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Importance Measure on Finite Time Horizon and Applicat@iviarkovian
Multi-state Production Systems

P. Do Van, A. Barros, C. 8renguer
Universig de technologie de Troyes/ICD FRE CNRS 2848, Troyes, France

ABSTRACT: The sensitivity analysis of complex industrigbtems aims at identifying, in a multi-unit struc-
ture, which components contribute the most to a variatiothefperformance criterion. In this paper an im-
portance factor, called multi-directional sensitivity asere, defined as the derivative of the performance in the
direction of one parameter, in the direction of a group ofapaeters (failure and repair rates of components
for example), or in any direction of the transition rates dflarkovian system is considered. This importance
factor proposed for sensitivity analysis of steady staliab#ity is developed herein for the transient state. It
is also extended and applied to the study of the productipaaty of multi-state production systems, such as
e.g. manufacturing, production lines, which exhibit parfances that can settle on different levels depending
on the operative conditions of the constitutive componehtsmple numerical example is introduced to show
why this factor provides an efficient tool to investigate anly the importance of a given component, but also
the importance of a class of components, the importancesaithintenance, and, more generally, the effect of
the simultaneous change of several design parameters.

1 INTRODUCTION proposed but they are often only applicable on a
gimited class of systems (e.g. acyclic Markov models
with no repair), (Ou & Dugan 2003). Hence, the
froblem remains widely open.

The sensitivity analysis of complex industrial system
aims at identifying, in a multi-unit structure, which
components contribute the most to a variation o
the performance criterion. In classical reliability

studies (Rausand & Hoyland 2004), many factors [N the framework of Markov Models, it has been
are considered (Birnbaum, Fussell-Vesely, CriticalShown in (Do Van et al. 2006) that the perturbation

importance factors,...) to classify the different ele-2nalysis and one of its extension presented in (Cao
ments of a multi-unit system by order of importance.& Chen 1997) can be very well adapted to reliabil-
Hence, for example, the decisions for preventive andy OF maintenance problems at steady state. The aim
corrective maintenance, or the monitoring schedule9f the present paper is to show that the same impor-
can be tuned as a function of this classification. Manyfance factor can be considered in the transient state.
studies have been done to improve the calculatiofii€nce, the sensitivity analysis can be extended from
of these factors, especially when the component§teady state perform_ances to transient state perfor-
can be considered as stochastically independent. [ances. This extension allows, for example, the sen-
the realistic case of stochastic dependencies existingjtiVity analysis of systems performances on a finite
between some components (shared maintenandén€ horizon. The presented importance factor, called
resource, cold spare, shared load,... ), the definitiofulti-directional sensitivity measure (MDSM), corre-
and the calculation of other criterions is needed an@Ponds to the derivative of the performance function
more and more different approaches are proposed? the direction of one parameter, in the direction of a
The exact solution for the sensitivity measures for 8roup of parameters (failure and repair rates of com-
Markov model relies on the Frank’s approach (Frankponents for example), or in any direction of the transi-
1978): the classical set of differential equations ision rates of the Markov process. More precisely, this
extended to a bigger set of equations including thdémportance factor can provide an efficient tool to:
sensitivity factor equations. However, this approach

is computationally burdensome and almost unusable e identify the importance of a given component
or highly inefficient on a realistic-size systems when (parameter), and also the importance of a class
the state space dimension is too high. To cope with  of components with respect to the system perfor-
this problem, some approximate solutions have been  mance of interest;



e evaluate the effect of the change in any directionS system production capacity at infinite time
of one parameter or a group of design parame-\, failure and repair rate of one unit

ters; 15(t), I3 (t) sensitivity of R(t) andS(t) in the direc-
tion Q)
e solve maintenance policy optimization and per-7£(t), I{(¢) sensitivity of R(t) and.S(t) w.r.t the pa-
formance improvement problems. _p _g TameterA _
_ _ _ Iq, 1, sensitivity of R(t) and S(t) in the direction
On the other hand, from a practical point of view, Q

many systems such as e.g. manufacturing, productiopft, 15 sensitivity of 2 andS in the direction
lines, exhibit performance that can settle on different

levels (e.g. 100%, 90%, 80%, ... of the nominal
capacity), depending on the operative conditions o5 |MPORTANCE MEASURE ON FINITE TIME
the constitutive components. These components can

