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Abstract

The sensitivity analysis of complex industrial systems aims at identifying, in a multi-unit struc-

ture, which components contribute the most to a variation ofthe performance criterion. In this

paper an importance measure, called multi-directional sensitivity measure, defined as the deriva-

tive of the system performance in the direction defined by a vector (or matrix) in an appropriate

space (e.g. direction of one parameter, of a group of parameters, or generally any direction of the

transition rates of a Markov process) is considered. This measure proposed for sensitivity analysis

of steady state reliability is developed herein for the transient state. It is also extended and applied

to the study of the production capacity of multi-state production systems such as manufacturing,

production lines, and power generation, which exhibit performances that can settle on different

levels depending on the operative conditions of the constitutive components. A simple numerical

example is introduced to show why this measure provides an efficient tool to investigate not only

the importance of a given component, but also the importanceof a class of components, the im-

portance of the maintenance and, more generally, the effectof the simultaneous change of several
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design parameters.

Keywords: reliability; sensitivity analysis; importancemeasure; Markov process; multi-state

system; production system

1 Introduction

The reliability importance analysis of complex industrialsystems aims at identifying, in a multi-

unit structure, which components contribute the most to a variation of the performance criterion.

In classical reliability studies [15], many importance measures are considered (Birnbaum, Fussell-

Vesely, Critical importance measure, etc) to classify the different elements of a multi-unit system

by order of importance. Hence, for example, the decisions for preventive and corrective mainte-

nance, or the monitoring schedule, can be tuned as a functionof this classification. Many studies

have been done to improve the calculation of these measures,especially when the components can

be considered as stochastically independent. In the realistic case of stochastic dependencies ex-

isting between some components (shared maintenance resource, cold spare, shared load, etc), the

definition and the calculation of other criteria is needed and more and more different approaches

are proposed. The exact solution for the sensitivity measures for a Markov model relies on the

Frank’s approach [6]: the classical set of differential equations is extended to a bigger set of

equations including the sensitivity factor equations. However, this approach is computationally

burdensome and almost unusable or highly inefficient on a realistic-size system when the state

space dimension is too high. To cope with this problem, some approximate solutions have been

proposed but they are often only applicable on a limited class of systems (e.g. acyclic Markov

models with no repairs), [13]. Hence, the problem remains widely open.

For systems described by Markov Models, [5, 4] propose an importance measure, called multi-

directional sensitivity measure (MSM), which correspondsto the derivative of the performance

function (e.g. system availability or system production level) in the direction defined by a vector

(or matrix) in an appropriate space (e.g. direction of one parameter, of a group of parameters, or

generally any direction of the transition rates of a Markov process). In [5, 4], a procedure based on

perturbation analysis and one of its extensions presented in [2] is developed to evaluate MSM at

steady state. The aim of the present paper is to show that the same importance measure MSM can

be considered to conduct a reliability importance analysisin the transient state. Hence, the sen-
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sitivity analysis can be extended from steady state performances to transient state performances.

This extension allows, for example, the sensitivity analysis of system performances on a finite

time horizon. More precisely, this importance measure can provide an efficient tool to:

• identify the importance of a given component (parameter), and also the importance of a

class of components with respect to the system performance of interest;

• evaluate the effect of the change in any direction of one parameter or a group of design

parameters;

• solve maintenance policy optimization and performance improvement problems.

Moreover, from a practical point of view, many systems such as manufacturing production

lines and power generation installations exhibit performances that can settle on different levels

(e.g. 100%, 90%, 80% of the nominal capacity) depending on the operative conditions of the con-

stitutive components. These components can be stochastically dependent [9] and the production

capacity has often to be evaluated on a finite-time horizon, and not only at steady state. Many

authors have defined importance measures for multi-state systems [10, 16, 14] but they mainly

focus on universal generating function method and Monte Carlo simulation. In this paper, we also

show that the multi-directional sensitivity measure MSM can be used to study the sensitivity of

the production capacity in the context of Markovian multi-state production systems.

This paper is organized as follows. Section 2 is devoted to the presentation of MSM and the

link with the classical importance measures, as well as the evaluation of MSM for a finite time

horizon, and MSM for the average availability sensitivity during a given period of time. The

link with MSM of the availability at steady-state, presented in [4], is also established. Section

3 focuses on the application to multi-state production systems. It is shown how MSM is used

as an appropriate tool for the production capacity sensitivity analysis during a given time period

of interest, as well as at steady-state. A simple numerical example is introduced in section 4 to

illustrate the advantages of the proposed importance measure, MSM, for both reliability studies

and production capacity sensitivity analysis. Finally, Section 5 presents the conclusions drawn

from this work.

