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Digital Holography at Shot Noise Level
Frédéric Verpillat, Fadwa Joud, Michael Atlan and Michel Gross

Abstract—By a proper arrangement of a digital hologra-
phy setup, that combines off-axis geometry with phase-shifting
recording conditions, it is possible to reach the theoretical shot
noise limit, in real-time experiments. We studied this limit, and we
show that it corresponds to 1 photo-electron per pixel within the
whole frame sequence that is used to reconstruct the holographic
image. We also show that Monte Carlo noise synthesis onto
holograms measured at high illumination levels enables accurate
representation of the experimental holograms measured at very
weak illumination levels. An experimental validation of these
results is done.

I. INTRODUCTION

DEMONSTRATED by Gabor [1] in the early 50’s, the

purpose of holography is to record, on a 2D detector,

the phase and the amplitude of the radiation field scattered

from an object under coherent illumination. The photographic

film used in conventional holography is replaced by a 2D

electronic detection in digital holography [2], enabling quanti-

tative numerical analysis. Digital holography has been waiting

for the recent development of computer and video technology

to be experimentally demonstrated [3]. The main advantage

of digital holography is that, contrary to holography with

photographic plates [1], the holograms are recorded by a

photodetector array, such as a CCD camera, and the image is

digitally reconstructed by a computer, avoiding photographic

processing [4].

Off-axis holography [5] is the oldest configuration adapted

to digital holography [6], [3], [7]. In off-axis digital hologra-

phy, as well as in photographic plate holography, the reference

beam is angularly tilted with respect to the object observation

axis. It is then possible to record, with a single hologram,

the two quadratures of the object’s complex field. However,

the object field of view is reduced, since one must avoid the

overlapping of the image with the conjugate image alias [8].

Phase-shifting digital holography, which has been introduced

later [9], records several images with a different phase for

the reference beam. It is then possible to obtain the two

quadratures of the field in an in-line configuration even though

the conjugate image alias and the true image overlap, because

aliases can be removed by taking image differences.

With the development of CCD camera technologies, digital

holography became a fast-growing research field that has

drawn increasing attention [10], [11]. Off-axis holography has
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Université Paris 7, 10 rue Vauquelin, 75 231 Paris Cedex 05, France. e-mail:
atlan@optique.espci.fr

Manuscript received June 7, 2012

been applied recently to particle [12] polarization [13], phase

contrast [14], synthetic aperture [15], low-coherence [16], [17]

photothermal [18], and microscopic [17], [19], [20] imaging.

Phase-shifting holography has been applied to 3D [21], [22],

color [23], synthetic aperture [24], low-coherence [25], surface

shape [26], photothermal [18], and microscopic [21], [27], [20]

imaging.

We have developed an alternative phase-shifting digital

holography technique that uses a frequency shift of the ref-

erence beam to continuously shift the phase of the recorded

interference pattern [28]. One of the advantages of our setup

is its ability to provide accurate phase shifts that allow to sup-

press twin images aliases [29]. More generally, our setup can

be viewed as a multipixel heterodyne detector that is able of

recording the complex amplitude of the signal electromagnetic

field E in all pixels of the CCD camera in parallel. We get

then the map of the field over the CCD pixels (i.e. E(x, y)
where x and y are the pixels coordinate). Since the field is

measured on all pixels at the same time, the relative phase

that is measured for different locations (x, y) is meaningful.

This means that the field map E(x, y) is a hologram that can

be used to reconstruct the field E at any location along the

free-space optical propagation axis, in particular in the object

plane.

Our heterodyne holographic setup has been used to perform

holographic [28], and synthetic aperture [24] imaging. We

have also demonstrated that our heterodyne technique used in

an off-axis holographic configuration is capable of recording

holograms with optimal sensitivity [30]. This means that it

is possible to fully filter-off technical noise sources, that are

related to the reference beam (i.e. to the zero order image

[31]), reaching thus, without any experimental effort, the

quantum limit of noise of one photo electron per reconstructed

pixel during the whole measurement time.

In the present paper we will discuss on noise in digital

holography, and we will try to determine what is the ultimate

noise limit both theoretically, and in actual holographic exper-

iments in real-time. We will see that, in the theoretical ideal

case, the limiting noise is the Shot Noise on the holographic

reference beam. In reference to heterodyne detection, we also

refer to the reference beam as Local Oscillator (LO). We will

see that the ultimate theoretical limiting noise can be reached

in real time holographic experiments, by combining the two

families of digital holography setups i.e. phase-shifting and

off-axis. This combination enables to fully filter-off technical

noises, mainly due to LO beam fluctuations in low-light condi-

tions, opening the way to holography with ultimate sensitivity

[30], [32].
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II. OFF-AXIS + PHASE-SHIFTING HOLOGRAPHY

In order to discuss on noise limits in digital holography,

we first need to give some general information on holography

principles. We will thus describe here a typical digital holo-

graphic setup, how the holographic information is obtained

from recorded CCD images, and how this information is used

to reconstruct holographic images in different reconstruction

planes. We will consider here the case of an off-axis + phase-

shifting holographic setup, able to reach the ultimate noise

limit, in low-light imaging conditions, in real time.

