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Abstract

This paper introduces a multi-scale theory of piecewise image modelling, called the scale-sets
theory, and which can be regarded as a region-oriented scale-space theory. The �rst part of the
paper studies the general structure of a geometrically unbiased region-oriented multi-scale image
description and introduces the scale-sets representation, a representation which allows to handle such
a description exactly. The second part of the paper deals with the way scale-sets image analyses can be
built according to an energy minimization principle. We consider a rather general formulation of the
partitioning problem which involves minimizing a two-term-based energy, of the form �C+D, where D
is a goodness-of-�t term and C is a regularization term. We describe the way such energies arise from
basic principles of approximate modelling and we relate them to operational rate/distorsion problems
involved in lossy compression problems. We then show that an important subset of these energies
constitutes a class of multi-scale energies in that the minimal cut of a hierarchy gets coarser and coarser
as parameter � increases. This allows us to devise a fast dynamic-programming procedure to �nd the
complete scale-sets representation of this family of minimal cuts. Considering then the construction
of the hierarchy from which the minimal cuts are extracted, we end up with an exact and parameter-
free algorithm to build scale-sets image descriptions whose sections constitute a monotone sequence
of upward global minima of a multi-scale energy, which is called the "scale climbing" algorithm.
This algorithm can be viewed as a continuation method along the scale dimension or as a minimum
pursuit along the operational rate/distorsion curve. Furthermore, the solution veri�es a linear scale
invariance property which allows to completely postpone the tuning of the scale parameter to a
subsequent stage. For computational reasons, the scale climbing algorithm is approximated by a
pair-wise region merging scheme: however the principal properties of the solutions are kept. Some
results obtained with Mumford-Shah’s piece-wise constant model and a variant are provided and
di�erent applications of the proposed multi-scale analyses are �nally sketched.

1 Introduction

1.1 The need for multi-scale low level image descriptions
Following David Marr’s computational theory of vision [33], a number of image analysis systems are
based on a bottom-up architecture, made up of two global stages. A low level analysis of the incoming
signal is �rst performed, which builds a low level description of the data in terms of primitive structures
(characteristic points, contours, regions, optical ow, disparity map. . . ). Based on this low level descrip-
tion, high level vision tasks are then issued (object recognition, scene modelling, interpretation. . . ). In
its most general | and radical | form, Marr’s theory assumes a complete independence between the
low and the high level stages of vision. The low level processes are supposed to output a general-purpose
description of the image that is a description independent from any speci�c high level task.

Now, the structures which can be useful to high level reasoning can be located at arbitrary positions
in an image, can have any orientation and can be of any size. Also, useful structures can have arbitrary
image contrasts, that is they can be very salient as well as very poorly contrasted. Hence, a low level
image description should be uncommitted in terms of position, orientation, size and contrast [31]. Size
refers to the characteristic spatial extension of a phenomenon while contrast refers to its characteristic
extension in the image’s values space. Size and contrast can thus be thought of as two di�erent measures
of the "scale" of a structure along the two basic dimensions of an image: the spatial dimension and the
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values dimension. Hence, low-level image analyses should be multi-scale analyses both in the spatial and
in the value sense.

1.2 From scale-space. . .
Marr proposed to start image analyses with the elaboration of a low level description of the image in
terms of contours { the raw primal sketch { and put forward the idea to look for transitions of di�erent
spatial extensions. Indeed, a progressive transition in an image content becomes more and more local as
the distance of observation or as the size of an analyzing tool increases. \The critical observation" by
Marr [33, p. 69] \is that, at their own scale, these things [the transitions in some image features] can all
be thought of as spatially localized". The raw primal sketch was based on convolving the image with the
Laplacian of Gaussian kernels of di�erent spatial extensions (variances), detecting the zero crossings and
looking for the coincidence of responses for di�erent scales (2 or 3).

Gaussian �ltering does nothing else than blurring the image: it deletes the �nest structures �rst but it
also progressively ‘blurrs’ the shapes, coarsening their geometrical description. To cope with this problem,
Witkin [54] proposed to consider the family of convolutions results with gaussians of di�erent size as a
whole, a multi-scale representation of the signal called the scale space. The original idea of Witkin was
to detect global contours at large scales and to track them downward along the scale dimension in order
to get a �ne geometrical description. The scale-space theory then greatly developed to become a fully
coherent theory of multi-scale low-level image processing.

Important milestones in this development include Koenderink’s work [26], who formalized the Gaus-
sian scale-space theory in Rn, introducing a fundamental principle of multi-scale analysis, the causality
principle, which formalizes a very commonsensical idea: details can only disappear by zooming out. To
act as a multi-scale analysis, a sequence of descriptions |or models| of a datum must not create infor-
mation when scale increases. In other words, the scale axis is fundamentally oriented. Koenderink also
related Gaussian convolutions with the solutions of the heat equation and thus transposed the scale-space
theory from the �ltering domain to the domain of continuous evolution modelling by partial di�erential
equations (PDE). [2] then showed that the gaussian scale-space is the unique linear scale-space. Sub-
sequent scale-space models, such as Perona and Malik anisotropic di�usion scheme [41] or the a�ne
morphological scale-space [47, 1], involved non linear PDE. [1] �nally derived axiomatically a complete
catalogue of all the possible PDE generated scale-spaces, the nature of the analysis depending on the
set of the invariances obeyed. Another important family of scale-spaces are generated by morphological
operators [23, 46, 40, 7].

1.3 . . . to scale-sets
While low-level contour extraction and region delineation are very close problems, region-oriented image
analysis, i.e. image segmentation, has followed a rather di�erent development than edge detection.
Following Leclerc, the image segmentation problem can be informally de�ned as the problem "to delineate
regions that have, to a certain degree, coherent attributes in the image". Indeed, "it is an important
problem as, on the whole, objects or coherent physical processes in the scene project into regions with
coherent image attributes" [30].

Now in general, "coherent" regions can be found at di�erent scales in an image: global structures
which are perceived as "coherent" wholes at a large scale of analysis are made up of subparts which appear
"coherent" at a lower scale of analysis, and which in turn decompose into more coherent subparts. . . The
existence of nested "coherent" structures in an image is obvious in the case of the texton/texture rela-
tionship; however it is much more general. For instance, a region which is "homogenous" to a certain
degree, if it is not strictly constant, is then made up of more "homogenous" subparts. Hence, it can be
argued that the general organization of the "coherent" regions of an image is a hierarchical organization,
modelling the existence of nested meaningful structures in an image.

Despite this obvious remark, the image segmentation problem has been traditionally de�ned as a
partitioning problem : decompose the image into disjoint regions [19], that is produce a single scale, ’at’,
analysis of the image. A reason for this might be that contrarily to edge detection, region extraction is not
always clearly conceived as a low level process [33]. Indeed, as semantic units of a scene get mapped into
regional units in an image, there is a possible confusion between the low-level task of primitive structure
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extraction from images and the high-level task of object recognition and delineation. Furthermore, even a
very classical segmentation algorithm, say a simple region growing method, is able to delineate structures
which correspond to certain semantic units, when its parameters are appropriately tuned. Hence the
temptation to use a low-level segmentation tool as an object recognition tool.

However, automatic parameter tuning is a hard problem which greatly a�ects the practical opera-
tionality of most segmentation algorithms. If the images a system has to analyze show a little variability,
then it is dubious that a single parameter setting will allow to correctly segment all the images: the target
objects will be over-segmented in some images, under-segmented in some other or even over-segmented in
some parts of a given image and under-segmented in other parts of the same image. The reason for this is
that the parameters of a segmentation algorithm are related to low-level criteria, such as homogeneity or
geometrical regularity, which in general are not robust criteria in terms of object discrimination, except in
very constrained experimental settings (e.g. industrial inspection). Moreover, homogeneity or goodness-
of-�t terms are dependent on the image dynamics; hence, if the image contrast changes, the parameters
have to be adapted in order for the result to remain satisfactory. This point is of course closely related
to the fundamental role of invariance in vision and to the fact that vision algorithms should in general
be independent of the viewing conditions (pose, distance, lighting. . . ).

Like Morel and Solimini, we think that "the only basis parameter in computer vision is ’scale’" [38],
that is the �neness of analysis, and that in general, the useful scale of analysis for a given task cannot
be chosen a priori, that is before viewing the image. The task of selecting the useful scale(s) for a given
application is inherently a high level recognition task which cannot be robustly solved based on the low
level criteria embedded in segmentation algorithms. Hence, a low level segmentation tool should remain
scale uncommitted and output a multi-scale description of the image in which higher level processes can
navigate freely in order to �nd their objects of interest. We claim that devising multi-scale low-level
analyses is the only way to get robust computer vision systems, and in particular to solve the di�cult
problems of parameter tuning and of the respect of fundamental invariances.

Those di�erent ideas have led us to develop a multi-scale approach of low level region-oriented image
analysis, which we have called the scale-sets theory because, as we shall see, it can be regarded as a
region-oriented scale-space theory. The structure of the paper is as follows:

1.4 Outline of the paper
In the spirit of the scale-space theory, the �rst part of the paper (section 2) derives the general structure
of unbiased multi-scale region-oriented image descriptions from a few basic axioms. It then introduces the
scale-sets representation, an implicit representation which fully captures the structure of such descriptions.
Its general properties are studied and our proposal is compared to related work.