Notation list

M transition rates matrix of Markov models

M ] group inverse ofM

Q directional perturbation matrix/direction of sensitivity
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P (t) column vector of state probabilities at timet

P̃ (t) column vector of average state probabilities vector duringa given period time

[0, t]

π column vector of steady-state probabilities

A(t) system availability at timet

A(t) average availability during a given period time[0, t]

A system availability at infinite time

X row vector of state production capacities

S(t) expected production capacity at timet

S(t) average of expected production capacity during a given period time[0, t]

S expected production capacity at infinite time

λ failure rate of one unit

µ repair rate of one unit

MSMW
D sensitivity of performance measureW in the directionD, in whichW andD are

eitherA,S, andλ, Q, respectively

2 Importance measure on a finite time horizon

Markov models are frequently used in reliability analysis to assess different metrics of interest,

e.g. system reliability, availability, maintainability.Within this Markov modelling framework, the

traditional reliability importance measures (e.g. Birnbaum importance or critical importance mea-

sure) used to analyze the system performance sensitivity with respect to the parameters of its com-

ponents can be computationally expensive to evaluate. Moreover, in the context of more “com-

plex” dynamic systems with inter-component and functionaldependencies (cold spare, shared

load, shared resources, etc), even the meaning and the definition of these traditional importance

measures may be questionable. This section explores the multi-directional sensitivity measure

MSM in reliability studies of Markovian systems on a finite time horizon (transient state), as well

as a link with MSM at steady state presented in [4, 5].

2.1 The multi-directional sensitivity measure

Consider a dynamic system described by a Markov model and letthe column vectorP (t) be the

vector of state probabilities, andP 0 be the initial state probabilities vector. The system of the

first order Chapman-Kolmogorov equations applied to homogeneous Markovian process (without
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additional dynamical variables) is
dP (t)

dt
= MP (t). (1)

The solution of (1) can be expressed as

P (t) = eM tP 0 = FM (t)P 0, (2)

whereFM (t) = eM t is the exponential matrix.

A perturbation on one parameter or a group of parameters of the system is equivalent to a

perturbation in the transition rates matrixM . It leads to a perturbed transition matrix

Mδ = M + δQ,

whereδ is a small real number andQ is a directional perturbation matrix in which an entryQij = 0

indicates that the transition rate from statei to statej is not perturbed andQij = α different from

0 indicates that the transition rate from statei to statej is perturbed by an amountαδ. The only

condition on the structure ofQ to ensure that the matrixM δ remains a transition matrix is that the

sum of each column ofQ equals 0.

Example: consider a system consisting of two independent units C1 and C2 in a parallel

structure with constant failure ratesλ1, λ2 and constant repair ratesµ1, µ2, see Figure 1. The

transition matrix of this system is given by

Figure 1: A parallel structure of 2 independent units

M =

















−λ1 − λ2 µ1 µ2 0

λ1 −µ1 − λ2 0 µ2

λ2 0 −µ2 − λ1 µ1

0 λ2 λ1 −µ1 − µ2

















The state diagram of this system is sketched in Figures 2 and 3for two different types of

perturbations. Figure 2 sketches the Markov graph with a perturbation on one specific parameter,
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Figure 2: Perturbation onλ2

State 1 :C1C2 State 2 :C1C2

State 3 :C1C2 State 4 :C1 C2

Figure 3: Perturbation on the exit transition rates of state3

namelyλ2, which corresponds to the directional perturbation matrixQ1

Q1 =

















−1 0 0 0

0 −1 0 0

1 0 0 0

0 1 0 0

















.

Figure 3 presents the state diagram modified by a perturbation on the exit transition rates

of one specific state, namely state number 3. This perturbation corresponds to the directional

perturbation matrixQ2

Q2 =

















0 0 3 0

0 0 0 0

0 0 −1 0

0 0 −2 0

















.

The variations in the transition rates matrix affect the transient solutionP (t) that becomes
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P δ(t) (with the same initial conditionP δ(0) = P (0)). P δ(t) satisfies

dP δ(t)

dt
= MδP δ(t). (3)

The derivative ofP (t) in the direction ofQ is defined as the following

dP (t)

dQ
= lim

δ→0

P δ(t)−P (t)

δ
. (4)

The system availability at timet is defined as

A(t) =
∑

i∈ΩO

P i(t) = fP (t),

whereΩO is, for binary systems, a set of operational states, andf = (f1, f2, ..., fn) is a row

vector associated with the system states, e.g. iffi = 1 if system is in operational statei andfi = 0

otherwise. For multi-state systems,ΩO is a set of states whose level of performance are higher

than the level required (see e.g., [10, 16]).

