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Abstract

The sensitivity analysis of complex industrial systemssaatidentifying, in a multi-unit struc-
ture, which components contribute the most to a variatiothefperformance criterion. In this
paper an importance measure, called multi-directionagiseity measure, defined as the deriva-
tive of the system performance in the direction defined bycorgor matrix) in an appropriate
space (e.g. direction of one parameter, of a group of paemair generally any direction of the
transition rates of a Markov process) is considered. Thizsues proposed for sensitivity analysis
of steady state reliability is developed herein for thedrant state. Itis also extended and applied
to the study of the production capacity of multi-state prithn systems such as manufacturing,
production lines, and power generation, which exhibit genfances that can settle on different
levels depending on the operative conditions of the cansti components. A simple numerical
example is introduced to show why this measure providesfamesit tool to investigate not only
the importance of a given component, but also the importafieeclass of components, the im-

portance of the maintenance and, more generally, the effélse simultaneous change of several



design parameters.

Keywords: reliability; sensitivity analysis; importanogeasure; Markov process; multi-state

system; production system

1 Introduction

The reliability importance analysis of complex industsgktems aims at identifying, in a multi-
unit structure, which components contribute the most toretian of the performance criterion.
In classical reliability studies [15], many importance s@@s are considered (Birnbaum, Fussell-
Vesely, Critical importance measure, etc) to classify fifferént elements of a multi-unit system
by order of importance. Hence, for example, the decisionpifeventive and corrective mainte-
nance, or the monitoring schedule, can be tuned as a furwtithiis classification. Many studies
have been done to improve the calculation of these measggscially when the components can
be considered as stochastically independent. In the tieadisse of stochastic dependencies ex-
isting between some components (shared maintenance ceseoold spare, shared load, etc), the
definition and the calculation of other criteria is needed aore and more different approaches
are proposed. The exact solution for the sensitivity messtor a Markov model relies on the
Frank's approach [6]: the classical set of differential &épns is extended to a bigger set of
equations including the sensitivity factor equations. ldeer, this approach is computationally
burdensome and almost unusable or highly inefficient on kstieasize system when the state
space dimension is too high. To cope with this problem, soppecximate solutions have been
proposed but they are often only applicable on a limitedscta#ssystems (e.g. acyclic Markov
models with no repairs), [13]. Hence, the problem remairdelyiopen.

For systems described by Markov Models, [5, 4] propose awitapce measure, called multi-
directional sensitivity measure (MSM), which correspoitmshe derivative of the performance
function (e.g. system availability or system productiovelg in the direction defined by a vector
(or matrix) in an appropriate space (e.g. direction of onaupeter, of a group of parameters, or
generally any direction of the transition rates of a Markoygess). In [5, 4], a procedure based on
perturbation analysis and one of its extensions presentf?] is developed to evaluate MSM at
steady state. The aim of the present paper is to show thaathe snportance measure MSM can

be considered to conduct a reliability importance analystbe transient state. Hence, the sen-



sitivity analysis can be extended from steady state pedon®s to transient state performances.
This extension allows, for example, the sensitivity anialyd system performances on a finite

time horizon. More precisely, this importance measure canige an efficient tool to:

o identify the importance of a given component (parameteryl also the importance of a

class of components with respect to the system performariogecest;

e evaluate the effect of the change in any direction of onematar or a group of design

parameters;
e solve maintenance policy optimization and performanceravgment problems.

Moreover, from a practical point of view, many systems sushmanufacturing production
lines and power generation installations exhibit perforoes that can settle on different levels
(e.g. 100%, 90%, 80% of the nominal capacity) depending emferative conditions of the con-
stitutive components. These components can be stocHistiependent [9] and the production
capacity has often to be evaluated on a finite-time horizad, reot only at steady state. Many
authors have defined importance measures for multi-statersg [10, 16, 14] but they mainly
focus on universal generating function method and MontéoGamulation. In this paper, we also
show that the multi-directional sensitivity measure MShh ¢g used to study the sensitivity of
the production capacity in the context of Markovian mutéte production systems.

