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We endow a system of interacting particles with two distinct, local, Markovian and reversible microscopic

dynamics. We find that while the first, standard one, leads to glassy behavior, the other one leads to a simple

exponential relaxation towards equilibrium. This finding questions the intrinsic link that exists between the

underlying, thermodynamical, energy landscape, and the dynamical rules with which this landscape is explored

by the system.

The microscopic phenomena driving the dynamical arrest

in supercooled liquids and in glasses are still controversial.

One line of thought, which originates in the work of Adam

and Gibbs, pictures a glass-forming liquid as a system whose

energy landscape complexity accounts for the slowing down

of its dynamics. The original Adam-Gibbs [1] theory relates

viscosity –the momentum transport coefficient– to configura-

tional entropy. The more recent Kirkpatrick, Thirumalai, and

Wolynes [2] scenario is based on the study of the metastable

configurations of the system and on the concept of nuclea-

ting entropic droplets. This is the Random-First-Order Theory

(RFOT). The idea is that metastability arises from the many

valleys of the energy landscape the system can be trapped in.

RFOT gives a large set of quantitative predictions including

non-mean field particle models [3]. These aspects of the phy-

sics of glasses were reviewed by Debenedetti and Stillinger [4]

and more recently by Biroli and Bouchaud [5].

In another line of thought no complex energy landscape

needs to be invoked, and dynamically induced metastability

alone is held responsible for the dynamics slowing down. This

is a phenomenological approach in which at a coarse-grained

scale local patches of activity are the only ingredients of the

dynamics. This has led to the development of kinetically-

constrained models (see [6] for a review), which have the ad-

vantage of lending themselves with greater ease than molecu-

lar models to both numerical experiments and analytical treat-

ment. The hallmark of the corresponding lattice models is the

absence of any structure in the energy landscape (the equili-

brium distribution is that of independent degrees of freedom).

These somewhat simplistic descriptions are not directly built

from the microscopics, and it is often argued that their glassy-

like properties, like the existence of dynamical heterogenei-

ties, are almost tautological, but recent works [7] have tried to

bridge the gap from the microscopics to dynamic facilitation.

A central concept in both approaches is that of metastabi-

lity. A metastable state can be viewed as an eigenstate of the

evolution operator with a nonzero but small relaxation rate.

The existence of such states can be induced by the dynami-

cal evolution rules alone, as in KCM’s, but physical intui-

tion dictates that, in realistic systems, these originate from

the deepest structures of the energy landscape. The method

for catching and counting metastable structures from the sta-

tics alone was coined by Mézard and Parisi, thus providing

the first first-principle calculation of some of the properties of

glasses. Their idea is to help polarize two attractively coupled

copies the system into one of these deep valleys and to investi-

gate whether thermal fluctuations are enough to wash out any

overlap between them. By contrast, catching dynamically in-

duced metastable structures is done by examining the overlap

of the system properties in the course of a long time interval.

Implementing this program was done by exploiting Ruelle’s

thermodynamic formalism first on KCM and then in realistic

systems [8].

Our purpose in this work is to show that a minute modi-

fication of the evolution rules of a glass-forming liquid can

lead to dramatic differences in the dynamics. We will propose

two possible dynamics for our system of interacting particles,

which are both time-reversible and Markovian. However, one

is known to induce dynamical arrest and glassy-like phenome-

nology, while we show that the other one is characterized by

straight, one-step, exponential relaxation, thus bypassing any

slowing down. We emphasize that time reversibility ensures

that the equilibrium distribution is the same in both systems.

They share the exact same energy landscape. In both cases,

the complex energy landscape is sampled by means of local

moves. A central difference with existing works is that ours

focuses on interacting degrees of freedom, while KCM’s, the

system of oscillators studied earlier by Kawasaki and Kim [9],

or the single oscillator of Whitelam and Garrahan [10], are no-

ninteracting degrees of freedom.