The second part of the paper (section 3) studies the way scale-sets image descriptions can be built
according to an energy-minimization principle. In a much classical way now, the mono-scale segmentation
problem is put as the problem of �nding a piece-wise de�ned model minimizing a two-term based energy,
of the form �C + D where D is a goodness-of-�t term and C is a regularization term. We show that
under broad assumptions, such energies induce monotone sequences of minimal cuts in a hierarchy when
� browses R+ and we design an e�cient algorithm to compute the complete scale-sets representation of
these sequences exactly. In a kind of feedback loop, this allows us to design a remarkable procedure to
build the hierarchy from which the minimal cuts are extracted. The principle is to progressively regularize
the energy by increasing � and to follow the energy minimum along a monotone sequence of partitions.
This strategy leads to a parameter-free region grouping criterion which we implement within a pair-wise
region merging scheme. The scale-sets descriptions obtained are linearly scale invariant, which implies
that the scale parameter � is completely removed from the low-level segmentation stage. This property
also allows to confer other invariances properties to the solution.

Before concluding, section 4 presents some experimental results. Appendix A recalls some usual
de�nitions on partitions and hierarchies and takes up the global notations of the paper. Appendices B
and C provide the proofs applicable to theorems 8 and 10.
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2 Unbiased multi-scale segmentations and their scale-sets rep-
resentation

2.1 Multi-scale segmentations
Let P be a partitioning algorithm depending on a positive real parameter �. Given an image I de�ned over
a domain D and a value of �, P outputs a partition P� of D. Intuitively, � behaves as a scale parameter if
increasing � systematically coarsens the partition produced by P, in the sense of the �neness relationship
between partitions (see appendix A). Certainly because it is very intuitive, this de�nition has been
adopted as a starting point for multi-scale segmentation by various authors, such as [27][48]. We show
here that it can be derived from two fundamental principles of multi-scale analysis, namely causality and
absence of boundary delocalization.

Let P = (P�)�2R+ be the complete family of the partitions produced by P on I when � browses R+.
P can be thought of as a mapping from R+ to P(D) or equivalently as a point of P(D)R+

. Now let’s
assume that D is a part of a topological space and that the algorithm P only produces partitions into
connected regions. A partition P� is then fully determined by the set of its boundaries, which we denote
by �P�.

The causality principle is certainly the most fundamental principle of multi-scale analysis [26].
From this principle, for any couple of scales �2 > �1, the "structures" found at scale �2 should �nd a
"cause" at scale �1. Following Witkin’s original idea [54], we apply this principle to the edges produced
by algorithm P. In this case, the parameter � behaves as a scale parameter if and only if for all �2 > �1,
the boundaries of partition P�2 are in a one-to-one mapping with a subset of the boundaries of P�1 (their
"cause"). Now, to be topologically meaningful, the mapping which relates �P�2 to a subset of �P�1 must
be continuous. Hence following de�nition :

De�nition 1 [causal structure] We say that a sequence (P�)�2R+ 2 P(D)R+
has a causal structure

when 8(�1; �2) 2 R+2 such that �2 � �1 there is a di�eomorphism � of D such that �(�P�2) � �P�1 .

In terms of partitions, P has a causal structure when for all �2 > �1, P�2 can be morphed to an
under-partition of P�1 , that is can be obtained by �rst applying a continuous deformation to P�1 and
then deleting some of its boundaries, i.e. merging some of its regions.

In general, the morphism � is dependent on �1 and �2. Thus write it down �(�1; �2). In order
to discard sudden displacements of boundaries when scale increases it is then natural to require �’s
continuity with respect to �. As 8� 2 R+, a trivial solution for �(�; �) is D’s identical mapping (Id), one
is naturally led to the following de�nition:

De�nition 2 [continuous causal structure] We say that a sequence (P�)�2R+ 2 P(D)R+
has a con-

tinuous causal structure if it has a causal structure and the family of di�eomorphisms � veri�es

8� 2 R+ lim
"!0

�(�; � + ") = Id:

Finally, if one assumes that the best localization of a structure can be achieved at the �nest scale of
analysis, one should always keep the geometrical information gathered at the �nest scale and thus discard
any boundary deformation when scale increases. This can only be reached by setting �(�1; �2) = Id for
all scales. This additional condition then leads to a structure in which �P�2 is always a subset of �P�1 ,
and thus to a structure in which P�2 is always an under-partition of P�1 . Hence the de�nition:

De�nition 3 [unbiased multi-scale segmentation] A sequence (P�)�2R+ 2 P(D)R+
is called an un-

biased multi-scale segmentation if and only if the application � ! P� is increasing, that is if and
only if

8(�1; �2) 2 R+2 �2 � �1 ) P�2 � P�1 : (1)

As a conclusion, if one considers an analysis into connected regions, then the intuitive structure of a
multi-scale segmentation | a monotone mapping from R+ to P(D) | follows from two basic principles
applied to the boundaries of the partitions: i) the causality principle, which is a topological/structural
principle and ii) a principle of geometrical accuracy. The scale parameter � then controls a process
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which does a topological/structural caricature of information but no geometrical caricature. These two
conditions obviously meet the intuitive requirements for an "ideal" multi-scale analyzer: an analyzer
which delineates global structures of an image with a �ne, local geometry. This property is called "strong
causality" in [38]. Note that a partitioning algorithm P whose results on an image verify the relation 1 can
also be regarded as a geometrically unbiased multi-scale edge detector which produces closed contours.
We shall get back to the issue of region/contour duality in section 2.3 below.

2.2 The scale-sets representation
As was argued above, a low-level segmentation algorithm should not focus on a speci�c scale but should
output a multi-scale description of an image. In a region-oriented approach, the result should be an
unbiased multi-scale segmentation, in the sense of de�nition 3. However, this objective poses a represen-
tational problem: a multi-scale segmentation P is an increasing mapping from R+ to P(D), and as this
mapping starts from the continuous real line, it cannot be directly represented on a computer.

One can of course approximate the multi-scale structure by sampling the scale axis, i.e. by setting a
series (�1; �2 : : : �k) of increasing scales and collecting the associated partitions, ending with a pyramid
of segmentations (P�1 < � � � < P�k ). However, the sampling points are necessarily arbitrary: they must
be chosen before viewing the image. Such a strategy is thus scale-committed. Instead, we would like to
get a complete representation of P which would allow to browse the multi-scale structure of an image
freely, e.g. which would allow to set any value of � a posteriori, and retrieve the corresponding partition
P�. This can be achieved by what we call the scale-sets representation of P , as we now explain.

Rather than focusing on the partitions P�, consider the regions which compose them. Formally,
consider H =

S
�2R+ P�. Obviously, as P is a sequence of monotone partitions, the regions which belong

to H are either disjoint or nested. Thus, if P0 is the absolute over-partition and if for a su�ciently large
scale L, PL is the absolute under-partition fDg, then H is a hierarchy on D (see appendix A). For a
digital image de�ned on a domain D of N pixels, H is �nite and contains at most 2N � 1 elements, a
bound which is reached when H is a binary hierarchy.

Also consider for each region x of H the set �(x) of the scales for which x belongs to P�:

�(x) , f� j x 2 P�g:

One can easily verify that the relation 1 implies that �(x) is an interval, which can be written

�(x) = [�+(x); ��(x)[:

De�nition 4 We call �(x) the interval of persistence of set x, �+(x) its scale of appearance and
��(x) its scale of disappearance in P .

�+(x) and ��(x) are the equivalent of the so-called inner and outer scales of x in scale-space theory
[31]. One then immediately veri�es that a set x 2 H disappears when its father in H appears, that is

8x 2 H ��(x) = �+(F(x)): (2)

Hence, the couple S = (H; �+), where H provides the sets which compose the partitions of P and �+

gives access to the range of scales over which they "live", captures the complete structure of P . We thus
propose following de�nition :

De�nition 5 [scale-sets representation] If P = (P�)�2R+ is an unbiased multi-scale segmentation
then the structure S(P ) , (H; �+) where

H ,
[

�2R+

P�

�+ ,

(
H 7! R+

x! minf� 2 R+jx 2 P�g

is called the scale-sets representation of P .
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From equation 2, �+ is an increasing function with respect to the set-inclusion partial order:

x � y ) �+(x) < �+(y):

In the domain of hierarchical classi�cation, such a function is called an index on H and the couple
(H; �+) is called an indexed hierarchy or a strati�ed hierarchy. In our context, H represents a family of
regions of the image’s domain and �+ maps them onto a 1D "scale" axis, hence the scale-sets terminology.
The whole structure completely represents a volume of partitions, yet in an implicit manner. Any partition
P� can then be immediately retrieved by sectioning the scale-sets structure:

De�nition 6 [sections of a scale-sets ] Let S = (H; �+) be a scale-sets on D. Let B� be the family
of boolean predicates on H:

B�(x) is true , �+(x) � �

then the coarsest cut of H whose elements verify B� is called S’ section of scale �, or S’ �-section. We
denote it by S�(S).

S�(S) is the partition made up of the largest regions of H which have a scale of appearance lower
than �. Obviously, thanks to the increasingness of �+, this partition exists and is unique for all � � 0.
Furthermore, if P is an unbiased multi-scale segmentation, then

8� 2 R+ P� = S�(S(P )):

Hence the family (P�)�2R+ is the family of the sections of S(P ).
In practice, a scale-sets S can be stored in a computer as a real-valued tree. It can be graphically

represented by a dendrogram in which the y axis represents the scale axis. Each horizontal cut in this
diagram then corresponds to a section of S (see �gure 1).