A. The Off-axis + Phase Shifting holography setup

Fig. 1. Digital holography setup. AOM1 and AOM2 : acousto-optic
modulators; BS : beam splitter; BE : beam expander; M : mirror; A1 and
A2 : attenuator; θ : tilt angle of the beam splitter with respect to optical axis

The holographic setup used in the following discussion,

is presented on Fig.1. We have considered here, a reflection

configuration, but the discussion will be the same in case of

transmission configuration.

The main optical beam (complex field EL, optical angular

frequency ωL) is provided by a Sanyo (DL-7147-201) diode

laser (λ = 658 nm). It is split through a 50/50 Beam Splitter

(BS) into an illumination beam (EI ,ωI ), and a LO beam

(ELO,ωLO). The illumination intensity can be reduced with

grey neutral filters. Both beams go through Acousto-Optic

Modulators (AOMs) (Crystal Technology,ωaom1,2 ≃ 80 MHz)

and only the first diffraction order is kept. In the typical

experiment case considered here, the modulators are adjusted

for the 4-phase heterodyne detection, but other configurations

are possible (8-phases, sideband detection ...). We have thus :

ωI = ωL + ωaom2 (1)

ωLO = ωL + ωaom1 (2)

with :

ωI − ωLO = 2πfccd/4 (3)

where fccd is the acquisition frame rate of the CCD (typically

12.5 Hz).

The beams outgoing from the AOMs are expanded by Beam

Expanders BEs. The illumination beam is pointed towards the

object studied. The reflected radiation (E,ω = ωI ) and the LO

beam are combined with a beam splitter, which is angularly

tilted by typically 1◦, in order to be in an Off-Axis holographic

configuration. Light can be collected with an objective for

microscopic imaging. Interferences between reflected light and

LO are recorded with a digital camera (PCO Pixelfly): fccd =
12.5 Hz, 1280× 1024 pixels of 6.7× 6.7 µm, 12-bit.

We can notice that our Off-axis + Phase-Shifting (OPS)

holographic setup, presented here, exhibits several advantages.

Since we use AOMs, the amplitude, phase and frequency of

both illumination and LO beams can be fully controlled. The

phase errors in phase-shifting holography can thus be highly

reduced [29]. By playing with the LO beam frequency , it is

possible to get holographic images at sideband frequencies of

a vibrating object [33], [34], or to get Laser Doppler images

of a flow [35], [35], and image by the way blood flow, in

vivo [36], [37], [38]. The OPS holographic setup can also be

used as a multi pixel heterodyne detector able to detect, with

a quite large optical étendue (product of a beam solid angular

divergence by the beam area) the light scattered by a sample,

and to analyze its frequency spectrum [39], [40]. This detector

can be used to detect photons that are frequency shifted by

an ultrasonic wave [41], [42] in order to perform Ultrasound-

modulated optical tomography [43], [44], [45], [46], [47], [48].

The OPS setup benefits of another major advantage. By

recording several holograms with different phases (since we do

phase shifting), we perform heterodyne detection. We benefit

thus on heterodyne gain. Moreover, since the heterodyne

detector is multi pixels, it is possible to combine information

on different pixels in order to extract the pertinent information

on the object under study, while removing the unwanted

technical noise of the LO beam. As we will show, because

the setup is off-axis, the object pertinent information can be

isolated from the LO beam noise. By this way, we can easily

reach, in a real life holographic experiment, the theoretical

noise limit, which is related to the Shot Noise of LO beam.

B. Four phases detection

In order to resolve the object field information in quadrature

in the CCD camera plane, we will consider, to simplify the

discussion, the case of 4 phases holographic detection, which

is commonly used in Phase Shifting digital holography [9].

Sequence of 4n frames I0 to I4n−1 are recorded at 12.5 Hz.

For each frame Ik , the signal on each pixel Ik,p,q (where k is

the frame index, and p, q the pixel indexes along the x and y
directions) is measured in Digital Count (DC) units between 0

and 4095 (since our camera is 12-bit). The 1280×1024 matrix

of pixels is truncated to a 1024×1024 matrix for easier discrete

Fourier calculations. For each frame k the optical signal is

integrated over the acquisition time T = 1/fccd. The pixel

signal Ik,p,q is thus defined by :

Ik,p,q =

∫ tk+T/2

tk−T/2

dt

∫∫

(p,q)

dxdy |E(x, y, t) + ELO(x, y, t)|2 (4)

where
∫∫

(p,q)
represents the integral over the pixel (p, q) area,

and tk is the recording time of frame k. Introducing the

complex representations E and ELO of the fields E and ELO,

we get :

E(x, y, t) = E(x, y)ejωI t + c.c. (5)
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ELO(x, y, t) = ELO(x, y)e
jωLOt + c.c (6)

Ik,p,q = a2T (7)
(

|Ep,q|2 + |ELO|2 + Ep,qE∗
LOe

j(ωI−ωLO)tk + c.c.
)

where a is the pixel size. To simplify the notations in Eq.7,

we have considered that the LO field ELO is the same in all

locations (x, y), and that signal field Ep,q does not vary within

the pixel (p, q). If ELO varies with location, one has to replace

ELO by ELO,p,q in Eq.7.

