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Shear-induced sedimentation in yield stress fluids
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Université Paris-Est, Laboratoire Navier (UMR CNRS 8205), Champs-sur-Marne, France

Abstract

Stability of coarse particles against gravity is an important issue in dense suspen-

sions (fresh concrete, foodstuff, etc.). On the one hand, it is known that they are

stable at rest when the interstitial paste has a high enough yield stress; on the

other hand, it is not yet possible to predict if a given material will remain ho-

mogeneous during a flow. Using MRI techniques, we study the time evolution

of the particle volume fraction during the flows in a Couette geometry of model

density-mismatched suspensions of noncolloidal particles in yield stress fluids.

We observe that shear induces sedimentation of the particles in all systems, which

are stable at rest. The sedimentation velocity is observed to increase with increas-

ing shear rate and particle diameter, and to decrease with increasing yield stress

of the interstitial fluid. At low shear rate (‘plastic regime’), we show that this phe-

nomenon can be modelled by considering that the interstitial fluid behaves like a

viscous fluid – of viscosity equal to the apparent viscosity of the sheared fluid – in

the direction orthogonal to shear. The behavior at higher shear rates, when viscous

effects start to be important, is also discussed. We finally study the dependence

of the sedimentation velocity on the particle volume fraction, and show that its

modelling requires estimating the local shear rate in the interstitial fluid.

Keywords: Sedimentation; Yield stress fluid; Suspension; MRI

1. Introduction

Dense suspensions arising in industrial processes (concrete casting, drilling

muds, foodstuff transport...) and natural phenomena (debris-flows, lava flows...)

often contain coarse particles that tend to settle as they are denser than the aver-

age system density. This is a critical problem: if settling occurs, the materials may
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lose their homogeneity, which can strongly affect their mechanical properties. In

slow flows, when the solid particles are immersed in a fluid, it is considered that

the settling properties of suspended particles are not significantly affected by the

material flow, and the sedimentation velocity is usually computed from the bal-

ance of gravity and drag forces. In order to avoid or slow down sedimentation,

the only practical solution consists in inducing a sufficient agitation to the system

which will induce some lift or dispersion forces to the particles. This principle

is typically used in fluidization process, in which a vertical flow of the interstitial

fluid induces a drag force counterbalancing gravity force. For horizontal flows in

conduits one may also rely on turbulence effects [1, 2] or on viscous resuspension

[3, 4].

For many materials, the situation is different: the denser particles do not settle

at rest because they are embedded in a yield stress fluid which is able to maintain

the particles in their position. This situation is typically encountered with mortars

or fresh concrete [5, 6] which are made of particles (sand or gravel) of density

around 2.5 mixed with a cement-water paste of density around 1.5. This is the

same for toothpastes which contain silica particles of density 2.5 suspended in a

paste of density close to 1. Basically, the net gravity force exerted on particles of

diameter d suspended in a yield stress fluid of yield stress τy is counterbalanced by

the elastic force exerted by the interstitial material as long as ∆ρgd . τy, where

∆ρ is the density difference between the fluid and the particles. More precisely, it

has been shown theoretically [7] and experimentally [8] that a single sphere in an

infinite yield stress fluid does not settle as long as

τy
∆ρgd

≥ 1

21
(1)

However, it is usually observed that a significant sedimentation can occur in

such materials when they are handled [9]. Thus the question we address here is

whether the above stability criterion still holds for particles in a flowing paste.

Whereas stability and sedimentation at rest have been thoroughly studied in the

literature [10], these issues have been poorly addressed in flowing yield stress flu-

ids. The sedimentation of a single particle in non-Newtonian fluids sheared in

a Couette geometry has been studied by Gheissary & vandenBrule [11]. For all

materials, they attempt to model the sedimentation velocity of the particle, as a

function of the applied shear rate γ̇, by the Stokes velocity V = (1/18)∆ρgd2/η
0

in a viscous fluid of viscosity η
0

equal to the apparent viscosity η(γ̇) of the sheared

fluid. For three different shear-thinning fluids, they then find that the sedimenta-

tion velocity is significantly lower than expected. This suggests that the apparent
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viscosity in the direction of sedimentation is higher than the apparent viscosity

experienced in the Couette flow, a phenomenon they attribute to the anisotropic

character of the studied materials. The case of a single particle in a Carbopol gel

is also reported; it is worth noting that the particle is not stable at rest. In this case

only, good agreement is found between the measured and predicted sedimentation

velocity.

To our knowledge, sedimentation during a yield stress fluid flow of particles

stable at rest has only been previously studied by Merkak et al. [12], in pipe

flows. Merkak et al. [12] have observed that particles settle in the sheared fluid in

some cases only; they have rationalized their observations by introducing a new

criterion: they claim that particles do not settle in the sheared yield stress fluid if

τy
∆ρgd

& 3 (2)

In the cases where sedimentation is observed, no characterization of the observed

sedimentation velocity is reported.

In this paper, we address the question of the impact of a flow on the possi-

ble settling of coarse particles suspended in a yield stress fluid. Model density-

mismatched suspensions of monodisperse particles are designed to be stable at

rest. We focus on a well-controlled situation: the material is sheared in a coaxial

cylinders (Couette) geometry, which imposes shear in the plane perpendicular to

gravity; the sedimentation flow is thus decoupled from the shear flow (Fig. 1).

We use Magnetic Resonance Imaging (MRI) as a noninvasive technique to study

the time evolution of the particle volume fraction during shear. We first study the

situation of low solid fractions for which we expect that particle interactions are

small. Then we study the case of higher solid fractions, for which collective ef-

fects are known to play a significant role for particles settling in a simple viscous

fluid [13, 14]. We study the sedimentation velocity as a function of the material

properties, of the particle volume fraction, and of the characteristics of shear. We

then propose a model to account for the observed features.

2. Materials and methods

2.1. Materials

Most model suspensions we study are suspensions of monodisperse glass beads

in concentrated emulsions; the particle volume fraction φ is varied between 5%

and 40%. We use spherical glass particles of four different diameters (145, 275,
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Figure 1: Sketch of the experiment.

375, and 405 µm ±7%). The emulsions are prepared by dispersing a 100 g/l wa-

ter solution of CaCl2 in a solution of Span 80 emulsifier (7%) in dodecane oil at

6000 rpm with a Silverson L4RT mixer. The average droplet size is 1 µm; the

emulsions are then viewed by the particles as continuous media [15]. In order to

study materials of various rheological properties, we have varied the droplet con-

centration between 72 and 85%. We have also studied a 5% suspension of 405

µm glass beads in a Carbopol gel. The gel is obtained by dispersing Carbopol

980 (from Noveon) at a 0.3% concentration in water at 1000 rpm during 30 min;

it is then neutralized with NaOH at pH=7 and stirred for an entire day to ensure

homogeneity of the material.

