

ln δ
ln |λ|

)

= ξ δ−N

(
e

ln |λ|
ln δ

lnV (x) eln |λ|−ln δ + b V (x)
ln |λ|
ln δ

)

= ξ δ−N
(
eln |λ|−ln δ + b

)
V (x)

ln |λ|
ln δ .

This gives Inequality (8) with c := ξ δ−N (eln |λ|−ln δ + b). �

Proof of Theorem 1. If f ∈ BV ∩ Ker(P − λI), then |λ|−n(x)|(Pn(x)f)(x)| = |f(x)|, so that
(8) gives the expected conclusion when p = 1. Next, let us proceed by induction. Assume
that the conclusion of Theorem 1 holds for some p ≥ 1. Let f ∈ BV ∩ Ker(P − λI)p+1. We
can write

Pnf = (P − λI + λI)nf = λn f +

min(n,p)∑

k=1

(
n

k

)
λn−k (P − λI)kf. (12)
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For k ∈ {1, . . . , p}, we have fk := (P − λI)kf ∈ Ker(P − λI)p+1−k ⊂ Ker(P − λI)p, thus we
have from the induction hypothesis :

∃c′ ∈ (0,+∞), ∀k ∈ {1, . . . , p}, ∀x ∈ X, |fk(x)| ≤ c′ V (x)
ln |λ|
ln δ (lnV (x))

p(p−1)
2 . (13)

Now, we obtain from (12) (with n := n(x)), (13) and Lemma 1 that for all x ∈ X:

|f(x)| ≤ |λ|−n(x)
∣∣(Pn(x)f)(x)

∣∣+ c′ V (x)
ln |λ|
ln δ (lnV (x))

p(p−1)
2 |λ|−min(n,p)

min(n,p)∑

k=1

(
n(x)

k

)

≤ c V (x)
ln |λ|
ln δ + c1 V (x)

ln |λ|
ln δ (lnV (x))

p(p−1)
2 n(x)p

≤ c2V (x)
ln |λ|
ln δ (lnV (x))

p(p−1)
2

+p

with some constants c1, c2 ∈ (0,+∞) independent of x. This gives the expected result. �

3 Applications to discrete Markov chains

In this section, the state space X is discrete. For the sake of simplicity, we assume that
X := N throughout the section. Let P = (P (i, j))i,j∈N2 be a Markov kernel on N. The
function V : N→[1,+∞) is assumed to satisfy

lim
n
V (n) = +∞ and sup

n∈N

(PV )(n)

V (n)
<∞.

The first focus is on the estimation of ress(P ) from Condition (WD).

Proposition 2 The two following conditions are equivalent:

(a) Condition (WD) holds with V ;

(b) L := inf
N≥1

(ℓN )
1
N < 1 where ℓN := lim supn→+∞(PNV )(n)/V (n).

In this case, P is power-bounded and quasi-compact on BV with ress(P ) = δV (P ) = L.

The proof of the the equivalence (a) ⇔ (b), as well as the equality δV (P ) = L, is straight-
forward (see [GHL11, Cor. 4]). That P is quasi-compact on BV under (WD) in the discrete
case, with ress(P ) ≤ δV (P ), can be derived from [Wu04] or [HL12, Th. 1] (see Subsection 2.1
and use the fact that the injection from B0 to BV is compact when X := N). Equality
ress(P ) = δV (P ) can be proved by combining the results [Wu04, HL12] (see [GHL11, Cor. 1]
for details).

In the next subsections, Proposition 2 is applied to random walks (RW) on N with the
following special sequence Vγ := (γn)n∈N for some γ ∈ (1,+∞). The associated weighted-
supremum space Bγ ≡ BVγ is defined by:

Bγ :=
{
(f(n))n∈N ∈ C

N : sup
n∈N

γ−n|f(n)| <∞
}
. (14)
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3.1 Quasi-compactness of RW with bounded state-dependent increments

Let us fix b ∈ N
∗, and assume that the kernel P satisfies the following conditions:

∀i ∈ {0, . . . , b− 1},
∑

j≥0

P (i, j) = 1;

∀i ≥ b, ∀j ∈ N, P (i, j) =

{
0 if |i− j| > b

aj−i(i) if |i− j| ≤ b
(15)

where (a−b(i), . . . , ab(i)) ∈ [0, 1]2b+1 satisfies
∑b

k=−b ak(i) = 1 for all i ≥ b. This kind of
kernels arises, for instance, from time-discretization of Markovian queueing models.