This paper is organized as follows. Section 2 is devotedegtesentation of MSM and the
link with the classical importance measures, as well as vhtiation of MSM for a finite time
horizon, and MSM for the average availability sensitivityrihg a given period of time. The
link with MSM of the availability at steady-state, presahia [4], is also established. Section
3 focuses on the application to multi-state productionesyst It is shown how MSM is used
as an appropriate tool for the production capacity setitgitanalysis during a given time period
of interest, as well as at steady-state. A simple humeriaingle is introduced in section 4 to
illustrate the advantages of the proposed importance measlsM, for both reliability studies
and production capacity sensitivity analysis. Finallyct®m: 5 presents the conclusions drawn

from this work.

Notation list

M transition rates matrix of Markov models

M group inverse o

Q directional perturbation matrix/direction of sensityit



P(t) column vector of state probabilities at time

15(75) column vector of average state probabilities vector dudngjven period time
[0,]

iy column vector of steady-state probabilities

A(t) system availability at time

A(t) average availability during a given period tirfiet]

A system availability at infinite time

X row vector of state production capacities

S(t) expected production capacity at tihe

S(t) average of expected production capacity during a giverogeiine|0, ¢|

S expected production capacity at infinite time

A failure rate of one unit

7 repair rate of one unit

MSMYE sensitivity of performance measurg in the directionD, in which W andD are

either A, S, and), Q, respectively

2 Importance measure on a finite time horizon

Markov models are frequently used in reliability analysisassess different metrics of interest,
e.g. system reliability, availability, maintainabilityithin this Markov modelling framework, the
traditional reliability importance measures (e.g. Bimtveimportance or critical importance mea-
sure) used to analyze the system performance sensitivityresgpect to the parameters of its com-
ponents can be computationally expensive to evaluate. &ergin the context of more “com-
plex” dynamic systems with inter-component and functiotependencies (cold spare, shared
load, shared resources, etc), even the meaning and thetidefioi these traditional importance
measures may be questionable. This section explores thédinattional sensitivity measure
MSM in reliability studies of Markovian systems on a finiteng horizon (transient state), as well

as a link with MSM at steady state presented in [4, 5].

2.1 The multi-directional sensitivity measure

Consider a dynamic system described by a Markov model artddetolumn vecto () be the
vector of state probabilities, anB, be the initial state probabilities vector. The system of the

first order Chapman-Kolmogorov equations applied to homegas Markovian process (without



additional dynamical variables) is

dP(t)
e MP(t). 1)
The solution of (1) can be expressed as
P(t) = M Py = Fy (t) Py, 2)

whereFy (t) = eM? is the exponential matrix.
A perturbation on one parameter or a group of parameterseo$ybtem is equivalent to a

perturbation in the transition rates mathik It leads to a perturbed transition matrix
M(5 =M + 5Q7

whered is a small real number ar@is a directional perturbation matrix in which an enfpy; = 0
indicates that the transition rate from state state; is not perturbed an@;; = o different from
0 indicates that the transition rate from state statej is perturbed by an amount). The only
condition on the structure @ to ensure that the matrid s remains a transition matrix is that the
sum of each column d equals 0.

Example: consider a system consisting of two independeits 44 and C5 in a parallel
structure with constant failure ratés, \» and constant repair rates, u2, see Figure 1. The
transition matrix of this system is given by

}'l Iy

Cq

Ca

?.2 Wa

Figure 1: A parallel structure of 2 independent units

—A1— A2 M1 2 0
M — A1 —p1 — A2 0 2
A2 0 —p2 — A1 M1

0 A2 A1 —p1 — M2

The state diagram of this system is sketched in Figures 2 diod 8vo different types of

perturbations. Figure 2 sketches the Markov graph with tuggation on one specific parameter,



Figure 2: Perturbation ok,

State 1:C,C, State 2 :g@
State 3 :C1 (Y State 4 :C, Cy

Figure 3: Perturbation on the exit transition rates of sBate

namely\,, which corresponds to the directional perturbation magjx

-1 0 0 0

0O -1 0 O
Q=

1 0O 0 O

0 1 0 O

Figure 3 presents the state diagram modified by a perturbatiothe exit transition rates
of one specific state, namely state number 3. This pertarbatdrresponds to the directional

perturbation matrixQ,

00 3 0
00 0 0
Q=
00 —-10
00 -2 0

The variations in the transition rates matrix affect theasiant solutionP(¢) that becomes