The sensitivity ofA(t) in the directionQ, named MSMA
Q(t), is defined as

MSMA
Q(t) =

dA(t)

dQ
= f

dP (t)

dQ
. (5)

It is clear that MSMA
Q(t) represents the sensitivity of the system availability in the direction of

interestQ that corresponds to the direction of one parameter, the direction of a group of parameters

(failure rates, repair rates for example), or more generally, the direction of a group of transition

rates.

Link with classical importance measure Looking at the example shown in Figure 1, since

Q1 indicates the perturbation of only one parameter of the system (λ2), MSMA
Q1

(t) corresponds

therefore to∂A/∂λ2, i.e. the partial derivative of the system availability with respect toλ2. In

this case, the link with the classical Birnbaum’s importance measure [15], defined as the derivative

of the system availability with respect to the availabilityof a given component in the context of

independent components system, is directly established using the chain rule

IB(C2/t) =
∂A(t)

∂a2(t)
=

∂A(t)

∂λ2
/
∂a2(t)

∂λ2
,
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or,

IB(C2/t) = MSMA
Q1

(t)/
∂a2(t)

∂λ2
,

wherea2(t) is the availability of component 2.

Note however that if there exist dependencies between the components, e.g. if in a two-unit

systemC2 is in cold redundancy withC1 (see Figure 4) the definition of an importance measure

as the partial derivative of the system availability with respect to a component availability may be

questionable. Indeed, the availability of component does not depend only of its characteristics but

Figure 4: Cold redundancy structure

also on other system parameters, and its availability in thesystem can be different of its availability

out of the system [13]. In this context, the partial derivative with respect to a parameter, rather than

to the availability of a component, appears to be more relevant and is often preferred for design

purpose. Hence, the multi-directional sensitivity measure MSM proposed in this work offers an

interesting (and generalizing) alternative, especially for dynamic systems with inter-components

dependencies. More precisely, it can provide an efficient tool to

• identify the importance of a given component (parameter), and also the importance of a

class of components;

• evaluate the effect of the change in any direction of one or more design parameters;

• optimize the maintenance policy problems, reliability improvement problems.

2.2 Evaluation of MSM

2.2.1 Transient state

Let Z(t) = P δ(t)−P (t). From Equations (1) and (3),Z(t) satisfies

dZ(t)

dt
= M δZ(t) + (M δ −M)P (t), (6)
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given the initial conditionZ(0) = P δ(0) − P (0) = 0. The solution to the nonhomogeneous

linear equation (6) can be expressed as (see, e.g., [7] for the details)

Z(t) =

∫ t

0
eMδ(t−s)(M δ −M)P (s)ds,

or,

Z(t) =

∫ t

0
FMδ

(t− s)(M δ −M)P (s)ds. (7)

ReplacingP δ(t) − P (t) in (4) by Z(t) and using (7), the derivative ofP (t) in the directionQ

can be expressed as

dP (t)

dQ
= lim

δ→0

1

δ

∫ t

0
FMδ

(t− s)(M δ −M)P (s)ds.

dP (t)

dQ
= lim

δ→0

∫ t

0
FMδ

(t− s)
M δ −M

δ
P (s)ds.

UsingQ = (M δ −M)/δ

dP (t)

dQ
=

∫ t

0
(lim
δ→0

FMδ
(t− s))QP (s)ds.

dP (t)

dQ
=

∫ t

0
FM (t− s)QP (s)ds. (8)

Substituting (2) in to (8) we obtain

dP (t)

dQ
=

∫ t

0
FM (t− s)QFM (s)P 0ds. (9)

Finally, from the definition (5), the MSM ofA(t) in the directionQ can be written as

MSMA
Q(t) =

∫ t

0
fFM (t− s)QFM (s)P 0ds. (10)

This may be evaluated by a numerical integration method or directly by making a suitable

expansion of matrix exponentials with, for example, the uniformization method [12].

Equation (10) allows for the evaluation of the system availability sensitivity in any direction

of interest at timet in the transient state. A similar formula evaluation has been shown in [1]

by using the generalized perturbation theory (GPT) method in the context of Makovian systems.