2.3 Discussion
2.3.1 Related work

As regards the image segmentation problem, the idea of obtaining partitions as cuts in sets hierarchies
goes back to the famous split and merge algorithm by Horowitz and Pavlidis [21]. However, the authors
considered regular hierarchies (quad-trees) and only looked for a single cut, using a homogeneity predicate-
based formulation of the partitioning problem.

Later, di�erent authors have proposed to return a stack of monotone partitions - �ne to coarse - as a
segmentation result, also called a pyramid of segmentations, either based on a structural / graph-based
approach [37, 24], on an energy minimization-based approach [27, 3, 13] or on a morphological approach
[48, 46].

Other authors consider returning a tree of regions, or hierarchy, built with a classical region merging
algorithm [43] or by a recursive divisive approach based on binary Markov Random Fields [42].

In all these works, di�erent levels of details are proposed; however either the levels are not related to
the values of a scale parameter, or the scale axis is sampled.

As we have seen, in order to obtain a complete representation of a sequence of monotone partitions
with respect to a real parameter, one needs to consider an implicit representation of the partitions, as
the family of the sections of a strati�ed hierarchy. A monotone mapping �! P� is fully characterized by
a set of critical events: namely the appearance of new regions at some speci�c scales, which are unions
of some regions existing at lower scales. By nature, these events are discrete and in the case of an image
de�ned on a discrete domain, they are in �nite number. A complete representation can thus be obtained
by making explicit these critical events and the scales at which they occur. It corresponds to a reverse
point of view from the direct | pyramidal | point of view. The pyramidal approach amounts to setting
some speci�c scales and asking: which sets are present at that scales ? From the scale-sets point of view,
the key-point is: at which scale does a speci�c set appear1 ? Answering this question will be a key-point
in the energy minimization-based approach to build scale-sets descriptions presented below.

1This reversal of point of view can be made mathematically precise: if P is viewed as a multivalued function of �
returning sets, then �(x) can be written �(x) = P�1(x).
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Figure 1: A scale-sets image description and some of its sections. This scale-sets was obtained by the scale
climbing algorithm from a watershed over-segmentation of the image (see below).

2.3.2 Ultrametric distances and the region/contour duality

It is well known that the datum of a strati�ed hierarchy on D is equivalent to that of an ultrametric
distance � on D, that is of a distance which veri�es

8(x; y; z) 2 D3 �(x; z) � maxf�(x; y); �(y; z)g:

The closed balls of an ultrametric space (D; �) constitute a hierarchy H and the diameter of the balls
is an index on H. Conversely, a couple (H; �+) induces an ultrametrics ��

? on D: ��
? (x; y) is the smallest

scale for which x and y are grouped, i.e. belong to a same region. Formally

��
? (x; y) , �+(fxg _ fyg)

where _ denotes the supremum operator in the sup-semi-lattice (H;�). The elements of (H; �+) section
of scale � are the maximal balls of (D; ��

? ) which have a diameter lower than �.
Now, if D is a domain of a topological space and if the regions of H are connected then the ultrametrics

is obviously fully determined by its values for the couples of neighbouring points in D. ��
? (x; y) then
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represents the scale at which the boundary between x and y disappears. Thus, a multi-scale segmentation
into connected regions can be equivalently represented by a contour disappearance map (see �gure
2). This contour map has this particular property that thresholding it always leads to closed contours,
hence to a partition of the image’s domain.

Figure 2: The contour disappearance map associated with the scale-sets of �gure 1 (logarithmic scale).

For practical uses, this contour-oriented representation can be further simpli�ed. Let G = (D; N)
denote the region adjacency graph of P0, i.e. of the base of H. Value its edges by ��

? and consider a
minimum spanning tree (MST) T of (G; ��

? ). Removing the k edges of T which have a lower scale than
� then splits the tree into k + 1 connected components which correspond to the regions of the section of
scale � of (H; �+)2. The scale-sets representation, by an indexed inclusion tree, and the indexed spanning
tree representation are two dual representations of an unbiased multi-scale segmentation, in the sense of
the duality between connected region-based and closed contour-based descriptions.

Fernand Meyer’s morphological multi-scale segmentation approach is based on the spanning tree
representation [34, 35, 36]. Meyer proposes to start from a watershed transform of a gradient of the
image, build the region adjacency graph of the catchment basins and value its edges by a measure of
dissimilarity. A multi-scale segmentation is then given by the MST of this graph. Meyer proposes
di�erent measures of dissimilarity which amount to simulating di�erent synchronous ooding processes
of the gradient image. The scale parameter only depends on the contrast, the surface or the volume
(contrast�surface) of the regions.

In [18] we proposed another way to obtain multi-scale segmentations from a dissimilarity-based group-
ing approach. We de�ned a cocoon of a valued graph as a connected set of nodes whose maximal internal
dissimilarity is lower than the minimal dissimilarity with the exterior nodes. We proved that the set
of the cocoons of a graph is a hierarchy and released an associated ultrametrics. Cocoons hierarchies
are related to complete-linkage clustering while the MST of a graph can be computed by single-linkage
clustering [29, 18].

However, dissimilarity-based approaches do not allow to introduce geometrical criteria in the seg-
mentation process. In contrast, the multi-scale analyses which we propose here are based on optimizing
two-term-based energies, one term being a geometrical regularization term. We now turn to the energy-
minimization part of our approach.

2This comes from the fact that the MST of a graph (G; d), where d is a dissimilarity function, is a graph-based repre-
sentation of the maximal ultrametrics � bounded above by d. When d is already an ultrametrics then � = d.
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3 Scale-sets generation from a variational principle
The �rst part of the paper has discussed the general structure of unbiased multi-scale segmentations
and the way they can be represented exactly, considering a scale-sets representation. We shall now show
that one can build scale-sets whose sections approximate the solutions of a general energy minimization
problem which embeds most optimization-based formulations of the segmentation problem (variational,
Markovian, minimal encoding). The energies involved have two global terms whose relative weight is
controlled by a real parameter which, as we shall see, generally behaves as a scale parameter.

3.1 Scale as an inherent parameter of approximate modelling problems
In a very classical way now, we put the single-scale segmentation problem as an optimal piece-wise image
modelling problem [39, 15]. Let I be the set of the images one is interested in and M be a set of possible
models of these images. Given an image I 2 I, the objective is to pick in M the "best model" of I. By
a "comparison principle" [27], this can always be formalized as the problem of �nding M 2 M which
minimizes a certain energy E : I�M 7! R+. Such an approach contains three aspects: the de�nition of
M, the de�nition of E, and the optimization itself.

In deterministic approaches of segmentation, M is a set of piece-wise de�ned images: piece-wise
constant or smooth [39], polynomial [30, 25]. . . In probabilistic approaches, M is a set of piece-wise de�ned
stochastic processes whose realizations are images: piece-wise Gaussian processes. . . In what follows, we
focus on deterministic models; however a strictly parallel reasoning can be followed for probabilistic
models.

In a deterministic framework, a model of an image is also an image. Hence, one can at once choose a
distance D between models and images and de�ne the "best model" M of I as the one which minimizes
D(I; M). However, the solution for this type of problem is in general not satisfactory: most of the time
the model set contains the image set, so that there is always a trivial solution M = I which achieves
D(I; M) = 0. For instance, if one looks for a piece-wise constant model of an image, then there is always
an exact solution which consists in tessellating the image into as many regions as pixels. In practice,
one looks for regions which correspond to coherent phenomena which are larger than a pixel. Hence,
one does not look for the absolutely at zones of an image but look for regions over which the image is
approximately constant. A precision of approximation then needs to be introduced.

If I is an image and " is a positive number, let us say that a model M 2M such that D(I; M) � " is
an "-approximation of I. For a given ", there are a priori numerous "-approximations of I. The way to
choose one of them must then be principled, which can again be done through an energy-minimization
approach: assume that we are capable of de�ning an energy C : M 7! R+ which captures our preferences
a priori for the di�erent models; the problem of the "-approximation of an image I can then be expressed
as a constrained optimization problem which we denote by P"(I) :

Find M 2M which minimizes C(M) subject to D(I; M) � ": (3)

The energy C can be of di�erent kinds. It can translate objective knowledge on the data or be based
on relatively subjective criteria and aim to favour a speci�c interpretation. However, this constrained
problem takes a particular meaning when C can be interpreted as a measure of the complexity of a model
(objective or subjective). In this case, the problem P"(I) formalizes the idea that between two models
that equally �t the data, the simpler of the two should be preferred. It thus can be viewed as an expression
of Occam’s Razor principle. This principle has a dual formulation : between two equally complex models,
the closer to the data of the two should be preferred, which leads to a dual minimization problem P?

(I) :

Find M 2M which minimizes D(I; M) subject to C(M) � : (4)

These two problems are well known in information theory where they formalize lossy compression
issues [49]. In this context, the energy C represents the communication rate or the number of bits needed
to encode the model and D measures the distortion of the data caused by the compression. Given a
certain quota of losses, the problem is to obtain the best compression ratio or dually, given a certain
compression ratio, the problem is to minimize the losses. Classically, the minimization of a constrained
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problem is obtained by minimizing its associated Lagrangian. The Lagrangians associated to P"(I) and
P?

(I) respectively read:

E�(I; M) = C(M) + �D(I; M) (5)
E?

�(I; M) = �C(M) + D(I; M) (6)

where � and � are the Lagrange multipliers.
Under large assumptions, one proves that there is a bijection between the solutions of P"(I) (resp.

P?
(I)) and the minima of E�(I; M) (resp. E?

�(I; M)). Every (single) value of " (resp. ) corresponds to
a particular value of � (resp. �) for which the minimum of the Lagrangian is identical to the solution of
the problem under constraint.