. , HORIZON
be stochastically dependent (Kawauchi & Rausand )
2002) and the production capacity has often to bdviarkov processes have been widely used to analyse
evaluated on a finite-time horizon, and not onlya@nd assess the performances (reliability, availability,
at steady state. Many authors have defined impora@intainability, production capacity, etc...) of many
tance measures for multi-state systems (Levitin &omplex dynamical systems with inter-component
Lisnianski 1999; Zio & Podofillini 2003; Ramirez- and functional dependencies (cold spare, shared
Marquez & Coit 2005) but they mainly focus on load, share(_:l resources, ) Thls section _explores
universal generating function method and Montethe application of MDSM in reliability studies of
Carlo simulation. In this paper, the multi-directional Markovian systems on a finite time horizon (transient
sensitivity measure, MDSM, can be used to study thétate), and also a link with MDSM at steady state
sensitivity of the production capacity in the contextPresented in (Do Van et al. 2006).

of Markovian multi-state production systems. ) ) _
Consider a dynamic system described by a Markov

This paper is organized as follows: Section 2 is de/nodel and let the column vectd?(¢) be the vector
voted to the presentation of MDSM for the reliability Of State probabilities, and% be the initial state
sensitivity analysis on finite time horizon, and MDSM Probabilities vector. The system of the first order
for the average reliability sensitivity during a given Chapman-Kolmogorov equations applied to ho-
period of time. The link with MDSM of the reliabil- Mogeneous Markovian process (without additional
ity at steady-state, presented in (Do Van et al. 2006)dynamical variables) is:
is also established. Section 3 focuses on the applica- dP(1)
tion to muti-state production systems. It is shown how -7
MDSM is used as an appropriate tool for the produc- t
tion capacity sensitivity analysis during a given time The solution of (1) can be expressed as:
period of interest, and also at steady-state. A simple A
numerical example is introduced in section 4 to illus- P(t) = e Py = Fa(t) Py, (2)
trate the advantages of the proposed importance mea- Ar _ .
sure, MDSM, for both reliability studies and produc- WhereFa(t) = e* is the exponential matrix.
tion capacity sensitivity analysis. Finally, Section 5 A Perturbation on one parameter or a group of pa-

— AP(t). (1)

presents the conclusions drawn from this work. rameters of ?he system is _equivalent to a perturbation
in the transition rates matrix. It leads to a perturbed

NOTATION LIST transition matrix:

Ajj transition rates matrix of Markov models As = A+ 00,

A group inverse ofA

Q directional perturbation matrix . whered is a small real number ar is a directional

P(t)  column vector of state probabilities at time  matrix in which a 0 indicates that the parameter at

P(t)  column vector of average state probabilitiesthe same place inl is not perturbed and a number
vector during a given period time, ¢| « different from 0 indicates that the parameter at the

T column vector of steady-state probabilities same place i is perturbed of an amounts. The

R(t)  system reliability (availability) at time only condition on the structure @ to ensure that the

R(t)  average reliability (availability) during a matrix A; is also a transition matrix is the sum of its
given period timgo0, ] columns equals 0. As an example, two uritsand

R system availability at infinite time (5 in a parallel structure with constant failure rates

X row vector of state production capacities )\, A\, and constant repair rat@s, .., are considered.

S(t) system production capacity at time Each component can be running or failed (failed states

S(t) average production capacity during a givenare notedC; and C,). The Markov graphs of this

period time|0, ¢] system with two types of perturbation are sketched



With the initial conditionZ(ty) = Ps(to) — P(to), the
solution of (5) is:

t
Z(t) — eAé(t—tO)Z(tO) +/ €A6(t_s) (A5 —A)P(S)ds

to

Choset, = 0, so Z(ty) = 0, henceZ(t) can be ex-
pressed as:

Z(t) = /t e (A5 — A)P(s)ds,
or, "

2(t) = / Fuylt—s)(As — AP(s)ds.  (6)
ReplacingPs(t) — P(t) in (4) by Z(t) and using (6),

the derivative ofP(t) in the direction of() can be
expressed as:

dPt) . 1 [*
% = (151_{% 5 /0 Fu,(t —s)(As — A)P(s)ds.
P ¢ As— A
dd_g) =tim [ Bt - )22 P(s)as.
Using@ = (As — A) /4,
t
Figure 2. Perturbation on state 3. dgg) — /0 (}Sii% FA(;(t _ s))QP(s)ds.
in Figures 1 and 2: one perturbation on one specific dP(t)
parameter in Figure 1 (on,), and the other on the 0 =/ Fa(t —s)QP(s)ds. (7)
0

probability of being in one specific state in Figure 2 _ _ _
(state number 3). These perturbations correspond tgSing (2), Equation 7 can be written as:

two different directional matrixe®, Q-: dP(t t
%: | Fate = )@FA(s)Pus. (8)
0
-1 0 00 00 3 0 The reliability (availability) of the system is defined
o -1 00 (o0 0 o as:
@=|1 o 00/ @=|00 -1 0| '
0 1 00 00 —2 0 R(t)=Y_ Pi(t) = fP(t),