However, the directionQ in [1] is limited to the direction of a single parameter.
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2.2.2 Average on a finite time horizon

From (6) by taking integrals for a given period of time[0, t] we obtain the following differential

equation
∫ t

0

dZ(s)

ds
ds = M δ

∫ t

0
Z(s)ds + (M δ −M)

∫ t

0
P (s)ds,

or,

Z(t)−Z(0) = M δ

∫ t

0
Z(s)ds + (M δ −M)

∫ t

0
P (s)ds. (11)

Let us define:

• P̃ (t) =

∫ t

0
P (s)ds.

• Z̃(t) = P̃ δ(t)− P̃ (t) =

∫ t

0
Z(s)ds.

Note thatdZ̃(t)/dt = Z(t) and Z(0) = 0, the differential equation (11) can therefore be

written as
dZ̃(t)

dt
= M δZ̃(t) + (M δ −M)P̃ (t), (12)

whose the solution is

Z̃(t) =

∫ t

0
FMδ

(t− s)(M δ −M)P̃ (s)ds.

The derivative ofP̃ (t) in the directionQ is expressed as

dP̃ (t)

dQ
= lim

δ→0

Z̃(t)

δ
= lim

δ→0

∫ t

0
FMδ

(t− s)QP̃ (s)ds,

or,
dP̃ (t)

dQ
=

∫ t

0
FM (t− s)QP̃ (s)ds. (13)

The average availability during a given period[0, t]

A(t) =
1

t

∫ t

0
A(s)ds =

1

t

∫ t

0
fP (s)ds =

1

t
fP̃ (t).

The sensitivity ofA(t) in the directionQ (i.e. the MSM ofA(t)) is finally

MSMA
Q =

dA(t)

dQ
=

1

t
f

dP̃ (t)

dQ
=

1

t
f

∫ t

0
FM (t− s)QP̃ (s)ds. (14)

This equation allows the calculation of the average availability sensitivity during a given pe-

riod [0, t] in any direction of interestQ.
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2.2.3 Link with the steady-state

If the Markov process is irreducible then whent tends towards infinity, the system reaches a

steady state behavior, solimt→∞{dA(t)/dt} = 0. Let π = (π1, π2, ...πn)′ be the column vector

representing the steady state probabilities (π = limt→∞ P (t)), and letZπ = limt→∞ Z(t), then

Equation (6) becomes

M δZπ + (M δ − M)π = 0,

or

−Mδ
Zπ

δ
= Qπ. (15)

Since matrixM δ is not invertible, the generalized inverse (or group inverse)M ]
δ = (M δ −πδe)−1−

πδe, with e = (1,1...), has to be used to solve Equation (15) forZπ, see [11] for details. Using

the relationsM ]
δMδ =I −πδe andeπ = eπδ = 1, it follows that

Zπ

δ
= −M ]

δQπ.

The derivative ofπ in the direction ofQ can be defined as

dπ

dQ
= lim

δ→0

Zπ

δ
= − lim

δ→0
M ]

δQπ.

SinceM ]
δ is continuous, i.e.,limδ→0 M ]

δ = M ] = (M −πe)−1 −πe [2], dπ/dQ can be expressed

as
dπ

dQ
= −M ]Qπ. (16)

Let us noteA = limt→∞ A(t) = fπ, the system availability at infinite time (steady state). Hence

the sensitivity ofA in the directionQ (i.e. the MSM ofA) can be written as

MSMA
Q =

dA

dQ
= −fM ]Qπ. (17)

The exact solution is obtained by calculating the group inverse [11]. An estimate solution has

been proposed by Cao in [2]:G = fM ], called potential vector, can be estimated directly from

a single sample path observation. This method seems to be very powerful for Markov sensitivity

analysis and Markov decision-making problems and it is usedto study the reliability sensitivity

analysis for steady-state systems in [4].
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3 Application to multi-state production systems

For multi-state production systems such as e.g. manufacturing production lines and power gen-

eration installations, the performances output of interest is not only the reliability but also the

production capacity [9, 8]. This section explores, in the framework of Makovian multi-state pro-

duction systems, how MSM can be extended to assess the sensitivity of production capacity with

respect to the reliability characteristics of the system.

Assume that a unique production (or treatment) capacityXi corresponds to each statei and

let Pi(t) be the probability of being in statei at timet. The expected production capacity at time

t is then

S(t) = EP (t){X} =
∑

i∈Ω

Pi(t)Xi = XP (t), (18)

whereX = (X1,X2, ...,Xm) is a row vector representing the state production capacities, EP (t)

devotes the expectation with respect to the state probabilitiesP (t), andΩ is the state space of the

production system.

