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Sensitivity and importance analysis of Markov models ugiegurbation
analysis: application in reliability studies

P. Do Van, S. Khalouli, A. Barros, C.@&enguer
Universié de technologie de Troyes/ICD FRE CNRS 2848, Troyes, France

ABSTRACT: Sensitivity (or importance analysis) has beest fitefined for “static systems”, i.e. systems de-
scribed by combinatorial reliability models (fault or evémrees) and several measures, both structural and prob-
abilistic, have been proposed to assess component impert&ar dynamic systems including inter-component
and functional dependencies (cold spare, shared loackkdhassources, ....), and described by Markov models
or, more generally, by discrete events dynamic systems Im@¢D&DS), the problem of sensitivity analysis
remains widely open. In this paper we propose to use the astimmethod developed by Cao in (Cao & Chen
1997) in the framework of Perturbation Analysis, to formalseveral sensitivity measures in case of dynamic
systems. We show with numerical examples why this methaa®# promising tool for steady state sensitivity
analysis of Markov Processes in reliability studies.

1 INTRODUCTION pute the sensitivity measures, the most efficient being

The sensitivity analysis of the results of a system rebased on binary decision diagrams (BDD), (Dutuit &
liability study helps to identify which components Rauzy 2001).
contribute the most to system (un)performance (re- For dynamic systems including inter-component
liability, maintainability, safety, or any performance and functional dependencies (cold spare, shared load,
metrics of interest). Hence, the reliability sensitivity shared ressources, ....), and described by Markov
(or importance) analysis provides fruitful insight into models or, more generally, by discrete events dynamic
the system behavior, helps to find design weaknesseystems models (DEDS), the problem of sensitivity
or operation bottlenecks and suggest optimal modifianalysis remains widely open. The exact solution for
cations for system upgrade (improved design, bettethe sensitivity measures for a Markov model relies on
maintenance, ...). To take full advantage of reliabilitythe Frank’s approach (Frank 1978) (the classical set
studies, it is thus of great importance to have at one'sf differential equations is extended to a bigger set of
disposal efficient sensitivity analysis methods whichequations including the sensitivity factor equations),
can be implemented on industrial systems, withoubut it is computationally burdensome and almost un-
oversimplifying assumptions. usable or highly inefficient on a realistic-size systems
From a mathematical point of view, the sensitivity because the state-space is too big. To cope with this
of the system reliability to a given design parameterproblem, some approximate solutions have been pro-
(and, incidentally, the reliability importance of a given posed but they are often only applicable on a limited
component) is very often defined as the partial derivaclass of systems (e.g. acyclic Markov models with no
tive of the reliability with respect to that parameter repair), (Ou & Dugan 2003). The primary objective
since this derivative quantifies the effect of a smallof this contribution is thus to identify a feasible (i.e.
parameter change on the system reliability. usable on realistic size systems and realistic from a
Sensitivity (or importance analysis) has been firstPractical point of view) approach to evaluate the relia-
defined for “static systems”, i.e. systems described byility sensitivity measures (based on the performance
combinatorial reliability models (fault or event trees) derivative with respect to the parameter of interest) for
and several measures, both structural and probabilislynamic systems. We focus on the estimation meth-
tic, have been proposed to assess component impdpd.s develope.d in the framework of Perturb.apon Anal-
tance. Most of these measures are linked one to eadt$is (PA) which seems to be very promising espe-
other and the Birnbaum importance, defined as a théially in the context of Markov model and stationary
partial derivative of the system reliability wrt to a pa- Performance measure. This presentation is organized
rameter of interest is one of the most used importanc# two parts.
factor. A well established methodology exists to com- In section 2, we present the main issue“Bér-



turbation analysis” : from a methodological point ,Sm),
of view, the aim of this communication is to show

how the perturbation analysis approach and its first ® @ setof parameters notéd= (61,0s, ..., 6,,),
variant, the Infinitesimal Perturbation Analysis (IPA)
(Cao 1995), offer a promising solution to find deriva-
tive estimates, and hence reliability importance mea-
sures, for general discrete event dynamic systems via