The condition given in Eq.3 imposed a phase shift of the

LO beam equal to π/2 from one frame to the next. Because of

this shift, the complex hologram H is obtained by summing

the sequence of 4n frames I0 to I4n−1 with the appropriate

phase coefficient :

H =

4n−1
∑

k=0

(j)kIk (8)

where H is a matrix of pixels Hp,q . We get from Eq.7 :

Hp,q =

4n−1
∑

k=0

(j)kIk,p,q = 4na2TEp,qE∗
LO (9)

The complex hologram Hp,q is thus proportional to the object

field Ep,q with a proportionality factor that involves the LO

field amplitude E∗
LO.

C. Holographic Reconstruction of the Image of the Object

Many numerical methods can be used to reconstruct the

image of the object. The most common is the convolution

method that involves a single discrete Fourier Transform

[6]. Here, we will use the angular spectrum method, which

involves two Fourier transforms [28], [24], [49]. We have made

this choice because this method keeps constant the pixel size

in the calculation of the grid pixel size, which remains ever

equal to the CCD pixel. It becomes then easier to discuss on

noise, and noise density per unit of area.

The hologram H calculated in Eq.8 is the hologram in

the CCD plane (z = 0). Knowing the complex hologram

H(x, y, 0) in the CCD plane, the hologram H(x, y, z) in other

planes (z 6= 0) is calculated by propagating the reciprocal

space hologram H̃(kx, ky), which is obtained with a fast

Fourier transform (FFT), from z = 0 to z.

H̃(kx, ky, 0) = FFT [H(x, y, 0)] (10)

To clarify the notation, we have replaced here Hp,q by

H(x, y, 0) where x and , y represent the coordinates of the

pixel (p, q). By this way, the coordinates of the reciprocal

space hologram H̃ are simply kx and ky . In the reciprocal

space, the hologram H̃ can be propagated very simply:

H̃(kx, ky, z) = H̃(kx, ky, 0)K̃(kx, ky, z) (11)

where K̃(kx, ky , z) is a phase matrix that describes the prop-

agation from 0 to z:

K̃(kx, ky, z) = exp

(

jλz(k2x + k2y)

2π

)

(12)

The reconstructed image H(x, y, z) in z 6= 0 is obtained then

by reverse Fourier transformation :

H(x, y, z) = FFT−1
[

H̃(kx, ky, z)
]

(13)

In the following, we will see that the major source of

noise is the shot noise on the LO, and we will show that

this noise corresponds to an equivalent noise of 1 photon

per pixel and per frame, on the signal beam. This LO noise,

which corresponds to a fully developed speckle, is essentially

gaussian, each pixel being uncorrelated with the neighbor

pixels. If one considers that the LO beam power is the same for

all pixel locations (which is a very common approximation),

the noise density of this speckle gaussian noise is the same

for all pixels.

In that uniform (or flat-field) LO beam approximation, all

the transformations made in the holographic reconstruction

(FFTs: Eq.10 and Eq.13, and multiplication by a phase matrix:

Eq.11) do not change the noise distribution, and the noise

density. FFTs change a gaussian noise into another gaussian

noise, and, because of the Parceval theorem, the noise density

remains the same. The phase matrix multiplication does not

change the noise either, since the phase is fully random from

one pixel to the next. Whatever the reconstruction plane, the

gaussian speckle noise on gets in the CCD plane, transforms

into another gaussian speckle noise, with the same noise

density.

III. THE THEORETICAL LIMITING NOISE

A. The Shot Noise on the CCD pixel signal

Since laser emission and photodetection on a CCD camera

pixel are random processes, the signal that is obtained on a

CCD pixel exhibits Poisson noise. The effect of this Poisson

noise, which cannot be avoided, on the holographic signal

and on the holographic reconstructed images, is the Ultimate

Theoretical Limiting noise, which we will study here.

We can split the signal Ik,p,q we get for frame k and

pixel (p, q) in a noiseless average component and a noise

component:

Ik,p,q ≡ 〈Ik,p,q〉+ ik,p,q (14)

where 〈 〉 is the statistical average operator, and ik,p,q the noise

component. To go further in the discussion, we will use photo

electrons Units to measure the signal Ik,p,q .

We must notice that the local oscillator signal ELO is large,

and corresponds to a large number of photo electrons (e). In

real life, this assumption is true. For example, if we adjust

the power of the LO beam to be at the half maximum of the

camera signal in DC unit (2048 DC in our case), the pixel

signal will be about 104 e, since the ”Camera Gain” of our

camera is 4.8 e per DC. There are two consequences which

simplify the analysis.

• First, the signal Ik,p,q exhibits a gaussian distribution

around its statistical average.