Note well thatXi depend on the production capacity of the components and on the system

structure. To evaluate the production capacities vecteurX, we consider that components are

defined as the level at which the failure and repair rate data are collected or estimated. Relevant

states, like functioning, failed or degraded, should be defined for each component. The production

capacity of each system state is calculated by splitting thesystem into subsystems and basic

subsystems which are series or parallel structures.

Let Xstruct.
k represent the production capacity of a structure (subsystem or basic subsystem)

with n units that is in statek (k = 1,2, ...). Let Y k
i represent the production capacity level of

componenti when the system (or the structure) is in a statek. One gets

• for a series structure

Xseries−struct.
k = min(Y k

1 , Y k
2 , ..., Y k

n );

• for a parallel structure

Xparallel−struct.
k =

n
∑

i=1

Y k
i .

Using (9) and (18), the directional sensitivity (or directional derivative) of the expected pro-

duction capacity in the directionQ (i.e. the MSM ofS(t)) at timet is written as

MSMS
Q(t) =

dS(t)

dQ
= X

∫ t

0
FM (t− s)QFM (s)P 0ds. (19)
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The average production capacity during a given period [0, t] is defined as

S(t) =
1

t

∫ t

0
XP (s)ds,

or,

S(t) =
X

t
P̃ (t). (20)

Using (13) and (20), the sensitivity of the average production capacity during a given period

in the direction of interestQ (i.e. the MSM ofS(t)) can be expressed as

MSMS
Q =

dS(t)

dQ
=

X

t

∫ t

0
FM (t− s)QP̃ (s)ds. (21)

If the system reaches a steady state (case of irreducible Markov process), then whent tends

towards infinity,limt→∞ S(t) = limt→∞ S(t) = Xπ. Let S = Xπ, S is called the production

capacity at steady state. So using (16), the sensitivity of the production capacity at steady-state in

the directionQ (i.e. the MSM ofS) can be written as

MSMS
Q =

dS

dQ
= X

dπ

dQ
= −XM ]Qπ. (22)

The multi-directional sensitivity measure MSM can be used in multi-state production systems

to evaluate the variation of production capacity at timet (or for a given period) when one or a

group of parameters changes their value at the same time. It is also useful to find the importance of

one parameter/component or even of a group of parameters/components for the system production

capacity.

4 Numerical example

The purpose of this section is to show how the MSM can be used inreliability importance analysis

and in production capacity analysis through a simple example. Both availability and production

capacity criteria are considered for the transient state ofa Markovian system, for its steady state

and also for a given time period of interest.

Figure 5 represents a part of a production line with 4 units divided into 2 groups

• Group G1: unitsC1 andC2 are treatment units. Their production capacities are 100 prod-

ucts/hour (hr) (for normal operation state), and 0 (for failed state). WhenC2 fails, the

production capacity of unitC1 increases by 20% (for simplicity, all capacities can be nor-
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Figure 5: A part of production line.

Table 1: System states

Component

State C1 C2 C3 C4 System production capacity

1 O O O S O 200
2 F O O S O 10
3 O F O S O 120
4 O O F O O 200
5 O O O F O 200
6 F F O S F 0
7 F O F O O 100
8 F O O F O 100
9 O F F O O 120
10 O F O F O 120
11 O O F F F 0
12 F F F O F 0
13 F F O F F 0
14 F O F F F 0
15 O F F F F 0

malized, and they actually represent a given amount of products/hr)

• Group G2: unitsC3 andC4 are packaging units, andC4 is in cold redundancy withC3.

C3 is the main operating unit of group G2: as soon asC3 is repaired,C4 stops and priority

is always given to the repair ofC3. The production capacity values ofC3 andC4 are 200

products/hr and 0 corresponding to the running state and thefailed state respectively (there

are no degraded condition for them).

The nominal production capacity of the system is 200 products/hr. The operational mode of

the system is described in Table 1 where “O” denotes an operating state, “S” denotes a standby

state, and “F” denotes a failed state. The corresponding Markov process is sketched in Figure

6. Table 2 gives the values of failure ratesλi ( λi for failure of shared load case, whenC2 fails

andC1 is functioning, for example), the repair ratesµi, (i = 1, ...,4), as well as the production

capacities of each component.
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Table 2: Transition rates & production capacities.