With the lagrangian expressions, one �nds again the usual energies used in image analysis. E?
�(I; M)

corresponds for instance to the general expression of a regularized ill-posed variational problem. D
is then usually called a "goodness-of-�t" term and C a "regularization" term. For segmentation pur-
poses, the archetype of this type of formulation is given by Mumford and Shah’s functional [39]. Within
the framework of Bayesian inference, E?

�(I; M)) can also be interpreted as the Gibbs potential asso-
ciated to a conditional probability of the model given the data, or posterior probability [15]. In this
case, exp(�D(I; M)) corresponds to the probability of the data knowing the model, or likelihood, and
exp(��C(M)) corresponds to the prior probability of the model. Minimizing E?

�(I; M) is equivalent to
maximizing exp(�E?

�(I; M)) which is proportional to the posterior probability of M .
Now, viewing an energy E�(I; M) as the lagrangian of a constrained minimization problem allows to

interpret its minimization as the resolution of a problem of optimal "-approximation of an image and
thus puts in light the role of the parameter �. � controls the precision " of the approximation found and
thus can be thought of as a scale parameter along the image’s values dimension: the distance between the
optimal model and the image monotonously decreases as � increases. Besides, the minima of E�(I; M)
and E?

�(I; M) are identical when � = 1=�. Consequently, the families of solutions for the two dual
constrained optimization problems coincide. Every precision " corresponds to a bound of "complexity"
("). Looking for an "-approximation of minimal complexity is equivalent to looking for the closest
approximation whose complexity is lower than ("). The precision and the complexity of an optimal
model thus vary altogether and the Lagrangian parameter is the bridge between them.

3.2 Statement of the problem and strategy adopted
We have described above two di�erent notions of scale associated with piece-wise image description
problems: from a structural/ensemblistic point of view, a "scale parameter" allows to browse a se-
quence of nested spatial partitions and thus controls the "structural" �neness of a description. From
a modelling point of view, a "scale parameter" controls both the approximation’s �delity and the ap-
proximation’s complexity. One would naturally like to see both notions of scale coincide, i.e. to see the
modelling/optimization multi-scale framework match the structural/ensemblistic multi-scale framework.

However, in general, partitions minimizing an energy of the form 6 are not monotone, mainly because
boundary displacements occur when � increases. An example involving Mumford-Shah’s functional for
piecewise constant image approximation is provided in [16]. Furthermore, it is well known that even the
simplest energy-minimization problems on discrete partitions are NP-hard (see e.g. [8] for a proof of it
involving Potts energy).

As the minima of usual two term-based energies on partitions are not nested, we propose to enforce
this structure and put the multi-scale segmentation problem as the one to �nd a scale-sets description
of an image whose sections are as close as possible to the partitions minimizing a two term-
based energy of the form 6. As we shall see, imposing a hierarchical structure to the solution will
lead us to a fast approximation scheme of the solutions.

The way we address this problem is then driven by the structure of the scale-sets representation. Two
distinct components are needed to fully determine a multi-scale segmentation: a hierarchy of regions H
and a mapping �+ of these regions onto a one-dimensional axis, the ‘scale’ axis. H provides the sets but
only induces a partial order on them through the inclusion relation. �+ then de�nes a total order on the
structure, which implicitly de�nes a family of monotone cuts of H. We shall study the construction of
those two components independently and in reverse order :
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1) In section 3.3 we assume that we already know the structural part of the solution, i.e. the hierarchy
H, and we prove that for an important class of two term-based energies, the family of H minimal cuts
is a multi-scale analysis. Hence, for this class of energies, knowing H determines �+. Furthermore, we
show that �+ can be e�ciently computed by a dynamic programming-based algorithm.

2) In section 3.4 we get back to the construction of the hierarchy itself. The results of section 3.3
lead us to a natural principle to build a scale-sets whose sections track the energy’s minima, which is
called the scale climbing principle. The method is parameter-free and leads to scale-sets which verify
important properties.

3.3 Multi-scale minimal cuts of a hierarchy
This section develops the �rst part of the strategy described above. From there on, we shall restrict the
type of energies considered to what we call a�ne separable energies (ASE), the energies which can
be written for a partition P

E�(P ) =
X

R2P

�C(R) + D(R) (7)

Most energies usually considered for image segmentation can be separated. Examples of it are the
Mumford-Shah functional [39], Potts’ priors for Markov Random Fields [15], and most description length
criteria such as the one proposed by Leclerc [30]. From a probabilistic point of view, the separability of
E� amounts to an independence assumption between the processes that generated the di�erent regions
of an image.

The datum of an ASE E� on the partitions of a domain D is equivalent to the datum of a couple
(C; D) of energies on the parts of D. We can thus also write E� = (C; D).

3.3.1 Hierarchical minimization of separable energies

Forget for a while the scale parameter and simply consider a separable energy E(P ) =
P

R2P E(R). If H
is a hierarchy then H’s cut which minimizes E can be easily computed by dynamic programming (DP):
8x 2 H, let C�(H(x)) be the minimal cut of H’s partial hierarchy rooted at x. Let E�(H(x)) be the

energy of this cut. As the union of two cuts of two disjoint hierarchies is a cut of their union, and as the
energy E is separable, then 8x 2 H the following Bellman’s dynamic programming equations holds :

E�(H(x)) = min
n

E(x);
X

s2S(x)

E�(H(s))
o

(8)

C�(H(x)) =

(
fxg if E(x) �

P
s2S(x) E�(H(s))

S
s2S(x) C�(H(s)) otherwise

(9)

One can thus optimize E starting from the leaves of H and applying equations 8 and 9 successively
for all the nodes of H in hierarchical order. C�(H) and E�(H) then provide the minimal cut of H and
its energy. The overall procedure has a linear complexity with respect to H’s size.

This procedure has been used for classi�cation purposes in the CART algorithm [9] and for wavelet
bases construction in the Best-basis algorithm [12]. In these applications, the hierarchies involved are
quad-trees. Salembier and Garrido also used this minimal cut algorithm to build optimal image thumb-
nails in a rate/distorsion sense [43]. The cut is extracted from a hierarchy of regions obtained by classical
region-merging technique which has no particular a�nity with the minimization problem. We also em-
ployed this method in an image segmentation algorithm based on minimizing a Minimum Description
Length (MDL) criterion in a hierarchy of cocoons [18, 17].

The dynamic programming procedure allows to extract a single optimal partition from a hierarchy.
Given an a�ne separable energy E�, we shall now study the behavior of H’s minimal cut with respect to
�.

3.3.2 Multi-scale minimal cuts

Let H be a hierarchy and E� be an ASE. For each � 2 R+, we call �-cut the cut of H which minimizes
E�. We denote this cut by C�

�(H). A region x 2 H which belongs to C�
�(H) is called �-optimal.
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Examining the structure of the dynamic programming equation 8, one can easily verify that

Proposition 7 A set x 2 H is �-optimal if and only if the following two properties hold:
i) x is partially optimal, i.e. 8Y 2 C(H(x)) E�(fxg) � E�(Y ):
ii) x is maximal in H for the property i), that is no y 2 H such that x � y is also partially optimal.

In what follows P �
� (H) will denote the set of all partially �-optimal nodes of H, that is the set of the

nodes which verify the property i) of proposition 7. Our approach then rests on the following theorem:

Theorem 8 [Multi-scale minimal cuts]
Let E� = (C; D) be an a�ne separable energy. If either term C or term D is monotone with respect to

the �neness partial order relation on the partitions of D, then for any hierarchy H on D, the sequence
(C�

�(H))�2R of the minimal cuts of H for E� is a multi-scale segmentation.
More precisely, if C is decreasing in P(D), that is if

8(P; Q) 2 P2(D) Q � P ) C(Q) � C(P ) (10)

or if D is increasing in P(D) then (C�
�(H))�2R is an increasing sequence of partitions. If C is increasing

or D is decreasing then (C�
�(H))�2R is a decreasing sequence.

The proof is provided in appendix B.

In what follows, we will focus on energies which lead to increasing sequences of solutions, �ne to
coarse when � increases, hence to ASES built either on a decreasing regularizer C or on an increasing
goodness-of-�t term D. Such energies shall be called multi-scale ASES (MASEs).

Note that the decreasingness of a separable energy in the partition lattice is equivalent to the subad-
ditivity of the corresponding energy on the set lattice. More precisely, one easily shows that a separable
energy C(P ) =

P
R2P C(R) veri�es 10 if and only if

8(R; S) 2 P2(D) R \ S = ; ) C(R [ S) � C(R) + C(S): (11)

Usual regularizing energies are decreasing. Quantifying the complexity of a segmentation by its num-
ber of regions gives a decreasing regularizer. Also, summing up any positive quantity (length, curvature,
...) along the boundaries of the partition leads to a decreasing regularizer: deleting a boundary by
merging some adjacent regions systematically reduces the energy. Indeed, the decreasingness condition
matches Occam’s idea that entities should not be multiplied without necessity. Starting from this idea,
the regions of a solution should only be multiplied if it increases the model’s goodness-of-�t. Hence among
two ordered solutions one should a priori prefer the coarser of the two.

On the contrary, usual goodness-of-�t energies are increasing. Assume one models the image within
a region by a certain parametric model (e.g. constant, polynomial) and measures the distance in the Lp
norm. Indeed, the overall energy (the sum of the residuals of an Lp regression) is always larger when
one �ts a single model to the union of two regions rather than two separate models to each region. In
other words, in the context of �xed order parametric modelling in the Lp norm, increasing the number
of model pieces always improves the model’s �delity.