Set φn(γ) :=
∑b

k=−b ak(n) γ
k. We have (PVγ)(n) = φn(γ)Vγ(n) for each n ≥ b. Then the

next statement follows from Proposition 2 using (16)-(17).

Proposition 3 Assume that, for every k ∈ Z such that |k| ≤ b, limn ak(n) = ak ∈ [0, 1], and
that γ ∈ (1,+∞) is such that

φ(γ) :=

b∑

k=−b

ak γ
k < 1 (16)

∀i ∈ {0, . . . , b− 1},
∑

j≥0

P (i, j)γj <∞. (17)

Then P is power-bounded and quasi-compact on Bγ with ress(P ) ≤ φ(γ).

Example 1 (State-dependent birth-and-death Markov chains) When b := 1 in (15),
we obtain the standard class of state-dependent birth-and-death Markov chains:

∀n ≥ 1, P (n, n− 1) := pn, P (n, n) := rn, P (n, n+ 1) := qn,

where (pn, rn, qn) ∈ [0, 1]2 and pn + rn + qn = 1. Assume that the following limits exist:

lim
n
pn := p ∈ (0, 1], lim

n
rn := r ∈ [0, 1), lim

n
qn := q.

If γ ∈ (1,+∞) is such that φ(γ) := p/γ+r+qγ < 1 and
∑

n≥0 P (0, n)γ
n <∞, then it follows

from Proposition 3 that ress(P ) ≤ p/γ + r + qγ. The conditions γ > 1 and p/γ + r + qγ < 1
are equivalent to the following ones (use r = 1− p− q for (i)):

(i) either p > q > 0 and 1 < γ < p/q; (ii) or q = 0 and γ > 1.

(i) When p > q > 0 and 1 < γ < p/q: if
∑

n≥0 P (0, n)γ
n <∞, then P is power-bounded and

quasi-compact on Bγ with ress(P ) ≤ φ(γ). Set γ̂ :=
√
p/q. Then

min
γ>1

φ(γ) = φ(γ̂) = r + 2
√
pq ∈ (r2, 1). (18)

Consequently, if
∑

n≥0 P (0, n)(γ̂)
n < ∞, then the previous conclusions holds for γ := γ̂,

with essential spectral radius on Bγ̂ satisfying ress(P ) ≤ r + 2
√
pq.
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(ii) When q := 0 and γ > 1: if
∑

n≥0 P (0, n)γ
n <∞, then ress(P ) ≤ φ(γ) = p/γ + r.

Remark 1 (Random walks with i.d. bounded increments) Consider the case when the
increments ak(n) do not depend on the state n, that is when the kernel P is

∀i ∈ {0, . . . , b− 1},
∑

j≥0

P (i, j) = 1; ∀i ≥ b, ∀j ∈ N, P (i, j) =

{
aj−i if |i− j| ≤ b
0 if |i− j| > b

where (a−b, . . . , ab) ∈ [0, 1]2b+1 and
∑b

k=−b ak = 1. Obviously the statements of Example 1
apply but some additional facts can be deduced for such Markov chains. First note that

∀γ ∈ (1,+∞), ∀N ≥ 1, ∀n ≥ Nb, (PNVγ)(n) = φ(γ)N Vγ(n). (19)

Consequently, under the assumptions (17) and φ(γ) < 1 where φ(·) is given by (16), we obtain
from Proposition 2 that Condition (WD) is fulfilled with Vγ and

ress(P ) = δVγ (P ) = φ(γ). (20)

For the birth-and-death Markov chains, that is when b := 1, the convergence rate is computed
in the next subsection using (20) and Theorem 1.