Units λi µi λi Production capacity

C1 4.5e-4 4e-3 1e-3 0/100/120
C2 4.5e-4 4e-3 - 0/100
C3 4.5e-4 3e-3 - 0/200
C4 6.0e-4 3e-3 - 0/200

Figure 6: Markov diagram & production capacities distribution.

Consider first the system availabilityA(t) and the system expected production capacityS(t).

Their behavioursvs time are shown in Figure 7. After about2500hr the asymptotic behaviour

is reached. Their average values over a period of one year (ts = 8760hr) areA(ts) = 0.96, and

S(ts) = 88.47% respectively.

4.1 Availability sensitivity to one parameter

To study the system sensitivity using the proposed importance measure MSM, many different

directions of sensitivity can be considered. We first consider a directional perturbation matrixQλi

corresponding to changes in the direction of a single parameter of interest, e.g. the failure rate of

componenti, λi. The corresponding importance measures are denoted MSMA
λi

(t) = MSMA
Qλi

(t)

for the transient response, MSMAλi
= MSMA

Qλi
for the average over a finite time horizon and
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Figure 7: System availability & expected production capacity.

MSMA
λi

= MSMA
Qλi

at steady state. These quantities are evaluated by numerical integration of

Equations (10), (14) and (17).
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Figure 8: Availability sensitivity to failure rates - (a) with component repairs - (b) without component repair
(µi = 0)

The behaviorvs time of the system availability sensitivities with respectto the failure rates are

shown in Figure 8, with component repair (8.a) and without component repair (8.b). Obviously,

a failure rate increase results in a decrease of the system availability and all MSM values are

negative. The sensitivity of the system availability toC1 is shared between the sensitivity toλ1

and toλ1. Hence, because of the linearity inQ of Equation (10), the impact of failure rate ofC1

on the system availability sensitivity is given by the sum MSMA
λ1

(t) + MSMA
λ1

(t). The analysis

of the components sensitivities during the transient stateshows that the components importance
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ranking may change with time, see Figure 8.a

• the most important component during a short period of time(0,580hr] is C2 ;

• from t = 580hr to t = 1500hr, the components importance ranking isC1 < C4 < C2 < C3 ;

• finally, from t = 1500hr until steady state, the components importance ranking isC1 <

C2 < C4 < C3. This last ranking still holds for the average values duringa period of one

year presented in Table 3 and also for the availability sensitivity at steady state, in Table 4.

Since the components importance ranking may change with time, the interest of a sensitivity

measure during the transient state is precisely to be able toindicate which is the most important

component at a given time. Note however that the components’ranking that we obtain are not

absolute importance rankings, but the ranking relative to the MSM criterion. Obviously, different

rankings could be obtained if a different reliability importance measure was used.

4.2 Production capacity sensitivity to one parameter

Consider now the application of MSM for system productivityanalysis. As in the previous section,

many different directions of interest can be investigated for the production capacity sensitivity

study. To illustrate the advantage of MSM in the production capacity analysis, we consider again a

directional perturbation matrixQλi
corresponding to changes in the direction of a single parameter

of interest, e.g. the failure rate of componenti, λi The corresponding importance measures are

denoted MSMS
λi

(t) = MSMS
Qλi

(t) for the transient response, MSMS
λi

= MSMS
Qλi

for the average

over a finite time horizon and MSMSλi
= MSMS

Qλi
at steady state. These quantities are evaluated

by numerical integration of Equations (19), (21) and (22).

Figure 9 sketches the importance measures MSMS
λi

(t) (i = 1, ...,4) for the cases with compo-

nent repairs (Figure 9.a) and without component repairs (Figure 9.b). Not surprisingly again, the

results show that an increase of a failure rate leads to a decrease of the system productivity. In

the case of repairable components,C1 turns out to be the most critical component, and the com-

ponents importance ranking isC4 < C3 < C2 < C1. This order remains the same for the average

productivity sensitivity during a period of one year, and for the productivity sensitivity at infinite

time horizon (see Table 3).

This ranking is not the same as the components importance ranking according to the system

availability sensitivity obtained in the previous sectionsince the supply of production for the group

G2 (C3 or C4) depends on the state of groupG1 (C1 & C2), hence the impact ofC1 & C2 on the

system production capacity is more important thanC3 & C4 (“bottleneck effect”). Moreover, the

17



0 500 1000 1500 2000 2500
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

4

t [hr]

a

MSMS
λ1

(t) + MSMS

λ1
(t)

MSMS
λ2

(t)

MSMS
λ3

(t)

MSMS
λ4

(t)

0 500 1000 1500 2000 2500
−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

t [hr]
530

b

MSMS
λ1

(t) + MSMS

λ1
(t)

MSMS
λ2

(t)

MSMS
λ3

(t)

MSMS
λ4

(t)

Figure 9: Production capacity sensitivity to failure rates- (a) with component repairs - (b) without component
repair (µi = 0)

production capacity ofC1 is higher than that ofC2.