Our system is made of identical particles interacting via a

two-body potential v(x−y) and we choose to describe its pro-

perties in terms of collective density modes ρ(x, t) with ave-

rage density ρ0. In terms of these, the equilibrium distribution

is the standard Gibbs weight Peq[ρ] ∝ e−βF [ρ], where the

density dependent effective free energy has the well-known

expression

βF [ρ] =

∫

x

[

ρ(x, t) ln
ρ(x, t)

ρ0
− ρ(x, t)

]

+
1

2

∫

x,y

ρ(x, t)βv(x − y)ρ(y, t), (1)

in which the first term in the rhs is of entropic origin, and the

second one is the potential interaction energy. From a dynami-

cal point of view, the particle density must locally be conser-

ved, which constrains it to evolve according to a continuity

equation

∂tρ+∇ · j = 0 (2)
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Our two choices of dynamics lie in the specific density de-

pendence of the particle current j. We begin with a standard

choice in which the particle current is given by

jL = −ρ∇
δF [ρ]

δρ
+
√

2Tρξ (3)

where ξ is a vector whose components are independent

white noises with unit correlations 〈ξα(x, t)ξβ(x′, t′)〉 =
δαβδ(d)(x − x′)δ(t − t′), where d is the space dimension.

In an expanded form, the deterministic part of jL features

a Fick diffusion term −T∇ρ and a driving term ρF, where

F(x, t) = −
∫

y
∇v(x − y)ρ(y, t) is the local fluctuating force

field acting on particles located around x. We index the par-

ticle current with the letter L because this very expression of

jL was shown by Dean [11] to exactly encode the dynamics

of a fluid of interacting particles evolving through an over-

damped Langevin equation. The parameter β = T−1 is the

inverse temperature of the thermostat. Once the deterministic

part of jL is set, time-reversibility (or detailed balance) forces

the specific
√
2Tρ density dependence of the noise strength.

Our second choice of dynamics for the collective modes is

defined by another expression for the particle current, namely

jB = −ρ0∇
δF [ρ]

δρ
+
√

2Tρ0ξ (4)

where the index B is reminiscent of model B dynamics of

the Hohenberg and Halperin classification [12], as already

defined for discussion purposes in [11]. Note that in (4)

the coupling to the thermal bath is now independent of the

density (noise is additive instead of being multiplicative as

in (3)). Dynamics B can be obtained from dynamics L by

thinking the fluctuations of the coupling to the thermostat

have been turned off. We emphasize that the detailed balance

property is satisfied also in this alternative dynamics, which

ensures that in principle both jL and jB drive the system

towards the same Gibbs equilibrium state Peq[ρ].

Our goal here is not to come up with a new approxima-

tion for the Langevin dynamics. A huge body of numerical

and analytical literature is devoted to extracting signatures of

glassiness from these dynamical rules [13]. We take them for

granted. Instead, our purpose is to conduct an analytical study

of our model B dynamics in which it will appear that no sign

of dynamical arrest can be found. We search for an evolution

equation for the density-density correlation function (other-

wise called the intermediate scattering function). If a glassy

behavior is to be found, then we must obtain a non vanishing

long-time limit of this correlation function, indicating ergo-

dicity breaking, or, if not, we should at least expect a multi-

step slow relaxation. As we shall now see, model B dyna-

mics leads to a simple exponential relaxation for the density-

density correlations Gρρ, as we conclude in (20). In order to

demonstrate this property, we resort to a set of techniques coi-

ned by Kim and Kawasaki (KK) [14], originally designed to

cope with Langevin dynamics, which we adapt to our model

B evolution. The central idea of their work is a refined way

to cast the dynamical rules in such a way that the detailed

balance property is a manifest and linearly-realized symme-

try of the evolution equation. While it was not clear whether

and how time-reversibility and ergodicity breaking are rela-

ted, KK showed that a certain type of (reversibility preser-

ving) approximation on the dynamics, when applied to the

two point density correlations, was fully equivalent to the well

known Mode-Coupling approximation [15] (alternative me-

thods were recently found [16]). Their work follows a number

of earlier attempts [17] to deal with collective coordinates wi-

thin a field-theoretic framework.