We finally obtain 8 different materials, the properties of which are displayed

in Tab. 1. Due to the specificity of our setup, which implies to use 1 liter of

material per experiment and does not allow performing many experiments during

a same period, we could not ensure the reproducibility of the emulsion properties,

which explains the variety of the materials. We were thus able to vary the particle

diameter in exactly the same material only once.

The density of the glass particles is 2.5 whereas the density of all the studied

yield stress fluids is of order 1. Gravity thus tends to induce sedimentation of

the particles. However, all systems are designed to be stable at rest: their yield

number Y = τy
∆ρgd

complies with Eq. 1 (see Tab. 1), which ensures that elastic

forces exerted by the yield stress fluid at rest are able to counterbalance the net

gravity force.

2.2. Rheometry

The yield stress fluid rheological properties are characterized in a sandblasted

2 ˚ cone-and-plate geometry of 40 mm diameter, with a Bohlin C-VOR 200 rheome-

ter. The material is presheared at a 50 s−1 shear rate during 60 s. The shear rate γ̇
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τy (Pa) η
HB

(Pa.sn) n d (µm) φ (%) Y = τy
∆ρgd

concentrated emulsions

8.5 3.6 0.44 275 5 2.1

16.5 3.8 0.5 375 5 to 40 2.9

15.1 3.25 0.5 275 5; 10 3.7

21.4 4.25 0.5 405 5 3.6

25 10 0.4 145 5 12.1

33.2 5.0 0.5 275 5 8.2

33.2 5.0 0.5 405 5 5.6

Carbopol gel

27.5 10.1 0.35 405 5 4.7

Table 1: Properties of the studied materials: yield stress τy , consistency η
HB

and index n of the

yield stress fluids (all material flow curves were fitted to a Herschel-Bulkley law τ = τy+η
HB

γ̇n);

glass bead diameter d; particle volume fraction φ. The yield number Y =
τy

∆ρgd used in stability

criteria (Eqs. 1 and 2) is also provided.
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Figure 2: Constitutive law τ(γ̇) of a concentrated emulsion obtained (i) from macroscopic mea-

surements in a cone-and-plate geometry (crosses) and (ii) from local MRI measurements in a

Couette geometry (empty symbols; different symbols correspond to different inner cylinder rota-

tional velocity). The solid line is a Herschel-Bulkley fit to the macroscopic data τ = τy + η
HB

γ̇n

with τy = 16.5 Pa, η
HB

=3.8 Pa s0.5, and n = 0.5.
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is then ramped-down from 50 s−1 to 0.001 s−1 (logarithmic ramp, 30 s/decade of

shear rate), and shear stress vs. shear rate data τ(γ̇) are recorded during the ramp.

We checked that the materials we study are simple yield stress fluids which do not

display thixotropy, in agreement with previous investigations [16, 17]. τ(γ̇) data

obtained in one of the concentrated emulsions are displayed in Fig. 2. All material

behaviors are well fitted to a Herschel-Bulkley behavior τ(γ̇) = τy + η
HB

γ̇n (an

example is shown in Fig. 2); the values of the rheological parameters (τy, η
HB

, n)

measured on all the studied materials are displayed in Tab. 1.

2.3. Sedimentation experiments

The suspensions are loaded in a Couette geometry, the dimensions of which

are: inner cylinder radius, Ri = 4.1 cm; outer cylinder radius, Ro = 6 cm; height

of sheared fluid, H = 11 cm. Both cylinders are covered with sandpaper to avoid

wall slip. Shear is induced by the rotation of the inner cylinder at controlled

rotational velocity Ω. The Couette rheometer is inserted in a Magnetic Resonance

Imaging (MRI) setup described in [18].

Azimuthal velocity profiles vθ(r) are measured using MRI techniques [18, 19];

an example is shown in Fig. 3a. The local shear rate γ̇(r) at a radius r in the

gap can then be deduced from vθ(r) as γ̇(r) = vθ(r)/r − ∂rvθ(r); the derivative

∂xf with respect to coordinate x of experimental data f(xi) measured at regularly

spaced positions xi was here computed as: ∂xf(xi) = [f(xi+1)−f(xi−1)]/[xi+1−
xi−1].

When the material is homogeneous along the vertical direction, the local shear

stress τ(r) within the gap is obtained from torque T measurements as τ(r) =
T/(2πr2H). Local data

(

τ(r,Ω), γ̇(r,Ω)
)

measured at various r and various Ω
can finally be combined to obtain the constitutive law τ(γ̇) consistent with the

observed flows (more details about this reconstruction technique can be found

in [16]). Local τ(γ̇) data measured with this method in a (pure) concentrated

emulsion are displayed in Fig. 2. We observe that there is good agreement be-

tween these local measurements and the macroscopic measurements obtained in

the cone-and-plate geometry. This shows the ability of the macroscopic measure-

ments to account for the steady-state flow behavior of the material in our experi-

ments in a wide-gap Couette geometry.

To investigate shear-induced sedimentation, we study the time evolution of the

r-averaged vertical profile φ(z) of the particle volume fraction in the suspensions

for rotational velocity Ω of the inner cylinder ranging between 5 and 100 rpm.

The particle volume fraction is obtained both in radial and vertical directions from

density imaging with an accuracy of 0.2% [20]. The use of a wide gap allows us
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Figure 3: (a) Local velocity vθ(r) in a 5% suspension of 275 µm glass beads in a concentrated

emulsion of yield stress τy = 8.5 Pa sheared in the gap of a Couette geometry, for various rota-

tional velocities Ω of the inner cylinder (squares: 130 rpm, empty circles: 100 rpm, up triangles:

75 rpm, empty down triangles: 50 rpm, diamonds: 20 rpm). The inset is a semi-log plot of the

same data. (b) Local apparent viscosity η[γ̇(r)] deduced from the velocity profiles of Fig.3a.

to study large particles. However, it results in unavoidable stress heterogeneity,

as the shear stress distribution is τ(r) = τ(Ri)R
2
i /r

2. We thus have to be careful

about shear localization in the experiments [21]; unless otherwise noted, all Ω
were high enough to ensure that the whole gap is sheared (see e.g. Fig. 3a inset).

Nevertheless, due to the nonlinear behavior of the studied materials, the shear rate

and apparent viscosity distributions are strongly heterogeneous. To illustrate this

point, we have computed the local apparent viscosity η[γ̇(r)] of the material in the

gap of the geometry from the interstitial yield stress fluid behavior as η[γ̇(r)] =
(

τy + η
HB

γ̇(r)n
)

/γ̇(r) and have plotted these values in Fig. 3b in the case of the

emulsion of Fig. 3a. It is observed that, depending on the material and on the

boundary conditions, the shear rate varies by a typical factor of order 10 from the

inner to the outer cylinder, leading to spatial evolution of the apparent viscosity

by a factor of 5.