Ps(t) (with the same initial conditiodP;(0) = P(0)). Ps(t) satisfies

dPs(t)
dt

= M;Ps(t). 3)

The derivative ofP(t) in the direction ofQ is defined as the following

dP(t) . Py(t)— P(t)
o i S S 4)

The system availability at timeis defined as

Alt) =) Pi(t)= fP(1),
i€Q0o
where(Q is, for binary systems, a set of operational states, And (f1, f2,..., f) iS @ row
vector associated with the system states, e.fj.=#f 1 if system is in operational statend f; =0
otherwise. For multi-state systeni3y is a set of states whose level of performance are higher
than the level required (see e.g., [10, 16]).
The sensitivity ofA(t) in the directionQ, named MSI\@(t), is defined as

_dAW) _ L dP(Y)

A
MSM(1) = =05 = =0

)
Itis clear that MSl\é(t) represents the sensitivity of the system availability ¥ direction of

interestQ that corresponds to the direction of one parameter, thetdireof a group of parameters

(failure rates, repair rates for example), or more gengrtiie direction of a group of transition

rates.

Link with classical importance measure Looking at the example shown in Figure 1, since
Q; indicates the perturbation of only one parameter of theesygh,), MSMS1 (t) corresponds
therefore todA/0)\s, i.e. the partial derivative of the system availability lwiespect to\s. In
this case, the link with the classical Birnbaum’s imporaneasure [15], defined as the derivative
of the system availability with respect to the availabilifya given component in the context of

independent components system, is directly establishied tige chain rule

_DA(t) DAt
1%(Ca/t) = das(t) O /

8a2 (t)
Oy’




or,
das(t)
N

18 (Ca/t) = MSM (1)

whereas () is the availability of component 2.

Note however that if there exist dependencies between tmpaoents, e.g. if in a two-unit
systemCs is in cold redundancy witld’; (see Figure 4) the definition of an importance measure
as the partial derivative of the system availability witspect to a component availability may be

guestionable. Indeed, the availability of component dadslapend only of its characteristics but

}'l Iy

Cq

- Ca

?.2 Wa

Figure 4: Cold redundancy structure

also on other system parameters, and its availability isylseem can be different of its availability
out of the system [13]. In this context, the partial derivatvith respect to a parameter, rather than
to the availability of a component, appears to be more rakeand is often preferred for design
purpose. Hence, the multi-directional sensitivity meaddiSM proposed in this work offers an
interesting (and generalizing) alternative, especialydynamic systems with inter-components

dependencies. More precisely, it can provide an efficiesittto

e identify the importance of a given component (parameteryl also the importance of a

class of components;
e evaluate the effect of the change in any direction of one aierdesign parameters;

e optimize the maintenance policy problems, reliability noy@ement problems.

2.2 Evaluation of MSM
2.2.1 Transient state
Let Z(t) = Ps(t) — P(t). From Equations (1) and (3% (t) satisfies

%ﬁt) =MsZ(t) + (M5 —M)P(t), 6)



given the initial conditionZ(0) = Ps(0) — P(0) = 0. The solution to the nonhomogeneous

linear equation (6) can be expressed as (see, e.qg., [7]datdtails)
t

Z(t) = / Ms1=5) (M5 — M) P (s)ds,
0

or,

Z(t) :/0 Fus(t—s)(Ms—M)P(s)ds. (7)

ReplacingPs(t) — P(t) in (4) by Z(t) and using (7), the derivative dP(¢) in the directionQ

can be expressed as

t
%(ét)zgl_{"%% 0 Fu;(t —s)(Ms —M)P(s)ds.
t —
LAt [ 0 MM

UsingQ = (Ms —M)/d

t
O~ [ i B - )QP(s)as.
bt _ /tF (t—s)QP(s)ds (8)
dQ ~ Jo M '
Substituting (2) in to (8) we obtain
t
dgg) - /0 Fan(t — $)QFu (5) Pods. (©)

Finally, from the definition (5), the MSM afi(¢) in the directionQ can be written as

MSME(t) = /O t FEw(t — 5)QFw(s)Pods. (10)

This may be evaluated by a numerical integration method rectly by making a suitable
expansion of matrix exponentials with, for example, thdamiization method [12].

Equation (10) allows for the evaluation of the system atdlitst sensitivity in any direction
of interest at time in the transient state. A similar formula evaluation hasnbgleown in [1]
by using the generalized perturbation theory (GPT) methdté context of Makovian systems.

