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Sensitivity and importance analysis of Markov models usingperturbation
analysis: application in reliability studies

P. Do Van, S. Khalouli, A. Barros, C. B́erenguer
Universit́e de technologie de Troyes/ICD FRE CNRS 2848, Troyes, France

ABSTRACT: Sensitivity (or importance analysis) has been first defined for “static systems”, i.e. systems de-
scribed by combinatorial reliability models (fault or event trees) and several measures, both structural and prob-
abilistic, have been proposed to assess component importance. For dynamic systems including inter-component
and functional dependencies (cold spare, shared load, shared ressources, ....), and described by Markov models
or, more generally, by discrete events dynamic systems models (DEDS), the problem of sensitivity analysis
remains widely open. In this paper we propose to use the estimation method developed by Cao in (Cao & Chen
1997) in the framework of Perturbation Analysis, to formalize several sensitivity measures in case of dynamic
systems. We show with numerical examples why this method offers a promising tool for steady state sensitivity
analysis of Markov Processes in reliability studies.

1 INTRODUCTION
The sensitivity analysis of the results of a system re-
liability study helps to identify which components
contribute the most to system (un)performance (re-
liability, maintainability, safety, or any performance
metrics of interest). Hence, the reliability sensitivity
(or importance) analysis provides fruitful insight into
the system behavior, helps to find design weaknesses
or operation bottlenecks and suggest optimal modifi-
cations for system upgrade (improved design, better
maintenance, ...). To take full advantage of reliability
studies, it is thus of great importance to have at one’s
disposal efficient sensitivity analysis methods which
can be implemented on industrial systems, without
oversimplifying assumptions.

From a mathematical point of view, the sensitivity
of the system reliability to a given design parameter
(and, incidentally, the reliability importance of a given
component) is very often defined as the partial deriva-
tive of the reliability with respect to that parameter
since this derivative quantifies the effect of a small
parameter change on the system reliability.

Sensitivity (or importance analysis) has been first
defined for “static systems”, i.e. systems described by
combinatorial reliability models (fault or event trees)
and several measures, both structural and probabilis-
tic, have been proposed to assess component impor-
tance. Most of these measures are linked one to each
other and the Birnbaum importance, defined as a the
partial derivative of the system reliability wrt to a pa-
rameter of interest is one of the most used importance
factor. A well established methodology exists to com-

pute the sensitivity measures, the most efficient being
based on binary decision diagrams (BDD), (Dutuit &
Rauzy 2001).

For dynamic systems including inter-component
and functional dependencies (cold spare, shared load,
shared ressources, ....), and described by Markov
models or, more generally, by discrete events dynamic
systems models (DEDS), the problem of sensitivity
analysis remains widely open. The exact solution for
the sensitivity measures for a Markov model relies on
the Frank’s approach (Frank 1978) (the classical set
of differential equations is extended to a bigger set of
equations including the sensitivity factor equations),
but it is computationally burdensome and almost un-
usable or highly inefficient on a realistic-size systems
because the state-space is too big. To cope with this
problem, some approximate solutions have been pro-
posed but they are often only applicable on a limited
class of systems (e.g. acyclic Markov models with no
repair), (Ou & Dugan 2003). The primary objective
of this contribution is thus to identify a feasible (i.e.
usable on realistic size systems and realistic from a
practical point of view) approach to evaluate the relia-
bility sensitivity measures (based on the performance
derivative with respect to the parameter of interest) for
dynamic systems. We focus on the estimation meth-
ods developed in the framework of Perturbation Anal-
ysis (PA) which seems to be very promising espe-
cially in the context of Markov model and stationary
performance measure. This presentation is organized
in two parts.

In section 2, we present the main issue of“Per-



turbation analysis” : from a methodological point
of view, the aim of this communication is to show
how the perturbation analysis approach and its first
variant, the Infinitesimal Perturbation Analysis (IPA)
(Cao 1995), offer a promising solution to find deriva-
tive estimates, and hence reliability importance mea-
sures, for general discrete event dynamic systems via
a single sample path observation.

In section 3, we focus on the application in relia-
bility of PA approach. We show how the PA and one
of its more recent variants, the perturbation realiza-
tion, give a particularly suitable solution for sensitiv-
ity analysis at steady state, in the context of Markov
chain modeling (Dai 1996; Cao et al. 1996; Cao &
Chen 1997; Cao & Wan 1998). The estimation of
derivative is made via a single sample path observa-
tion, which allows both:

• the optimization of the on-line system perfor-
mance,

• the study of the system sensitivity wrt its pa-
rameters when the infinitesimal generator of the
Markov process is unknown.