This heterogeneity is negligible at the particle scale but important at the sus-

pension scale, and it may have an impact on the spatial characteristics of sedimen-

tation. This issue is discussed in Sec. 3.1 and in the Appendix A. To minimize

the possible impact of this heterogeneity, we have measured the vertical concen-

tration profiles φ(z) only in a 9 mm thick zone in the gap (from r = 4.4 cm to

r = 5.3 cm); in this region, the apparent viscosity of the material is observed
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to vary typically by a factor of 2. In the following, the results are presented as

a function of the spatial average ¯̇γ of γ̇(r) in the measurement window. In the

experiments, ¯̇γ was varied between 3 and 25 s−1.

All suspensions are stable at rest: the material yield stress is more than 40

times higher than that fixed by the stability criterion Eq. 1 (see Tab. 1). We have

checked that the volume fraction profiles remain indeed homogeneous at rest dur-

ing 24 h (Fig. 4). Moreover, for 5 of the materials, the yield stress of the interstitial

fluid is higher (up to 4 times) than that fixed by the stability criterion under shear

Eq. 2 proposed by Merkak et al. [12], whereas it is lower for 2 of the materials.

In the following, in order to minimize the role of the particle interactions, we

first focus on the behavior of semi-dilute suspensions of particle volume fraction

φ = 5% (Sec. 3). We then study the impact of a change in φ (Sec. 4).

3. Shear-induced sedimentation in a semi-dilute suspension

3.1. Volume fraction profiles

In Fig. 4, we show vertical volume fraction profiles observed at rest and during

shear in one of the studied suspensions of particle volume fraction φ = 5%. The

same features are observed in all the systems we have studied.

At rest, the particles appear to remain indefinitely in their initial position: there

is no observable difference between the vertical concentration profiles measured

after loading and after a 24 h rest. Whereas the particles are stable at rest, we

observe that there is sedimentation when the material is sheared. The sedimen-

tation profiles measured during shear show classical features of sedimentation in

Newtonian fluids [2]: the upper part is at a 0% concentration, the middle part re-

mains at the initial 5% concentration, and the particles tend to accumulate at the

bottom of the cup, in the dead zone below the inner cylinder end. The transition

zone between the 0% and the 5% regions is rather narrow (with a typical thickness

of 6mm), and defines a sedimentation front that moves continuously towards the

bottom as the flow duration increases.

We do not observe any significant broadening of the sedimentation front in

time. This implies that, although the shear rate distribution is heterogeneous in

the gap (we recall that γ̇(r) varies typically by a factor of 4 in the measurement

zone), there is no significant spatial heterogeneity of the sedimentation velocity,

which suggests that collective effects are at play. This issue is discussed in more

detail in the Appendix A. In the following, we will thus assume that it is sufficient

to consider the average shear rate ¯̇γ to describe shear-induced sedimentation.
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Figure 4: Vertical volume fraction profiles observed in the gap of a Couette geometry in a 5%

suspension of 275 µm glass beads in a concentrated emulsion of yield stress τy = 8.5 Pa, after a

24 h rest (empty circles) and after 15 min (black line), 30 min (dark grey line) and 45 min (light

grey line) of shear at ¯̇γ = 4 s−1.
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Figure 5: Position of the sedimentation front as a function of the time of shear, for a 5% suspension

of 275 µm glass beads in a concentrated emulsion of 8.5 Pa yield stress, for various shear rates:

4 s−1 (squares), 8.8 s−1 (empty circles), 14 s−1 (up triangles), 18.6 s−1 (empty down triangles)

and 25 s−1 (diamonds).
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We observe that the sedimentation front moves linearly in time (Fig. 5). We

thus extract the sedimentation velocity V of the suspension from a linear fit to the

front position vs. time data.

3.2. Conditions of stability

The stability at rest of the systems we have studied is consistent with Eq. 1 (see

the values of their yield number Y in Tab. 1). However, our observations contrast

with previous observations [12]: we find that shear induces sedimentation in all

of our systems, at any imposed shear rate. It thus seems that the proposed stabil-

ity criterion Eq. 2 is not correct (most of our systems verify Eq. 2, see Tab. 1);

from our observations, the possibility of stability under shear is actually doubtful.

The absence of observable sedimentation in some of the Merkak et al. [12] ex-

periments is likely due to the fact that, as shown below in Secs. 3.3 and 3.4, the

sedimentation velocity can be very small at high material yield stress and small

particle diameter.
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Figure 6: Velocity profile (line, left axis) and radial volume fraction profile (squares, right axis)

observed in the gap of a Couette geometry in a 5% suspension of 405 µm glass beads in a concen-

trated emulsion of yield stress τy = 21.4 Pa, after 24 h of shear at Ω = 4 rpm.

To illustrate further the role of shear on sedimentation, we have performed an

experiment in which flow is localized (Fig. 6), by applying a low rotational veloc-

ity Ω = 4 rpm to the inner cylinder on one of the systems. In these conditions,

the material is sheared from the inner cylinder to the middle of the gap (at Rc ≃
4.95 cm), and at rest from Rc to the outer cylinder; the average shear rate in the
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sheared region is of the order of 1 s−1. We recall that shear localization is here due

to the stress heterogeneity, as the local shear stress value is τ(r) = τ(Ri)R
2
i /r

2,

which is equal to the yield stress of the material τy at the interface Rc between the

sheared and the unsheared material. We have sheared the material during 24 h to

ensure that all sedimentation has time to occur if it has to. We have measured the

radial volume fraction profile φ(r) in the gap of the geometry after this 24 h shear

(Fig. 6). It is observed that there are no more particles1 in the sheared zone, and

that the volume fraction in the unsheared zone is unchanged, consistently with

the stability of the system at rest (see Fig.4). The interface between the zones

at φ = 0% and φ = 5% exactly corresponds to the interface between the sheared

and the dead zone. This clearly shows that sedimentation is induced as soon as the

material is sheared, even when the applied stress is very close to the yield stress

(i.e., near Rc, where the local shear rate is close to zero).

3.3. Sedimentation velocity

In order to better understand shear-induced sedimentation, we now compare

the sedimentation velocities V observed in all systems under various conditions.

Our observations can be summarized as follow:

• V increases with the applied shear rate ¯̇γ (Fig. 7)

• for a given particle diameter d, at a given ¯̇γ, V is a decreasing function of

the material yield stress τy (Fig. 7a).

