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Abstract: This paper presents the development of the differential importance measures (DIM), 
proposed recently for the use in risk-informed decision-marking, in the context of dynamic systems 
including inter-component, functional dependencies, or more generally, systems described by Markov 
models at steady state. Several new evaluation formulas of the existing DIMs are provided. The study 
also proposes an extension one that provides better results than those obtained from these existing 
measures, and a new calculation formula of the total variation of the system availability provoked by 
the simultaneous changes of system parameters. A numerical example is introduced to compare the 
extension proposed and these existing measures. The suggestions for the future research in this area 
are also presented. 
 
Keywords:  Importance Measure, Differential Importance Measure, Parametric Sensitivity Analysis, 
Markov Process. 
 
1.  INTRODUCTION 
 
Reliability importance measures providing information about the importance of components on the 
system performance (reliability, maintainability, safety, or any performance metrics of interest) have 
been widely used in reliability studies and risk analysis. They are useful tools to identify design 
weakness or operation bottlenecks and to suggest optimal modifications for system upgrade. Recently, 
a new importance measure, called Differential Importance Measure (DIM), has been introduced for 
use in risk-informed decision-making [1, 2]. The DIM I is defined as a first-order sensitivity measure 
that ranks the parameters of the risk model according to the fraction of the total change in the risk 
metric that is due to a small change in the parameters' values, taken one at a time. Since the DIMI does 
not account for the effects of simultaneous changes of several parameters, a second-order extension of 
the DIMI, named DIMII, is considered in [6]. However, DIMII is limited to pairs of parameters and 
only applicable when the impacts of changes of more than two parameters are neglected. Hence the 
high-order effects related to simultaneous changes of three or more parameters can not be quantified. 
Furthermore, several existing methods to evaluate the DIMI & DIM II are based on the system structure 
function that requires the assumptions of stochastic independent components. Hence, in the realistic 
case of stochastic dependencies existing between some components (shared maintenance resource, 
cold spare, shared load ...), and/or high-order effects requirements, the problem remains widely open. 
 
The first objective of this paper is to develop the differential importance measures in the context of 
dynamic systems including inter-component, functional dependencies, or more generally, systems 
described by Markov models. In such systems, the (un)availability of a component does not depend 
only on its characteristics but also on other system parameters, and its (un)availability in the system 
can be different from its (un)availability out of the system, see [4]. In this context, the partial 
derivatives with respect to the system parameters, rather than to the components' (un)availability, 
appears to be more relevant and is often preferred for design purposes. Hence, for steady state, one 
develops the DIMs based on the derivatives with respect to the system parameters. The results show 
that all high-order derivatives can be evaluated from the first-order one by recursive rules, and 
therefore, the major difficulties of high-order derivatives are completely solved. This allows us not 
only to evaluate more accurately the total system performance change provoked by the change of one 
parameter or a group of parameters, and also to develop the extensions of high-order differential 
importance measure, named DIMh, which can provide better results than those obtained from the DIM I 
and DIMII. Obviously, the need to resort to information on the high-order effects depends on the 
magnitude of the change of the parameters' values. 



 
This paper will be organized as follows. The first section is devoted to define the differential 
importance measure in the context of Markovian systems. The second section focuses on the first-
order approach, or more precisely, the definition and the development of DIMI. The DIMII is presented 
in the third section. The fourth section presents the high-order approach, or, the proposed extension 
DIM h. A numerical example is introduced in the last section to illustrate the advantages of the 
proposed extended importance measures. 
 
2.  DIFFERENTIAL IMPORTANCE MEASURE 
 
Markov processes have been widely used in reliability to study the performance measures (reliability 
studies, Availability, Maintainability, etc) of many complex dynamical systems including inter-
component, functional dependencies (cold spare, shared load, shared resources ...).  
Consider a n-components dynamic system described by a Markov model with the transition matrix M  
and let a row vector π be the vector of steady state probabilities. Chapman-Kolmogorov equations at 
the steady state can be written as the following: 

                                                                                                                                                                                  (1) 
The system availability is: 

       ,fA
Oi

i π=π= ∑
Ω∈

 

where: OΩ is a set of operational states, and T...),f,f(f 21= is a column vector associated with the 

system states, e.g., 1=if if system is in operational state i and 0=if  otherwise. 
 