The field theory that describes the evolution of the density

is written in terms of the fluctuations of the density field δρ
around its mean value ρ0 and a response field ρ̄ :

Z =

∫

DρD ρ̄ e−S[ρ,ρ̄], (5)

S[ρ, ρ̄] =

∫

x,t

iρ̄∂tδρ− iρ̄ρ0∆
δF [ρ]

δρ
− Tρ0 (∇ρ̄)

2
(6)

In this theory, time-reversal (TR) is encoded in the following

symmetry [18] :

{

δρ(t) → δρ(−t)

ρ̄(t) → −ρ̄(−t) + iβ δF [ρ]
δρ(−t)

(7)

We parallel the KK approach, and define θ = β δF

δρ − K ⋆

δρ, with K ⋆ δρ(x, t) = δρ(x,t)
ρ0

+
∫

y
βv(x − y)δρ(y, t) and

θ̄ is an auxiliary Lagrange multiplier field that enforces this

expression for θ.

The introduction of the θ field was originally intended to

deal with the non-linearity of the time-reversal symmetry in

the Langevin dynamics described by the current given in (3).

In our case, the time-reversal symmetry is a linearly realized

symmetry, and use of an additional field is thus not necessary

in that matter. However, introducing the θ field was shown by

Kawasaki and Kim to be useful to properly take into account,

non-perturbatively, the renormalized static properties of the

system, and lead to simplifications that would be otherwise

hard to detect in a standard Martin-Siggia-Rose field theory.

Grouping all four fields in a vector Φ =
(

δρ, θ, ρ̄, θ̄
)

, and

introducing Ω(k) = ρ0Tk
2K(k), the action now reads :

S[Φ] = Sg[Φ] + Sng[Φ], (8)

Sg[Φ] =
1

2

∫

k,ω

Φ(−k,−ω)G−1
0 (k, ω)Φ(k, ω), (9)

Sng[Φ] =

∫

x,t

iΦ4(x, t)f(Φ1(x, t)), (10)

where we have split the quadratic part Sg from the higher or-

der terms Sng , and f is a function of δρ given by f(x) =



3

ln(1 + x/ρ0)− x/ρ0. The bare propagator G−1
0 is given by :

G−1
0 (k, ω) =









0 0 −ω − iΩ(k) 0
0 0 −iρ0Tk

2 −i
ω − iΩ(k) −iρ0Tk

2 2ρ0Tk
2 0

0 −i 0 0









(11)

The TR invariance (7) now reads















δρ(t) → δρ(−t)
θ(t) → θ(−t)
ρ̄(t) → −ρ̄(t) + iK ⋆ δρ(−t) + iθ(−t)
θ̄(t) → θ̄(−t)− i∂tρ(−t)

. (12)

As was the case in KK, both Sg and Sng are separately inva-

riant under (12). We define the vertex functions Σ[G] as the

functional inverse of the correlator matrix G = 〈ΦΦ〉 as :

G−1 = G−1
0 − Σ[G], (13)

We note in passing that the standard strategy to derive an

approximation for G is based on performing an approxima-

tion on Σ[G] and inserting it back into (13), thus yielding a

self-consistent equation for G alone. Here, however, no ap-

proximation is involved. TR symmetry, along with causality

and time and space translational invariance, impose severe

constraints on the form of the correlation functions of the

theory, as well as on the vertex functions. The only diffe-

rence between KK’s field theory and ours lies in the non-

Gaussian term Sng of the action in (10). Since our bare pro-

pagator and form of the time-reversal coincide with those in

KK’s work [14], it is easy to verify that all non-perturbative

results that follow from the symmetries of the action coincide

between the two theories. Differences will be found when de-

termining the vertex functionals Σ[G].
Writing down the inverse relation that exist between Σ and