• in a yield stress fluid of given rheological properties, V is an increasing

function of the particle diameter d (Fig. 7b)

See also Fig. 8 where data obtained on all the studied materials are shown.

These results can be qualitatively understood: V is actually expected to de-

crease when the plastic to gravity stress ratio Y = τy
∆ρgd

increases. Moreover, the

increase of V with ¯̇γ suggests that the settling particles are sensitive to the appar-

ent viscosity η(¯̇γ) = τ(¯̇γ)/¯̇γ of the sheared material, which decreases with ¯̇γ for

all the studied materials.

1Note that the measurement fluctuations – of order 1% – are here much larger for radial profiles

than for vertical profiles.
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Figure 7: (a) Sedimentation velocity V of 275 µm glass beads vs. shear rate ¯̇γ in three different

concentrated emulsions, of yield stress 8.5 Pa (filled circles), 15 Pa (empty circles) and 33 Pa

(dotted circles). (b) Sedimentation velocity V of 275 µm (dotted circles) and 405 µm (dotted

triangles) glass beads vs. shear rate ¯̇γ in a concentrated emulsion of 33 Pa yield stress. The

particle volume fraction of the suspensions is φ = 5%.

3.4. Theoretical analysis

In this section, we aim to better understand the phenomenon of shear-induced

sedimentation, and to predict the value of the sedimentation velocity V as a func-

tion of the material and flow characteristics. We point out that the particle Reynolds

number Rep for both the shear flow (ρd2γ̇/η(γ̇)) and the settling flow (ρdV/η(γ̇))
is of order 10−3 or less in all experiments; our analysis is thus made in the Stokes

regime. In the following, we first deal with the problem of the sedimentation of a

single sphere of diameter d in the sheared yield stress fluid; we will comment on

the volume fraction dependence of V below.

Shear-induced sedimentation involves a complex 3D flow of the yield stress

fluid around the particle. We thus have to consider a tensorial form of the Herschel-

Bulkley behavior; here we assume that the material behavior obeys its isotropic

form [22, 23, 24]

τij = 2[(τy + η
HB

γ̇n)/γ̇]dij (3)

where τij is the deviatoric stress tensor, dij is the strain rate tensor (i.e. the sym-

metric part of the velocity gradient), and the shear rate is γ̇ =
√

2dijdij . This

form has been shown to be consistent with recent observations of complex yield

stress fluid flows [24, 25].
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When two orthogonal flows2 are superimposed, it has been shown that, if the

strain rate of one of the flows is much higher than that of the other flow, the flow

resistance to the secondary flow is purely viscous (linear) and is characterized by

an effective viscosity equal to the apparent viscosity η(γ̇) of the main flow [24].

This can be understood for the isotropic Herschel-Bulkley law (Eq. 3): e.g, if we

consider a main simple shear flow of strain rate drθ in a Couette geometry, the

shear resistance τrz to a secondary orthogonal flow in the z direction, of strain

rate drz such that drz ≪ drθ, is

τrz ≃ 2[(τy + η
HB

(2drθ)
n)/2drθ] drz = 2η(γ̇) drz (4)

with γ̇ ≃ 2drθ: the flow resistance to this secondary flow in the vertical direction

is thus characterized by a viscous behavior of effective viscosity η(γ̇) = [(τy +
η
HB

γ̇n)/γ̇] fixed by the characteristics of the Couette flow only.

In all of our experiments, the settling flow can be considered as a secondary

flow as compared to the shear flow. Indeed, its characteristic shear rate γ̇s is of

order V/d; this value is here 50 to 400 times lower than γ̇ ≃ 2drθ. In these

conditions, given the above remarks about the flow resistance to secondary flows,

it is tempting to model the sedimentation velocity of a single sphere in the sheared

yield stress fluid by the velocity VStokes of a sphere in a Newtonian medium of

viscosity given by the apparent viscous resistance η(γ̇) = τ(γ̇)/γ̇ to the shear

flow (here, τ = τrθ and γ̇ = 2drθ characterize the shear flow induced by the

rotation of the inner cylinder of the Couette cell):

VStokes = αS
∆ρgd2

η(γ̇)
(5)

with αS = 1/18.

However, this preliminary analysis does not account for the complexity of flow

around a sphere: it is based on orthogonal superimposed flows, which is not the

case of the shear and sedimentation flows around a sphere. In this last case, one

cannot simply describe the shear resistance to sedimentation as in Eq. 4, because

the strain rate tensor field around the sphere is not the sum of two orthogonal

tensor fields (i.e., df : dp 6= 0 in Eq. B.8). Moreover, the contribution to the drag

force of the normal stresses exerted on the particle also have to be properly taken

into account in the analysis. In the Appendix B, a rigorous theoretical analysis

2We recall that two flows of strain rate tensors d1ij and d2ij are said to be orthogonal when

d1ij d
2
ij = 0.
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of the problem of shear-induced sedimentation is made, in the case where the

sedimentation flow is a secondary flow (i.e., when V/d ≪ γ̇ ). It is shown that

the scaling proposed in Eq. 5 remains valid in two limit cases, for low and high

inverse Bingham number Bi−1= η
HB

γ̇n/τy.

When Bi−1≪ 1 (‘plastic’ flows), it is expected that:

V = αp
∆ρgd2

τy/γ̇
(6)

When Bi−1≫ 1 (‘viscous’ flows), it is expected that:

V = αv
∆ρgd2

η
HB
γ̇n−1

(7)

Note that the constants αp and αv are unknown and are a priori different, which

means that Eq. 5 cannot be correct and that in a general case, V 6∝ 1/η(γ̇). Never-

theless, as it gives the correct scaling predictions in both the ‘plastic’ and ‘viscous’

limits, we will compare our results to Eq. 5 in the following.

These last equations are expected to be valid for a single sphere only, a case

we cannot study with our means of investigation. We recall that our first results

concern here semi-dilute suspensions of volume fraction φ = 5%. For a sus-

pension of monodisperse spheres of volume fraction φ, by analogy with viscous

suspensions, we expect the sedimentation velocity V (φ) of the suspension to be

equal to that of a single sphere multiplied by a decreasing function of φ only, the

hindrance function f(φ), with f(0) = 1 [13, 14] (we will come back onto this

point in Sec. 4).

3.5. Comparison experiment/theory

In order to test the above theoretical analysis, we show the data obtained in

all materials in Fig. 8a, and we plot all the measured sedimentation velocities V
rescaled by the velocity VStokes given by Eq. 5 in Fig. 8b. We recall that V/VStokes

is expected to tend towards two different constant values at low and large inverse

Bingham number Bi−1= η
HB

¯̇γn/τy. V/VStokes is thus plotted here vs. Bi−1.

