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New Results on the Differential Importance Measuresf Markovian
Systems

Phuc Do Van, Anne Barros, Christophe Berenguer
University of Technology of Troyes/CNRS, Troyesafce

Abstract: This paper presents the development of the diffedeimportance measures (DIM),
proposed recently for the use in risk-informed dieci-marking, in the context of dynamic systems
including inter-component, functional dependencigsnore generally, systems described by Markov
models at steady state. Several new evaluationulasrof the existing DIMs are provided. The study
also proposes an extension one that provides betseits than those obtained from these existing
measures, and a new calculation formula of thd t@adation of the system availability provoked by
the simultaneous changes of system parametersnfencal example is introduced to compare the
extension proposed and these existing measuressudgestions for the future research in this area
are also presented.

Keywords: Importance Measure, Differential Importance MeasBa@ametric Sensitivity Analysis,
Markov Process.

1. INTRODUCTION

Reliability importance measures providing inforratiabout the importance of components on the
system performance (reliability, maintainabilityfety, or any performance metrics of interest) have
been widely used in reliability studies and rislalgnis. They are useful tools to identify design
weakness or operation bottlenecks and to suggéistalpmodifications for system upgrade. Recently,
a new importance measure, called Differential Ingruze Measure (DIM), has been introduced for
use in risk-informed decision-making [1, 2]. TheMDlis defined as a first-order sensitivity measure
that ranks the parameters of the risk model acogrthh the fraction of the total change in the risk
metric that is due to a small change in the pararsetalues, taken one at a time. Since the'Didés

not account for the effects of simultaneous chawngegveral parameters, a second-order extension of
the DIM', named DIM, is considered in [6]. However, DIMs limited to pairs of parameters and
only applicable when the impacts of changes of ntba@ two parameters are neglected. Hence the
high-order effects related to simultaneous chamgekree or more parameters can not be quantified.
Furthermore, several existing methods to evallaediM & DIM" are based on the system structure
function that requires the assumptions of stocbdstiependent components. Hence, in the realistic
case of stochastic dependencies existing betwese somponents (shared maintenance resource,
cold spare, shared load ...), and/or high-ordercétfrequirements, the problem remains widely open.

The first objective of this paper is to develop tliferential importance measures in the context of
dynamic systems including inter-component, funalodependencies, or more generally, systems
described by Markov models. In such systems, thg¢a@ailability of a component does not depend
only on its characteristics but also on other sysparameters, and its (un)availability in the syste
can be different from its (un)availability out ofiet system, see [4]. In this context, the partial
derivatives with respect to the system parametatber than to the components' (un)availability,
appears to be more relevant and is often prefdmedesign purposes. Hence, for steady state, one
develops the DIMs based on the derivatives witpeesto the system parameters. The results show
that all high-order derivatives can be evaluatesmfrthe first-order one by recursive rules, and
therefore, the major difficulties of high-order tkatives are completely solved. This allows us not
only to evaluate more accurately the total systenfiopmance change provoked by the change of one
parameter or a group of parameters, and also telajevhe extensions of high-order differential
importance measure, named DIMhich carprovide better results than those obtained fronDtie'

and DIM'. Obviously, the need to resort to information be high-order effects depends on the
magnitude of the change of the parameters' values.



This paper will be organized as follows. The fismiction is devoted to define the differential
importance measure in the context of Markovianesyst The second section focuses on the first-
order approach, or more precisely, the definitind the development of DIMThe DIM' is presented

in the third section. The fourth section presehts high-order approach, or, the proposed extension
DIM". A numerical example is introduced in the lasttisecto illustrate the advantages of the
proposed extended importance measures.

2. DIFFERENTIAL IMPORTANCE MEASURE

Markov processes have been widely used in reltghiih study the performance measures (reliability
studies, Availability, Maintainability, etc) of mgincomplex dynamical systems including inter-
component, functional dependencies (cold spareedhaad, shared resources ...).
Consider a n-components dynamic system describedWgrkov model with the transition matriy
and let a row vecton be the vector of steady state probabilities. Craapiolmogorov equations at
the steady state can be written as the following:

™ =0 1)
The system availability is:

A= >'m =Tf,

i0Qo
where: Q. is a set of operational states, ahd ( f,f,,..) is a column vector associated with the
system states, e.gf, =1if system is in operational state i aid= otherwise.