It provides also an efficient tool to investigate not only
the importance of a given component, but also the im-
portance of a class of components, the importance
of the maintenance, and, more generally, the effect
of the simultaneous change of several design param-
eters. Several numerical examples will illustrate the
proposed approach.

NOTATION LIST
D realization matrix
D̂ estimated realization matrix
dij realization factor
E{X} expected value of random variableX
ηt(θ,X) performance function at timet
ηt(θ) performance measure at timet
η(θ) limit of ηt(θ)
η(θ) performance measure on infinite horizon
φt(θ,X) estimate of the performance measure deriva-

tive
λ failure rate of one unit
m dimension of the discrete state space
µ repair rate of one
n number of independent parameters
A transition rate matrix
πi(t) probability of being in stateSi at timet
Q perturbation matrix
S discrete state space
Si discrete state i
θ system parameters set
X(x) random state transition instants

2 PERTURBATION ANALYSIS
2.1 Main issue of perturbation analysis
We consider a stochastic discrete event system de-
fined by:

• a discrete state space notedS = (S1, S2, ..., Sm),

• a set of parameters notedθ = (θ1, θ2, ..., θn),

• a probability space(Ω, F,P ) and a random vec-
tor X = X(x), x ∈ Ω, that determines de state
transition instants.

We define a performance function at timet on this
system, notedηt(θ,X) (it can correspond to the run-
ning state of the system, a maintenance cost, the pro-
ductivity, etc...). Due to the random part of the sys-
tem, the two following quantities are of interest and
are considered as the performance measure of the sys-
tem behavior. At transient state, we have, if it exists:

ηt(θ) = E
{

ηt(θ,X)
}

whereE is the expectation with respect to the proba-
bility measureP . At steady state (whenever it exists),
we have:

η(θ) = lim
t→+∞

ηt(θ,X)

The aim of perturbation analysis is to estimate the
performance measure derivatives by analyzing a sin-
gle sample path defined byX = (X(x), x ∈ Ω) (Cao
1995). We put by definition:

dηt(θ)

dθ
= lim

∆θ→0

ηt(θ + ∆θ)− ηt(θ)

∆θ
(1)

and

dη(θ)

dθ
= lim

∆θ→0

η(θ + ∆θ)− η(θ)

∆θ
(2)

Assume we could change slightly any of the system
parameters, that is we could changeθ into θ′ = θ +
∆θ. We could get :

• a sample pathX = (X(x), x ∈ Ω), of random
state transition instants when the system param-
eters areθ,

• a sample pathX ′ = (X ′(x), x ∈ Ω), of random
state transition instants when the system param-
eters areθ + ∆θ.

A natural estimate for the performance measure
derivative would be to evaluateηt(θ + ∆θ) with data
from the sample pathX ′ (perturbed sample path) and
to estimateηt(θ) from the other sample pathX (nom-
inal sample path). However, this estimation can have
many disadvantages from a practical point of view.
Actually the data from perturbed sample paths are
not always available because it can be impossible to
change the parameters of the system and to observe
the realizations of the state transition instantsX ′(Cao
et al. 1996). In this case, simulation is required, but



it can be computationally burdensome to simulate the
system behavior for each perturbation, and to evaluate
the corresponding finite difference estimates. That is
why in the area of Perturbation Analysis, the objec-
tive is to estimate the derivatives 1 or 2 on the basis of
data observed from a nominal sample path.

2.2 Infinitesimal Perturbation Analysis (IPA)
The solution for this problem proposed by Infinitesi-
mal Perturbation Analysis (IPA) is to use the follow-
ing estimateφt(θ,X) for the performance measure
derivative:

φt(θ,X) = lim
∆θ→0

ηt(θ + ∆θ,X)− ηt(θ,X)

∆θ

where:

• ηt(θ,X) is the performance function of a system
computed with data from the sample pathX, and
making the assumption that the system parame-
ters areθ,

• ηt(θ + ∆θ,X) is the performance function of a
system computed with data from the same sam-
ple pathX, and making the assumption that the
system parameters areθ + ∆θ.