• Second, both the quantization noise of the photo electron

signal (Ik,p,q is an integer in photo electron Units), and

the quantization noise of the Digital Count signal (Ik,p,q
is an integer in DC Units) can be neglected. These
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approximations are valid, since the width of the Ik,p,q
gaussian distribution is much larger than one in both

photo electron and DC Units. In the example given above,

〈Ik,p,q〉 ≃ 104, and this width is ≃ 102 in photo electron

Units, and ≃ 20 in DC Units.

One can thus consider that Ik,p,q , 〈Ik,p,q〉 and ik,p,q are floating

numbers (and not integer). Moreover, ik,p,q is a zero-average

random Gaussian distribution, with

〈i2k,p,q〉 = 〈Ik,p,q〉 (15)

To analyze the LO shot noise contribution to the holographic

signal Hp,q, one of the most simple method is to perform

Monte Carlo simulation from Eq.14 and Eq.15. Since Ik,p,q
is ever large (about 104 in our experiment), 〈Ik,p,q〉 can be

replaced by Ik,p,q (that results from measurements) in the right

member of Eq.15. One has thus:

〈i2k,p,q〉 = 〈Ik,p,q〉 ≃ Ik,p,q (16)

Monte Carlo simulation of the noise can be done from Eq.14

and Eq.16

B. The Object field Equivalent Noise for 1 frame

Fig. 2. 1 photon equivalent signal (accounting Heterodyne gain), and shot
noise on the holographic Local Oscillator beam.

In order to discuss the effect of the shot noise on the

heterodyne signal Ep,qE∗
LO of Eq.7, let us consider the simple

situation sketched on Fig.2. A weak object field E, with 1

photon or 1 photo electron per pixel and per frame, interferes

with a LO field ELO with N photons, where N is large

(N = 104, in the case of our experiment). Since the LO beam

signal a2T |ELO|2 is equal to N photons, and the object field

signal a2T |Ep,q|2 is one photon, we have:

Ik,p,q = N + 1 + ik,p,q + a2TEp,qE∗
LOe

... + c.c. (17)

Note that the heterodyne signal Ep,qE∗
LO is much larger

than |Ep,q|2. This is the gain effect, associated to the coherent

detection of the field Ep,q . This gain is commonly called

”heterodyne gain”, and is proportional to the amplitude of the

LO field E∗
LO.

The purpose of the present discussion is to determine the

effect of the noise term ik,p,q of Eq.17 on the holographic

signal Hp,q. Since Hp,q involves only the heterodyne term

Ep,qE∗
LO (see Eq.9), we have to compare, in Eq.17,

• the shot noise term ik,p,q .

• and the heterodyne term Ep,qE∗
LO

Let’s consider first the shot noise term. We have

〈i2k,p,q〉 = 〈Ik,p,q〉 = N + 1 ≃ N (18)

The variance of the shot noise term is thus
√
N = 102. Since

this noise is mainly related to the shot noise on the local

oscillator (since N ≫ 1), one can group together, in Eq.17,

the LO beam term (i.e. N ) with the noise term ik,p,q , and

consider that the LO beam signal fluctuates, the number of

LO beam photons being thus ”N ±
√
N”, as mentioned on

Fig.2.

Consider now the the heterodyne beat signal. Since we have

N photons on the LO beam, and 1 photon on the object beam,

we get:

a2T |Ep,qE∗
LO| ≡

((

a2T |Ep,q|2
)

(

a2T |ELO|2
)

)1/2

= N1/2

(19)

The heterodyne beat signal Ep,qE∗
LO is thus

√
N = 102.

The shot noise term ik,p,q is thus equal to the heterodyne

signal Ep,qE∗
LO corresponding to 1 photon on the object field.

This means that shot noise ik,p,q yields an equivalent noise of

1 photon per pixel, on the object beam. This result is obtained

here for 1 frame. We will show that it remains true for a

sequence of 4n frames, whatever 4n is.

C. The Object field Equivalent Noise for 4n frames

Let us introduce the DC component signal D, which is

similar to the heterodyne signal H given by Eq.8, but without

phase factors:

D ≡
4n−1
∑

k=0

Ik (20)

The component D can be defined for each pixel (p, q) by :

Dp,q ≡
4n−1
∑

k=0

Ik,p,q (21)

Since Ik,p,q is always large in real life (about 104 in our

experiment), the shot noise term can be neglected in the

calculation of Dp,q by Eq.21. We have thus:

Dp,q ≡
4n−1
∑

k=0

Ik,p,q = 4na2T
(

|Ep,q|2 + |ELO|2
)

(22)

We are implicitly interested by the low signal situation (i.e.

Ep,q ≪ ELO ) because we focus on noise analysis. In that

case, the |Ep,q|2 term can be neglected in Eq.22. This means

that Dp,q gives a good approximation for the LO signal.

Dp,q ≡
4n−1
∑

k=0

Ik,p,q ≃ 4na2T |ELO|2 (23)

We can get then the signal field |Ep,q|2 from Eq.9 and Eq.23:

|Hp,q|2
Dp,q

≃ 4na2T |Ep,q|2 (24)

In this equation, the ratio |Hp,q|2/Dp,q is proportional to

the number of frames of the sequence (4n), This means that

|Hp,q|2/Dp,q represents the signal field |Ep,q|2 summed over

the all frames.