Now assume that N parameters of the system (e.g., failure and/or repair rates) are simultaneously 
changed. For example, all of the component in an aircraft would presumably be subjected to many of 
the same stresses vibration from the engines, shock of landing, irregularities in the power supplied, 
etc. The total variation of the system availability due to the changes of N parameters can be expanded 
in McLaurin series as: 
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An importance factor measuring the relative contribution of one parameter on the total change of the 
system availability, called Differential Importance Measure [1], can be defined as 
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where: 
ix

Aδ  is the variation of the system availability provoked by a change of parameter ix  (failure 

or repair rate). Similarly, this variation can be evaluated by  
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3.  FIRST - ORDER APPROACH 
 

0=πM



Assume that 
ix

Aδ in equation (4), and Aδ in equation (2) can be approximated by the first-order 

differentiations. 
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3.1.  Evaluation of 

ix
I Aδ and AIδ  

 
By taking the derivative with respect to a parameter ix (failure or repair rate) of equation (1), one gets: 
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where 
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ix x

M
Q

∂
∂= . Since one eigenvalue ofM is zero, its regular inverse does not exist. One has to use 

a generalized inverse, i.e., the group inverse [3], π−π−= −≠ e)eM(M 1 , with T),...,,(e 111=  and 

π−== ≠≠ eIMMMM . Multiplying both sides on the right with ≠M , one gets: 

          ≠π−=π−
∂

π∂
MQ)eI(

x ix
i

, 

or, 

            .MQ
x

e

x ix
ii

≠π−=π
∂
π∂−

∂
π∂

 

Note well that 1=πe , so 0=
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. One obtains finally: 
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Consequently, 
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Looking at the (7) and (8), it is clear that 

ix
Aδ and δδA can be determined from the same formula by 

changing only the matrix 
ix

Qδ and δQ . 

 
3.2.  First-order differential importance measure 
 
Using the results from (7) and (8), the first-order differential importance measure can be written as 
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Since IDIM  is based on the first-order differentiations, IDIM is therefore additive. More explicitly, 

suppose that one is interested in the IDIM of the subset of parameters sji x...,,x,x . Then,  
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by 
sxjx Q...,,Q δδ respectively. 

On the other hand, if one needs only the IDIM of a parameters subset and one does not need IDIM of 
each individual, one can evaluate it directly as follows: 
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4.  SECOND - ORDER APPROACH 
 

The IDIM can be easily evaluated with equation (9), but it does not  take into account either the 
second/higher-order effects or the impacts of the simultaneous changes of several parameters, and it 
can therefore only be used when the changes of parameters verify the small enough conditions (see [1] 

for the details). The idea of second-order extension of the IDIM , named IIDIM , is considered in [6], 
however, it is only applicable for the independents components systems with the changes due to the 

components’ (un) availability. This section explores the development of IIDIM in the context of 
Markovian systems and the changes due to the system parameters (failure or/and repair rates). 
 
Now assume that 

ix
Aδ in equation (4) and Aδ  in equation (2) can be approximated by the sum of the 

first and second-order differentiations, e.i. 
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4.1.  Evaluation of 
ix

II Aδ and AIIδ  

 
By taking the derivative with respect to a parameter jx of equation (5): 
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Using the group inverse ≠M , and noting that π−=≠ eIMM , 1=πe , one gets: 
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So: 

                             

.MQ
x

xQx
x

x

MQx
x

xQx
x

x
xx

xx

N

i i
i

N

j
jxj

N

i i
i

N

i
ixi

N

j j
j

N

j
jxj

N

i i
i

N

i

N

j ji
ji

≠
δ

===

≠

===== =

∑∑∑

∑∑∑∑∑∑

∂
π∂δ−=δ

∂
π∂δ−=














δ

∂
π∂δ+δ

∂
π∂δ−=

∂∂
π∂δδ

111

11111 1

2

22

                (12) 