1€Qo
The variations in the transition rates matrix affect thewhere (), is a set of operational states, arfd=
transient solution”(¢) that becomed’s(¢) (with the (£, £, ..., f,) is a row vector associated with the per-
same initial conditionP’;(0) = P(0)); P;(t) verifies:  formance of the system in each state. For reliability
models,f; = 1 if system is operational in state i and

dPs(t) = AsPs(t). (3) fi = 0 otherwise. The sensitivity of the system re-
dt liability R(¢) in the direction of interest) (i.e the
The derivative ofP(¢) in the direction ofQ) is defined MDSM of £(t)) is defined as:
as: 18(t) = df;(t) _ fdi;(t)'
dP(t) _ . By(t) = P(1) . @ @
dQ s 5 : (4) Using (8),Ig(t) can be expressed as:
t
This is the key quantity that is used to define the  ;z(, :/ Folt— S\OFA(s)Pud 9
MDSM in the following. o) = | fFat = s)QFa(s)Pods. ©)

15(t) may be evaluated by a numerical integration
2.1 Transient state method or directly by making a suitable expansion of
_ _ ; matrix exponentials by using, for example, the uni-
;?;)Z\/gzifgf‘s(t) P(t). From Equations 1 and 3, formisation method (Neuts 1995).
Equation 9 allows the evaluation of the system re-
dZ(t) qubility sensi_tivity in any direction of interest at time
— = AsZ(t) + (A5 — A)P(). (5)  tinthe transient state.



2.2 Average on a finite time horizon 2.3 Link with the steady-state

As mentioned earlier, the sensitivity analysis of thelf the system is repairable, then whetends towards

average reliability during a given period of time caninfinity, the system reaches a steady state behavior, so

be considered as a performance metrics of interest fdim; .., {dP(t)/dt} = 0. Letw = (7, 79, ...m,)" be the

reliability studies. column vector representing the steady state probabil-
By taking integrals for a given period of timi@, ¢],  ities (r = lim;_., P(t)), and letZ, = lim; .., Z(t),

the following differential equation can be derived then Equation 5 becomes:

from Equation 5:

/0 dii)d s /OtZ(S)dS‘l—(Aé_A)/OtP(S)dS'
So:

A5Z7r + (A5 - A)?T = 0,

or
—A5 = Qﬂ' (14)

t t
Z(t) — Z(0) :A(g/ Z(s)ds+(A5—A)/ P(s)ds. ~ Since matrixA; is not invertible, the generalized in-
0 0 verse (or group inverse/)lf‘S = (A5 — mse) ! — mse,
with e = (1,1...), has to be used to solve Equation
(10)  14forz,, see (Meyer 1975) for details. Using the re-

Let us define: lations A% A5 =1 — m;e ander = em; = 1, it follows
~ Zﬂ' ti
o Z(t) = Ps(t) fo T:_AéQW'
Note thatdZ (¢ )_/dt = ( ) andZ_( ) =0, sothe dif-  The derivative ofr in the direction ofQ) can be de-
ferential equation 10 can be written as: fined as:
dZ(t) > 5 dm .
2N _ AsZ(t) + (As — A)P(1), 11 _ TN’
p 5Z(1) + (A5 = A)P(1) (11) gg ~ Im 5 = —lim AfQm.

whose the solution is:
Since A’ is continuous, i.elims_ A% = Af = (A —

t
Z(t) :/ Fa,(t—s)(As — A)P(s)ds. me)~! — e (Cao & Chen 1997)dr/dQ can be ex-
0 pressed as:
The derivative ofP(t) in the direction is expressed dr
as: i0 —A*Qn. (15)
dP(t) AGCEE

aQ lim s lim ; Fa;(t = s)QP(s)ds, Let us noteR = lim, .o, R(t) = f, the system avail-
ability at infinite time (steady state). Hence the sen-

o, sitivity of Rz in the directionQ (i.e the MDSM of R)