As a conclusion, the energies which naturally arise in image segmentation lead to multi-scale solutions
in a hierarchical framework. We shall now proceed with the consequences of the theorem 8.

3.3.3 Appearance, disappearance and persistence of regions

Indeed, if (C�
�(H))�2R is a multi-scale segmentation, it can be represented by a scale-sets structure.

Moreover, this scale-sets can be computed exactly and e�ciently by generalizing the above dynamic
programming procedure. We shall �rst explain the relationship between partial optimality and maximality
in H and the scales of appearance and disappearance of H’s sets.

For each region x of the hierarchy, let

��(x) , f�jx 2 C�
�(H)g
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be the set of the scales for which x belongs to the �-minimal cut of H. Also de�ne

��
"(x) , f�jx 2 P �

� (H)g

which is the set of the scales for which x is partially �-optimal.
When E� is a MASE, if a given region x is partially optimal for a scale � then so is it for any larger

scale �0 > �. Thus, 8x 2 H, the set ��
"(x) is an interval of the form [a; +1[. Now, from the maximality

condition ii) in proposition 7, x is globally optimal at scale � if and only if no upper node on its branch
to the top of the hierarchy is also partially �-optimal. We thus de�ne

��
#(x) ,

[

y2H; x�y

��
"(y)

which represents the set of the scales for which x cannot be maximal and thus cannot be globally
optimal. As ��

#(x) is a union of intervals of the form [a; +1[, it is also an interval of this form.
Finally, the two conditions of global optimality of a node provided by proposition 7 can be summarized

by
��(x) = ��

"(x)n��
#(x):

We thus conclude that

Proposition 9 If H is a hierarchy and E� is a MASE then 8x 2 H the set ��(x) is an interval of the
form ��(x) = [�+(x); ��(x)[, where

�+(x) = inf ��
"(x) (12)

��(x) = inf ��
#(x) = min

y2H; x�y
�+(y) (13)

The rightmost part of equation 13 shows that, knowing �+(x) for each element x of H, �� can be
easily computed by a top-down traversal of H. We shall now explain how �+ can be computed e�ciently
by generalizing the dynamic programming method described above.

3.3.4 Functional dynamic programming and persistent hierarchies

In the single-scale DP method, each node x 2 H is attributed by a single energy value. We now consider
attributing each node x 2 H by a function of � which represents its energetic behaviour with respect to
scale.
8x 2 H, E�(x) represents energy of x at scale �. Now rewrite E� as a function of �:

Ex : �! Ex(�) = �C(x) + D(x):

and call it the self-energy of x. Ex is an a�ne function of � which has a positive slope and y-intercept.
For each partial hierarchy H(x), also rewrite the energy of its minimal cuts as a function of �:

E�
x : �! E�

x(�) = E�
�(H(x)):

and call it the partial energy of x.
Clearly, for any base node of H (whose partial hierarchy reduces to a single set) these two energy

functions coincide, that is 8b 2 H : E�
b = Eb.

Now, as addition and in�mum operations on functions are constructed from the point-wise operations,
for any node x 2 H, dynamic programming equation 8 can be rewritten as a functional equation:

E�
x = inffEx;

X

s2S(x)

E�
sg (14)

We then have the
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Proposition 10 [Functional dynamic programming] Let H be a hierarchy and E� = (C; D) a multi-
scale a�ne separable energy, then 8x 2 H
i) E�

x is a piece-wise a�ne, non decreasing, continuous and concave function.
ii) 8� 2 R+

E�
x(�) =

(P
s2S(x) E�

s(�) if � < �+(x)
Ex(�) otherwise

(15)

iii) If C is strictly decreasing or D is strictly increasing then �+(x) is real and is the unique solution of

Ex(�) =
X

s2S(x)

E�
s(�):

The proof is provided in appendix C.
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Figure 3: Computation of partial energy function E�
c and of scale of appearance �+(c) of a node c knowing E�

for its sons. (a) Case of a �rst level node with two sons. (b) General case.

The function E�
x which provides the energies of the optimal cuts of H(x) with respect to � is thus a

rather simple piece-wise a�ne function (see �gure 3(b)). It can be explicitly stored for each node of H,
typically by the list of the endpoints of its a�ne pieces. Then, for each node x, computing E�

x only requires
two operations on piece-wise a�ne functions, a sum and an intersection with an a�ne function, which
both can be computed exactly (see �gure 3). If the driving energy (C or D) is strictly monotone, then by
the proposition 10iii), the intersection between

P
s2S(x) E�

s and Ex is unique and provides �+(x). Note
that when the driving energy is (even casually) additive, the intersection may exist and be unique, but it
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also may not exist, in which case �+(x) = +1, or span all over R, in which case �+(x) = �1. Knowing
�+(x), the form of E�

x is then provided using equation 15. This functional dynamic programming (FDP)
method thus allows to compute �+ and E� for each region of H by a single bottom-up traversal of H.
Afterwards, ��(x) can be computed by a top-down traversal of H using equation 13.

After implementing two traversals of the hierarchy, bottom-up then top-down, one gets three quantities
on each node: its partial energy function and its scales of appearance and disappearance. In particular,
the partial energy E�

Ĥ of the top of the hierarchy gives the energy of each �-minimal cut C�
�(H) of H.

We simply denote it by E�. Let also C�(�) = C(C�
�(H)) denote the complexity of C�

�(H), that is in a
compression context the rate function, and D�(�) = D(C�

�(H)) its distance to the image, or distortion
function. Knowing E�, these functions are simply given by :

(
C�(�) = @E�

@� (�)
D�(�) = E�(�)� � @E�

@� (�):

C�(�) decreases and D�(�) increases, hence the operational rate/distorsion curve C�(D�) decreases (see
�gure 4). This result, which holds in a particular operational context, matches the general rate/distorsion
monotonous relationship discovered by Shannon [49].

(a) E�(�) (b) C�(�)

(c) D�(�) (d) C�(D�)

Figure 4: Typical energy curves associated to the minimal cuts of a hierarchy.

After FDP, some nodes might have an empty range of persistence, whenever �+(x) � ��(x), which
means that they never enter an optimal cut of H. These non persistent nodes do not belong to the
scale-sets which represent H’s minimal cuts for E� and may thus be deleted from the initial hierarchy.
Hence,

De�nition 11 [Persistent hierarchy and scale-sets associated to (H; E�)]
Let H be a hierarchy and E� be a MASE, then the hierarchy H� � H de�ned by

H� , Hnfx 2 Hj�+(x) � ��(x)g
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is called the persistent hierarchy associated with H and E�. (H�; �+) is the scale-sets representation of
the minimal cuts of H for E�.

Figure 5 illustrates the di�erent steps of the computation of this scale-sets and �gure 6 shows the
e�ect of the scale-sets representation on the family of minimal cuts of a hierarchy.

(a) (b)

(c) (d)

Figure 5: Multi-scale optimization in a hierarchy. (a) An initial binary hierarchy H drawn with a vertical
axis corresponding to the levels of the regions in the hierarchy. After a bottom-up traversal of H, each
region is attributed a scale of appearance in an optimal solution for the multi-scale energy considered.
(b) Represents hierarchy H with a vertical axis corresponding to the scale axis. In this representation,
the non persistent nodes, which never appear in an optimal solution, are upper than some of their
ancestors. A top-down traversal of H then allows to compute the scales of disappearance of the regions,
which reveal these non persistent nodes. (c)-(d) The persistent hierarchy H� obtained after removing the
non persistent regions. Remark that deleting some intermediate stages leads to n-ary hierarchies. (d)
Illustrates that the scale of appearance is an increasing criterion in H�.

3.3.5 Discussion

Negative scales ? As one might have noticed, nothing above constraints the scale parameter to be
positive. In particular, all the base regions a priori have a scale of appearance of �1, and the top of the
hierarchy has a scale of disappearance of +1. These two cases are side e�ects due to the relativity of
the optimality criterion: the appearance depends on the energy of the sub-structures of a region and the
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(a) (b) (c)

C

(d) (e) (f)

Figure 6: The scale-sets representation maps the family of the minimal cuts of a hierarchy into a family
of horizontal cuts, or sections. (a) a 30 � 30 image. (b) Persistent hierarchy indexed by the level of
the nodes. (c) Mininal cuts of representation (b). (d) Partition obtained by sectioning the scale-sets at
half the scale of appearance of the top of the hierarchy. (e) Persistent hierarchy indexed by the scale of
appearance. C is the section corresponding to the parition in (d). (f) Minimal cuts of representation
(e). The hierarchy was obtained by the scale-climbing algorithm using the Mumford-Shah functional (see
below). The resulting scale-sets is clearly bimodal, revealing the rather binary structure of the image.

disappearance depends on the energy of super-structures which are both unde�ned at the limits of the
perceptual domain. The in�nite ranges of persistence of both the base and the top are thus meaningless.

Apart from the extrema, it can be noted that, if energy D also decreases (this may only happen
casually), some regions which do not belong to the base might also get a negative scale of appearance.
The idea of obtaining negative scales is somewhat unnatural: what does a negative regularization mean
? If no regularization at all is needed to prefer a region described as a whole rather than described by its
parts, it means that the \goodness-of-�t" energy D itself embeds a regularizing term. A negative scale of
appearance can then be interpreted as an \anti-regularization" factor needed to compensate the internal
regularization of D, in order to . . . split the region ! At extreme settings, if D is also perfectly decreasing
then the top of H appears at a negative scale: the optimal cut immediately jumps to the top and the
whole image is merged for all positive scales.