Finally, by using (6) and (11), one obtains: 
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4.2.  Second-order differential importance measure 

 
By using (7), (8), (13) and (14), the second-order differential importance measure can be written as: 
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Note well that IIDIM  is no longer additive since IIDIM related to a subset of parameters accounts the 
impacts of simultaneous changes of pairs of parameters, but IIDIM related to a individual one does 

not. The IIDIM of the subset of parameters can however be expressed as the following: 
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It is obvious that the results obtained from IIDIM  are more precise than those provided by IDIM  due 
to the second-order differentiation effects. However, the IIDIM is only applicable when the higher-
order effects and the impacts of the changes of more than two parameters are neglected. From a 
practical point of view, this assumption is not always reliable. Hence, the next section is devoted to the 
development of the high-order approach which quantifies the higher-order effects and the impacts of 
simultaneous changes of three or more parameters. 
 
5.  HIGH - ORDER APPROACH 
 
The impact of hth-order differentiations (h =3,4,…) can be expressed as the following: 
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5.1.  Evaluation of 
ix

h Aδ and Ahδ  

 
By taking the derivative with respect to a parameter kx of equation (10), one obtains the following 
equation: 
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Using the group inverse ≠M with π−=≠ eIMM  and 1=πe . One gets: 
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From (6), (12) and (16), the following equation can be shown: 
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Similarly, by taking the hth-order derivatives, one obtains finally: 
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Looking at this equation, it is clear that the hth-order effects can be easily evaluated and it is based 

only on the first-order derivative, or more precisely, based on the group inverse ≠M . 
 
By using (8), (13), and (17), the total variation of the system availability provoked by the changes of N 
parameters at the same time, Aδ ,  can be approximated  by the following equation: 
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And the variation of the system availability provoked by the change of one parameter can be: 

                                 ( ) ( ) .fMQ)(...fMQfMQA
h

ix
h

ixixix
≠

δ
≠

δ
≠

δ π−++π+π−≈δ 1
2

                           (19) 

 
5.2.  High-order differential importance measure 
 
From (18) and (19), the high-order differential importance measure can be written as: 
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)x,...,x,x( sji
hDIM  for simultaneous changes of several parameters can be evaluated with equation 

(20) by only the taking 
sx...jxix

Q δδδ instead of 
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Note well that DIMs can be evaluated by the finite differences method, the changes of the system 
configuration may however be required for each evaluation of the availability variation. The interest of 
these approaches is precisely to be able to evaluate DIMs of any parameter or any group of parameters 
by changing only the corresponding matrix Q without additional calculations. 
 
6.  A NUMERICAL EXAMPLE 
 
The purpose of this section is to show how the DIMs can be used in reliability sensitivity analysis and 

to compare IDIM , IIDIM with proposed extension hDIM through a simple example sketched in 
Figure 1. Unit 4 (C4) is in cold redundancy with unit 3 (C3). As soon as C3 is repaired, C4 stops. This 
system includes also a shared load between unit 1 (C1) and branch of unit 2 (C2), C3 and C4. The 
failure of C1 increases therefore from 1λ  to 1λ  when the branch (C2, C3 and C4) is failed.  Table 1 

gives the values of failure rates iλ / iλ  , and the repair rates iµ ( 41 ...,,i = ). 
 
Assume that all components’ failure rates are changed simultaneously. For example, all of the 
component in an aircraft would presumably be subjected to many of the same stresses vibration from 
the engines, shock of landing, irregularities in the power supplied, etc. 

 



Figure 1: System structure 
 

 
 

Table 1: Components’ failure/repair rate 
 
 

 
 
 
 

To illustrate the application of DIMs, a uniform percentage change ( ω=
λ
δλ

=
λ
δλ

j

j

i

i , with 41 ..,,j,i = ) 

is considered, and more precisely, three scenarios of changes are proposed: %1=ω , %7=ω and 
%10=ω  in  order to show the need of the high order approach. 