asingle sample path observation. e define a performance function at tirhen this

_In section 3, we focus on the application in relia- system, noted, (6, X) (it can correspond to the run-
bility of PA approach. We show how the PA and onepjng state of the system, a maintenance cost, the pro-
of its more recent variants, the perturbation realizayyctivity, etc...). Due to the random part of the sys-
tion, give a particularly suitable solution for sensitiv- tem, the two following quantities are of interest and
ity analysis at steady state, in the context of Markovare considered as the performance measure of the sys-

chain modeling (Dai 1996; Cao et al. 1996; Cao &tem pehavior. At transient state, we have, if it exists:
Chen 1997; Cao & Wan 1998). The estimation of
7(0) = E{m(6,X)}

derivative is made via a single sample path observa-
tion, which allows both:

e the optimization of the on-line system perfor- whereFE is the expectation with respect to the proba-
mance, bility measureP. At steady state (whenever it exists),

o : we have:
e the study of the system sensitivity wrt its pa-

rameters when the infinitesimal generator of the
Markov process is unknown.

e a discrete state space notgd- (57, 5o, ...

e a probability spacé(2, F, P) and a random vec-
tor X = X(x),z € Q, that determines de state
transition instants.

n(0) = lim n,(6,X)
It provides also an efficient tool to investigate not only . . o '
the importance of a given component, but also the im- The aim of perturbation analysis is to estimate the

portance of a class of components, the importanceerformance measure derivatives by analyzing a sin-

of the maintenance, and, more generally, the effecgle sample path defined by = (X (z),z € ) (Cao
of the simultaneous change of several design parani-995). We put by definition:
eters. Several numerical examples will illustrate the

proposed approach.

NOTATION LIST

D realization matrix
D estimated realization matrix
d;j realization factor

E{X} expected value of random variable
n:(0, X') performance function at timée

7,(0)  performance measure at time
7(#)  limitof 7,(6)
n(f#)  performance measure on infinite horizon

dn,(0) . 1,0+ A0) —7,(0)
o A Af (1)
and
dn(0) n(0 + A0) —n(0)

a9 aboo Y, @)
Assume we could change slightly any of the system
parameters, that is we could changeto 6’ = 6 +

Af. We could get :

$.(0, X ) estimate of the performance measure deriva- ® @ sample path¥ = (X (z),z € (2), of random

tive

failure rate of one unit

dimension of the discrete state space
repair rate of one

number of independent parameters
transition rate matrix

probability of being in staté; at timet
perturbation matrix

discrete state space

discrete state i

system parameters set

random state transition instants
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2 PERTURBATION ANALYSIS
2.1 Main issue of perturbation analysis

state transition instants when the system param-
eters ard,

e a sample pathy’ = (X'(x),z € ), of random
state transition instants when the system param-
eters are) + A6.

A natural estimate for the performance measure
derivative would be to evaluatg(d + A#) with data
from the sample patiX’ (perturbed sample path) and

to estimatej,(¢) from the other sample patki (nom-

inal sample path). However, this estimation can have
many disadvantages from a practical point of view.
Actually the data from perturbed sample paths are
not always available because it can be impossible to
change the parameters of the system and to observe

We consider a stochastic discrete event system dehe realizations of the state transition instakit¢Cao

fined by:

et al. 1996). In this case, simulation is required, but



it can be computationally burdensome to simulate theéhe performance measure is discontinuous with re-
system behavior for each perturbation, and to evaluatepect tod. That is why, smoothed perturbation anal-
the corresponding finite difference estimates. That iysis, finite perturbation analysis and perturbation re-
why in the area of Perturbation Analysis, the objec-alization are developed for the cases when IPA fails
tive is to estimate the derivatives 1 or 2 on the basis ofCao 1995; Cao & Chen 1997). The two first meth-

data observed from a nominal sample path. ods work well for some class of problems but imply
a higher analytical difficulties and higher computa-
2.2 Infinitesimal Perturbation Analysis (IPA) tional difficulties (Cao 1995). The last one is more