P t . can be written as:
dP(t) = / Fa(t —s)QP(s)ds. (12)
Q@ Jy r_ dR i
I . : . Ig = — = —fA"Qr. (16)
The average reliability during a given peri@d¢|: dQ

— 1 ~ The exact solution is obtained by calculating the

R(t) = {/0 R(s)ds = {/0 fP(s)ds = pr(t>' group inverse. An estimate solution has been pro-
S o _ posed by Cao in (Cao & Chen 1997):= f A%, called

The sensitivity of z(¢) in the direction@ (i.e the  potential vector, can be estimated directly from a sin-
MDSM of R(t)) is finally: gle sample path observation. This method seems to

be very powerful for Markov sensitivity analysis and

Markov decision- making problems and it is used to

7R _ dR(t) _1 dP 1 f / (t—s)QDP(s)ds. Study the reliability sensitivity analysis for steady-

@ dQ " state systems in (Do Van et al. 2006).

(13) 3 APPLICATION TO MULTI-STATE PRODUC-

This equation allows the calculation of the average TION SYSTEMS
reliability sensitivity during a given perio, tjinany ~ For multi-state production systems, for example,
direction of interest). manufacturing, production line, power generation,



the performance output of interest is not only the e for a parallel structure:
reliability (availability) but also the production "
capacity. This section explores, in the framework of xparallel—struct. _ Zyk
Makovian multi-state production systems, how the k v
production capacity is evaluated and how MDSM is

extended to study the production capacity sensitivity.USing (8) and (17), the directional sensitivity (or di-

. : rectional derivative) of the production capacity in the
Assume that a unique production (or treatment) cagirection of Q (i.e the MDSM of S(¢)) at time? is
pacity X; corresponds to each statand letP;(t) be  \yritten as:

the probability of being in statéat timet. The pro-

i=1

. . . . - t
duction capacity at timeis then: 135(1) = djc(gt) :X/ Fa(t—s)QF A(s) Pyds. (18)
0
S(t) = ZP"(t)Xi’ The average production capacity during a given pe-
e riod [0, ¢] is defined as:
where() is the state space of the production system. 1t
Another formulation ofS(¢) is S(t) = ;/ X P(s)ds,
0

S(t) = XP(t), 17) o,

where X = (X1, Xs, ..., X,,) is a row vector repre- 5(t) = {15@) (19)

senting state production capacities. Note finally that

X, may depend not only on the production capacity; .. e i
of the components, but also on the system struct Using (12) and (19), the sensitivity of the average pro

Ur€. quction capacity during a given period in the direction
Consider that each component has 2 states: faileﬂf |.nteres1Q (i.e the MDSM 0iS5(¢)) can be expressed

state and running state. When a component is failecf,ls'

its production capacity value is zero. When a com- —s dS(t) X [! .

ponent is running, its production capacity can de- = 7/ Fa(t —s)QP(s)ds. (20)
pend on the state of others and can have different lev- 0

els; herein, the assumption of two levels is considdf the system reaches a steady state, then whemnds

ered. Hence, more precisely, the production capacityowards infinity,lim; .., S(t) = lim;_., S(t) = X.

of component can be equal to: Let S = X, S is called the system production ca-
: e pacity at steady state. So using (15), the sensitivity of
* 0if component is failed; the production capacity at steady-state in the direction

e yV if componenti has no operational depen- Q (.6 the MDSM o15) can be written as:
dence with other components, i.e. the failures of

other components do not affect its production ca-
pacity;

as dm g
a0 XdQ XA Q. (21)

e y” if componenti exhibits operational depen-  The multi-directional sensitivity measure, MDSM,
dences with other components, i.e. its productiorcan be used in multi-state production systems to eval-
volume is affected by the failures of other com- uate the variation of production capacity at tim@r
ponents. for a given period) when one or a group of parameters

_ ) change of value at the same time. It turns out to be

The system production capacity of each system;sefyl also to find the importance rule of one or even

state is calculated by dividing the system into sub-f 5 group of parameters for the system production
systems and basic subsystems which are series ggpacity.

parallel structures.

struct. i i
Let X} represents the production capacity of 4, NUMERICAL EXAMPLE
structure (subsystem or basic subsystem) withits _ o
thatis in state: (k =1,2,...,m). The purpose of this section is to show how the MDSM
Let Y;* represents the production capacity level ofcan be used in reliability sensitivity analysis and in
component when the system (or the structure) is in Production capacity analysis through a simple exam-

a statek. SoYik can equab, yi‘N’ or yiD, and one gets: ple. Both reliability and productiqn capacity criteri-
ons are considered for the transient state of Marko-