Table 3: Sensitivity to failure rates for a period of one year.

Availability Production capacity

Unit Value Order Value Order

C1
MSMA

λ1
-7.9066

4
MSMS

λ1
-17333.417

1
MSMA

λ1
-9.0608 MSMS

λ1
-1812.4142

C2 MSMA
λ2

-29.8912 3 MSMS
λ2

-17872.5520 2

C3 MSMA
λ3

-47.3851 1 MSMS
λ3

-8690.0876 3

C4 MSMA
λ4

-30.0011 2 MSMS
λ4

-5501.9786 4

4.3 Sensitivity analysis to a group of parameters

In this section, composite directions of sensitivity are considered, i.e. the perturbation is not

limited to a single specific parameter. Instead, perturbations on a group of parameters, or more

generally, perturbations on a group of transition rates arestudied. The analysis of sensitivity in

such directions can help e.g. to identify the importance of group of components or to optimize the

maintenance effort.

• Application for groups importance ranking

In Table 5, the direction denotedQ(λ1, λ1, λ2) indicates that the failure rates ofC1 and

C2 are simultaneously perturbed by the same amount. Similarly, the direction denoted
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Table 4: Sensitivity to failure rates at steady state.

Availability Production capacity

Unit Value Order Value Order

C1
MSMA

λ1
-8.1398

4
MSMS

λ1
-17644.2201

1
MSMA

λ1
-9.3909 MSMS

λ1
-1897.74279

C2 MSMA
λ2

-30.9503 3 MSMS
λ2

-18310.9108 2

C3 MSMA
λ3

-51.2382 1 MSMS
λ3

-9395.1702 3

C4 MSMA
λ4

-32.0239 2 MSMS
λ4

-5871.9814 4

Table 5: Sensitivity analysis to group of parameters

Availability Production capacity

Direction MSMA
Q MSMA

Q MSMS
Q MSMS

Q

Q(λ1, λ1, λ2) -46.8586 -48.4811 -37018.3834 -37852.8737
Q(λ3, λ4) -77.3862 -83.2621 -14192.0662 -15267.1516

Q(λ1,2.4µ2) 0.0131 0.2304 2873.4024 3050.3997
Q(λ4,2.53µ3) -0.0340 1.5115 -6.1964 277.1575

Q(λ3, λ4) corresponds to the simultaneous perturbation of the failure rates ofC3 andC4

by the same amount. Hence, the derivative of the system performance in one of these

directions gives an importance measure of the effect of the corresponding group of com-

ponents on the system performance. According to these measures on the system avail-

ability during a period of one year and at steady state, the groups’/components’ ranking is

C1 < C2 < C4 < G1(C1,C2) < C3 < G2(C3,C4). The groups/components importance

measures with respect to the system productivity can also bederived and results in the fol-

lowing rankingC4 < C3 < G1(C3,C4) < C2 < C1 < G2(C1,C2).

• Application to maintenance optimisationWhen one parameter of the system is changed

(increased failure rate, components degradation, for example), the system performances

(availability, productivity) deteriorates. This variation can be compensated completely or

partially if at the same time, other parameters of the systems (repair rates, for example) can

be perturbed to compensate for this change in performance. This action can be performed

by choosing a suitable direction of perturbationQ. In Table 5, two directions of perturbation

are proposed to keep the system availability or/and the system productivity at the same level

in the case of a degradation componentsC1 andC4. The directionQ(λi, αµj) indicates that

if λi (for i = 1,4) is increased by an amountδ, then at the same time,µj is perturbed by
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Table 6: Sensitivity analysis to the failure rate of a given state