The solution for this problem proposed by Infinitesi- Promising especially in the context of Markov model
mal Perturbation Analysis (IPA) is to use the follow- @and stationary performance measures. We think it can
ing estimateg, (6, X) for the performance measure be of great interest for application in reliability and

derivative: we explain the main concepts in section 3.
¢:(0,X) = lim n:(0+ A0, X) —n,(0,X) 3 APPLICATIONS IN RELIABILITY
v/ Al Markov processes are widely used in reliability to
study the performance measure (reliability studies,
where: Availability, Maintainability, etc...) of many complex

_ . dynamic systems with inter-component and func-
e (0, X) is the performance function of a system tjona| dependencies (cold spare, shared load, shared
computed with data from the sample pathand  yesources, ...). For such systems, the performance
making the assumption that the system paramemeasure derivatives calculation is of great interest but
ters aref, the exact solutions are often computationally burden-
. . some. The methods proposed directly by Perturbation
e n:(0 + Af, X) is the performance function of & Analysis and Infinitesimal Perturbation Analysis can
system computed with data from the same sampg o glternative solution to exact methods, but in the
ple path.X', and making the assumption that the gpecific context of Markov modeling, a more recent
system parameters afei- Ad. development of PA“the perturbation realization”
presented by Cao in (Cao & Chen 1997), is of great
interest from a practical point of view. By explain-
ing in this section the main concepts of this method
we aim at showing its advantages in realistic working

Henceyp, (0, X) is defined with one single sample path
(X (x),x € Q). Moreover, looking at the mean and the
limit of this estimate we get :

condition.
B{6u(0,%)} =
3.1 Perturbation analysis & Markov process
. om0+ A0, X)—n(0,X) The aim of this subsection is to transpose the PA
E{ Jlim A0 } concept into the Markov model formulation. We con-
sider an irreducible Markov process with a finite state
and space. Hence, this process is ergodic and there ex-
ists a single stationary distribution, (Ross 1996). This
tEeroo(bt(e’ X) = Markov process is characterized by:
' 0+ A8, X) — (6, X) ¢ afinite state spacé = {Sl,Sg, ...,Sm},
lim ( lim )
t——+o0 AH—0 Af

e a set of parameters noted which represents
Hence the estimaté; (6, X) can be used if it can the transition rates, and determines the transition
be proved at least for the studied application case that rates matrix notedi.
it is unbiased and/or consistent, i.e.:
e a random vectotX = (X,,,n > 0), that deter-

d dn,(0 mines the state transition instants.
B{ou6.) } = —B{n(6,X)} = %
e a probability vectorr = (my, s, ..., 7, ) that in-
I 0.%) — dn(0) dicates the probability that the system is in each
o (0, X) = do stateS; in steady state.

The main issue of IPA are first to find an algorithm  We define a performance functigné, X ) that as-
that estimates the functiaf) (¢, X') and then to prove sociates a state or a group of states to a real number.
that the estimaté, (6, X) verifies one or both of these For the sake of clarity, we notesjt(A, X) in the fol-
properties. It is not always the case, especially whetowing. The stationary performance measure we often



State 1= C1 C2 State 3=C1C2

_ i ; n
State2=T1C2  State 4= CT &2 y ‘\’
A A2

R‘@ ' Figure 2: Perturbation on state 3

can define the derivative @f A) in the direction of)

Figure 1: Perturbation oAy as:
need in the context of reliability studies is the limit of dn(4) — lim 1(As) —7(A)
the expected performance function defined as: dQ -0 4
o1 Cao showed in (Cao & Chen 1997) that this deriva-
n(A) = tEeroo E”{m(A’ X)} tive can be estimated with one single sample path and