3.2 Study of the convergence rate for the birth-and-death Markov chains

Let p, q, r ∈ [0, 1] be such that p+ r + q = 1, p > q > 0, and let P be defined by

∀n ≥ 1, P (n, n− 1) := p, P (n, n) := r ∈ [0, 1), P (n, n+ 1) := q,

P (0, 0) ∈ (0, 1),
∑

n≥0

P (0, n) (γ̂)n <∞ where γ̂ :=

√
p

q
∈ (1,+∞).

(21)

Let Vγ̂ := (γ̂n)n∈N and its associated weighted-supremum space Bγ̂ := BVγ̂
. It is well known

that P is Vγ̂-geometrically ergodic. Here we compute the convergence rate ρVγ̂
(P ) (see Propo-

sition 4). First note that (18) (20) give

ress(P ) = δVγ̂
(P ) = r + 2

√
pq.

Second Theorem 1 allows us to prove the following.

Lemma 2 Assume that Conditions (21) hold true. If f is a nontrivial eigenvector in Bγ̂

associated with a complex eigenvalue λ of P such that r + 2
√
pq < |λ| ≤ 1 then

∃α1 ∈ C \ {0}, ∀n ≥ 0, f(n) = α1 zλ
n, (22)

with zλ satisfying the following conditions:

|zλ| < γ̂, (23a)

qzλ
2 + (r − λ)zλ + p = 0, (23b)
∑

n≥0

P (0, n)zλ
n = λ. (23c)
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Proof. Let λ ∈ C, be such r+ 2
√
pq < |λ| ≤ 1 and f ∈ Bγ̂ , f 6= 0 satisfying Pf = λf , that is

∀n ≥ 1, λf(n) = pf(n− 1) + rf(n) + qf(n+ 1). (24)

Let us denote by zλ, z
′
λ the two complex solutions of the characteristic equation

qz2 + (r − λ)z + p = 0.

Observe that zλz
′
λ = p/q = γ̂2. Recall that the solutions of (24) are of the form, either

f(n) = α1zλ
n + α2z

′
λ
n if zλ 6= z′λ, or f(n) = α1zλ

n + α2nzλ
n if zλ = z′λ, with α1, α2 ∈ C.

We have |zλ| 6= |z′λ|. Indeed, Theorem 1 applied with p := 1 and δ := r + 2
√
pq implies

that |f | ≤ cVγ̂
τ with τ := ln |λ|/ ln δ ∈ (0, 1) and some constant c. Consequently we have

|α1zλ
n + α2z

′
λ
n| ≤ c γ̂τn in case zλ 6= z′λ, and |α1zλ

n + α2nzλ
n| ≤ c γ̂τn in case zλ = z′λ. If

|zλ| = |z′λ|, then we would have |zλ| = |z′λ| = γ̂, but the two previous inequalities then easily
imply that α1 = α2 = 0, that is f = 0.

From |zλ| 6= |z′λ|, we can suppose that (for instance) |zλ| < γ̂ and |z′λ| > γ̂. Since f ,
(zλ

n)n∈N are in Bγ̂ and (z′λ
n)n is not in Bγ̂ , we obtain: ∀n ≥ 0, f(n) = α1zλ

n. Since f 6= 0
(i.e. α1 6= 0), the equation (Pf)(0) = λf(0) implies that zλ must satisfy (23c). �

Proposition 4 In addition to Conditions (21), the boundary transition probabilities are as-
sumed to satisfy, for some a ∈ (0, 1):

P (0, 0) := a, P (0, 1) := 1− a.

Then P is Vγ̂-geometrically ergodic. Furthermore, defining a0 := 1−q−√
pq, the convergence

rate ρVγ̂
(P ) of P is given by:

• when a ∈ [a0, 1):
ρVγ̂

(P ) = r + 2
√
pq ; (25)

• when a ∈ (0, a0]:

(a) in case 2p ≤
(
1− q +

√
pq
)2

:

ρVγ̂
(P ) = r + 2

√
pq ; (26)

(b) in case 2p >
(
1− q +

√
pq
)2

, setting a1 := p−√
pq −

√
r
(
r + 2

√
pq
)
:

ρVγ̂
(P ) =

∣∣∣∣a+
p(1− a)

a− 1 + q

∣∣∣∣ when a ∈ (0, a1] (27a)