Let us calculate the effect of the shot noise on |Hp,q|2/Dp,q.

To calculate this effect, one can make a Monte Carlo simu-

lation as mentioned above, but a simpler calculation can be
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done here. In Eq.24, we develop |Hp,q| in statistical average

and noise components (as done for Ik,p,q in Eq.14), while

neglecting noise in Dp,q.

We get:
〈 |Hp,q|2

Dp,q

〉

≃ 1

〈Dp,q〉
× (|〈Hp,q〉|2 + 〈|hp,q|2〉 (25)

+ 〈〈Hp,q〉h∗
p,q〉+ 〈〈H∗

p,q〉hp,q)

where

Hp,q = 〈Hp,q〉+ hp,q (26)

with

hp,q =

4n−1
∑

k=0

jkik,p,q (27)

which is the shot noise random contribution to Hp,q . In

Eq.25 the 〈〈Hp,q〉h∗
p,q〉 term is zero since h∗

p,q is random

while 〈Hp,q〉 is not random. The two terms 〈〈Hp,q〉h∗
p,q〉 and

〈〈H∗
p,q〉hp,q〉 can be thus removed.

On the other hand, we get for |hp,q|2

|hp,q|2 =
4n−1
∑

k=0

|ik,p,q|2 +
4n−1
∑

k=0

4n−1
∑

k′=0,k′ 6=k

jk−k′

ik,p,qik′,p,q

(28)

Since ik,p,q and ik′,p,q are uncorrelated, the ik,p,qik′,p,q terms

cancel in the calculation of the statistical average of |hp,q|2.

We get then from Eq.15

〈|hp,q|2〉 =
4n−1
∑

k=0

〈|ik,p,q|2〉 =
4n−1
∑

k=0

〈Ik,p,q〉 = 〈Dp,q〉 (29)

and Eq.25 becomes:
〈 |Hp,q|2

Dp,q

〉

=
|〈Hp,q〉|2
〈Dp,q〉

+ 1 (30)

This equation means that the average detected intensity

signal 〈|Hp,q|2/Dp,q〉 is the sum of the square of the aver-

age object field 〈|Hp,q|〉/
√

〈Dp,q〉 plus one photo-electron.

Without illumination of the object, the average object field is

zero, and the detected signal is 1 photo-electron. The equation

establishes thus that the LO shot noise yields a signal intensity

corresponding exactly 1 photo-electron per pixel whatever the

number of frames 4n is.

The 1 e noise floor we get here can be also interpreted as

resulting from the heterodyne detection of the vacuum field

fluctuations [50].

D. The detection bandwidth, and the noise

From a practical point of view, the holographic detected

signal intensity increases linearly with the acquisition time

4nT (since |Hp,q|2/Dp,q ∝ 4n), while the noise contribution

remains constant: the 1 e noise calculated by Eq.25 corre-

sponds to a sequence of 4n frames, whatever the number 4n
of frames is. The coherent character of holographic detection

explains this paradoxical result.

The noise remains constant with time because the noise

is broadband (it is a white noise), while the detection is

narrowband. The noise that is detected is proportional to the

Fig. 3. Frequency response |η(x)|2 for heterodyne signal in intensity, as a
function of the heterodyne beat frequency x = f − fLO for sequences of
4n frames with 4n = 4 (heavy grey line), 4n = 8 (solid black line), and
4n = 16 (dashed black line). Calculation is done for T = 0.1 s. Vertical
axis axis is |η(x)|2 in linear (a) and logarithmic (b) scales. Horizontal axis
is x = f − fLO in Hz.

product of the exposure time, which is proportional to the

acquisition time 4nT , with the detection Bandwidth, which

is inversely proportional to 4nT . It does not depend thus on

4nT .

To illustrate this point, we have calculated, as a function of

the exposure time 4nT , the frequency response of the coherent

detection made by summing the 4n frames with the phase

factors jk of Eq.8. Let us call η the detection efficiency for

the signal field complex amplitude. We get:

η(x) =
1

4nT

4n−1
∑

k=0

jk
∫ kT+T/2

t=kT−T/2

ej2πxtdt (31)

= sinc(πxT )× 1

4n

4n−1
∑

k=0

jkej2πkxT (32)

Here x = f − fLO is the heterodyne beat frequency; f is the

optical frequency of the signal beam, and fLO the frequency

of the LO beam. In equation 31, the factor sinc(πxT ) corre-

sponds to the integration of the beat signal, whose frequency

x is non zero, over the CCD frame finite exposure time T . The

summation over the frames k of Eq.8 yields, in Eq.31, to sum

the phase ej2πkTx of the heterodyne beat at the beginning of

each frame k with the phase factor jk. To the end, the factor

1/4n in Eq.31 is a normalization factor that is the inverse of

the number of terms within the summation over k. This 1/4n
factor keeps the maximum of |η(x)| slightly lower than 1.
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We have calculated, and plotted on Fig.3, the detection fre-

quency spectrum |η(x)|2 for sequences with different number

of frames 4n. The heavy grey line curve corresponds to 4

frames, the solid line curve to 8 frames, and the dashed line

to 16 frames. As seen, the width of the frequency response

spectrum (and thus the frequency response area) is inversely

proportional to the exposure time ((4T )−1, (8T )−1 and

(16T )−1 respectively).