_ vian system, for its steady state and also for a given
o for a series structure: time period of interest.
soricsstruct ko L Figure 3 represents a part of a production line with
Xy C=min(Y, Yy, LY. 4 units divided into 2 groups:

S
Ig



e Group A: unitsC, and C;, are treatment units,  Consider first the system availabilify(¢) and the
their production capacities are 50 (for normal system production capaciy(t). Their behaviourss
operation state), O (for failed state). Whélh  time are shown in Figure 5. After aboB®00Ar the
is failed, the production capacity of unit; in-  asymptotic behaviour is reached. Their average values
creases by 20% (for the simplicity, all capaci- during a period of one yeat(= 8760hr) areR(t,) =

ties can be normalized, they actually represent @ 95, andS(t,) = 87.73% respectively.
given amount of products per hour(hr))

1

e Group B: unitsC3 andC, are identical package
units,C, is in cold redundancy witly’s. As soon 0-98
as(Cjs is repaired(; is stopped. The production 0.6
capacity values of’'; andC), are 100 and O cor-
responding to the running state and the failec
state respectively (there are no degraded cond 092}
tions for them).

R(t)

0.941

0.9

S (t)[x100%]

The nominal production capacity of the systemis 10C 08}
products/hr. 0.86 : : : ‘ ‘ : ‘ :

The corresponding Markov process and the produc 0 1000 2000 3000 4000 5000 6000 7000 800D 0000
tion capacity distribution of each state are sketched in, - , :

. . . ure 5. System availability & production capacity.
Figure 4. Table 1 gives the values of failure rates g y y&p pacity
( A; for failure of shared load case, whén is failed
and (] is functioning, for example), the repair rates
i, (i =1,...,4), and also the production capacities.

4.1 Availability sensitivity to one parameter

Consider now the proposed importance measure,
MDSM, for the system availability analysis. Many
directions of sensitivity can be proposed. First some
Cq C3 specific directions),, are considered to study the
sensitivity of system availability w.r.t the parameter
of interest); (failure rates, for example). They are

50160 100

50 100 noted:/{ (t) = I5, (1), Ti = TSA. etl{! =1 , (for
Cy ST & i =1,...,4). The numerical values are obtained by nu-
4 merical integration of Equations 9, 13 and 16.

Figure 3. A part of production line.

R
-40r Nz (1)

A0)

0 500580 1000 1500 2000 2500 t[hr] 3000

Figure 6. Availability sensitivities to failure rates.

Figure 4. Markov process & production capacities distiiut . . o
g P P P The behaviows time of the system availability sen-

sitivities w.r.t the failure rates are shown in Figure
6. It is clear that an increase of a failure rate leads

Table 1. Transition rates & production capacities. to a decrease of the system availability. The sensi-

Units  A; wi A Production capacity tivity of the system availability ta”; is shared be-
C,  45e-4 4e-3 1le-3 0/50/60 tween the sensitivity ta; and to\;, hence the im-
Cy,  45e-4 4e3 - 0/50 pact of failure rate of’;, on the system availability

C3,Cy 6.0e-4 3e-3 - 0/100 sensitivity is:Iﬁ (t) + I (t). According to the impact

of components’ failure rate on the system availability,



Table 2. Average availability & production capacity sengiy

analysis. 0
Units Value  Order Value  Order oo . i i @
-2000
7 811 Ty -8627.99 so00)
Cl _r 4 _g 1 \ ‘ [)\S' ()
Ty, -9.03 Ty, -908.40 40001 '
R s -5000 \‘ I3, (1)
¢, | 7Y -3025 3 |T, -8916.69 2 sl
C; | Ty -3991 2 |7, -3657.71 4 oo} )
ci | 7Y 4757 1 | T, -432326 3 o ~_ G
%,

—-10000

i i i i
0 500 650 1000 1500 2000 2500 t [hr] 3000

in Figure 6,C} is the most critical component during
a period[0, 580Ar]. Fromt¢ = 580Ar to infinite time,
((LE (1) + IE(O)] < [IE )] < [LE ()] < |1 ()], the
most critical component i§’;, and the components
importance ranking is2; < Cy, < C3 < Cy. This or-
der can be explained intuitively from the system struc
ture:C; andCs are in a parallel group (group), their
repair rates are the same (= u»), but the failure rate
of C; is shared between; and A\; (A\; > A\ = \y),
hence the availability of’; is higher than that of’;,
consequently the system availability is more sensitiv
to C, than toC. Furthermore(’s is more important