However, the directio® in [1] is limited to the direction of a single parameter.



2.2.2 Average on a finite time horizon

From (6) by taking integrals for a given period of tirfiet| we obtain the following differential

/OtdZs 5/OtZ(s)ds+(M5_M)/OtP(S)ds

Z(t) - Z(0) :M5/0 Z(s)ds+(M5—M)/0 P(s)ds. (12)

equation

or,

Let us define:

= /tP(s)ds
o Z(t) = /Z

Note thatdZ (t)/dt = ) and Z(0) = 0, the differential equation (11) can therefore be
written as 3
az(t ~ .
—£22Mﬂ®+@M—MﬂW% a2)

whose the solution is

Z(t) = /Ot F,(t —5)(Ms —M)P(s)ds.

The derivative ofP(t) in the directionQ is expressed as

dP(t)
7a—mf—¢%/ma QP (s)ds,
or, i
t
d? g) _ /0 Fin(t — 5)QP(s)ds. (13)

The average availability during a given perifd¢]

A(t) = = /0 A(s)ds:% /O FP(s)ds — % FP(1).

The sensitivity ofA(¢) in the directionQ (i.e. the MSM ofA(t)) is finally

Msmgz%g):%f&_—f/ (t — s)QP(s)ds. (14)

This equation allows the calculation of the average avéitialsensitivity during a given pe-

riod [0, ¢] in any direction of interes.

10



2.2.3 Link with the steady-state

If the Markov process is irreducible then wherends towards infinity, the system reaches a
steady state behavior, $on;_...{dA(t)/dt} = 0. Letw = (w1, m2,...7,)" be the column vector
representing the steady state probabilites=lim; ., P(t)), and letZ . = lim;_. ., Z(t), then
Equation (6) becomes

MsZr+ (Ms—M)mr =0,

or

—Mg% _Oon. (15)

Since matriXM s is not invertible, the generalized inverse (or group immg =(Ms—mse)~t -

mse, with e = (1,1...), has to be used to solve Equation (15) #f, see [11] for details. Using

the relationsM“M; =I — mse ander = emr; = 1, it follows that
Z

The derivative ofr in the direction ofQ can be defined as

dmw . Z7'r o . f
a0 s~ Mo
SinceMg is continuous, i.elims_,o Mg =M!= (M —me)~! —we[2], dw/dQ can be expressed
as

dm

2 Mt
aQ M*Qmr. (16)

Let us noted = lim; ., A(t) = fr, the system availability at infinite time (steady state)nete

the sensitivity ofA in the directionQ (i.e. the MSM ofA) can be written as

MSMA = % = — fMQur. (17)

The exact solution is obtained by calculating the grouprswgl1]. An estimate solution has
been proposed by Cao in [2§F = fM?, called potential vector, can be estimated directly from
a single sample path observation. This method seems to p@eererful for Markov sensitivity
analysis and Markov decision-making problems and it is usestudy the reliability sensitivity

analysis for steady-state systems in [4].
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3 Application to multi-state production systems

For multi-state production systems such as e.g. manufagtproduction lines and power gen-
eration installations, the performances output of inteiesiot only the reliability but also the
production capacity [9, 8]. This section explores, in tr@fework of Makovian multi-state pro-
duction systems, how MSM can be extended to assess thenggnsitproduction capacity with
respect to the reliability characteristics of the system.

Assume that a unique production (or treatment) capakijtgorresponds to each statand
let P;(t) be the probability of being in stateat time¢. The expected production capacity at time

tis then

St) =Epp{X}=>_P(t)X; = XP(t), (18)
1€Q

whereX = (X1, X, ..., X,,,) IS a row vector representing the state production capaciip ()
devotes the expectation with respect to the state probabil?(t), andf? is the state space of the
production system.

Note well thatX; depend on the production capacity of the components andeorytbtem
structure. To evaluate the production capacities veckumwe consider that components are
defined as the level at which the failure and repair rate dat@a@llected or estimated. Relevant
states, like functioning, failed or degraded, should bengeffor each component. The production
capacity of each system state is calculated by splittingsifstem into subsystems and basic
subsystems which are series or parallel structures.