ρVγ̂
(P ) = r + 2

√
pq when a ∈ [a1, a0). (27b)

When r := 0, such results have been obtained in [RT99, Bax05, LT96] by using various
methods involving conditions on a (see the end of Introduction). Let us specify the above
formulas in case r := 0. We have a0 = a1 = p − √

pq = (p − q)/(1 +
√
q/p), and it can be

9



easily checked that 2p > (1 − q +
√
pq)2. The properties (25) (27a) (27b) then rewrite as:

ρVγ̂
(P ) = (pq + (a− p)2)/|a− p| when a ∈ (0, a0], and ρVγ̂

(P ) = 2
√
pq when a ∈ (a0, 1).

Proof of Proposition 4. By elimination, given some λ ∈ C, a necessary and sufficient condition
for the two following equations

qz2 + (r − λ)z + p = 0, (28a)

a+ (1− a)z = λ. (28b)

to have a common solution z ∈ C is that

(1− λ)
[
(λ− a)(1− a− q) + p(1− a)

]
. (29)

Assume that a 6= 1 − q. Then λ = 1 is a solution of (29) and the other solution of (29),
say λ(a), and the associated complex number in (28b), say z(a), are given by:

λ(a) := a+
p(1− a)

a− 1 + q
∈ R and z(a) :=

p

a+ q − 1
∈ R. (30)

Now, let λ ∈ C be such that r + 2
√
pq < |λ| < 1, and assume that there exists f ∈ Bγ̂ ,

f 6= 0, such that Pf = λf . Then Lemma 2 gives f := (zλ
n)n≥0 (up to a multiplicative

constant), with zλ ∈ C satisfying |zλ| < γ̂ and Equations (28a)-(28b). Thus we have λ = λ(a)
and zλ = z(a), with λ(a) and z(a) given by (30). Conversely, we have Pfa = λ(a)fa with
fa = (z(a)n)n≥0 since, by definition, z(a) satisfies the equations (28a)-(28b) associated with
λ = λ(a). Now we must find the values a ∈ (0, 1) for which we have r+2

√
pq < |λ(a)| < 1 and

|z(a)| ≤ γ̂. This is the relevant question since Proposition 1 gives the following properties:

(i) if r + 2
√
pq < |λ(a)| < 1 and |z(a)| < γ̂, then we have ρVγ̂

(P ) = |λ(a)| since λ(a) is the
only eigenvalue λ of P on Bγ̂ such that r + 2

√
pq < |λ| < 1 (apply Proposition 1 with

any r0 such that r + 2
√
pq < r0 < |λ(a)|),

(ii) if λ(a) or z(a) do not satisfy the previous conditions, then we have ρVγ̂
(P ) = r +

2
√
pq since there is no eigenvalue λ of P on Bγ̂ such that r + 2

√
pq < |λ| < 1 (apply

Proposition 1 with any r0 such that r + 2
√
pq < r0 < 1).

Observe that
|z(a)| ≤ γ̂ ⇔ |a− 1 + q| ≥ √

pq. (31)

Hence, if a ∈ (a0, 1) (recall that a0 := 1− q −√
pq), then |z(a)| > γ̂. Then (ii) gives (25).

Now let a ∈ (0, a0]. Then |z(a)| ≤ γ̂. Let us study λ(a). We have λ′(a) = 1−pq/(a−1+q)2,
so that a 7→ λ(a) is increasing on (−∞, a0] from −∞ to λ(a0) = r − 2

√
pq. Thus

∀a ∈ (0, a0], λ(a) ≤ r − 2
√
pq < r + 2

√
pq.

and the equation λ(a) = −(r+2
√
pq) has a unique solution a1 ∈ (−∞, a0). Note that a1 < a0

and λ(a1) = −(r + 2
√
pq), that λ(0) = p/(q − 1) ∈ [−1, 0) and finally that

λ(0)− λ(a1) = p/(q − 1) + r + 2
√
pq =

(q −√
pq − 1)2 − 2p

1− q
.
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When 2p ≤ (1− q +
√
pq)2, (26) follows from (ii). Indeed |λ(a)| < r + 2

√
pq since

∀a ∈ (0, a0], −(r + 2
√
pq) = λ(a1) ≤ λ(0) < λ(a) < r + 2

√
pq.