Fig. 4. Frequency response for heterodyne signal in intensity, as a function
of the heterodyne beat frequency x = f − fLO for a sequence of 4 frames:
theory |η(x)|2 (heavy grey line), and experiment W (x) (points). Calculation
and experiment are done with T = 0.1 s. Vertical axis axis is |η(x)|2 or
W (x) in logarithmic scales. Horizontal axis is x = f − fLO in Hz.

To verify the validity of Eq.31, we have swept the frequency

fLO = ωLO/(2π) of our holographic LO by detuning the

AOMs frequency (see Fig.1), while keeping constant the

illumination frequency f . We have then measured the weight

W (x) of the reconstructed holographic intensity signal H2 as a

function of the beat frequency x = f−fLO. Figure 4 shows the

comparison of the theoretical signal |η(x)|2 (heavy grey line),

with the experimental data W (x) (points). The agreement is

excellent.

IV. REACHING THE THEORETICAL SHOT NOISE IN

EXPERIMENT

In the previous sections, we have shown that the theoretical

noise on the holographic reconstructed intensity images is 1

photo electron per pixel whatever the number of recorded

frames is. We will now discuss the ability to reach this limit in

real time holographic experiment. Since we consider implicitly

a very weak object beam signal, the noises that must be

considered are

• the read noise of the CCD camera,

• the quantization noise of the camera A/D converter,

• the technical noise on the LO beam,

• and the LO beam shot noise, which yields the theoretical

noise limit.

A. The technical noise within the (kx, ky) reciprocal space

The main characteristics of our camera are given in Fig.5.

In a typical experiment, the LO beam power is adjusted in

order to get 2000 DC on the A/D Converter, i.e. about 104 e

Number of pixels 1280 (H) × 1024 (V)

Pixel size 6.7× 6.7µm

Frame Rate 12.5 fps

Full Well Capacity 25 000 e

A/D Converter 12 bits: 0... 4095 DC

A/D conversion factor (Gain) 4.8 e/DC

QE @ 500 nm : 40 %

QE @ 850 nm : 6%

Read Noise 20 e

Dark Noise 3 e/sec/pix

Fig. 5. Main characteristics of the PCO Pixelfly Camera

on the each CCD pixel. The LO shot noise, which is about

100 e, thus much larger than the Read Noise (20 e), than the

Dark Noise (3 e/sec), and than the A/D converter quantization

noise (4.8 e, since 1 DC corresponds to 4.8 e). The noise of

the camera, which can be neglected, is thus not limiting in

reaching the noise theoretical limit.

The LO beam that reaches the camera is essentially flat

field (i.e. the field intensity |ELO|2 is the same for all the

pixels). The LO beam technical noise is thus highly correlated

from pixel to pixel. This is for example the case of the

noise induced by the fluctuations of the main laser intensity,

or by the vibrations of the mirrors within the LO beam

arm. To illustrate this point, we have recorded a sequence

of 4n = 4 frames Ik with LO beam, but without signal (i.e.

without illumination of the object). We have recorded thus

the hologram of the ”vacuum field”. We have calculated then

the complex hologram H by Eq.8, and the reciprocal space

hologram H̃ by FFT (i.e. by Eq.10).

Fig. 6. Intensity image of H̃(kx, ky, 0) for 4n = 4 frames without signal
E . Three kind of noises can be identified. left : FFT aliasing, down left :
shot noise, middle : technical noise of the CCD. By truncating the image and
keeping only the left down part, the shot noise limit is reached. The image is
displayed in arbitrary logarithm grey scale.

The reciprocal space holographic intensity |H̃ |2 is displayed

on Fig.6 in arbitrary logarithm grey scale. On most of the re-

ciprocal space (within for example circle 1), |H̃ |2 corresponds
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to a random speckle whose average intensity is uniformly

distributed along kx and ky . One observes nevertheless bright

points within circle 2, which corresponds to (kx, ky) ≃ (0, 0).
These points correspond to the technical noise, which is flat

field within the CCD plane (x, y), and which has thus a low

spatial frequency spread within the (kx, ky) reciprocal space.

One see also, on the Fig.6 image, an horizontal and a vertical

bright line, which corresponds to ky = 0 and kx = 0 (zone

3 on Fig.6). These parasitic bright lines are related to Fast

Fourier Transform aliases, that are related to the discontinuity

of the signal Ik and H at edge of the calculation grid, in the

(x, y) space.