Let X;'u<! represent the production capacity of a structure (subsystebasic subsystem)
with n units that is in staté: (k = 1,2,...). Let Y} represent the production capacity level of

component when the system (or the structure) is in a stat®©ne gets

e for a series structure

series—struct. . k k k\.
X, =min(Y{", Yy, ..., Y.0);

o for a parallel structure
n
parallel—struct. k
X = E Y".
i=1

Using (9) and (18), the directional sensitivity (or directal derivative) of the expected pro-
duction capacity in the directioQ (i.e. the MSM ofS(t)) at timet is written as

ds(t) _ X/t Fu(t — s)QFu(s)Pods. (19)
0

MSMR () = 9

12



The average production capacity during a given period is defined as

S(t) = %/0 X P(s)ds,

or,

S(t) = —P(t). (20)

Using (13) and (20), the sensitivity of the average productiapacity during a given period

in the direction of interesD (i.e. the MSM ofS(t)) can be expressed as
_ Jg t .
msmg = 420 _ 5/ Fyu (t — s)QP(s)ds. (21)
dQ t Jo

If the system reaches a steady state (case of irreducibleaMa@rocess), then whentends
towards infinity,lim; .. S(t) = lim; ., S(t) = X=. LetS = X, S is called the production
capacity at steady state. So using (16), the sensitivitheproduction capacity at steady-state in
the directionQ (i.e. the MSM ofS) can be written as

ds dm

MSMg, = ol Xm = —XM!Q. (22)

The multi-directional sensitivity measure MSM can be usechulti-state production systems
to evaluate the variation of production capacity at titrier for a given period) when one or a
group of parameters changes their value at the same tinsaal#o useful to find the importance of
one parameter/component or even of a group of parameteigfaeents for the system production

capacity.

4 Numerical example

The purpose of this section is to show how the MSM can be usediability importance analysis
and in production capacity analysis through a simple examBbth availability and production
capacity criteria are considered for the transient state Markovian system, for its steady state
and also for a given time period of interest.

Figure 5 represents a part of a production line with 4 unigldd into 2 groups

e Group G1: unit’; andCs are treatment units. Their production capacities are 16@-pr
ucts/hour (hr) (for normal operation state), and O (forefdistate). Whert fails, the

production capacity of uni€’; increases by 20% (for simplicity, all capacities can be nor-

13



100/120 200

C1q C3
100 200

Figure 5: A part of production line.

Table 1: System states

Component

State C; C; (3 (Cy System production capacity

1 0 O O S o 200
2 F O O S o 10
3 0 F O S o 120
4 0 O F O @] 200
5 0 O O F @] 200
6 F F O S F 0
7 F O F O @) 100
8 F O O F @) 100
9 0 F F O @) 120
10 O F O F o 120
11 O O F F F 0
12 F F F O F 0
13 F F O F F 0
14 F O F F F 0
15 O F F F F 0

malized, and they actually represent a given amount of futs¢hr)

e Group G2: unitsC'3 and Cy are packaging units, and, is in cold redundancy witht's.
(s is the main operating unit of group G2: as soor(gds repaired(C stops and priority
is always given to the repair @fs. The production capacity values 6§ andC, are 200
products/hr and O corresponding to the running state anthtleel state respectively (there

are no degraded condition for them).

The nominal production capacity of the system is 200 pradhct The operational mode of
the system is described in Table 1 where “O” denotes an apgratate, “S” denotes a standby
state, and “F” denotes a failed state. The correspondingkdgprocess is sketched in Figure
6. Table 2 gives the values of failure rates( \; for failure of shared load case, whéh fails
and (1 is functioning, for example), the repair rates (i = 1, ...,4), as well as the production

capacities of each component.

14



Table 2: Transition rates & production capacities.

Units A b X;  Production capacity

C; 4.5e-4 4e-3 1le-3 0/100/120
Cy 4.5e-4 4e-3 - 0/100
C; 4.5e-4 3e-3 - 0/200
Cy, 6.0e-4 3e-3 - 0/200

Figure 6: Markov diagram & production capacities distribat

Consider first the system availability(¢) and the system expected production capa8its).
Their behaviourss time are shown in Figure 7. After aboR500hr the asymptotic behaviour
is reached. Their average values over a period of one ygar §760hr) are A(t,) = 0.96, and

S(ts) = 88.47% respectively.