_ without using IPA estimate. We nofé’ = (X7, ¢ > 0)
For examplent(A,X_) can be the function thatequals 4,q yi — (X{,t > 0) the Markov process with the
1 when the system is running and that equals 0 WheBame transition rate matrit and with different ini-
the system is failed. In this case, the expected perforgg statesX{ = i and X} = j. Let us definei;; the

mance measure in steady state will be: realization factor asi(j — 1, .., m):
n(A) = i +oo . .
Z§v dij = E{/O [n(A, X}) - H(AyXfﬂdt}

with W is the set of running states of the systeifd)  4,; is the expected long term effect of a change of the
corresponds here to the asymptotic availability of thenitial state on the measure performance. It is called
system. _ in (Cao & Chen 1997) ‘realization factof. If the
A perturbation on one or more parameters of theviarkov processs are irreductible, then there exists a
system is equivalent to a perturbation in the transition ,4om timel, such that\: — X7 Hence:
rates matrixA. It leads to a perturbed transition ma- L L '
trix As = A+ 6Q where) is a small real number and L
(2 is amatrix in which a 0 indicates that the parameter di; = E{ / [77(14, X —n(A, Xﬂ dt}
at the same place iA is not perturbed and a number 0
« different from O indicates that the parameter at the L , )
same place iM is perturbed of an amounts. The So th_e _effect on an infinite horizon can be estimated
only condition on the structure @f is that the matrix On a finite horizon.
Aj; is also a transition matrix, that is the sum of its We also defines” (i):
lines equals 0. As an example, we consider two units
C1and C2in a parallel structure with constant failure g4 (;) = inf {t >0, X) = Z}
rates\; and A\, and constant repair rateg and j.. o
Each component can be running or failed (failed state

are noted”; andC',). The Markov graph of this sys-
tem is sketched in Figures 1 and 2. We consider tw
types of perturbation: a perturbation on one specifi
parameter in Figure 1 (ok;), and the perturbation on S9(3)
the probability of being in one specific state in Figure o .
2 ( state number 3 ). These perturbations correspond dij = E{/O [(n(A’Xt) n(A)}dt} 3)
to two different matrixes):

%j(i) corresponds to the minimal time elapsed be-
(Sween a transition in statg and a transition in state
¢- Itis proved in (Cao & Chen 1997) that:

and that:
-1 0 10 00 0 0 .
o —101 (o0 0 o an _ o pror
@=19 0 00 @[30 -1 2 dQ—”QD” (4)
0 0 00 00 0 0

D is called the pertubation realization matrix

The stationary performance measure of the perwhose components arg;,i,j = 1,...,m. Equations

turbed Markov process (that is the Markov process3 and 4 allow the estimation of the quantitis and
with transition matrixA4s) is notedn(As). Hence, we  of the derivativec% with a single sample path of the



Markov processX’ = (X/,t > 0): we can estimate
S7(i), and7 (and consequently(A)) only with the

observation of the transition instants.®f. —(AM +Ao)m A+ Aoms = 0
Hence, thanks to the ergodicity of the considered
process, the realization matrix gives an estimate of the pamy — (p1 + X))o+ Aoy = 0

stationary performance measures that:
HoTr) — ()\1 + M2)7T3 + )\171'4 =0

e can be evaluated from one single sample path.
This is very interesting from a practical point
of view for on-line performance optimization,
when the parameters are impossible to change
intentionally, or when the simulation of each per-
turbed path is computationally burdensome.

pomo + pms — (i1 + p2)ma = 0
T+ T+ 7m3+7my = 1
The availability of the system is:

_ + 11 Ao + oA
77(A) Ty + Ty + 75 = Hil2 T [1A2 T+ oAl

e can be evaluated without knowing the infinitesi- (A + p1) (A2 + p2)
mal generator of the Markov process.

We first generate a set of data with transition in-
stants in cas@; = 0.01, A\ = 0.01, u; = 0.05, pp =
e is valid even if the performance measure is not0.05. Then we estlmatéﬂ( ) andm and we obtain the
continuous wrt each parameter. This situationfollowing estimation for the matrixD.
can exist in reliability studies with some failure

rates and/or repair rates closed to zero. 0 —1.3648 —1.4528 —11.2053
P 1.3648 0 —0.0850 —9.8446
| 1.4528 0.0850 0 —9.8063

e can be evaluated in any direction, only by chang- 11.2053 9.8446  9.8063 0

ing the matrix Q.
and for the steady-state probability vectdt: =

Let us note that the estimation of the matiix (0. 6898’0'1406’0'14.13’0'0283)' .
can also be computationally burdensome because it NOW 1€t us consider the perturbation on one spe-
must be led for each couple ;) (complexity of order cific parameter (for example ok, with derivativen
o(m?)). That is why an approxmated estimate (with inthe dlrectlorQ ). Then, the perturbatlon estimation
potential vector) is proposed in (Cao & Wan 1998)with D, #, Q; and Equation 4 gives;z- Q = —2.3854.
which reduce the complexity of the calculation to thein comparison, the analytical calculation of the partial
ordero(m). derivative glves— —2.3148. In this case, the per-