 
   Table 2: DIMs & important component’s ranking, cas %1=ω  

 

Table 2 represents the results of IDIM , IIDIM , IIIDIM and VIDIM  for the case %1=ω . According to 
these importance measures, the components importance rankings could be drawn. The results show 

that IDIM , IIDIM , IIIDIM and VIDIM can provide the same ranking. The most important component 
is C4 and C2 is the less important one. 
 

  Table 3: DIMs & important component’s ranking, cas %7=ω  

 
Looking at the results presented in Table 3 and Table 4, the IDIM  of all components’ failure rates 

remains unchanged that is why the component importance ranking based on IDIM  always holds. 

However, the IIDIM , IIIDIM , and VIDIM ’s values change leading to different rankings. For the case 

%7=ω , the IIDIM , IIIDIM , and VIDIM  provide the same importance ranking. Note however that 

Unit iλ  iµ  iλ  

C1 2x10-3 1x10-3 2.5x10-3 

C2 1x10-3 9x10-3 - 
C3 2x10-3 2.9x10-3 - 
C4 3x10-3 6x10-3 - 

DIMs C1( 1λ , 1λ ) C2( 2λ ) C3( 3λ ) C4( 4λ ) Order 

IDIM  0.222047 0.209410 0.210678 0.357866 C4>C1>C3>C2 

IIDIM  0.220546 0.209234 0.209637 0.357326 C4>C1>C3>C2 
IIIDIM  0.220560 0.209238 0.209645 0.357333 C4>C1>C3>C2 
VIDIM  0.220560 0.209238 0.209645 0.357333 C4>C1>C3>C2 

DIMs C1( 1λ , 1λ ) C2( 2λ ) C3( 3λ ) C4( 4λ ) Order 

IDIM  0.222047 0.209410 0.210678 0.357866 C4>C1>C3>C2 

IIDIM  0.211533 0.208183 0.203384 0.354088 C4>C1>C2>C3 
IIIDIM  0.212220 0.208364 0.203818 0.354426 C4>C1>C2>C3 
VIDIM  0.212189 0.208356 0.203801 0.354412 C4>C1>C2>C3 



this ranking is not the same as the one obtained by IDIM , this means  IDIM  may not be used for this 
case.  
 

   Table 4: DIMs & important component’s ranking, cas %10=ω  

 
For the case %10=ω , the importance rankings based on IDIM  and on IIDIM  are not the same and 

both of them are different from the one provided by IIIDIM  or VIDIM (see Table 4). This means that 
IIIDIM can provide a more precise importance ranking than IDIM  and IIDIM . 

 
It is therefore clear that the high-order approach would provide better results than those obtained from 
the first and second-order approach. Obviously, the need to resort to information on the high-order 
effects depends on the magnitude of the change of parameters’ values. 
 
7.  CONCLUSIONS 
 
In this work, the differential importance measures applied traditionally in the context of systems with 
independent components described by static boolean models is extended to the dynamic systems 
including inter-components, functional dependencies, or more generally, systems described by 
Markov models. In the cases of steady state, our developments allow: (i) several new computation 

formulas for IDIM , IIDIM ; (ii) the definition of hDIM which provides better results than those 

obtained from IDIM  and IIDIM ; (iii) the more accurate evaluation of the total system performance 
change provoked by the simultaneous changes of system parameters at the same time.  
Our further research focuses on the bounds of McLaurin series to find the minimal h for which 

hDIM can provide the true importance ranking, and on the estimation method to evaluate the DIMs 
from the operating feedback data. At last more detailed applications of these measures to decision-
making in reliability engineering, e.g. to the optimization of maintenance policies, are under study. 
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DIMs C1( 1λ , 1λ ) C2( 2λ ) C3( 3λ ) C4( 4λ ) Order 

IDIM  0.222047 0.209410 0.210678 0.357866 C4>C1>C3>C2 

IIDIM  0.207021 0.207656 0.200254 0.352466 C4>C2>C1>C3 
IIIDIM  0.208418 0.208025 0.201136 0.353156 C4>C1>C2>C3 
VIDIM  0.208329 0.208003 0.201088 0.353116 C4>C1>C2>C3 