4.1 Availability sensitivity to one parameter

To study the system sensitivity using the proposed impoganeasure MSM, many different
directions of sensitivity can be considered. We first comisaddirectional perturbation matr@,,
corresponding to changes in the direction of a single patemod interest, e.g. the failure rate of
component, ;. The corresponding importance measures are denotedM8M= MSMSM (t)

for the transient response, MSE\/I: MSM%X for the average over a finite time horizon and

15



At

S(£)[x100%]

0.86

0 1000 2000 3000 4000 5000 6000 7000 SOO(t)[h ]9000
r

Figure 7: System availability & expected production capaci

MSM{ = MSMg_ at steady state. These quantities are evaluated by numietiegration of
Equations (10), (14) and (17).

0 T T a T T 0 T T b

-50

1o 100
- [ A

MSME (1) + MSME (1) MY ®)
20 . -150 :
SM{ (¢) + MsM2
A —200} 1
M)\4 (t)
MSME (¢

-30t 520 -2501 MsM{. (£)
-300}

-40
-350 |

MSM{ (¢
Ay () -400} A

-50r 3 SMY, (1)
—450 |

760 i 580 i i i 7500 i i 1220 i i

0 500 1000 1500 2000 t[h] 2500 0 500 1000 1500 2000 t[hr] 2500

Figure 8: Availability sensitivity to failure rates - (a) thicomponent repairs - (b) without component repair
(i =0)

The behaviows time of the system availability sensitivities with respercthe failure rates are
shown in Figure 8, with component repair (8.a) and withouhponent repair (8.b). Obviously,
a failure rate increase results in a decrease of the systaifalality and all MSM values are
negative. The sensitivity of the system availability@g is shared between the sensitivity X
and to);. Hence, because of the linearity@of Equation (10), the impact of failure rate 6%
on the system availability sensitivity is given by the sumMI;Sl(t) + MSMf1 (t). The analysis

of the components sensitivities during the transient sthtavs that the components importance

16



ranking may change with time, see Figure 8.a
¢ the most important component during a short period of tithé80Ar| is Cs ;
e fromt = 580hr tot = 1500Ahr, the components importance rankinglis< Cy < Cy < C3;

e finally, from ¢ = 1500hr until steady state, the components importance ranking; i
Cy < C4 < Cs. This last ranking still holds for the average values dudngeriod of one

year presented in Table 3 and also for the availability $eitgiat steady state, in Table 4.

Since the components importance ranking may change with tine interest of a sensitivity
measure during the transient state is precisely to be abiteltcate which is the most important
component at a given time. Note however that the componemt&ing that we obtain are not
absolute importance rankings, but the ranking relativéaéoMSM criterion. Obviously, different

rankings could be obtained if a different reliability impamce measure was used.

4.2 Production capacity sensitivity to one parameter

Consider now the application of MSM for system productihalysis. As in the previous section,
many different directions of interest can be investigatedtifie production capacity sensitivity
study. To illustrate the advantage of MSM in the productiapacity analysis, we consider again a
directional perturbation matri®,. corresponding to changes in the direction of a single paieme
of interest, e.g. the failure rate of componeénf\; The corresponding importance measures are
denoted MSI\@Z_ (t) = MSM%M (t) for the transient response, MSg;IZ_\/I: MSMgAZ_ for the average
over a finite time horizon and MSﬁ{I = MSM%X at steady state. These guantities are evaluated
by numerical integration of Equations (19), (ZZl) and (22).

Figure 9 sketches the importance measures I;ﬁ&l\)’l(z =1,...,4) for the cases with compo-
nent repairs (Figure 9.a) and without component repaiigufii 9.b). Not surprisingly again, the
results show that an increase of a failure rate leads to a&aserof the system productivity. In
the case of repairable componend§, turns out to be the most critical component, and the com-
ponents importance rankingds, < C3 < Cy < C;. This order remains the same for the average
productivity sensitivity during a period of one year, andtlte productivity sensitivity at infinite
time horizon (see Table 3).