Now assume that N parameters of the system (aidurd and/or repair rates) are simultaneously
changed. For example, all of the component in esrait would presumably be subjected to many of
the same stresses vibration from the engines, sbb&nding, irregularities in the power supplied,
etc. The total variation of the system availabititye to the changes of N parameters can be expanded
in McLaurin series as:

OA = %6 oA i(26 —) A+—(26x —) A+ ..
S ox 2 0x; 3 0x; 2)
=5'A+3"A+3" A+..
where:é'A:i(iéxii)'A— zz Zéx 3% .. D L, with 1=12,3,...
I i=1 aXi .|1_1|2_1 i = ! aXilaXiz..aXil

An importance factor measuring the relative contidn of one parameter on the total change of the
system availability, called Differential Importankkeasure [1], can be defined as

DIM ()= A“ ©)

where:dA, is the variation of the system availablllty proedkby a change of parameter (failure
or repair rate). Similarly, this variation can haleated by

3, 5>qa_XA+i(5 —) A+—(6 —) A+

(4)
=3'A, +3" A, +5'”Aq + ...

1 0 1 aA .
where:3' A, ==(dx — Y A==(dx ) ——, with1=12.3,...
SR PR TI A R

3. FIRST - ORDER APPROACH



Assume thatdA in equation (4), andAin equation (2) can be approximated by the firsteor
differentiations.
0A, =8'A,,anddA=3'A

3.1. Evaluation of &' A, and &' A

By taking the derivative with respect to a parametéfailure or repair rate) of equation (1), one gets:

ﬂ M +T[6_M =0,
0X; 0X;
or,
ort
—M =4 , 5
ox TQ, 5)

oM _. . . . : :
where Q, =a—. Since one eigenvalue g is zero, its regular inverse does not exist. Orgethaise
X:

1
a generalized inverse, i.e., the group inverse 8], =(M —emn)™ —em, with e=(11,...1)" and
M*M =MM7* =1 —er. Multiplying both sides on the right with*, one gets:

an *
a(l _eT[) :_T[QxiM )

or,
ot oOme #
— ——T=TQ, M7
ox,  Ox Qs
_ oe _ L. )
Note well thatne=1, soa— =0. One obtains finally:
)(i
on
I(Xi):a_xiz_T[Q)qM¢' (6)
Consequently,
3'A, =6>qg—:=6>qai):f =-xQM™ f =-mQ; M*f, (7
and,
I N oA _J I N % #
o) A=26xi&=26 A, =—n26xiQxiM f =-TQ;M ™ f, (8)
i=1 1 i=1 i=1

N
whereQ;, =6xQ, and Q; => Qs -
i=1

Looking at the (7) and (8), it is clear tha, and dA; can be determined from the same formula by
changing only the matriQy, andQs .

3.2. First-order differential importance measure

Using the results from (7) and (8), the first-orddferential importance measure can be written as
| #
O A, _ TQ M ™ f ©)

DIM'(x )= )
(%) A mQM*f

SinceDIM' is based on the first-order differentiatio®M 'is therefore additive. More explicitly,
suppose that one is interested in DI ' of the subset of parametens, X 5. X Then,



6| A( Xi,...X
| - i XjaXs
DIM (>,<,x]- ""’XS)_—é'A ,

where: &' A x; s =8'A, +8' A+ ..+38' A,_(see again equation (8)). So finally

DIM' (X X ..X )=DIM' (% )+DIM' (x; )+ ...+ DIM' (x;).
Note well thatDIM' (%), ...,DIM '(x,) can be easily evaluated by changing o@ly, in equation (9)
by anj - Qs rESpectively.

On the other hand, if one needs only D' of a parameters subset and one does not Bédd of
each individual, one can evaluate it directly diofes:
T[Qéxi ,Ex]' ,...ést : f

| —
DIM™ (XX X5 ) = oM f ,

where: Qg 5,5 = Qo + Qo T Qg -

4. SECOND - ORDER APPROACH

The DIM' can be easily evaluated with equation (9), butoésinot take into account either the
second/higher-order effects or the impacts of thmisaneous changes of several parameters, and it
can therefore only be used when the changes ofmgdeas verify the small enough conditions (see [1]

for the details). The idea of second-order extensiotheDIM ', namedDIM" | is considered in [6],
however, it is only applicable for the independesumponents systems with the changes due to the

components’ (un) availability. This section explrthe development obIM" in the context of
Markovian systems and the changes due to the systemmeters (failure or/and repair rates).

Now assume thadA, in equation (4) andA in equation (2) can be approximated by the surthef
first and second-order differentiations, e.i.
OA, =8'A, +3"A ,and SA=3'A+3" A

4.1. Evaluation of 3" A, and 3" A

By taking the derivative with respect to a parameteof equation (5):

2
Oy oM o
00X, ax ox;  ox;
or,
6211 ort
=——Q,, ~——Q, . 10
axiax 0% Q 0x; Qs (10)
Using the group inverdd “, and noting thaMM * = | —er, me=1, one gets:
0°m ort ort
(% ;)= =(-Q *5. Q4 IM”. (11)
P ax0x; o T ox
So:
N N a
2> % OX; ——— 26 Zéx Qy Zéx —Zé)gQ)q
i=1j=1 0x 0X; i X 3 ox X; i=1

(12)
:—ZZSXl Zéx Q = -ZZ5X —Q5 MZ.