The convergence of these estimators based on tharbation reallzatlon leads to the estimation of partial
realization matrix has been studied and proved byyerivatives.

X.R. Cao in (Cao & Chen 1997). Now let us consider the perturbation matex. In

this case, the perturbation corresponds to the pertur-
3.2 Numerical examples bation on one specific state (state 3) and no more on
The numerical results presented in this section are otf2N€ Parameter. We obtain with the same estimation

tained with simulated operating feedback data. TheD, and7: ag = 3.3741. This derivative means that

aim is to show how the estimation of realization fac-if we increase the repair rate of an amoa#t and if
tors can help for the sensitivity study of stationarywe decrease the failure rate of an amokmtthen the
measures in reliability studies. A first simple case isavailability of the whole system will increase of an
studied to make a connection between the Birnbauramount3.3744. This value quantifies the gain for the
factor and a derivative in the direction @f. Then, a  system availability if we change the probability of be-
more complex case is presented to enhance the advaing in state3. Since state 3 is a running state and the
tages of the realization matrix from a practical pointderivative is calculated in a directigp, that increases
of view. In both cases, the transition rates matrix isthe probability of in staying state 3. The availability
supposed to be unknown, the performance measure iscreases and we can quantify at which speed.
the asymptotic availability and the simulations are led We consider now a more complex system sketched
for 100000 transitions time. in Figure 3. The corresponding Markov process is
Consider first the two-unit system sketched in Fig-drawn in Figure 4. This structure includes a cold spare
ure 1. In this case, the asymptotic availability can be(component 4) and a shared load (when components
obviously calculated with the Kolmogorov equations2,3, 4 are failed, if component 1 is running, its failure
in steady state: rate increases from; to \;)




on on on on on

O O oo O3 [V

-0.9876| -1.4779| -2.8559| -0.4075| -0.5156

Table 1: Sensitivity analysis to failure rates

A1 a2 Ous Opa

0.6591| 0.5183| 0.0822| 0.1045

Table 2: Sensitivity analysis to repair rates

see that”3 is less critical tharC'4. This is due to the
cold spare: when component 4 is running, component
3 is already failed so the impact of component 4 on
the system state is more important.

Let us now consider other directions, that is other
matrixes() which lead to other directional deriva-
tives. We do not consider here perturbation on one
specific state, that is when a parameter is perturbed,
it is perturbed in the whole transition rates matrix.
In Table 3, we put directiong\;, );) to indicate that
both parameters are perturbed of the same amount
0. These perturbations correspond to the derivative

Figure 4: Markov process

In this case, the analytical calculation is bur-
densome and we present only the results ob
tained with the estimation of the realization ma-
trix D. The data are simulated with parameters

A= 0.01,A = 0.015, A = 0.01,A3 = 0.01,As = iy the direction of the line of equation. = = (\; =
0.01, 1y = 0.05,p15 = 0.05, 3 = 0.05, pta = 0.05. %)\j:y). Hence, they give an indicator of the sys-