Conversely, it can be shown that if D increases then all the scales of appearance are positive (this
appears as a consequence of proposition 14 below). Thus, "true" opponent energy schemes |involving
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a decreasing prior and an increasing goodness-of-�t term| lead to intuitive solutions, belonging to the
positive scales domain. Other reasons might be invoked to restrict the range of solutions to positive scales.
For example, in minimum encoding frameworks negative scales correspond to negative code lengths, which
are meaningless. In practice, we only used "true" or nearly "true" opponent energies and we restricted
the �nal solution to the positive scales domain.

Multi-dimensional extension One can easily check that the optimization technique can be extended
to multi-dimensional regularizers by considering a vectorial \scale-parameter" � 2 Rn and also a vector
of regularizing energies C : P(X)! Rn. If < �; � > denotes the inner product of Rn, one can then consider
an energy of the form E�(R) =< �; C(R) > +D(R). If all the components of C are sub-additive then all
the framework is still valid. The partial energy functions are then piece-wise a�ne hyperplanes of Rn+1.

3.4 The scale climbing principle
The previous section has shown how given a hierarchy of regions, the full sequence of its optimal cuts for
a multi-scale energy E� could be computed and represented exactly. The methodology is general-purpose:
it can be used after any process which builds a hierarchy. One could for example use it on a quad-tree or
on a hierarchy obtained by recursively splitting the image using Shi and Malik’s normalized cut criterion
[50]. However, the results obtained so far put forward a natural way to build a hierarchy whose minimal
cuts seek the global minima of the energy considered.

As we have seen, given a hierarchy H and a multi-scale energy E�, H’s �-cut climbs the hierarchy when
� increases. It jumps to a higher region x each time � reaches a speci�c scale namely �+(x). Increasing
� amounts to regularizing the solution by strengthening the constraint on the model’s complexity or |
by duality | by softening the constraint on the model’s goodness-of-�t. Thus consider starting from
the �nest solution | the one which involves the slightest regularization (� = 0+) | and simulating a
continuous increase of �. For most classes of models, the 0+-regularization solution is straightforward,
e.g. for a piece-wise constant model it is made up of the at zones of the image. Call this initial partition
C0. Now check among all the under-partitions of C0 which one would be reached �rst during a continuous
increase of �. Assume it is reached at �1 and call it C�1 . Collect it in the scale-sets as its �1-section and
repeat the process: increase � until a di�erent partition is reached, say at �2, collect it in the scale-sets,
and so on. As we shall now explain, such a continuous simpli�cation process can be handled exactly
within our hierarchical framework.

3.4.1 "Pure" scale climbing

We �rst de�ne what we call the "pure" scale climbing strategy to build H. Assume you want to build
H from scratch by progressively adding sets to the solution. Let H0 be the minimal hierarchy on D,
that is the one which does not contain any other set than the singletons and D itself. Let Hk be the
hierarchy obtained after k sets have been added to H0. Let Rk be the set of the regions that can
be added to Hk without breaking the hierarchical structure of the solution: Rk = fR 2 P(D)jR =2
Hk and Hk [ fRg is a hierarchyg. Indeed, at each step k, the scale of appearance of any R 2 Rk in a
minimal cut of the hierarchy Hk [ fRg is well de�ned. The "pure" scale climbing algorithm is then

De�nition 12 Pure scale climbing
Starting from the empty hierarchy H0, recursively add to Hk the region R of Rk which would get the lowest
scale of appearance in Hk [ fRg. Stop when Rk = ;. The �nal hierarchy is called the scale climbing
hierarchy (SCH) associated with E�.

As shows the next proposition, the pure scale climbing algorithm follows a sequence of upward global
minima of E� when the scale increases:

Theorem 13 Let Hk be the hierarchy obtained after k steps of the scale climbing strategy for the multi-
scale energy E� and let H� be the hierarchy obtained after the scale climbing procedure is completed. Let
Cu

k be the coarsest cut of Hk which is not the trivial cut fDg. Let R� = argminR2Rk �+(R) be the next
region to be added to Hk by scale climbing and S� = argminR2RknR��+(R) be the region of Rk which
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has the second lowest scale of appearance after R�. Then, for all � 2 [�+(R�); �+(S�)[, H�’s �-minimal
cut minimizes E� in the set of all the under-partitions of Cu

k .

Sketch of the proof: Obviously, the set Rk of the regions which can be added to the solution gets
smaller and smaller, namely whatever region is added at each step: Rk+1 � Rk. Furthermore, one shows
that the scales of appearance of the sets which remain in Rk+1 after a completion step always increase,
that is 8R 2 Rk+1 : �+(R) in Hk+1 [ fRg is always greater than �+(R) in Hk [ fRg (see [16]). Hence,
adding R� to Hk ensures that it will persist in the �nal scale-sets at least over the range [�+(R�); �+(S�)[.
Moreover, as adding sets of Rk to Hk allows to build any under-partition of Cu

k , the partition built is
optimal among all the under-partitions of Cu

k . �
Hence, the pure scale climbing strategy tracks a global minimum among all the under-partitions of

the current solution along the scale dimension.
The point is then that adding the sets in the order of their scale of appearance always leads to

adding some supersets of the sets previously added. Indeed, as the scales of appearance of the completion
hypotheses always increase after a completion step, no reversal of order can occur. As a consequence, all
sets of a pure scale climbing hierarchy are persistent. This bottom-up direction of construction matches
the direction of the dynamic programming method to compute �+, thus if the dynamic programming
computation has already been made on the partial solution Hk, then the value of �+(R) for any R 2 Rk
can be obtained by a single dynamic programming step. The whole framework thus points out a privileged
way to build the hierarchy, namely the causal way.

Please note that, whereas scale climbing is a discrete procedure, it properly simulates a continuous
increase of �. The point is that the procedure explicitly computes the scales at which a simpli�cation of
model would occur. It thus can be viewed as a graduated non-convexity [6] or a continuation minimization
method [30] constrained to produce ordered partitions. Indeed, the "scale" parameter � provides a
natural embedding of the energy. The following proposition gives a rate/distortion interpretation of this
continuation :

Proposition 14 The scale climbing strategy amounts to choosing at each completion step the region
R 2 Rk which minimizes

�
�D
�C

= �
D(fRg)� D(P )
C(fRg)� C(P )

where P is the coarsest minimal cut of the partial hierarchy Hk+1(R) which is not fRg.

proof : �+(R) represents the scale for which the energy of fRg becomes equal to the energy of the
coarsest minimal cut P of Hk+1(R) which is not fRg. Hence:

�+(R) = � such that �C(fRg) + D(fRg) = �C(P ) + D(P )

= �
D(fRg)� D(P )
C(fRg)� C(P )

:

�
The expression �D

�C is the discrete form of the derivative of the distortion D with respect to the rate C.
The scale climbing strategy can thus be interpreted as a steepest descent strategy along the operational
rate/distortion curve of the problem.

Moreover, the scale climbing algorithm produces hierarchies which are robust to linear transforms of
the energies :

Theorem 15 [Linear invariance of SCH]
If (H�; �+) is the SCH associated with the energy E� = (C; D), then the SCH associated with E0

� =
(�C; �D) is (H�; �

� �+).

Sketch of the proof: The proof can be made by induction on the dynamic programming step of the
computation of �+, on the basis that if f(a;b)(x) = ax + b is an a�ne function and Ix(f; g) denotes the
intersection abscissa of two a�ne functions f and g then

Ix(f(�a;�b); f(�a0;�b0)) =
�
�

Ix(f(a;b); f(a0;b0)):
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This relation remains valid for sum and in�mum operations on piece-wise a�ne functions. Hence,
as all scales of appearance are multiplied by �=�, the scale climbing order is unchanged by some linear
transforms of the energies. �

This invariance property has very important consequences.
The structure of a SCH is invariant by any linear transform on C or D. Adjusting the relative weight

of the initial energies just stretches the scale axis of the �nal scale-sets proportionally. The energies used
can thus be stated up to a multiplicative term and the right balance between complexity and goodness-
of-�t of a model can always be set a posteriori. This allows us to achieve our initial goal, which was to
extricate the scale parameter from the low level segmentation stage. It becomes a real "potentiometer"
which allows to explore the scale dimension.

This linear invariance also allows for the transfer of invariance properties from the energies to the
�nal description. For instance, if the goodness-of-�t term is only scaled when the image values are scaled
then so is the SCH. For example, one can easily verify that the solutions obtained with the Mumford and
Shah’s piece-wise constant model are invariant to some linear transforms of the image values and some
homotheties of the image.

3.4.2 Binary scale climbing

Of course, the pure scale climbing strategy is computationally intractable: if jDj = N then the initial
set R0 of possible completions has almost 2N elements. In order to get a practical algorithm, we thus
restrict the search space to a local search space. As before, we denote by Cu

k the coarsest cut of Hk which
is not the whole domain. Instead of considering all the connected supersets of the regions of Cu

k , we only
consider the supersets which can be obtained by merging pairs of adjacent regions of Cu

k . The algorithm
thus obtained works as follows:

De�nition 16 [Binary scale climbing] Let E� be a multi-scale energy and P0 a �ne segmentation of
D. Set P  P0 and H  P0. While jP j 6= 1 merge the pair fR; Sg of adjacent regions of P whose scale
of appearance �+(R [ S) is minimal and add R [ S to H. The �nal hierarchy H is called the Binary
Scale Climbing Hierarchy (BSCH) associated with E� and P0.