Finally, by using (6) and (11), one obtalns.



N 2
5" A =1 5%Q, M*QM* f =rfQ;M*f f. (13)
i=1
So,
5" A, =m{Qy M*) 1. (14)

4.2. Second-order differential importance measure

By using (7), (8), (13) and (14), the second-odifferential importance measure can be written as:

DIM" _OA +OA QM7 +’T(Q6XiM¢)2f _T[QéxiM¢(| _QéxiM.#)f
(Xi)_ [ I - " £\ #() _ % : (15)
8A+8'A  _mqM*f M f QM -QM7)f

Note well thatDIM" is no longer additive sincBIM " related to a subset of parameters accounts the
impacts of simultaneous changespafirs of parameters, bubIM" related to a individual one does
not. TheDIM " of the subset of parameters can however be expresste following:
| 1]
3 A(ix]' . Xg +0 A(ix]' . Xg - TlQéxi O ,...6XSM ( Qéxl EXL éxs ¢)f
5 A+3"A QM (I ~ QM7 )1 |

DIM" (XX X ) =

It is obvious that the results obtained fr@M" are more precise than those providediyl' due

to the second-order differentiation effects. HowetheDIM " is only applicable when the higher-
order effects and the impacts of the changes ofentloan two parameters are neglected. From a
practical point of view, this assumption is not ajw reliable. Hence, the next section is devotateo
development of the high-order approach which qtiastihe higher-order effects and the impacts of
simultaneous changes of three or more parameters.

5. HIGH - ORDER APPROACH

The impact ohth-order differentiationst(—:% 4,...) can be expressed as the following:

A, ——(6x—) A= —(5 )h o'm
and,
1 N a o'
"A=—(> ox — Sx. 5x _on
o (235 ) AT 121; % a0 Gy o om,

5.1. Evaluation of6hAq and 3"A

By taking the derivative with respect to a paramegef equation (10), one obtains the following
equation:

o’n 9°m oM _ 9’ 0°m
M + - QX' - Qx| ’
0,0, 0%, OX,0X; 0% ox0x, 1 0X;0%
or,
o 0°m 0’1t a°m
M =- Q. ~ Q. ~ Qy -
0x,0% ;0% 0x, 0X; ox0x, 1 0X;0%
Using the group inverdd “withMM* = | —ert andme= 1 One getS'
2 2
’n _ , o°m +6T[QX Q)M"‘

0%,0% 0%, - (axiaxj *oxox, ax 0%,



So:

o’ a°m a°m
IR SREE) ) S P d I 3 X oW
i=1 j=1k=1 0X 0X J Xy i=1j=1 aXI j k=1 i=1k=1 0%, 0%, i=1 (16)
+225X 0% ———— o iale M* __3225)95)( o QM7
j=1k=1 0X;0%, i=1 ! i=j=1 . 0x,0X;

From (6), (12) and (16), the foIIowing equation d:mshown'

R A L R K
i=1 j=1k=1 0x; 6 6 Xy

Similarly, by taking thénth-order derivatives, one obtains finally:

5"A=(-1)"n{Q;M*)" f , with h=345, . (17)
Looking at this equation, it is clear that thin-order effects can be easily evaluated and litaised
only on the first-order derivative, or more pretyséased on the group inversé™ .

By using (8), (13), and (17), the total variatidrtlte system availability provoked by the changel o
parameters at the same tind, can be approximated by the following equation:

A =-mQM*f +r{QM*f £+ _+(-1)"r{QM*) 1. (18)
And the variation of the system availability proeckby the change of one parameter can be:
2 h
8A, =-TQy M*f +1{Qs M*f f + ...+ (~1)"rlQ M*)' £ (19)

5.2. High-order differential importance measure

From (18) and (19), the high-order differential mnfance measure can be written as:
—TQs M *f +’1(Q6xi M ¢)2 f+ ---+(_1)h”(Q5xi M ¢)h f

—rQM* f +H{QM* f £ +.+(-1) miQM* ' f
DIM" (% X ,-...Xg ) for simultaneous changes of several parametarsbe evaluated with equation
(20) by only the takingQWXj _ax Instead ofQs,. .

DIM"(x )=

(20)

Note well that DIMs can be evaluated by the firdiferences method, the changes of the system
configuration may however be required for eachusatabn of the availability variation. The interesdt
these approaches is precisely to be able to eealids of any parameter or any group of parameters
by changing only the corresponding matgixvithout additional calculations.