Henceφt(θ,X) is defined with one single sample path
(X(x), x ∈Ω). Moreover, looking at the mean and the
limit of this estimate we get :

E
{

φt(θ,X)
}

=

E
{

lim
∆θ→0

ηt(θ + ∆θ,X)− ηt(θ,X)

∆θ

}

and

lim
t→+∞

φt(θ,X) =

lim
t→+∞

( lim
∆θ→0

ηt(θ + ∆θ,X)− ηt(θ,X)

∆θ
)

Hence the estimateΦt(θ,X) can be used if it can
be proved at least for the studied application case that
it is unbiased and/or consistent, i.e.:

E
{

φt(θ,X)
}

=
d

dθ
E

{

ηt(θ,X)
}

=
dηt(θ)

dθ

lim
t→+∞

φt(θ,X) =
dη(θ)

dθ

The main issue of IPA are first to find an algorithm
that estimates the functionφt(θ,X) and then to prove
that the estimateΦt(θ,X) verifies one or both of these
properties. It is not always the case, especially when

the performance measure is discontinuous with re-
spect toθ. That is why, smoothed perturbation anal-
ysis, finite perturbation analysis and perturbation re-
alization are developed for the cases when IPA fails
(Cao 1995; Cao & Chen 1997). The two first meth-
ods work well for some class of problems but imply
a higher analytical difficulties and higher computa-
tional difficulties (Cao 1995). The last one is more
promising especially in the context of Markov model
and stationary performance measures. We think it can
be of great interest for application in reliability and
we explain the main concepts in section 3.

3 APPLICATIONS IN RELIABILITY
Markov processes are widely used in reliability to
study the performance measure (reliability studies,
Availability, Maintainability, etc...) of many complex
dynamic systems with inter-component and func-
tional dependencies (cold spare, shared load, shared
resources, ...). For such systems, the performance
measure derivatives calculation is of great interest but
the exact solutions are often computationally burden-
some. The methods proposed directly by Perturbation
Analysis and Infinitesimal Perturbation Analysis can
be an alternative solution to exact methods, but in the
specific context of Markov modeling, a more recent
development of PA,“the perturbation realization”
presented by Cao in (Cao & Chen 1997), is of great
interest from a practical point of view. By explain-
ing in this section the main concepts of this method
we aim at showing its advantages in realistic working
condition.

3.1 Perturbation analysis & Markov process
The aim of this subsection is to transpose the PA
concept into the Markov model formulation. We con-
sider an irreducible Markov process with a finite state
space. Hence, this process is ergodic and there ex-
ists a single stationary distribution, (Ross 1996). This
Markov process is characterized by:

• a finite state spaceS =
{

S1, S2, ..., Sm

}

,

• a set of parameters notedθ which represents
the transition rates, and determines the transition
rates matrix notedA.

• a random vectorX = (Xn, n ≥ 0), that deter-
mines the state transition instants.

• a probability vectorπ = (π1, π2, ..., πm) that in-
dicates the probability that the system is in each
stateSi in steady state.

We define a performance functionηt(θ,X) that as-
sociates a state or a group of states to a real number.
For the sake of clarity, we note itηt(A,X) in the fol-
lowing. The stationary performance measure we often



Figure 1: Perturbation onλ2

need in the context of reliability studies is the limit of
the expected performance function defined as:

η(A) = lim
t→+∞

Eπ

{

ηt(A,X)
}

For example,ηt(A,X) can be the function that equals
1 when the system is running and that equals 0 when
the system is failed. In this case, the expected perfor-
mance measure in steady state will be:

η(A) =
∑

i∈W
πi

with W is the set of running states of the system.η(A)
corresponds here to the asymptotic availability of the
system.

A perturbation on one or more parameters of the
system is equivalent to a perturbation in the transition
rates matrixA. It leads to a perturbed transition ma-
trix Aδ = A + δQ whereδ is a small real number and
Q is a matrix in which a 0 indicates that the parameter
at the same place inA is not perturbed and a number
α different from 0 indicates that the parameter at the
same place inA is perturbed of an amountαδ. The
only condition on the structure ofQ is that the matrix
Aδ is also a transition matrix, that is the sum of its
lines equals 0. As an example, we consider two units
C1 and C2 in a parallel structure with constant failure
ratesλ1 andλ2 and constant repair ratesµ1 andµ2.
Each component can be running or failed (failed states
are notedC1 andC2). The Markov graph of this sys-
tem is sketched in Figures 1 and 2. We consider two
types of perturbation: a perturbation on one specific
parameter in Figure 1 (onλ2), and the perturbation on
the probability of being in one specific state in Figure
2 ( state number 3 ). These perturbations correspond
to two different matrixesQ:

Q1 =







−1 0 1 0

0 −1 0 1

0 0 0 0

0 0 0 0






, Q2 =







0 0 0 0

0 0 0 0

3 0 −1 −2

0 0 0 0







The stationary performance measure of the per-
turbed Markov process (that is the Markov process
with transition matrixAδ) is notedη(Aδ). Hence, we

Figure 2: Perturbation on state 3

can define the derivative ofη(A) in the direction ofQ
as:

dη(A)

dQ
= lim

δ→0

η(Aδ)− η(A)

δ

Cao showed in (Cao & Chen 1997) that this deriva-
tive can be estimated with one single sample path and
without using IPA estimate. We noteX i = (X i

t , t≥ 0)

andXj = (Xj
t , t ≥ 0) the Markov process with the

same transition rate matrixA and with different ini-
tial statesX i

0 = i andX
j
0 = j. Let us definedij the

realization factor as (i, j = 1, ...,m):

dij = E
{

∫ +∞

0

[

η(A,X i
t)− η(A,X

j
t )

]

dt
}

dij is the expected long term effect of a change of the
initial state on the measure performance. It is called
in (Cao & Chen 1997) “realization factor”. If the
Markov processs are irreductible, then there exists a
random timeL such thatX i

L = X
j
L. Hence:

dij = E
{

∫ L

0

[

η(A,X i
t)− η(A,X

j
t

]

dt
}

So the effect on an infinite horizon can be estimated
on a finite horizon.

We also defineSj(i):

Sj(i) = inf
{

t : t ≥ 0,Xj
t = i

}

Sj(i) corresponds to the minimal time elapsed be-
tween a transition in statej and a transition in state
i. It is proved in (Cao & Chen 1997) that:

dij = E
{

∫ Sj(i)

0

[

(η(A,X i
t)− η(A)

]

dt
}

(3)

and that:

dη

dQ
= πQDT πT (4)

D is called the “pertubation realization matrix”
whose components aredij, i, j = 1, ...,m. Equations
3 and 4 allow the estimation of the quantitiesdij and
of the derivativedη

dQ
with a single sample path of the



Markov processX i = (X i
t , t ≥ 0): we can estimate

Sj(i), andπ (and consequentlyη(A)) only with the
observation of the transition instants ofX i.

Hence, thanks to the ergodicity of the considered
process, the realization matrix gives an estimate of the
stationary performance measures that:

• can be evaluated from one single sample path.
This is very interesting from a practical point
of view for on-line performance optimization,
when the parameters are impossible to change
intentionally, or when the simulation of each per-
turbed path is computationally burdensome.

• can be evaluated without knowing the infinitesi-
mal generatorA of the Markov process.

• is valid even if the performance measure is not
continuous wrt each parameter. This situation
can exist in reliability studies with some failure
rates and/or repair rates closed to zero.

• can be evaluated in any direction, only by chang-
ing the matrix Q.

Let us note that the estimation of the matrixD
can also be computationally burdensome because it
must be led for each couple(i, j) (complexity of order
o(m2)). That is why an approximated estimate (with
potential vector) is proposed in (Cao & Wan 1998)
which reduce the complexity of the calculation to the
ordero(m).

The convergence of these estimators based on the
realization matrix has been studied and proved by
X.R. Cao in (Cao & Chen 1997).

3.2 Numerical examples

The numerical results presented in this section are ob-
tained with simulated operating feedback data. The
aim is to show how the estimation of realization fac-
tors can help for the sensitivity study of stationary
measures in reliability studies. A first simple case is
studied to make a connection between the Birnbaum
factor and a derivative in the direction ofQ. Then, a
more complex case is presented to enhance the advan-
tages of the realization matrix from a practical point
of view. In both cases, the transition rates matrix is
supposed to be unknown, the performance measure is
the asymptotic availability and the simulations are led
for 100000 transitions time.