For shear-induced sedimentation in the concentrated emulsions, we first ob-

serve that all the data fall onto a master curve V/VStokes ≃ 1.4 up to Bi−1≃ 1,

in good agreement with the theory in the ‘plastic’ regime. It is worth noting that

the parameters d2, τy and ¯̇γ involved in the scaling of Eq. 5 were here varied

independently by a factor of 8, 4 and 4, respectively.
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Figure 8: (a) Sedimentation velocity V of glass beads suspended at a 5% volume fraction in

sheared yield stress fluids as a function of the applied shear rate ¯̇γ, for various bead diameter

d, various concentrated emulsions (filled squares: d=145 µm, τy = 25 Pa; circles: d=275 µm,

τy = 8.5 Pa (filled), 15 Pa (empty), 33 Pa (dotted); triangles: d=405 µm, τy = 21.5 Pa (empty),

33 Pa (dotted)) and a Carbopol gel (stars: d=405 µm, τy = 27.5 Pa). (b) Same data rescaled by

the velocity VStokes = (∆ρgd2)/(18η) of a single sphere that would fall in a Newtonian medium

of viscosity η equal to the apparent viscosity η(¯̇γ) of the pure sheared yield stress fluid; data are

displayed vs. the inverse Bingham number Bi−1= η
HB

¯̇γn/τy.

For higher values of Bi−1, V/VStokes is then found to increase with Bi−1; it

can reach values that are up to 3 times higher than at low Bi−1 value. The ex-

istence of such a regime could be expected from the theory as V/VStokes a priori

tends towards different values at low and high Bi−1. However, we do not observe

V/VStokes to tend towards a constant value when increasing Bi−1, in contrast with

what is expected in the ‘viscous’ regime. Nevertheless, it should be noted that the

higher value of Bi−1 tested here was of order 1.8; further experiments at higher

Bi−1 values would be needed to really test the theory in the ‘viscous’ regime.

Data obtained here for Bi−1& 1 do not fall along a master curve, which means

that the Bingham number should not be the only relevant parameter to consider to

describe this intermediate regime.

For shear-induced sedimentation in the Carbopol gel, the important result is

that the proposed scaling with the apparent viscosity of the sheared material η(γ̇)
seems to remain correct in the ‘plastic’ regime, as V/VStokes does not depend on ¯̇γ
for Bi−1< 1. Nevertheless, we now find a different value V/VStokes ≃ 0.7. It thus

seems that shear-induced sedimentation is also sensitive to aspects of the material

rheological behavior that we have not considered in the analysis. A possibility
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is that normal stress differences play a role, since they can be large in sheared

Carbopol gels [26], and since they are not taken into account in the expression of

the Herschel-Bulkley law that we use.

For the sake of comparison with the properties of sedimentation in Newtonian

fluids, we have performed sedimentation experiments with a 5% suspension of

275 µm glass beads in a Newtonian oil (viscosity 2.6 Pa.s), in several situations:

(i) in the gap of the Couette cell at rest, (ii) in the gap of the Couette cell when the

suspension is sheared, and (iii) in a large cylindrical container of 12 cm diameter

and of 10 cm height. In the gap of the Couette cell, we have observed V/VStokes ≃
1.2, both at rest and when the fluid is sheared (as expected from the linearity of the

fluid behavior). In the cylindrical container, we have observed that V/VStokes ≃ 0.7
(note that V/VStokes ≃ 0.8 is expected at φ = 5% in a Newtonian fluid in an

‘infinite’ geometry [13]). This shows that the characteristics of sedimentation in

a Newtonian fluid are affected by the characteristics of the geometry we use3; it

is also most probably the case for shear-induced sedimentation in a yield stress

fluid. The value of V/VStokes we measure here would thus be difficult to compare

to the results of analytic or numerical computations in plastic materials under

homogeneous simple shear.

Note also that in Eq. 5 the sedimentation velocity is supposed to be set by the

local value η[γ̇(r)] of the apparent viscosity of the sheared fluid, and thus to de-

pend on the radial position r in the gap following V (r) ∝ 1/η[γ̇(r)]. In Fig. 3b we

have shown that there are large η[γ̇(r)] variations in the gap: it varies typically by

a factor of 5 in the whole gap and by a factor of 2 in the measurement zone, which

should imply that, when averaging the sedimentation velocities in this zone, the

sedimentation front corresponding to φ = 5% in this region should move 2 times

faster than the front corresponding to φ=0%. This is not the case experimentally

as we have observed no broadening of the sedimentation front (Fig. 4), which

suggests that collective effects are at play (see Appendix A for more details).

This raises the question of the relevant value of η[γ̇(r)] to take into account in

the theoretical analysis of the sedimentation velocity. Here we have no answer to

this question: it could be the minimum or maximum value of η[γ̇(r)] in the gap,

its average, etc. We have thus made an arbitrary choice by choosing η(¯̇γ). We

3This dependence could come, e.g., from the curvature of the geometry [27], from a small

tilt angle [14], or from the limited size of the gap; we note in particular that the gap size is here

of the order of the correlation length ≃ 10dφ−1/3 of the particle settling velocities [28], and that

these fluctuations play a role in the backflow contribution to the suspension sedimentation velocity

[28, 29].
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checked that this choice is not crucial: e.g., putting the maximum or minimum

value of η[γ̇(r)] in the gap in the analysis does not change the features observed

experimentally (i.e., the existence of a plateau of V/VStokes at low Bi−1 and an

increase of V/VStokes for Bi−1& 1). However, this choice affects the quantitative

value of V/VStokes, which, again, would make it impossible to make a quantitative

comparison to the results of analytic or numerical computations in plastic materi-

als under homogeneous simple shear.

To conclude, we have shown that the sedimentation velocity of spherical par-

ticles at low solid fraction in a sheared yield stress fluid can be fairly predicted

with Eq. 5 in the ‘plastic’ regime (Bi−1= η
HB

γ̇n/τy < 1). The drag constant α
seems to be close to that observed in Newtonian fluids, but its exact value can-

not be directly derived from our experimental measurements as it depends on the

characteristics of the geometry we use. The existence of a ‘viscous’ regime where

the scaling of Eq. 5 should remain valid could not be tested with our systems; nev-

ertheless, our results (the increase of V/VStokes with Bi−1 for Bi−1& 1) suggest

that the drag constant α is significantly higher in this regime than in the ‘plastic’

regime. In the next section, we study the dependence of the sedimentation velocity

on the solid fraction in the ‘plastic’ regime.