G, and combining them with the constraints arising from the

time-reversal symmetry and causality, we can write exact non-

perturbative evolution equations for Gρρ, Gθρ and Gθθ , the

11, 12 and 22 elements of the matrix G. Inspection of the

equal-time singularities of the Schwinger-Dyson equations

(13) also shows that :

Σθ̄θ̄(k, 0) =
1

Gρρ(k, 0)
−K(k), (14)

which give a renormalized value of the bare diffusion coef-

ficient, in a way that is reminiscent of the renormalization-

group approach to model B dynamics of magnetic sys-

tems [12] : the initial time value of Gρρ is by definition

ρ0S(k), where S(k) is the static structure factor of the liquid,

thus we have, using the expression of K given after (7) :

Σθ̄θ̄(k, 0) =
1

ρ0

1

S(k)
− 1

ρ0
− βv(k) = −c(k)− βv(k),

(15)

where c is the full two-body direct correlation function of the

liquid, related to S by S(k) = (1− ρ0c(k)
−1.

By Laplace transforming the four relevant members of the

Schwinger-Dyson equations (13), one can deduce that the cor-

relation functions Gρθ and Gθθ are simply related to Gρρ :

Gρθ(k, τ) =

(

1

Gρρ(k, 0)
−K(k)

)

Gρρ(k, τ), (16)

Gθθ(k, τ) =

(

1

Gρρ(k, 0)
−K(k)

)2

Gρρ(k, τ), (17)

Substitution of all these results in the Schwinger-Dyson equa-

tion (13) lead to a closed equation on the density-density cor-

relation function :

∂τGρρ(k, τ) +
Tk2

S(k)
Gρρ(k, τ) = (18)

−
∫ τ

0

dt

[

Σρρ(k, τ − t)
Gρρ(k, t)

ρ0S(k)
+Σρθ(k, τ − t)∂tGρρ(k, t)

]

This final non-perturbative result is identical to that obtained

by Kawasaki and Kim, which therefore also applies to our mo-

dified dynamics. Starting from this closed equation, we now

exploit the fact that our theory has only one non-quadratic

term, that involves the field θ and any (greater or equal to two)

number of δρ fields. Thus, when calculating perturbatively the

functions Σ, we are bound to find, to all orders of perturba-

tion :

Σρ̄ρ̄ = Σρ̄θ̄ = 0 (19)

which shows that we have

∂τGρρ(k, τ) = − Tk2

S(k)
Gρρ(k, τ). (20)

The physical meaning of (20) is clear : relaxation towards

equilibrium occurs in a single exponential step. This is the

central analytical result of this letter. The relaxation rate Tk2

S(k)

is proportional to k2 (due to the local conservation of par-

ticles) and only involves the additional knowledge of the static

structure factor. Away from any thermodynamic phase transi-

tion, the structure factor displays no specific singularity and

thus the relaxation rate has no reason to vanish.

In retrospect, the two dynamical rules considered so far are

very similar to each-other. Only local moves are involved,

they both preserve particle conservation and for both time-

reversibility is encoded in the dynamics. Closer inspection,

however, shows potentially relevant differences. We denote by

r[ρ] the interaction-dependent component of the rate at which

the system leaves a given configuration of the density land-

scape (we leave out the component expressing independent

local diffusive hops). For Langevin dynamics, this rate reads

rL[ρ] =
β2

4

∫

x,y,z

∇v(x − y)∇v(x − z)ρ(x, t)ρ(y, t)ρ(z, t)

−β

2

∫

x,y

ρ(x, t)∇2v(x − y)ρ(y, t)