Consider first the two-unit system sketched in Fig-
ure 1. In this case, the asymptotic availability can be
obviously calculated with the Kolmogorov equations
in steady state:

−(λ1 + λ2)π1 + λ1π2 + λ2π3 = 0

µ1π1 − (µ1 + λ2)π2 + λ2π4 = 0

µ2π1 − (λ1 + µ2)π3 + λ1π4 = 0

µ2π2 + µ1π3 − (µ1 + µ2)π4 = 0

π1 + π2 + π3 + π4 = 1

The availability of the system is:

η(A) = π1 + π2 + π3 =
µ1µ2 + µ1λ2 + µ2λ1

(λ1 + µ1)(λ2 + µ2)

We first generate a set of data with transition in-
stants in caseλ1 = 0.01, λ2 = 0.01, µ1 = 0.05, µ2 =
0.05. Then we estimateSj(i) andπ and we obtain the
following estimation for the matrixD.

D̂ =







0 −1.3648 −1.4528 −11.2053
1.3648 0 −0.0850 −9.8446
1.4528 0.0850 0 −9.8063
11.2053 9.8446 9.8063 0







and for the steady-state probability vector:Π̂ =
(0.6898,0.1406,0.1413,0.0283).

Now let us consider the perturbation on one spe-
cific parameter (for example onλ2, with derivativeη
in the directionQ1). Then, the perturbation estimation

with D̂, π̂, Q1 and Equation 4 gives:̂dη

dQ1
= −2.3854.

In comparison, the analytical calculation of the partial
derivative gives∂η

∂λ1
= −2.3148. In this case, the per-

turbation realization leads to the estimation of partial
derivatives.

Now let us consider the perturbation matrixQ2. In
this case, the perturbation corresponds to the pertur-
bation on one specific state (state 3) and no more on
one parameter. We obtain with the same estimation

D̂, andπ̂: ∂̂η

∂Q2

= 3.3741. This derivative means that
if we increase the repair rate of an amount3δ, and if
we decrease the failure rate of an amount2δ, then the
availability of the whole system will increase of an
amount3.374δ. This value quantifies the gain for the
system availability if we change the probability of be-
ing in state3. Since state 3 is a running state and the
derivative is calculated in a directionQ2 that increases
the probability of in staying state 3. The availability
increases and we can quantify at which speed.

We consider now a more complex system sketched
in Figure 3. The corresponding Markov process is
drawn in Figure 4. This structure includes a cold spare
(component 4) and a shared load (when components
2,3, 4 are failed, if component 1 is running, its failure
rate increases fromλ1 to λ1)



Figure 3: System structure

Figure 4: Markov process

In this case, the analytical calculation is bur-
densome and we present only the results ob-
tained with the estimation of the realization ma-
trix D. The data are simulated with parameters
λ1 = 0.01, λ1 = 0.015, λ2 = 0.01, λ3 = 0.01, λ4 =
0.01, µ1 = 0.05, µ2 = 0.05, µ3 = 0.05, µ4 = 0.05.
Hence the repair rates and the failure rates are of
the same order of magnitude. The matrixD and the
steady state vectorπ have been estimated one time
and all the results presented in Tables 1,2, 3, 4, are
obtained by changing only the matrixQ in Equation
4.

Tables 1 and 2 give the partial derivative estimates.
We can observe that an increase of a failure rate leads
to a decrease of the availability, and on the contrary,
an increase of the repair rateµi leads to an increase
of the availability. If we look at the repair rates, we
can classify the components according to their impor-
tance factor:C3 < C4 < C2 < C1. Component 1 is
the most “critical” since the whole system recovers
when it recovers and the repair rates are of the same
order of magnitude. If we look at the failure rates,
we get a different ranking because of the shared load:
C3 < C4 < C1(λ1) < C1(λ1) < C2. The system is
more sensitive to a perturbation ofλ1 than a pertur-
bation ofλ1 since when the failure rate of component
1 equalsλ1, components 2, 3, and 4 are failed. So a
failure of component 1 implies a failure of the whole
system. What is more, the system sensitivity to com-
ponent 1 is shared between the sensitivity toλ1 and
to λ1. Hence the above classification does not mean
that component 2 is more critical than component 1.
At last, in case of repair rate and failure rate, we can

∂η

∂λ1

∂η

∂λ1

∂η

∂λ2

∂η

∂λ3

∂η

∂λ4

-0.9876 -1.4779 -2.8559 -0.4075 -0.5156

Table 1: Sensitivity analysis to failure rates

∂η

∂µ1

∂η

∂µ2

∂η

∂µ3

∂η

∂µ4

0.6591 0.5183 0.0822 0.1045

Table 2: Sensitivity analysis to repair rates

see thatC3 is less critical thanC4. This is due to the
cold spare: when component 4 is running, component
3 is already failed so the impact of component 4 on
the system state is more important.