4. Dependence of the sedimentation velocity on the particle volume fraction

4.1. Observations

In a second stage, we have studied the impact of a change in the particle vol-

ume fraction φ on the sedimentation velocity. We have studied suspensions of

375 µm beads in a concentrated emulsion, with φ ranging from 5% to 40% (see

Tab. 1). A low macroscopic shear rate ¯̇γ=8 s−1 was imposed in order to ensure

that we are in the simplest case (‘plastic’ regime) where Eq. 5 is valid.

The sedimentation velocities V (φ) measured at a same macroscopic shear rate
¯̇γ are displayed in Fig. 9, rescaled by the velocity V (φ

0
) measured for φ

0
=

5%. These values are compared to the dimensionless sedimentation velocity

V (φ)/V (φ
0
) observed in viscous suspensions in the literature [13], which ac-

counts for collective effects in Newtonian materials.

It is observed that the sedimentation velocity decreases very moderately with

the volume fraction in a sheared yield stress fluid, whereas a strong decrease is

observed in Newtonian fluids. E.g., at a 40% particle volume fraction, the sed-

imentation velocity in the sheared yield stress fluid decreases by only a factor
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of 2 as compared to a 5% suspension, which is 4 times less important than in a

Newtonian fluid.
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Figure 9: Dimensionless sedimentation velocity V (φ)/V (φ
0
) vs. particle volume fraction φ,

where φ
0
= 5%, for suspensions sheared in a Couette geometry at a ¯̇γ = 8 s−1 macroscopic

shear rate (filled circles) and for viscous suspensions (crosses, data from [13]). We also plot

the dimensionless velocity corrected for the impact of the volume fraction change on the apparent

viscosity of the interstitial fluid (empty circles): V (φ)/V (φ
0
)×η[γ̇l(φ)]/η[γ̇l(φ0

)], where η[γ̇l(φ)]
is the apparent viscosity of the sheared interstitial yield stress fluid at a local shear rate γ̇l(φ)
computed following Eq. 9.

4.2. Theoretical analysis

This observation can be understood by analyzing the behavior of the mate-

rial at the local scale. Indeed, as the particles are rigid, shear is more and more

concentrated in the fluid between neighboring particles as the particles get closer.

This implies that, at a given macroscopic shear rate ¯̇γ, the local shear rate γ̇l in the

interstitial fluid is an increasing function of the particle volume fraction φ. Then,

when φ is increased, the apparent viscosity τ(γ̇l)/γ̇l = τy/γ̇l + η
HB

/γ̇1−n
l of the

interstitial fluid decreases, i.e. the viscous resistance to sedimentation decreases,

which may explain why V (φ)/V (φ
0
) is higher in a sheared yield stress fluid than

in a viscous fluid of constant viscosity.

The value of the average local shear rate ¯̇γl can be estimated as a function of

the macroscopic shear rate ¯̇γ and of the particle volume fraction φ, by compar-

ing the macroscopic properties of the suspension (elastic modulus G′(φ), yield

stress τy(φ), consistency η
HB

(φ)) and those of the suspending fluid (G′(0), τy(0),
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η
HB

(0)) [30]. E.g., the elastic energy stored below the yield stress in the sus-

pension at the macroscopic scale G′(φ)¯̇γ2 must match the elastic energy stored

at the microscopic scale, which is stored in the interstitial fluid only and is (1 −
φ)G′(0)¯̇γ2

l . This implies that ¯̇γl(φ) = ¯̇γ
√

g(φ)/(1− φ)where g(φ) = G′(φ)/G′(0)
is the linear response of the material [15, 30, 31]. A classical expression for g(φ) is

the Krieger-Dougherty law g(φ) = (1−φ/φdiv)
−2.5φdiv , which is in agreement with

the experimentally observed behavior [15] for monodisperse suspensions. For

sheared suspensions of monodisperse spheres, a reliable value of φdiv = 60.5%
was recently measured at a local scale [20]. This finally means that the average

local shear rate in the interstitial fluid can be estimated with no fitting parameter as
¯̇γl(φ) = ¯̇γ

√

(1− φ/φdiv)−2.5φdiv(1− φ)−1 with φdiv = 60.5%, in agreement with

previous experimental data [15, 30, 31].

We thus propose to model the sedimentation velocity V (φ) of a suspension of

volume fraction φ by taking into account the local viscosity η[¯̇γl(φ)] of the intersti-

tial fluid into Eq. 5, and by multiplying this last equation, valid for a single sphere

only, by the same “hindrance function” fNewt.(φ) as in a Newtonian fluid to ac-

count for collective effects (fNewt.(φ) is the sedimentation velocity of a Newtonian

suspension rescaled by the Stokes velocity). This finally leads to the following set

of equations:

V (φ) = α
∆ρgd2

η[¯̇γl(φ)]
fNewt.(φ) (8)

where ¯̇γl(φ) = ¯̇γ
√

(1− φ/φdiv)−2.5φdiv(1− φ)−1 (9)

with φdiv = 60.5%, where η(γ̇) = τ(γ̇)/γ̇ is the apparent viscosity of the pure

yield stress fluid sheared at a γ̇ shear rate. We recall that Eq. 8 is a priori valid at

low and large Bi−1 values only, and that the drag constant α is expected to take

different values in the ‘plastic’ and ‘viscous’ regimes, and to be close to the value

1/18 observed in Newtonian materials in the ‘plastic’ regime (see Sec. 3.5). It is

worth noting that there is no fitting parameter in Eqs. 8, 9.

In order to test this model, we report in Fig. 9 the values of V (φ)/V (φ
0
) ×

η[¯̇γl(φ)]/η[¯̇γl(φ0
)], where φ

0
= 5%, which should be equal to the dimension-

less sedimentation velocity of a Newtonian fluid fNewt.(φ)/fNewt.(φ0
) from Eq. 8.

A fair agreement is observed between our theoretical expression and the values

fNewt.(φ)/fNewt.(φ0
) measured in Newtonian suspensions [13].
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5. Conclusion

We have addressed the question of the impact of a flow on the stability of

coarse particles suspended in yield stress fluids. In contrast with previous investi-

gation [12], we have observed that shear induces sedimentation of the particles in

all the studied systems, which were stable at rest. It thus seems that any density-

mismatched suspension of particles or bubbles [32] in a yield stress fluid will tend

to become heterogeneous when it is transported. It makes it particularly important

to model shear-induced sedimentation as a function of the characteristics of shear

and of the material properties.