We have measured 〈|H̃ |2〉 by replacing the statistical aver-

age 〈 〉 by a spatial average over a region of the conjugate

space without technical noise (i.e. over region 1). This gives

a measurement of 〈|H̃ |2〉, i.e. a measurement of 〈|H |2〉, since

the space average of |H̃ |2 and |H |2 are equal, because of

the FT Parceval theorem. We have also measured D from the

sequence of frames Ik (see Eq.20). Knowing the A/D conver-

sion factor (4.8 e/DC), we have calculated the noise intensity

〈|H̃ |2〉/〈D〉 in photo-electron units, and we get, within 10%,

1 photo electron per pixel, as expected theoretically for the

shot noise (see Eq.25).

This result proves that it is possible to perform shot noise

limited holography in actual experiments. Since the low spatial

frequency region of the reciprocal space (region 2) must be

avoided because of the technical noise, it is necessary to

perform digital holography in an off-axis configuration, in

order to reach the Eq.25 shot noise limit.

B. Effect the finite size of the pixel.

Fig. 7. One dimension (1D) angular response of the detection efficiency for
the intensity

∑
m |sinc(X + mπ)|2 as a function of X for the main lobe:

m = 0 (a); for the main lobe and 2 aliases: m = 0,±1 (b); for the main
lobe and 4 aliases: m = 0,±1,±2 (c); for the main lobe and 10 aliases:
m = 0,±1,±2, ...± 5 (d).

Because of the finite size of the pixels dpix, the heterodyne

detection efficiency within direction kx, ky is weighted by a

factor ζ for the field H̃ , and |ζ|2 for the intensity |H̃ |2 with:

ζ(kx, ky) =
1

d 2
pix

∫ 1

2
dpix

x=−1

2
dpix

∫ 1

2
dpix

y=−1

2
dpix

ej(kxx+kyy)dx dy

= sinc(X)sinc(Y ) (33)

Fig. 8. Setup of the test experiment with USAF target. L: main laser;
BS: Beam splitter; AOM1 and AOM2: acousto optic modulators; BE: beam
expander; M: mirror; A1 and A2: light attenuators. USAF: transmission USAF
target that is imaged. CCD : CCD camera.

with X = kxdpix/2 and Y = kydpix/2. This factor ζ corre-

sponds to the angular sinc diffraction pattern of the rectangular

pixels, which affects the component of H̃ corresponding to the

signal of the object. The efficiency in energy |ζ|2 is plotted in

Fig.7, curve (a) in black.

Because of the sampling made by the CCD pixels, the

hologram H̃(kx, ky) is periodic in the reciprocal space, with a

periodicity equal to 2π/dpix for kx and ky , or π for X and Y .

This means that the edges of the FFT calculation grid, which

are displayed on Fig.7 as vertical dashed lines, corresponds to

kx, ky = ±π/dpix or to X,Y = ±π/2. Note that the detection

efficiency is non zero at the edges of the calculation grid since

we have |ζ|2 = 4/π2 ≃ 0.40 for X = π/2 and Y = 0.

If the factor |ζ|2 affects the component of |H̃ |2 correspond-

ing to the signal of the object, it do not affects the shot noise

component, whose weight is 1 whatever kx and ky are. One

can demonstrate this result by calculating the noise by Monte

Carlo simulation from Eq.14 and Eq.16. The Monte Carlo

simulation yields a fully random speckle noise, both in the

x, y space, and in the kx, ky reciprocal space.

This point can be understood another way, which is illus-

trated by Fig.7. Each pixel is a coherent detector, whose de-

tection antenna diagram is the Fig.7 (a) sinc function. Because

of the periodicity within the reciprocal space, the signal that

is detected for (kx, ky) or for (X,Y ) corresponds to the sum

of the signal within the main lobe (X,Y ), and within all the

aliases corresponding to the periodicity (X +mπ, Y +m′π).
Since the object is located within a well defined direction, the

main lobe contribute nearly alone for the signal. But this is not

true for the shot noise, since the shot noise (or the vacuum field

noise) spreads over all (kx, ky) points of the reciprocal space

with a flat average density. One has thus to sum the response

of the main lobe (i.e. |sinc(X)|2 in 1D) with all the periodicity

aliases (i.e. |sinc(X + mπ)|2 with m 6= 0). Fig.7 shows the

1D angular response
∑

m |sinc(X +mπ)|2 that correspond to

sum of the main lobe with more and more aliases. As seen,

adding more and more aliases make the angular response flat

and equal to one.
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C. Experimental validation with an USAF target.

We have verified that it is possible to perform shot noise

limited holography in actual experiments, by recording the

hologram of an USAF target in transmission. The holographic

setup is sketched on Fig.8. We have recorded sequences of

4n = 12 frames, and we have reconstructed the image of the

USAF target.

Fig. 9. (a,c,d): Reconstructions of an USAF target with different level of
illumination 700 (a), 1 (c) and 0.15 e/pixel (d). (b): Simulated Shot Noise
noise image. (e,f): Simulated reconstructed image obtained by mixing image
(a) with weight X , and image (b) with weight 1 − X . The weight X is
1/700 (e), and 0.15/700 (f). Images are displayed in arbitrary logarithmic
grey scale.