When 2p > (1− q +
√
pq)2, we have a1 ∈ (0, a0] and:

• if a ∈ (0, a1), then (27a) follows from (i). Indeed r + 2
√
pq < |λ(a)| < 1 since

∀a ∈ (0, a1], −1 ≤ λ(0) < λ(a) < λ(a1) = −(r + 2
√
pq) ;

• if a ∈ [a1, a0], then (27b) follows (ii). Indeed |λ(a)| < r + 2
√
pq since

−(r + 2
√
pq) = λ(a1) ≤ λ(a) < r + 2

√
pq.

It remains to study the special case a = 1 − q. Then λ = 1 is the only solution of (29).
Again let λ ∈ C be such that r + 2

√
pq < |λ| < 1, and let f ∈ Bγ̂ , f 6= 0, such that

Pf = λf . Then Lemma 2 gives f := (zλ
n)n≥0, with zλ ∈ C satisfying Equations (28a)-(28b),

thus Equation (29). Consequently there is no eigenvalue of P such that r + 2
√
pq < |λ| < 1.

Proposition 1 applied with any r0 ∈ (r + 2
√
pq, 1) then gives ρVγ̂

(P ) = r + 2
√
pq. �

3.3 Convergence rate for a RW with unbounded increments

Proposition 2 and Theorem 1 may be also useful to estimate the convergence rate for RW on
X := N with unbounded increments. For instance, let P be defined by [MS95]

∀n ≥ 1, P (0, n) := qn, ∀n ≥ 1, P (n, 0) := p, P (n, n+ 1) := q = 1− p,

with p ∈ (0, 1) and qn ∈ [0, 1] such that
∑

n≥1 qn = 1.

Proposition 5 Assume that γ ∈ (1, 1/q) is such that
∑

n≥1 qnγ
n < ∞. Then ress(P ) ≤ qγ.

Moreover P is Vγ-geometrically ergodic with convergence rate ρVγ (P ) ≤ max(qγ, p).

Proof. We have: ∀n ≥ 1, (PVγ)(n) = qγn+1 + p. Thus, if γ ∈ (1, 1/q) and
∑

n≥1 qnγ
n < ∞,

then Condition (WD) holds with Vγ , and we have δVγ (P ) ≤ qγ. Therefore it follows from
Proposition 2 that ress(P ) ≤ qγ. Now Proposition 1 is applied with any r0 > max(qγ, p). Let
λ ∈ C be such that max(qγ, p) < |λ| ≤ 1, and let f ∈ Bγ , f 6= 0, be such that Pf = λf . We
obtain f(n) = (λ/q)f(n− 1)− pf(0)/q for any n ≥ 2, so that

∀n ≥ 2, f(n) =

(
λ

q

)n−1(
f(1)− pf(0)

λ− q

)
+
pf(0)

λ− q
.

Since f ∈ Bγ and |λ|/q > γ, we obtain f(1) = pf(0)/(λ − q), and consequently: ∀n ≥
1, f(n) = pf(0)/(λ− q). Next the equality λf(0) = (Pf)(0) =

∑
n≥1 qnf(n) gives: λf(0) =

pf(0)/(λ− q) since
∑

n≥1 qn = 1. We have f(0) 6= 0 since we look for f 6= 0. Thus λ satisfies

λ2 − qλ − p = 0, namely: λ = 1 or λ = −p. The case λ = −p has not to be considered
since |λ| > max(qγ, p). If λ = 1, then f(n) = f(0) for each n ∈ N, so that 1 is a simple
eigenvalue. Thus λ = 1 is a simple eigenvalue of P on Bγ and the only eigenvalue such that
max(qγ, p) < |λ| ≤ 1. Then Proposition 1 gives the second conclusion of Proposition 5. �

Note that p cannot be dropped in the inequality ρVγ (P ) ≤ max(qγ, p) since λ = −p is an
eigenvalue of P on Bγ with corresponding eigenvector fp := (1,−p,−p, . . . ).
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