Availability Production capacity

Direction MSMA
QSi

MSMA
QSi

Order MSMS
QSi

MSMS
QSi

Order

QS1 -57.4255 -60.0535 1 -35477.8421 -36215.8937 1
QS2 -13.8533 -14.6393 3 -2354.4050 -2512.5380 3
QS3 -11.4106 -12.0197 4 -2221.8456 -2356.8238 4
QS4 -27.3454 -29.1022 2 -8022.0121 -8486.7967 2
QS5 -5.1681 -6.0478 5 -1496.7651 -1739.0416 5
QS7 -4.0821 -4.4008 6 -719.7299 -785.4732 6
QS8 -0.7728 -0.9072 8 -136.2435 -162.0568 8
QS9 -3.5206 -3.7906 7 -657.3550 -714.1543 7
QS10 -0.6664 -0.7822 9 -124.2511 -147.2472 9

an amountαδ. A sensitivity close to zero in a direction of the formQ(λi, αµj) indicates

that the change onµj almost balances the effect of the change onλi. From a practical

point of view, this can be seen as a mean to tune the maintenance parameters, such that

a perturbation on the failure rate has no impact on the systemavailability or/and system

productivity. Maintenance policies parameters can then beoptimally tuned in this way and

the optimal solution can also depend on other criteria (maintenance cost, for example).

4.4 Sensitivity analysis to failure rates of a given state

To study the sensitivity of a given state, some specific directions of sensitivity are considered. In

Table 6, the direction denotedQSi indicates that all failure rate transitions out from the opera-

tional statei (i = 1,2,3,4,5,7,8,9,10) are simultaneously perturbed by the same amount. The

sensitivity in these directions can help to identify the importance of a given state. According to the

sensitivity in these directions on the system availabilityand/or on the system productivity during a

period of one year and at steady state, the most important state is state number 1 and state 10 is the

least important one, see Table 6. As shown in Figure 10.a (sensitivity of the system availability for

different statesSi) and in Figure 10.b (sensitivity of the system productivity), during the transient

state the states importance ranking can change with time.

4.5 Sensitivity analysis to failure rates of a group of states

This subsection explores the sensitivity of the failure rates of a group of states. In Table 7, the

direction denotedQ(CiCj) (i, j = 1,2,3,4) indicates that the failure rates of componentsCi and

Cj are simultaneously perturbed by the same amount in all the operational states where both
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Figure 10: Sensitivity to failure rates of a given state - (a)Sensitivity of the system availability - (b) Sensitivity
of the system production capacity

Ci,Cj are functioning. From a practical point of view, this perturbation could be caused by, for

example, electrical shock, environmental conditions changing, etc. The sensitivity of the system

availability/productivity in this direction allows for the quantification of the impact of a group of

operational components on the system availability/productivity during a period of one year and at

steady state, see Table 7

• according to the sensitivity on the system availability, the most important group of 2 opera-

tional components is(C2,C3) and the group(C1,C2) is the least important one;

• according to the sensitivity on the system productivity, the most important group of 2 oper-

ational components is(C1,C2) and the group(C2,C4) is the least important one.

The results for the transient state are given in Figure 11.a for the system availability sensitivity

analysis and in Figure 11.b for the system productivity sensitivity analysis.

Table 7: Sensitivity analysis to the failure rates of a groupof states

Availability Production capacity

Direction States MSMAQ MSMA
Q Order MSMS

Q MSMS
Q Order

Q(C1C2) 1,4,5 -26.4276 -27.2344 5 -33329.7076 -33978.7511 1
Q(C1C3) 1,3,5,10 -58.0905 -61.8841 2 -25005.6896 -25899.9678 2
Q(C1C4) 4,9 -28.9252 -30.8173 4 -6998.0912 -7425.4585 4
Q(C2C3) 1,2,5,8 -70.1417 -74.3927 1 -23954.6266 -24903.1600 3
Q(C2C4) 4,7 -30.5990 -32.6183 3 -6918.9540 -7354.4199 5
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Figure 11: Sensitivity to failure rates of a group of states -(a) Sensitivity of the system availability - (b)
Sensitivity of the system production capacity

5 Conclusions

The multi-directional sensitivity measure, MSM, can be used to investigate the performance sen-

sitivity of dynamic systems in any direction of one parameter, or in any direction of a group of

parameters, and, more generally, the effect of the simultaneous change of several design param-

eters. This measure can be extended to the multi-state production systems whose performance

output is not only the system availability but also its production capacity. The sensitivity of both

performance outputs are studied in the transient state, during a given period of time and at steady

state. On the basis of the results of the sensitivity analysis in the different directions of interest,

the most critical component or the group of most critical components can be identified. The main-

tenance policies parameters can be also tuned to keep a constant availability and/or productivity

level in the presence of components degradation, etc...

This paper is the development of our research in the framework of the sensitivity importance

analysis of dynamic systems presented in part in [3]. Our future research work focuses on the

direction sensitivity optimization for maintenance policy parameters, and on the development of

methods to estimate our proposed measure MSM with the operating feedback data in the transient

state.
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