This ranking is not the same as the components importané@gpaccording to the system
availability sensitivity obtained in the previous sect&ince the supply of production for the group
G2 (Cs or Cy) depends on the state of groGfl (C & C5), hence the impact af; & C5 on the

system production capacity is more important tign& C, (“bottleneck effect”). Moreover, the
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Figure 9: Production capacity sensitivity to failure ratéa) with component repairs - (b) without component
repair (u; = 0)

production capacity of; is higher than that of’s.

Table 3: Sensitivity to failure rates for a period of one year

Availability | Production capacity
Unit Value Order Value Order
c. MSM{ -7.9066 , | MSMJ -17333417
1 _ _
MSMg‘l -9.0608 MSM% -1812.4142

Cy MSM{ -29.8912 3 | MSM; -17872.5520 2

C; MSM{ -47.3851 1 | MSM; -8690.0876 3

C; MSM{ -30.0011 2 |MSM§, -5501.9786 4

4.3 Sensitivity analysis to a group of parameters

In this section, composite directions of sensitivity aregidered, i.e. the perturbation is not
limited to a single specific parameter. Instead, pertuobation a group of parameters, or more
generally, perturbations on a group of transition ratesstudied. The analysis of sensitivity in
such directions can help e.g. to identify the importancerofig of components or to optimize the

maintenance effort.

e Application for groups importance ranking

In Table 5, the direction denote@(\1, A1, \2) indicates that the failure rates 6f; and

Cs are simultaneously perturbed by the same amount. Similtrey direction denoted
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Table 4: Sensitivity to failure rates at steady state.

Availability | Production capacity
Unit Value Order Value Order
c MSMj, -8.1398 , | MSM} -17644.2201
MSM{  -9.3909 MSMS  -1897.74279
Co, MSM{ -30.9503 3 | MSM§, -18310.9108 2
C3  MSM{ -51.2382 1 | MSM§, -9395.1702 3
Cy MSM{ -32.0239 2 | MSM§, -5871.9814 4
Table 5: Sensitivity analysis to group of parameters
Availability Production capacity
Direction ~ MSMj ~ MSMJ  MSMJ MSM$

Q(A\1,M1,\2) -46.8586 -48.4811 -37018.3834 -37852.8737
Q(A3, A1) -77.3862 -83.2621 -14192.0662 -15267.1516

Q(A\1,2.442) 0.0131 0.2304 2873.4024 3050.3997

Q(A4,2.53u3) -0.0340  1.5115 -6.1964 277.1575

Q(As3, A1) corresponds to the simultaneous perturbation of the fitates ofC5 and C;

by the same amount. Hence, the derivative of the system rpsafce in one of these
directions gives an importance measure of the effect of tmeesponding group of com-
ponents on the system performance. According to these mesasu the system avail-
ability during a period of one year and at steady state, thagg’/components’ ranking is
C1 < Cy < Oy < G1(C1,Cy) < C3 < G2(C3,Cy4). The groups/components importance
measures with respect to the system productivity can alstebeed and results in the fol-

lowing rankingCy < C3 < G1(C3,Cy) < Cy < Cy < G2(Cy, Co).

e Application to maintenance optimisatiofWhen one parameter of the system is changed
(increased failure rate, components degradation, for pl@mthe system performances
(availability, productivity) deteriorates. This variati can be compensated completely or
partially if at the same time, other parameters of the syst@apair rates, for example) can
be perturbed to compensate for this change in performanigis. attion can be performed
by choosing a suitable direction of perturbat@nin Table 5, two directions of perturbation
are proposed to keep the system availability or/and thesyptoductivity at the same level
in the case of a degradation componefitsandCy. The directionQ(\;, a;) indicates that

if \; (for i = 1,4) is increased by an amou#f then at the same time,; is perturbed by
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Table 6: Sensitivity analysis to the failure rate of a giveates

Availability | Production capacity
Direction MSM§_~ MSM4_ Order| MSM3_~ MSM3_ Order

Qs1 -57.4255 -60.0535 1 | -35477.8421 -36215.8937 1
QRs2 -13.8533 -14.6393 3 | -2354.4050 -2512.5380 3
Qs3 -11.4106 -12.0197 4 | -2221.8456  -2356.8238 4
Qs34 -27.3454  -29.1022 2 | -8022.0121 -8486.7967 2
Qss -5.1681 -6.0478 5 | -1496.7651 -1739.0416 5
Qs7 -4.0821  -4.4008 6 -719.7299 -785.4732 6
Qss -0.7728  -0.9072 8 -136.2435 -162.0568 8
Qs9 -3.5206  -3.7906 7 -657.3550 -714.1543 7