(21)
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The average rate, as can be seen in the first term in the right

hand side of (21), involves two and, more importantly three-

body correlations. The knowledge of these correlations is ne-

cessary for the system to decide to which location of phase

space it is going to evolve. Turning now to the model B dyna-

mics, we find that

rB[ρ] =
β2ρ0
4

∫

x,y,z

∇v(x − y)ρ(y, t)∇v(x − z)ρ(z, t)

+βρ0

∫

x,y

∇ρ

ρ
(x, t)∇v(x − y)ρ(y, t) (22)

so that on average the system requires no more than two-point

correlations to proceed with its evolution. The Langevin dy-

namics requires a more refined knowledge of the local orga-

nization than model B dynamics. We speculate that we may

relate this mathematical observation to the physical picture of

local caging. It is a well-known fact that the pair correlation

function of a glass is no different from that of a liquid, but

recent works [19, 20] suggest that triplet correlations (and hi-

gher order correlations) may behave differently.

Our result stands out as one in which the dynamics of a sys-

tem of interacting particles can exactly be solved at the level

of two-point functions. Yet is based on a coarse-grained for-

mulation in which the collective density modes are treated as

smoothly varying function of space. For softly repulsive po-

tentials, the system will fall into a jammed state as the density

is increased. Our approach is thus bound to reach its limita-

tions at high densities. However, in the usual glassy regime

where ergodicity is maintained, a standard two-step relaxation

will never be observed with our choice of dynamics.

Furthermore, we have insisted on characterizing the dyna-

mics via its density modes, but relating the dynamics of the

modes to that of the particles is a non-trivial task. We can see

the two dynamics, described by the currents jL and jB , as the

coarse-grained continuum versions of two dynamics for inter-

acting particles on a lattice. Denoting by i the lattice sites and

ni the occupation number on this site, a particle on site i may

hop on an adjacent site j with rate

{

nie
−β∆Ep/2 for Langevin dynamics

n0

√

ni

nj+1e
−β∆Ep/2 for model B dynamics

(23)

where Ep = 1
2

∑

i6=j niv(i − j)nj and ∆Ep is the poten-

tial energy variation due to the particle hopping. For Lange-

vin dynamics, the reader is referred to [21] for a more com-

plete discussion (with slightly different rates). Starting from

these lattice dynamics, standard manipulations [22] allow one

to write down a path integral representation for the two dyna-

mics. In the coarse-grained limit, they coincide with the path

integral representations of the stochastic equations Eq.(3) and

(4), obtained via standard procedures [23]. Going back and

forth between particles and modes is simple in Langevin dy-

namics, but what would an effective particle system described

by model B dynamics look like ? Would this effective particle

dynamics still be local ? Answering that question would allow

for the design of algorithms able to bypass metastable traps.

From a broader perpsective, our calculation points to the

necessity of establishing criteria permitting to relate static

energy-landscape-based considerations, to kinetic properties.

A naive way to ask the question would be : What are the ge-

neric conditions on the effective diffusion constant coupling

the energy gradient to the thermal bath that allow for a re-

liable correspondence between minima of the energy land-

scape, and metastable states ? This question echoes a recent

work [24] in which it is shown that one could map a subclass

of KCM models onto a subclass of spin-glasses, uncovering

a non-trivial behavior of appropriately defined static quanti-

ties in these KCMs, which could mirror non-trivial dynami-

cal transitions in the corresponding spin-glass systems. Once

again, the traditional separation between static and dynamic

framework does thus not seem to hold anymore, calling for a

more refined treatment of the interplay between the two.

A quantitative characterization of the dynamic complexity,

as expressed for example by the Lyapunov spectrum of our

two dynamics could uncover the fundamental difference that

exist between the two. More generally, what is the signature of

an ergodicity breaking transition on the Lyapunov spectrum ?

These are ongoing investigations.

We warmly acknowledge discussions with Kyozi Kawa-

saki, Bongsoo Kim, Vivien Lecomte, Kunimasa Miyazaki,

Estelle Pitard, Peter Sollich, Grzegorz Szamel and Francesco

Zamponi.
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