At low shear rate (‘plastic regime’, Bi−1= η
HB

γ̇n/τy < 1), we have proposed

a quantitative prediction of the sedimentation velocity, which is in good agree-

ment with our experimental observations. We have shown that shear-induced sed-

imentation can be modelled by considering that the interstitial fluid behaves like a

viscous fluid – of viscosity equal to the apparent viscosity τ(γ̇)/γ̇ of the sheared

fluid – in the direction orthogonal to shear. The sedimentation velocity of spheri-

cal particles in a sheared yield stress fluid can then be fairly predicted using Eq. 8,

with a drag constant α close to that observed in Newtonian media. An increase

of the particle volume fraction φ plays here two contradictory roles: it hinders

settling, which is accounted for by the same hindrance function f(φ) as in Newto-

nian fluids, and it decreases the viscous resistance of the interstitial fluid because

of shear concentration between the particles, which is accounted for by estimating

the local shear rate in the interstitial yield stress fluid with Eq. 9 [15, 30].

At this stage, this modelling has been shown to be valid at proximity of the

yield stress only. The existence of a ‘viscous’ regime (Bi−1>> 1) where the

scaling of Eq. 8 should remain valid is predicted theoretically, but we could not

test it experimentally. Nevertheless, our results suggest that the drag constant

α should be significantly higher (by a factor of 3 or more) in this regime than

in the ‘plastic’ regime, which would result in high shear-induced sedimentation

velocities. The behavior at high shear rates thus remains to be fully characterized

and understood.

Appendix A. Impact of the shear rate heterogeneity

In the following, we study the possible impact of the shear rate heterogeneity

on the spatial characteristics of shear-induced sedimentation.

Let us assume, consistently with our findings in the ‘plastic’ regime (Sec. 3.5),

that particles situated at a given radial position r in the gap settle in the sheared
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yield stress fluid as in a viscous medium of local viscosity η(r) = τ(r)/γ̇(r), i.e.

that the local sedimentation velocity is V (r) ∝ 1/η(r). It is thus assumed here

that the local sedimentation velocity V (r) of the suspension at a given position

is independent of the sedimentation velocity in its surroundings. The theoretical

volume fraction profile φ̄(z, t) corresponding to the experimental conditions after

a given time t of shear can then be easily computed by averaging the theoretical

volume fraction profile φ(r, z, t) at a given vertical position z from r = R1 =
4.4 cm to R2 = 5.3 cm.

To do that, defining z = h as the top of the suspension, we start at time

t = 0 with a homogeneous suspension of volume fraction φ
0
= 5%, i.e., we write

φ(r, z, t = 0) = φ
0

H(h − z) with H the Heaviside function (H(z) = 1 if z ≥ 0
and H(z) = 0 if z < 0). After a time t of shear at a given macroscopic shear rate,

the local volume fraction is then computed as φ(r, z, t) = φ
0

H(h − V (r)t − z),
with the local sedimentation velocity V (r) ∝ 1/η(r) calculated from the experi-

mentally measured value of η(r) (see Fig. 3b). The profile φ̄(z, t) that should the-

oretically be measured in these conditions is then the average of φ(r, z, t) between

the radial positions R1 and R2 (the measurement window has a constant extent in

the azimuthal direction) and is φ̄(z, t) = 1

R2−R1

∫ R2

R1

φ
0

H(h−V (r)t−z) dr. Such

profiles are compared to experimental profiles in Fig. A.10.

There is strong discrepancy between what is expected from this first naı̈ve

analysis and the experimental measurements. Whereas the experimental profiles

show a rather narrow front with no broadening in time, the sedimentation front of

the theoretical profiles gets broader and broader in time. As the local apparent vis-

cosity η(r) of the sheared fluid typically varies by a factor of 2 in the measurement

zone (see Fig. 3b), it is indeed easily understood that the front corresponding to

φ = 5% should move 2 times faster than the front corresponding to φ=0%, which

is clearly not the case experimentally.

This suggests that collective effects are at play, which tend to stabilize the front

at a given speed basically set by the average apparent viscosity. This point may

not be a surprise. In a Newtonian fluid, it is actually known that sedimentation

velocities are correlated in the horizontal plane over very long distances, of order

10dφ−1/3 [28]. For the particles we use in our study, this lengthscale is of the

order of 1 cm, i.e. of the order of the gap size (which is 1.9 cm). This may thus

explain our observations.
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Figure A.10: Vertical volume fraction profiles observed in the gap of a Couette geometry in a 5%

suspension of 275 µm glass beads in a concentrated emulsion of yield stress τy = 8.5 Pa after

15 min (black line), 30 min (dark grey line) and 45 min (light grey line) of shear at ¯̇γ = 4 s−1. The

dotted lines are the theoretical profiles expected from Eq. 5 by taking into account the heterogene-

ity of the apparent viscosity in the sheared material, under the assumption that the sedimentation

velocity of the suspension at a given radial position is set by the local viscosity η(r) = τ(r)/γ̇(r)
of the sheared yield stress fluid only, independently of the sedimentation velocity in its surround-

ings.

Appendix B. Drag force exerted on a particle in a sheared yield stress fluid:

theoretical analysis

We study the translational motion of a single particle of diameter d embedded

in a sheared Herschel-Bulkley fluid. We focus on the case where translation of

the particle is imposed at a constant velocity V in the direction e3 orthogonal to

the plane (e1,e2) of shear. We try to compute the drag force F exerted by the fluid

on the particle as a function of V , of the properties of the particle and of the fluid,

and of the characteristics of shear.

In the studied problem, the particle occupies the domain Ωp with boundary

∂Ωp and the fluid occupies the domain Ωf with boundary ∂Ωf = ∂Ωp ∪ ∂Ω∞.

The fluid domain is sheared far from the particle at a given overall shear rate Γ̇.
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Then the velocity is prescribed on the external fluid domain boundary ∂Ω∞

u =
1

2
Γ̇ (x2e1 + x1e2) (B.1)

The no-slip condition states that at the particle-fluid boundary ∂Ωp, the fluid ve-

locity is that of the particle

u = −V e3 (B.2)

where V denotes the particle velocity (V is positive when the particle moves

downward).

The isotropic tensorial form of the Herschel-Bulkley behavior law is

τ = 2 [(τy + ηHBγ̇
n) /γ̇]d if d 6= 0

1/2 τ : τ ≤ τy if d = 0
(B.3)

with d the strain rate tensor (i.e. the symmetric part of the velocity gradient) and

τ the deviatoric part of the Cauchy stress tensor. In Eq. B.3, the shear rate is

γ̇ =
√
2d : d.

The boundary value problem for the motion of a single particle moving with

velocity V in a sheared yield stress fluid is defined by Eqs. B.1, B.2, B.3, the no-

body force momentum balance equation div σ = 0 where σ = τ − pδ with p the

pressure, and the incompressibility condition div u = 0.

The drag force exerted by the yield stress fluid on the particle can be easily

computed from the solution of Eqs. B.1 to B.3

F = Fez =

∫

∂Ωp

σ · n dS (B.4)

with n the outward unit vector normal to the boundary of the particle.