The construction of a BSCH is parameter-free, given an over-segmentation and a couple of antagonist
energies on the regions of an image. It is based on a classical priority queue region merging algorithm
which can be e�ciently implemented using a region adjacency graph and a heap structure to manage
the queue of merging hypotheses [28, 20]. The bottom-up dynamic programming optimization is realized
simultaneously to the construction of the hierarchy. Each time a pair of regions is merged, a DP step
allows to compute the scale of appearance of the new region with its neighbors. A top-down propagation
in H �nally provides both the scales of disappearance of the regions and the persistent hierarchy. Note
that the initial binary hierarchy then becomes n-ary. We show in [16] that the whole procedure can
be implemented with a worst case complexity in O(N2 log N), where N is the size of the initial over-
segmentation. For usual images, building a BSCH takes almost linear time.

While the search space is reduced, the major properties of the "pure" scale climbing strategy remain
valid. The global minimum is only tracked locally, among the immediate under-partitions of the current
solution. However, the local step is still chosen by steepest descent along the rate/distorsion curve and
the �nal structure is also linearly invariant. Furthermore, the persistent hierarchies obtained are almost
binary hierarchies (see below), which indicates that most of the time the "pure" scale climbing completion
step would certainly have been chosen among the immediate supersets of the current upper sets, like in
binary scale climbing.

4 Experimental results
We shall now consider some experimental results.

We �rst consider Mumford and Shah’s classical piece-wise constant approximation [39]. The discrete
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version of this model assigns following energies to a region R:

C(R) = j�Rj

D(R) =
X

x2R

jjI(x)� IRjj2: (16)

C is the length of the boundary of R, and D is the sum of the quadratic deviations from the mean
value of the image within the region. This second term is valid for any number of channels in the image.

Remark that a natural scale arises after the computation of a scale-sets, namely the scale of appearance
of the top of the hierarchy, �+(D) which represents the minimum regularization strength needed to get
the image modeled by a single region. This scale depends on the image content, contrast and size (recall
that with the Mumford-Shah functional, the scales of appearance are linearly covariant with respect to
the image dynamics and size). Hence sectioning a scale-sets at some scales de�ned relatively to �+(D)
gives an adaptive analysis.

Figure 7 shows sequences of sections at scales �+(D)=2k, k = 1 : : : 8, for the scale-sets obtained on
some images. We call such a sequence the dichotomy of a scale-sets. Figure 7 pictures the models
obtained, that is the piece-wise constant descriptions. Grouping started from the image pixels using
Mumford-Shah’s energy; hence the algorithm is absolutely parameter-free. With our implementation,
the average computation time is 42 seconds on a 1; 2GHz computer for a 256 � 256 image. Of course,
starting from an initial over-segmentation of the image rather than at the pixel level greatly reduces
computation time. With the same settings than above, starting from a watershed over-segmentation,
which is a secure over-segmentation of an image [5], reduces the computation time to 2 to 3 seconds (the
average size of the initial catchment basins ranging from 15 to 20 pixels).

Figure 8 pictures the scale-sets corresponding to the images of �gure 7. The scale axis is represented
with a logarithmic scale, which is the natural representation for intensive units (it allows to map ratios
into di�erences). As log(x) < 0 when x < 1, an origin of the representation has to be chosen in order to
get a representation belonging to R+. Again, a mapping relative to �+(D) is natural:

�!

(
log

�
�p

�+(D)

�
if � � �+(D)=p

0 otherwise
(17)

where p is a parameter called the "precision" of the representation. In the examples, p = 28, hence
matching the dichotomies in �gure 7. The same mapping was used for the contour-oriented representation
(ultrametrics) of �gure 9 (null log-scales are mapped to white and the log-scale of appearance of the whole
domain is mapped to black).

Figure 7 clearly illustrates that meaningful objects appear at di�erent scales in an image. The MR
image of a head in �gure 7(a) is a good example of it. Large scale values allow to separate the whole head
from its background. Decreasing the scale parameter then progressively adds details to the description:
the brain and the skull are �rst described as wholes and then internal details appear. Note that the scale-
sets 8(a) is clearly bimodal, revealing the object/background structure of the image. The right hand side
of the hierarchy corresponds to the head while the left hand side corresponds to the background. The
partial hierarchy which corresponds to the background is characteristic of an unstructured region: no
large persistent region, no particular stage during the grouping. Note that the contours corresponding
to a scale-sets are based on global information and not on local intensity. Hence, the poorly contrasted
contour of the top of the head in �gure 7(a) gets the same "saliency" than the lower contour of the head
which is very contrasted: both are equally meaningful because they participate in the boundary of the
same globally coherent zone.

Figures 10 and 11 show results obtained with a more sophisticated geometrical model than the simple
length-based energy of Mumford and Shah.

Let L = (m1; m2; : : : mk) be a sequence of k 2D points de�ning a closed 2D polygonal line. If
vi = mi+1 �mi denotes the displacement vector associated with the segment [i; i + 1], we say that the
quantity

S(L) =
kX

i=1

j \vi; vi+1j
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(a) (b) (c) (d) (e) (f)

Figure 7: Dichotomies of some scale-sets obtained by scale climbing from the image pixels using Mumford-
Shah’s piece-wise constant model. k is the order of the dichotomy (see text). The bottom row represents
the original images.

where ca; b denotes the angle made up by vectors a and b, is the concavity energy of polyline L.
The name "concavity" comes from the fact that this energy has a value of 2� for all convex polygons

and increases as the total curvature of the concavities of a polygon increases. To measure the concavity
of a discrete region, we �rst perform a slight polygonal approximation of its boundary with a classical
algorithm in order to suppress the pixelic artefacts.

22



(a) (b) (c)

(d) (e) (f)

Figure 8: scale-sets corresponding to the images of �gure 7. The scale axis is logarithmic with a precision
p of 256 (see equation 17).

(a) (b) (c)

(d) (e) (f)

Figure 9: Contour disparition maps (ultrametrics) corresponding to the images in �gure 7. Logarithmic
scale axis of precision p = 256.

In examples 10 and 11, the initial over-partition was obtained by a watershed algorithm based on the
magnitude of a Canny-Deriche edge detector tuned to � = 2 [11]. As before, we considered piece-wise
constant image modelling and employed the L2 norm as a �delity criterion (equ. 16). The di�erence with
the Mumford-Shah functional is that the regularizing energy is a concavity energy.

We observed on several experiments that this energy produces more meaningful regions than Mumford-
Shah’s energy (the scale-sets of �gure 1 was also computed with this energy). A point which might appear
surprising for a piece-wise constant model is that this energy allows to �nd the right delineation for very
textured units at large scales, such as the village in �gure 10. The point is that energy minimization
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criteria are relative criteria: even if a very textured region is absolutely not constant, if it is di�erent
enough from its environment then for a low precision, the best piece-wise constant model is a model
which separates the region from its background.

Figure 10: An aerial image.
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Figure 11: Group photograph.

5 Conclusion and future work
A general methodology for multi-scale region-oriented image analysis has been presented. It can be
viewed as a synthesis between structural |hierarchical grouping| approaches and energy minimization
based approaches or as a region-oriented counterpart to the scale-space theory. The main result of the
paper is that usual piece-wise modelling problems expressed in a variational way intrinsically contain a
free parameter which behaves as a scale parameter. We then developed a methodology which provides
an approximation of the full structure of the solutions with respect to scale, which we called a scale-sets
description in reference to the scale-space theory. The scale-climbing algorithm is absolutely parameter-
free given a multi-scale energy and a base segmentation which can be the pixel-wise tessellation of the
image. The fundamental property of the structure obtained is its linear scale invariance which ensures
that scale tuning is totally deferred to a subsequent stage.
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The �nal hierarchical representations allow the dynamical browsing of the complete set of the multi-
scale solutions. The useful scale of description for a speci�c application can thus be tuned a posteriori,
either interactively or automatically (e.g. by actively searching for speci�c objects). Also, partitions
made up of objects living at di�erent scales may be composed, which correspond to non horizontal cuts
in the hierarchy.

While we only present segmentation results on natural images, the multi-scale modelling framework
is not dedicated to a speci�c kind of image, nor is it to the partitioning of image data. In [51], the
scale-climbing algorithm method is used to perform multi-scale piece-wise plane descriptions of range
images obtained from a classical stereovision algorithm.

Di�erent applications of the proposed framework have already been developed by di�erent authors.
[10] proposed a stereovision algorithm based on matching the regions of two scale-sets descriptions of a
stereo pair. The robustness of the algorithm comes from the fact that regions of di�erent levels of the
hierarchies can be matched, hence avoiding the classical problem of di�erences in level of segmentation
in region-oriented stereo-matching. We observed that, due to its robustness, the scale-climbing algorithm
often segments in much the same way the matching regions of a stereo-pair, however not necessarily at the
same scale. [52] also used the contour-based representation of a scale-sets (the ultrametrics) to register a
cadaster graph onto an aerial image segmented with the scale-climbing algorithm.

Salembier and Garrido and co-workers have developed a number of image processing techniques based
on hierarchies of regions. They have shown how such structures could be used for a large number of
processing goals such as object detection and recognition, visual browsing and region-oriented image
compression, �ltering, image data-base indexing and similarity based retrieval. All these techniques can
naturally rely on scale climbing hierarchies. We refer the reader to the authors’ papers [45, 14, 44, 43] for
detailed descriptions. Part of our future work will be centered on the development of such applications
using SCHs.