6. ANUMERICAL EXAMPLE

The purpose of this section is to show how the Dids be used in reliability sensitivity analysiglan

to compareDIM', DIM" with proposed extensio®IM" through a simple example sketched in
Figure 1. Unit 4 (C4) is in cold redundancy withtu(C3). As soon as C3 is repaired, C4 stopss Thi
system includes also a shared load between ur@itl) &4nd branch of unit 2 (C2), C3 and C4. The

failure of C1 increases therefore from to A; when the branch (C2, C3 and C4) is failed. Tdble
gives the values of failure ratés/ ), , and the repair ratgs (i =1,..4).

Assume that all components’ failure rates are chdngimultaneously. For example, all of the
component in an aircraft would presumably be subfeto many of the same stresses vibration from
the engines, shock of landing, irregularities ia gower supplied, etc.



Figure 1: System structure

NN
_

Table 1: Components’ failure/repair rate

Unit A v A
C1 2x10° | 1x10° | 2.5x10°
Cc2 1x10° | 9x10° -
Cc3 2x10° | 2.9x10° -
Cc4 3x10° | 6x10° -

. - . 5\ _ O, o
To illustrate the application of DIMs, a uniformrpentage change—)\@z)\— =w, with i,j =1,..,4)
[ i
is considered, and more precisely, three scenafioshanges are proposed:=1%, w= 7% and
w=10% in order to show the need of the high order apgino

Table 2: DIMs & important component’s ranking, cas w=1%

DIMs C1(A;,A) C2(),) C3(A,) C4(\,) Order

DIM' 0.222047 0.209410 0.210678 0.357866 | C4>C1>C3>C2
DIM" 0.220546 0.209234 0.209637] 0.357326 | C4>C1>C3>C2
DIM " 0.220560 0.209238 0.209645 0.357333 | C4>C1>C3>C2
DIM V! 0.220560 0.209238 0.209645 0.357333 | C4>C1>C3>C2

Table 2 represents the resultsiM ', DIM" , DIM" and DIMY' for the casew=1%. According to

these importance measures, the components impertam&ings could be drawn. The results show

that DIM', DIM" , DIM" and DIM' can provide the same ranking. The most importantpzment
is C4 and C2 is the less important one.

Table 3: DIMs & important component’s ranking, cas w= 7%

DIMs C1(A\;,A,) C2(A,) C3(A3) C4(A,) Order

DIM' 0.222047 0.209410 0.210678 0.357866 | C4>C1>C3>C2
DIM " 0.211533 0.208183 0.203384 0.354088 | C4>C1>C2>C3
DIM " 0.212220 0.208364 0.203818 0.354426 | C4>C1>C2>C3
DIM ! 0.212189 0.208356 0.203801 0.354412 | C4>C1>C2>C3

Looking at the results presented in Table 3 andeTdbtheDIM' of all components’ failure rates
remains unchanged that is why the component impoetaanking based obIM' always holds.
However, thdIM" , DIM" | andDIM"' ’s values change leading to different rankings. fhercase
w=7%, theDIM" , DIM" | andDIM"" provide the same importance ranking. Note howélver



this ranking is not the same as the one obtaineBIM', this meansDIM' may not be used for this

case.

Table 4: DIMs & important component’s ranking, cas w=10%

DIMs C1(A;,A) C2(),) C3(A5) C4(\,) Order

DIM' 0.222047 0.209410 0.210678 0.357866 | C4>C1>C3>C2
DIM" 0.207021 0.207656 0.200254 0.352466 | C4>C2>C1>C3
DIM ™ 0.208418 0.208025 0.201136 0.353156 | C4>C1>C2>C3
DIM V! 0.208329 0.208003 0.201088 0.353116 | C4>C1>C2>C3

For the caseo=10%, the importance rankings based BiM' and onDIM" are not the same and
both of them are different from the one providedij " or DIM"' (see Table 4). This means that
DIM" can provide a more precise importance ranking thiv' andDIM" .

It is therefore clear that the high-order approacild provide better results than those obtainechfr
the first and second-order approach. Obviously,nibed to resort to information on the high-order
effects depends on the magnitude of the changarahgeters’ values.

7. CONCLUSIONS

In this work, the differential importance measuapglied traditionally in the context of systemshwit
independent components described by static boateadels is extended to the dynamic systems
including inter-components, functional dependencies more generally, systems described by
Markov models. In the cases of steady state, oueldpments allow{i) several new computation
formulas forDIM', DIM" ; (ii) the definition of DIM" which provides better results than those
obtained fromDIM' andDIM" ; (iii) the more accurate evaluation of the total systerfopeance
change provoked by the simultaneous changes @rmysarameters at the same time.

Our further research focuses on the bounds of Mchaseries to find the minimah for which
DIM"can provide the true importance ranking, and onestemation method to evaluate the DIMs
from the operating feedback data. At last moreildetaapplications of these measures to decision-
making in reliability engineering, e.g. to the apization of maintenance policies, are under study.
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