Figure 9 shows the holographic reconstructed images of

the USAF target. The intensity of the signal illumination is

adjusted with neutral density filters. In order to filter off the

technical noise, the reconstruction is done by selecting the

order 1 image of the object, within the reciprocal space [8].

Since the 400× 400 pixels region that is selected is off axis,

the low spatial frequency noisy region, which corresponds to

the zero order image (region 1 on Fig.6), is filtered-off.

Figure 9 (a,c,d) shows the reconstructed images obtained

for different USAF target illumination levels. For each image,

we have measured the average number of photo electrons per

pixel corresponding to the object beam, within the reciprocal

space region that has been selected for the reconstruction (i.e.

400 × 400 pixels). The images of Fig. 9 correspond to 700

(a), 1 (c), and 0.15 e/pix (d) respectively. The object beam

intensity has been measured by the following way. We have

first calibrated the response of our camera with an attenuated

laser whose power is known. We have then measured with the

camera, at high level of signal, the intensity of the signal beam

alone (without LO beam). We have decreased, to the end, the

signal beam intensity by using calibrated attenuator in order to

reach the low signal level of the images of Fig. 6 (a,c,d). In the

case of image (a) with 700e/pix, we also have measured the

averaged signal intensity from the data by calculating |H |2/D
(see Eq.24). The two measurements gave the same result: 700e

per pixel.

On figure 9 (a), with 700e per pixel, the USAF signal is

much larger than the shot noise, and the Sinal to Noise Ratio

(SNR) is large. On figure 9 (c), with 1 e per pixel, the USAF

signal is roughly equal to the shot noise, and the SNR is about

1. With 0.15e per pixel, the SNR is low on Fig.9 (d) (about

0.15), and the USAF is hardly seen. It is nevertheless quite

difficult to evaluate the SNR of an image. To perform a more

quantitative analysis of the noise within the images, we have

synthesized noisy images of 9 (e,f) by adding noise to the Fig.

9 (a) noiseless image. We have first synthesized a pure Shot

Noise image , which corresponds to the image that is expected

without signal.

The Shot Noise, which is displayed on Fig.9 (b), is obtained

by the following way. From one of the measured frames (for

example I0) we have calculated the noise components ik,p,q
by Monte Carlo drawing with the condition:

〈i2k,p,q〉 = I0,p,q (34)

This condition corresponds to Eq.15 since 〈Ik,p,q〉 ≃ I0,p,q .

We have then synthesize the sequence of image Ik by:

Ik,p,q = I0,p,q + ik,p,q (35)

The Shot Noise image of Fig.9 (b) is reconstructed then from

the Ik,p,q sequence.

Image Signal (e/pix) Noise (e/pix)

a 700 1

b 0 1

c 1 1

d 0.15 1

e 1 1

f 0.15 1

Fig. 10. Signal and shot Noise on Images of Fig.9

We have synthesized noisy images by summing the noise-

less image of Fig.9 (a) with weight X , with the Shot Noise

image of Fig.9 (b) with weight (1−X). The image of Fig. 9 (e)

is obtained with X = 1/700. As shown on the table of Fig.10,

Fig. 9 (e) corresponds to the same signal, and the same noise

than Figure 9 (c) (1e of signal, and 1e of noise respectively).

Fig. 9 (c) and Fig. 9 (e), which have been displayed here with

the same linear grey scale, are visually very similar and exhibit

the same SNR. The image of Fig. 9 is similarly obtained with
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X = 0.15/700. It corresponds to the same Signal and Noise

than Figure 9 (d) (0.15e of signal, and 1e of noise), and, as

expected, Fig. 9 (d) and Fig. 9 (f), which have been displayed

here with the same linear grey scale, are similar and exhibit

the same SNR too.

Here we demonstrated our ability to synthesize a noisy

image with a noise that is calculated by Monte Carlo from

Eq.34 and 35. Moreover, we have verified that the noisy

image is visually equivalent to the image we have obtained

in experiments. These results prove that we are able to quan-

titatively account theoretically the noise, and that the noise

that is obtained in experiments reaches the theoretical limit.

V. CONCLUSION

In this paper we have studied the noise limits in digital

holography. We have shown that in high heterodyne gain of the

holographic detection (achieved when the object field power is

much weaker than the LO field power), the noise of the CCD

camera can be neglected. Moreover by a proper arrangement

of the holographic setup, that combines off-axis geometry with

phase shifting acquisition of holograms, it is possible to reach

the theoretical shot noise limit. We have studied theoretically

this limit, and we have shown that it corresponds to 1 photo

electron per pixel for the whole sequence of frame that is

used to reconstruct the holographic image. This paradoxical

result is related to the heterodyne detection, where the detec-

tion bandwidth is inversely proportional to the measurement

time. We have verified all our results experimentally, and we

have shown that is possible to image an object at very low

illumination levels. We have also shown that is possible to

mimic the very weak illumination levels holograms obtained

in experiments by Monte Carlo noise modeling. This opens

the way to simulation of ”gedanken” holographic experiments

in weak signal conditions.
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