[35, 32, 55] have proposed interactive segmentation systems based on the multi-scale approach of
Meyer [34]. Again, these interactive tools could be based on SCHs.

In the scale-space theory, the evolution diagram (when scale increases) of the features for which the
analysis is causal (e.g. the image maxima) is known as the scale-space �ngerprint of an image [22]. The
scale-sets itself, that is the strati�ed hierarchy structure, is the �ngerprint associated with a multi-scale
segmentation. Like a scale-space �ngerprint, it could for example be used in content-based image retrieval
problems.

Obviously, the persistence of the regions of a SCH is a very meaningful information. The range of
scales over which a region lives is a measure of its stability, in the sense of Leclerc [30]. It represents the
e�orts needed to merge it with its neighborhood and thus quanti�es the region’s saliency. Starting from
a point in the image and climbing the associated branch of the hierarchy, a chain of nested regions is
browsed. When the "growing" region reaches a maximal coherent part of an image, a peak of persistence
can be observed, which generally means that the region delineated corresponds to a meaningful object
of the scene. The issue of exploiting the persistences (and also energetical variations related to merging
operations) in order to extract salient objects of an image will be part of our future work.

In conclusion, we would like to get back to some methodological aspects of the approach.
First and back with David Marr, we’d like to stress the \duality" between the \representation and the

processing of information" [33, �rst sentences, p.3]. The present paper clearly shows that the investigation
of how the solutions to a problem can be represented can lead to important hints on the way to solve
it. Also, our methodology relies on addressing an intractable problem into a subspace of the space of
its solutions (the cuts of a hierarchy rather than the whole partition lattice), in which it can be exactly
solved. As we have seen, �nding exact resolution methods in structured subspaces can then, in a kind of
feedback loop, lead to privileged ways to build the subspaces and thus to �ne approximation methods.
Finally, we would like to go back over the functional dynamic programming principle. It amounts to
handling the explicit form of a parametric energy towards its parameters and considering the inverse
problem of �nding the values of the parameters for which an element of the search space is optimal.
When such an approach is successful, it turns a parameter into a real \potentiometer" which allows
exible algorithm tuning. It also allows to quantify the stability of a solution, a point which is certainly
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as important as obtaining one. This \inverse parametric" approach is certainly worth being investigated
for other computer vision or pattern recognition problems.
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Appendices

A De�nitions and notations
This section recalls some general de�nitions and puts the global notations of the paper.

� Given a set D, a subset S � P(D), where P(D) denotes the set of the parts of D, is called a set
system on D.
� A set system made up of non overlapping sets covering D is a partition of D. We denote by P(D)

the set of the partitions of D. Recall that a partition P is �ner than a partition Q, P � Q, if and only if
8p 2 P 9q 2 Q : p � q. The inclusion relation, �, is a partial order on P(D) and the �neness relation,
�, is a partial order on P(D). � and � induce complete lattice structures on P(D) and P(D).
� A set system H of D is a hierarchy on D if and only if

i) ; 62 H
ii) D 2 H
iii) 8x 2 D : fxg 2 H
iv) 8(X; Y ) 2 H2 : X \ Y 2 f;; X; Y g

(X and Y are either disjoint or nested)
The set D is called the top of H and we denote it by Ĥ. The subset ffxg; x 2 Dg of H is called

its base |or bottom| and we denote it by H. For image segmentation problems, D is the domain
of the image under scope, and H’s base represents the �nest partition considered: either the absolute
over-partition of D, into individual pixels, or a coarser one, such as its tessellation into at zones [48] or
into the catchment basins of an image gradient [4].
� A hierarchy H can be represented as a rooted tree T = (H; S) (see �gure 12). The nodes of T

represent the regions of H (the root is the top of H), and the edges S of T represent the covering relation
between the elements of H, i.e. (x; y) 2 S , x � y and @z 2 Hjx � z � y. For any edge (x; y) 2 S, y is
called x’s father and x is one of y’s sons. We denote the father of a node x by F(x) and the set of the
sons of a set y by S(y).

C1

C2

H

x
H(x)

Figure 12: A hierarchy H represented as a tree. H(x) is the partial hierarchy rooted at x. C1 and C2 are two
cuts, resp. made up of circled and diamond-shaped nodes.

� 8x 2 H, the subset of H de�ned by H(x) , fy 2 H; y � xg is a hierarchy on x which we call H’s
partial hierarchy induced by x. The associated tree is the complete subtree rooted at x (see �gure 12).
� A cut C of a hierarchy H is a subset of H which intersects any path from the base to the top of

H exactly once. Equivalently, the cuts of a hierarchy H on a set D are the partitions of D that can be
obtained by picking sets in H. A cut C can be graphically represented by a curve which divides the tree
into two sets of nodes: the ones which remain connected to the top and the ones which remain connected
to the bottom (see �gure 12). The elements of the cut itself are the upper nodes remaining connected to
the bottom. We denote by C(H) the set of all the possible cuts of a hierarchy H. Please note that:

i) Two cuts C1 and C2 of a hierarchy are in general unordered (C1 is neither coarser nor �ner than C2).
For example, the two cuts in �gure 12 are unordered, which can be checked because their representative
curves intersect.
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ii) The number of possible cuts of a hierarchy is in general very large. One easily shows that if H is
a balanced binary tree built on a set of size N then jC(H)j >

p
2

N
(we provide a precise approximation

of this cardinal in [16]). It is interesting to compare this bound to the number of partitions of a planar
domain in connected regions, which is lower than 4N [53].

B Proof of theorem 8
We focus on the case of a decreasing energy C. The increasing case is symmetrical and the case of a
monotony condition on D is obtained by the fact that the minimum of �C+D is the same as the minimum
of C + 1

� D. The inversion in � explains the change of direction of monotony in the solutions.
Let �1 2 R. Expanding the partial �1-optimality property (proposition 7-i) for all x in P �

�1
(H) then

gives:
8x 2 P �

�1
(H) 8Y 2 C(H(x)) :

�1C(x) + D(x) �
X

y2Y

�1C(y) + D(y)

, �1

0

@C(x)�
X

y2Y

C(y)

1

A �
X

y2Y

D(y)� D(x)

As C is decreasing, and by de�nition Y is a partition of x, we get

�C = C(x)�
X

y2Y

C(y) = C(
[

y2Y

y)�
X

y2Y

C(y):

Hence, if C is a sub-additive function on sets then �C � 0, which implies that 8�2 2 R

�2 � �1 ) �2�C � �1�C �
X

y2Y

D(y)� D(x)

which expresses the partial �2-optimality of x. We thus obtain a \partial causality" property:

8(�1; �2) 2 R2 �2 � �1 )
�
8x 2 H x 2 P �

�1
(H)) x 2 P �

�2
(H)

�
(18)

Let’s now examine the conditions of global optimality of a node x. The condition i) of proposition 7
can be rewritten

8�1 2 R (8x 2 H x 2 C�
�1

(H)) x 2 P �
�1

(H)):

So, using the \partial causality" equation 18 we obtain 8(�1; �2) 2 R2

�2 � �1 )
�
8x 2 H x 2 C�

�1
(H)) x 2 P �

�2
(H)

�
:

Now, if x 2 P �
�2

(H) then no partially �2-optimal node y such that y � x may be maximal (verify
proposition 7ii) ). As y is �2-optimal if and only if it is a maximal partially �2-optimal node, we conclude
that 8(�1; �2) 2 R2

�2 � �1 ) 8x 2 C�
�1

(H) 8y 2 C�
�2

(H) x \ y 6= ; ) x � y
, �2 � �1 ) C�

�2
(H) � C�

�1
(H):

C Proof of proposition 10
i) The proof is made by induction on the dynamic programming step in H.

Indeed, 8x 2 H, its self-energy Ex = �C(x) + D(x) is a�ne with C(x) � 0 and is thus a piece-wise
a�ne, non decreasing, continuous and concave function (NDCC). In particular, as 8b 2 H E�

b = Eb, the
partial energies of the base nodes are NDCC. Now take x 2 H and assume that 8s 2 S(x), E�

s is NDCC.
As �nite sums and in�ma of NDCC functions are also NDCC, then according to equation 14, E�

x is also
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NDCC.

ii) Let E�
S(x) =

P
s2S(x) E�

s. By the dynamic programming principle the range ��
"(x) of partial �-

optimality of a node x reads
��

"(x) = f�jEx(�) � E�
S(x)(�)g:

According to proposition 9, this range is given by

��
"(x) = [�+(x); +1[:

Thus,
Ex(�) � E�

S(x)(�) , � � �+(x)

which means that E�
x has the piece-wise form given by equation 15.

iii) As all the functions involved are continuous

�+(x) = minf�jEx(�) = E�
S(x)(�)g:

Thus consider � = Ex � E�
S(x) and look for its zero crossings. 8� 2 R, E�

S(x)(�) represents the energy of
a cut P (�) of H(x) which is a strict over-partition of fxg, hence

E�
S(x)(�) = �

X

R2P (�)

C(R) +
X

R2P (�)

D(R)

and 8� 2 R
@E�

S(x)

@�
(�) =

X

R2P (�)

C(R):

We thus get
@�
@�

(�) =
@Ex

@�
(�)�

@E�
S(x)

@�
(�) = C(x)�

X

R2P (�)

C(R):

So, if C is strictly subadditive, then 8� 2 R : @�
@� (�) < 0. � is thus strictly decreasing and crosses zero

for a unique � 2 R which is �+(x).
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