Hence the repair rates _and the failure rates are qf sensibility to a group of components. We find
the same order of magnitude. The matfiixand the 5t the group(C'3,C'4) is less critical than compo-

steady state vector have been estimated one time e o This is due to the cold spare: when C3 fails,
and all the results presented in Tables 1,2, 3, 4, argomponent C4 can be switched on immediately to
obtained by changing only the matrixin Equation  rgpjace €3, whereas when C2 fails, there is no re-
4. placement. Hence, the grodp’3,C4) can be con-
Tables 1 and 2 give the partial derivative estimatessidered as a component which is less critical than C2.
We can observe that an increase of a failure rate leads/hat is more, the groufC'2, C'4) is more critical than
to a decrease of the availability, and on the contrarythe group(C2, C3) because whet'4 is running, the
an increase of the repair rate leads to an increase component C3 is already failed. At last, we verify that
of the availability. If we look at the repair rates, we a group(C,, C;) is more critical thanC;, alone and
can classify the components according to their importhat a group,, Cs, C; with three components is more
tance factorC'3 < C4 < C2 < C'1. Component 1 is critical than any groups with one or two of these com-
the most “critical” since the whole system recoversponents. Of course, this analysis is valid if the failure
when it recovers and the repair rates are of the samend repair rates are of the same order of magnitude.
order of magnitude. If we look at the failure rates, If it was not the case, we could easily identify in the
we get a different ranking because of the shared loacsame way some groups of lower size that are more
C3 < C4 < C1(N\) < C1(\;) < C2. The system is  critical because of the high failure rate of one of their
more sensitive to a perturbation af than a pertur- components.
bation of); since when the failure rate of component The last example we present is given in Table 4.
1 equals);, components 2, 3, and 4 are failed. So aln this case, we tuned the perturbation on parameter
failure of component 1 implies a failure of the whole ;;,, such that a change of an amounbn the fail-
system. What is more, the system sensitivity to comure rate), is totally compensated. From a practical
ponent 1 is shared between the sensitivith\foand  point of view, we optimized the maintenance parame-
to \;. Hence the above classification does not meater, such that a perturbation on the failure rate has no
that component 2 is more critical than component limpact on the system availability. The approximate
At last, in case of repair rate and failure rate, we caroptimal solution we found corresponds to a deriva-



tive in the direction of the line of equatiop:= 5.5  ponents, adaptation of the maintenance parameters to
(r = X2,y = o). A study of the estimate of the deriva- keep a constant availability level in case of compo-
tive % can be possible in many cases because wgents degrada_ltion,_ etc... o
need only to change the matri@ in Equation 4. This paper is a first step towards the formalization
Hence in few iterations we can approximate the valué@f practical tools and sensitivity measures for impor-
of the repair rate that compensates an increase of tf@nce analysis of dynamic systems. Our further re-
failure rate for one component. Some isolines can b&earch focuses on more detailed applications of the

easily drawn to indicate which joint parameters vari-Perturbation realization to the sensitivity studies of
ations do not affect the system availability. dynamic systems and the development of methods to

analyse the transient state of a Markov processes.

Direc- | (A3, A1) | (A2, A3) | (A2, Aa) | (A2, Az, Ag)
tion
j—g -0.9231| -3.2634| -3.3715| -3.7790

Table 3: Sensitivity analysis to a group of components

Direction | (Aa,5.5 % pu2)
d
% -0.0053

Table 4: Sensitivity analysis to a component

4 CONCLUSION

The results presented in this paper are a natural ex-
tension of the classical sensitivity analysis developed
for “static systems”. The main idea is to obtain the

derivatives of a performance measure without using
exact or approximates methods which are burden-
some, and without using finite difference estimates
which require data from both the nominal and the

perturbed system behavior. Actually, the data of the
perturbed system can be unavailable in many realis-

tic cases when the parameters can not be intentionally

modified (for economic or safety reasons for exam-
ple).

With Perturbation Analysis and Infinitesimal Per-
turbation Analysis, methods have been developed to
estimate the sensitivity measure of discrete events dy-
namic systems models on the basis of the nominal
system behavior only. In the framework of Markov
process modeling, the estimation method presented
by Cao in (Cao & Chen 1997) is particularly well for-
malized. From a practical point of view, it allows the
estimation of sensitivity measures on the basis of op-
erating feedback data in nominal conditions, without
knowing the generator of the underlying Markov pro-
cess. We have shown in this paper that many different
sensitivity measures (sensitivity to one or more pa-
rameters with any directional derivative, sensitivity to
the probability of being in a state) can be led with no
additional calculations and can be used in many relia-
bility studies: identification of a group of critical com-
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