Figure 7. Production capacity sensitivity to failure rates

I7 (t)] is always higher thaf/{ (t)|. According to
the impact of components’ failure rate on the Sys-
tem production capacity,; is the most critical com-
‘ponent, and the components importance ranking is:
Cs3 < Cy < Oy < C). This order is maintained in Ta-
ble 2, with the average productivity sensitivity during
a period of one year, and also in Table 3, with the pro-
ductivity sensitivity at infinite time horizon.

€ This ranking is not the same as the components im-
" portance ranking according to the system availability
thanC; and less critical that, because’; & C» are  gengitivity in the previous section since the supply of
ina parall_el structure, and, isin cold spare WlthC_g. production for the grou(C; or C,) depends on the
When(; is functioning,Cy is in standby so the im-  giate of groupd(C; & C»), hence the impact of, &
pact ofC5 on the system availability behavior is more (', on the system production capacity is more impor-

important tharC, andC,. WhenCy is running,Cs IS anttharc, & , (“bottleneck effect”). Moreover, the
already failed, so a failure af, leads a failure of the production capacity of’, is higher than that of’,.
whole system, and consequentlyis more important

thanC’;. This order is also true for the average valuesrapie 3. Availability & production capacity sensitivity alysis
during a period of one year presented in Table 2 andt steady state.

also for the availability sensitivity at steady state, in ~ units Value Order Value  Order
Table 3. o | 83r  , [T 878036
1
. : . IF  -9.47 IS -950.99

4.2 Production capacity sensitivity to one parame- A1 A1

ter Co || If -3134 3 | I -9133.92 2

. L ) R S .
Consider now the application of MDSM for sys- _ ¢ | I, -4260 2 | I} -390243
tem productivity analysis. As in the previous section, Cis || I¥ -5112 1 |I] -468341 3

many directions of interest can be proposed for the
production capacity sensitivity study. To illustrate the
advantage of MDSM in the production capacity anal-4.3 Availability & production capacity sensitivity to
ysis, the same mentioned directions are used to study  a group of parameters

the sensitivity of system production cariascny !v.r.t theIn this section, composite directions of sensitivity are

failure rates, note alsdf (t) = I3, (t), I, = I, considered,i.e. the perturbation is not limited to a
and ]fy — [5» (for i = 1,...,4). The results are ob- single specific state or parameter. Instead, perturba-

tained by numerical integration of Equations 18, 20tiOns on a group of parameters, or more generally,
and 21. perturbations on a group of transition rates are stud-

In Figure 7, the importance factor&’ (t) (i = ied. The sensitivity in these directions can help to
1,....4) are sketeched. The results show that an inidentify the importance of components group. In Ta-
crease of a failure rate leads to a decrease of the syBle 4, the direction denoted();, Ay, A;) indicates
tem productivity. The order of their importances in thethat the failure rates of’, and C, are simultane-
et S 11101 et e e, S

3y N -
_|IAS_4(_t)| _<_|]§2(St)| < |]§1 gt”’ and fSromt - 620hr 0 multaneous perturbation of the failure rates ©f
infinity, itis: |1 ()] < |13, ()] <[I3, ()| <|[I3,()] < and ¢, by the same amount. Hence, the derivative
|I3,(1)]. 1t is clear that the value of sui (¢) +  of the system performance in one of these direc-



Table 4. Sensitivity analysis to group of components sitivity analysis in the different directions of interest,

Availability Production capacity the most critical component, the group of most crit-
Direction dR(t.) IR d5(t2) ds ical components can be identified. The maintenance
4Q 4Q 4Q aQ policies parameters can be also tuned to keep a con-

AR, M, X0)  -47.39 -49.18 -18453.08 -18865.27  stantreliability (availability) or/and productivity leV
B(\3,\q)  -87.48 -93.87 -7980.97 -8585.84 in presence of components degradation, etc...
(A\,2.73u2)  0.008 0.35  1965.45  2085.70 Our futur research work focuses on the direction
(A4,6.21p3) -0.03  1.81 -0.39 170.05 sensitivity optimisation for maintenance policy pa-
rameters, and on the development of methods to es-
timate our proposed measure, MDSM, with the oper-
tions gives an importance measure the effect of thating feedback data in the transient state.
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