An analytic solution of this problem is not available, it is thus not possible

to compute F as a function of the material properties τy, ηHB and n, the particle

diameter d and the loading parameters Γ̇ and V . Leaving aside the possibility

to solve numerically this problem, we restrict in the sequel to the situation of

“slow” forced motion of the particle defined by V ≪ Γ̇d (i.e., when the flow

induced by the particle motion can be considered as a secondary flow as compared

to the flow induced by shear). In these conditions, the solution of the problem

defined by Eqs. B.1 to B.3 is looked for as an asymptotic expansion of the small

dimensionless parameter ε = V/Γ̇d. It is easily shown that, up to the second order

in ε, the solution of this problem is

u = uf + εup +O(ε2) (B.5)
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and

p = pf + εpp +O(ε2) (B.6)

where uf and pf are the velocity and pressure in the sheared yield stress fluid

when the particle is at rest, i.e. they are solutions of Eqs. B.1 to B.3 for V = 0,

while up and pp are solutions of the boundary value problem

up = vpez (∂Ωp)
up = 0 (∂Ω∞)

(B.7)

with vp defined as vp = V/ε. The Cauchy stress tensor is here σ = σf + εσp +
O(ε2), with σf = τ f − pfδ and σp = τ p − ppδ, where τ f and τ p are the zeroth

and first order term of an asymptotic expansion4 τ = τ f + ετ p + O(ε2) of the

constitutive law B.3 with respect to ε. Putting the strain rate tensor associated to

the velocity field B.5 into Eq. B.3 yields

τ p = 2
[(

τy + ηHBγ̇
n
f

)

/γ̇f
]

dp − 2
τy
γ̇f

df : dp

df : df

df + 2ηHB(n− 1)γ̇n−1

f

df : dp

df : df

df

(B.8)

where df and γ̇f =
√

2df : df are the strain rate tensor and the shear rate associ-

ated to uf while dp is the strain rate tensor associated to up. Eq. B.8 is valid only if

the fluid deforms (γ̇f 6= 0) everywhere in the fluid domain. Such an assumption is

undoubtedly fulfilled here because in the zeroth order problem, the fluid domain

is uniformly sheared on its outside boundary (see Eq. B.1).

When the particle is at rest, the symmetries of the problem imply that the net

force
∫

∂Ωp
σf · n dS exerted by the fluid on the particle is zero. When the particle

moves slowly (i.e. ε ≪ 1), the drag force is thus a first order quantity in ε

F = Fez = ε

∫

∂Ωp

σp · ndS +O(ε2) (B.9)

Let us point out that for orthogonal flows, i.e. when df : dp = 0, Eq. B.8

reduces to τ p = 2
[(

τy + ηHBγ̇
n
f

)

/γ̇f
]

dp, which corresponds to a Newtonian be-

havior, thus justifying the use of expressions valid for Newtonian materials such

as Eq. 5. Of course, around a spherical particle, df : dp 6= 0 and things are more

complex. Because the shear tensor field (Eq. B.8) is then a nonlinear function

4Note that this approach is similar to that used in hydrodynamic stability analysis, where lin-

earization of the stress field is performed when adding a perturbation to a base flow [33].
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of both the zeroth and first order problem solutions, it is actually not possible to

predict even qualitatively how the force F depends upon quantities Γ̇ and V in a

general case. Nevertheless some results can be obtained in the ‘plastic’ and ‘vis-

cous’ regimes defined respectively by Bi−1≪ 1 and Bi−1≫ 1 where the inverse

Bingham number is Bi−1= η
HB

Γ̇n/τy.

Plastic regime

In the ‘plastic’ regime (τy ≫ η
HB

γ̇n), if df 6= 0, the asymptotic expansion of

the Herschel-Bulkley law is

τ = 2τy/γ̇f df + ε

(

2τy/γ̇fdp − 2
τy
γ̇f

df : dp

df : df
df

)

(B.10)

The leading term of Eq. B.10 corresponds to a rigid plastic constitutive law, and

the zeroth order problem solution is the velocity field of a perfect rigid-plastic

material strained at a constant shear rate Γ̇ flowing around a particle rotating freely

around a fixed point. If (v1, p1) denotes the solution of this problem for Γ̇ = 1, a

classic result of the theory of plasticity [34] asserts that the solution of the problem

is uf = Γ̇v1, pf = p1 for any value of Γ̇.

Putting this result into Eq. B.10 yields the first order constitutive law

τ p = 2τy/γ̇f

(

dp −
d1 : dp

d1 : d1

d1

)

(B.11)

with d1 the strain rate tensor associated to v1.
The first order constitutive law being linear, so is the first order problem. Thus

both τ p and pp depend linearly upon vp. It is sufficient to report this property into

Eq. B.9 to show that the drag force is a linear function of the quantity τy/Γ̇× V d.

Then we do have

If
ηHBΓ̇

n

τy
≪ 1 and

V

Γ̇d
≪ 1 then F ∝ V

τy

Γ̇
d (B.12)

These equations applied in the case of sedimentation, where the driving force

is F ∝ ∆ρgd3, yield

V ∝ ∆ρgd2

τy/Γ̇
(B.13)
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Viscous regime

We now turn to the situation where the viscous stress ηHBΓ̇
n is much larger

than the yield stress τy; the asymptotic expansion of the Herschel-Bulkley law is

then

τ = 2ηHBγ̇
n−1

f df + ε

(

2ηHBγ̇
n−1

f dp + 2(n− 1)ηHBγ̇
n−1

f

df : dp

df : df
df

)

(B.14)

In this situation, the leading term of Eq. B.10 corresponds to a power law material.

Then, it is easily shown that the zeroth order solution of the problem is (uf = Γ̇v1,

pf = Γ̇np1) for any value of Γ̇ with (v1, p1) the solution of the first order problem

for Γ̇ = 1. Thus, performing similar computations as in the ‘plastic’ regime,

and putting this result into the first order term of the asymptotic expansion of the

constitutive law yields the linear law

τ p = 2ηHBγ̇
n−1

f

(

dp + (n− 1)
d1 : dp

d1 : d1

d1

)

(B.15)

Therefore, we do again obtain a linear first order problem, which implies that both

τ p and pp depend linearly upon V ×Γ̇n−1. Finally, in the ‘viscous’ regime the drag

force is given by

If
ηHBΓ̇

n

τy
≫ 1 and

V

Γ̇d
≪ 1 then F ∝ V ηHBΓ̇

n−1d (B.16)

These equations applied in the case of sedimentation, where the driving force

is F ∝ ∆ρgd3, yield

V ∝ ∆ρgd2

ηHBΓ̇n−1
(B.17)
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