9 9

®s10 -0.6664  -0.7822 -124.2511 -147.2472

an amounid. A sensitivity close to zero in a direction of the foi@Q(\;, ayt;) indicates
that the change op; almost balances the effect of the change)on From a practical
point of view, this can be seen as a mean to tune the maintenzarameters, such that
a perturbation on the failure rate has no impact on the systaitability or/and system
productivity. Maintenance policies parameters can theagbienally tuned in this way and

the optimal solution can also depend on other criteria (teaemnce cost, for example).

4.4 Sensitivity analysis to failure rates of a given state

To study the sensitivity of a given state, some specific twas of sensitivity are considered. In
Table 6, the direction denotedg; indicates that all failure rate transitions out from the rape
tional statei (: = 1,2,3,4,5,7,8,9,10) are simultaneously perturbed by the same amount. The
sensitivity in these directions can help to identify the ortpnce of a given state. According to the
sensitivity in these directions on the system availabditg/or on the system productivity during a
period of one year and at steady state, the most importdatiststate number 1 and state 10 is the
least important one, see Table 6. As shown in Figure 10.a3ifsaty of the system availability for
different statesy;) and in Figure 10.b (sensitivity of the system productiyiguring the transient

state the states importance ranking can change with time.

4.5 Sensitivity analysis to failure rates of a group of states

This subsection explores the sensitivity of the failuresadf a group of states. In Table 7, the
direction denotecQ(CiCj) (1,7 = 1,2,3,4) indicates that the failure rates of componefitsand

C; are simultaneously perturbed by the same amount in all tiegatipnal states where both
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Figure 10: Sensitivity to failure rates of a given state -fapsitivity of the system availability - (b) Sensitivity
of the system production capacity

C;, C; are functioning. From a practical point of view, this pebation could be caused by, for
example, electrical shock, environmental conditions gy etc. The sensitivity of the system
availability/productivity in this direction allows for thquantification of the impact of a group of
operational components on the system availability/prtditg during a period of one year and at

steady state, see Table 7

e according to the sensitivity on the system availabilitg thost important group of 2 opera-

tional components i&C2, C3) and the grougC', Cs) is the least important one;

e according to the sensitivity on the system productivitg thost important group of 2 oper-

ational components i@, C>) and the grougCs, C,) is the least important one.

The results for the transient state are given in Figure 1dr.ahie system availability sensitivity

analysis and in Figure 11.b for the system productivity ity analysis.

Table 7: Sensitivity analysis to the failure rates of a grotiptates

Availability | Production capacity
Direction  States MS@ MSMS Order MSMg MSMS Order
Q(clcz) 1,45 -26.4276 -27.2344 51 -33329.7076 -33978.7511 1
Q(clcs) 1,3,5,10 -58.0905 -61.8841 2| -25005.6896 -25899.9678 2
Q(C@) 49 -28.9252 -30.8173 4 | -6998.0912 -7425.4585 4
Q(Czcg) 1,2,5,8 -70.1417 -74.3927 1| -23954.6266 -24903.1600 3
Q(@@) 47 -30.5990 -32.6183 3| -6918.9540 -7354.4199 5
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5 Conclusions

The multi-directional sensitivity measure, MSM, can beduseinvestigate the performance sen-
sitivity of dynamic systems in any direction of one parameobe in any direction of a group of
parameters, and, more generally, the effect of the simedtas change of several design param-
eters. This measure can be extended to the multi-state grodisystems whose performance
output is not only the system availability but also its praitin capacity. The sensitivity of both
performance outputs are studied in the transient stateglargiven period of time and at steady
state. On the basis of the results of the sensitivity aralysthe different directions of interest,
the most critical component or the group of most critical poments can be identified. The main-
tenance policies parameters can be also tuned to keep awcbastilability and/or productivity
level in the presence of components degradation, etc...

This paper is the development of our research in the framewfathe sensitivity importance
analysis of dynamic systems presented in part in [3]. Owréutesearch work focuses on the
direction sensitivity optimization for maintenance pglgarameters, and on the development of
methods to estimate our proposed measure MSM with the apgfaedback data in the transient

state.
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