Let us now consider other directions, that is other
matrixesQ which lead to other directional deriva-
tives. We do not consider here perturbation on one
specific state, that is when a parameter is perturbed,
it is perturbed in the whole transition rates matrix.
In Table 3, we put directions(λi, λj) to indicate that
both parameters are perturbed of the same amount
δ. These perturbations correspond to the derivative
in the direction of the line of equation:y = x (λi =
x,λj=y). Hence, they give an indicator of the sys-
tem sensibility to a group of components. We find
that the group(C3,C4) is less critical than compo-
nent 2. This is due to the cold spare: when C3 fails,
component C4 can be switched on immediately to
replace C3, whereas when C2 fails, there is no re-
placement. Hence, the group(C3,C4) can be con-
sidered as a component which is less critical than C2.
What is more, the group(C2,C4) is more critical than
the group(C2,C3) because whenC4 is running, the
component C3 is already failed. At last, we verify that
a group(C2,Ci) is more critical thanC2 alone and
that a groupC2,C3,C4 with three components is more
critical than any groups with one or two of these com-
ponents. Of course, this analysis is valid if the failure
and repair rates are of the same order of magnitude.
If it was not the case, we could easily identify in the
same way some groups of lower size that are more
critical because of the high failure rate of one of their
components.

The last example we present is given in Table 4.
In this case, we tuned the perturbation on parameter
µ2, such that a change of an amountδ on the fail-
ure rateλ2 is totally compensated. From a practical
point of view, we optimized the maintenance parame-
ter, such that a perturbation on the failure rate has no
impact on the system availability. The approximate
optimal solution we found corresponds to a deriva-



tive in the direction of the line of equation:y = 5.5x
(x = λ2, y = µ2). A study of the estimate of the deriva-
tive dη

dQ
can be possible in many cases because we

need only to change the matrixQ in Equation 4.
Hence in few iterations we can approximate the value
of the repair rate that compensates an increase of the
failure rate for one component. Some isolines can be
easily drawn to indicate which joint parameters vari-
ations do not affect the system availability.

Direc- (λ3, λ4) (λ2, λ3) (λ2, λ4) (λ2, λ3, λ4)
tion

dη

dQ
-0.9231 -3.2634 -3.3715 -3.7790

Table 3: Sensitivity analysis to a group of components

Direction (λ2,5.5 ∗ µ2)

dη

dQ
-0.0053

Table 4: Sensitivity analysis to a component

4 CONCLUSION
The results presented in this paper are a natural ex-
tension of the classical sensitivity analysis developed
for “static systems”. The main idea is to obtain the
derivatives of a performance measure without using
exact or approximates methods which are burden-
some, and without using finite difference estimates
which require data from both the nominal and the
perturbed system behavior. Actually, the data of the
perturbed system can be unavailable in many realis-
tic cases when the parameters can not be intentionally
modified (for economic or safety reasons for exam-
ple).

With Perturbation Analysis and Infinitesimal Per-
turbation Analysis, methods have been developed to
estimate the sensitivity measure of discrete events dy-
namic systems models on the basis of the nominal
system behavior only. In the framework of Markov
process modeling, the estimation method presented
by Cao in (Cao & Chen 1997) is particularly well for-
malized. From a practical point of view, it allows the
estimation of sensitivity measures on the basis of op-
erating feedback data in nominal conditions, without
knowing the generator of the underlying Markov pro-
cess. We have shown in this paper that many different
sensitivity measures (sensitivity to one or more pa-
rameters with any directional derivative, sensitivity to
the probability of being in a state) can be led with no
additional calculations and can be used in many relia-
bility studies: identification of a group of critical com-

ponents, adaptation of the maintenance parameters to
keep a constant availability level in case of compo-
nents degradation, etc...

This paper is a first step towards the formalization
of practical tools and sensitivity measures for impor-
tance analysis of dynamic systems. Our further re-
search focuses on more detailed applications of the
perturbation realization to the sensitivity studies of
dynamic systems and the development of methods to
analyse the transient state of a Markov processes.
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