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On the precision of noise correlation interferometry
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SUMMARY

Long duration noisy-looking waveforms such as those obtained in randomly multiply

scattering and reverberant media are complex; they resist direct interpretation. Never-

theless, such waveforms are sensitive to small changes in the source of the waves or in

the medium in which they propagate. Monitoring such waveforms, whether obtained di-

rectly or obtained indirectly by noise correlation, is emerging as a technique for detecting

changes in media. Interpretation of changes is in principle problematic; it is not always

clear whether a change is due to sources or to the medium. Of particular interest is the

detection of small changes in propagation speeds. An expression is derived here for the

apparent, but illusory, waveform dilation due to a change of source. The expression per-

mits changes in waveforms due to changes in wavespeed to be distinguished with high

precision from changes due to other reasons. The theory is successfully compared with

analysis of a laboratory ultrasonic data set and a seismic data set from Parkfield Califor-

nia.

1 INTRODUCTION

The technique proposed in the 1980’s (Poupinet et al. 1984) and later called ”Coda wave interferom-

etry” (Snieder et al.2002) compares coda waveforms from multiply scattered waves obtained under

different circumstances or on different dates and detects changes in a medium. A multiply scattered
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wave can resist detailed interpretation, but for purposes of monitoring one may not need to interpret

the waveform: it is sufficient to notice changes. Coda wave interferometry was first suggested for

seismic waves but has also been applied in laboratory ultrasonics (Weaver & Lobkis 2000; Gorin,

Seligman & Weaver 2006; Lobkis & Weaver 2008; De Rosny & Roux 2001; Lu & Michaels 2005).

In many such cases the change is due to a uniform change of temperature, and thus a uniform change

in wave velocity. To detect such changes, Weaver & Lobkis (2000) constructed a dilation correlation

coefficient between waveforms φ1 and φ2.

X(ε) =

∫
φ1(t)φ2(t(1 + ε))dt√∫
φ21(t)dt

∫
φ22(t(1 + ε))dt

(1)

X takes on a value of unity at ε = 0 if the two waveforms are identical. It will reach a value of

unity at some characteristic value of ε if the two waveforms differ only by some temporal dilation.

The estimated degree of dilation between two waveforms is taken to be the value of ε at which X

is maximum. X reaches a maximum of less than unity if the waveforms differ by more than dilation

alone. Therefore, the value ofX at its maximum, if it is less than unity, may be interpreted as a measure

of the distortion between the waveforms.

An alternative formulation is Poupinet’s doublet method (Poupinet et al. 1984), which breaks φ1

and φ2 into a series of short time windows at several distinct times t, and determines the apparent shift

δt between them by examining conventional cross spectrum. δt as a function of t, and in particular its

slope δt/t reveals a change in the medium. Poupinet developed the doublet method in which seismic

signals from repeated seismic events could be compared to infer changes in the earth (Poupinet et al.

1984). Song & Richards (1996) and Zhang et al. (1985) used this to show that certain earth crossing

rays were shifted and distorted compared to versions some years earlier, indicating a relative rotation

between the earth and its core.

The extensive literature in recent years on correlations of diffuse acoustic noise has reported theory

and measurements in support of the notion that such correlations are essentially equal to the acoustic

response that one would have at one receiver were there a source at the other (Lobkis & Weaver 2001;

Weaver & Lobkis 2004; Derode et al. 2003; Snieder 2004; Roux et al. 2005; Gouédard et al. 2008;

Tsai 2009). More technically, what is recovered is the Green’s function as filtered into the frequency

band of the noise, whitened and symmetrized in time. Two different kinds of records can be correlated.

Sometimes it is coda that is correlated (Campillo & Paul 2003). Coda waves consist in a long duration

random looking signals that follows the main arrivals from a strong seismic source; coda waves are

due to single and/or multiple scattering. More commonly the diffuse noise is due to ambient seismic

waves from continuously acting sources such as human activity or ocean storms. Much recent literature

reports constructions of the earth’s seismic response between two seismograph stations, without the
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use of controlled sources, and without waiting for a seismic event. Tomographic maps of seismic

velocity with unprecedented resolution have been obtained (Shapiro et al. 2005; Sabra et al. 2005).

The technique has even been applied on the moon (Larose et al. 2005). Very commonly, the noise

which is correlated is incompletely equipartitioned, such that the resulting correlation waveforms do

not precisely correspond to the Green’s function. A difference between noise correlation and Green’s

function can also be observed when one has not averaged enough raw data; the correlation may not

have yet converged. Theoretical and applied work is ongoing in attempts to understand and correct

for systematic errors due to these effects (Weaver, Froment & Campillo 2009; Froment et al. 2010

). Nevertheless, Hadziioannou et al. (2009) demonstrated that it is not necessary to reconstruct the

Green’s function to use correlations for monitoring purposes.

These two approaches have been combined into what may be termed noise-correlation interferom-

etry (Sabra et al. 2006; Sens-Schönfelder & Wegler 2006; Brenguier, Shapiro et al. 2008; Brenguier,

Campillo et al. 2008) in which correlations of seismic noise taken in different circumstances are com-

pared. The correlations may have been obtained from different samples of ambient noise, perhaps on

different dates, or from the codas of different events. The correlations are of course never identical;

they are often very different. One reason for a difference is that the source of the noise may be different

(yet if the correlation has converged to the local Green’s function, a change of noise source ought to

have little effect). Continuous seismic sources can move and strengthen or weaken as weather changes

at sea. It may also be that the correlation has not fully converged (ie, insufficient averaging has been

done). A third possibility is that the local mechanical or acoustic environment may have evolved, in

particular, the local wave speed(s) may have changed. It is this possibility that is of particular interest,

as changes in seismic velocities are associated with relaxations after major seismic events (Brenguier,

Campillo et al. 2008). In some cases changes in seismic velocity can be used to predict volcanic erup-

tions (Brenguier, Shapiro et al. 2008). Therefore, it is of great interest to be able to discern whether a

change is due to a change in local environment or to a change in the character of the noise. The latter

possibility is of some interest; the former is of great interest.

Our purpose here is to evaluate the precision with which wave speed changes can be evaluated. To

do this we consider the case in which the two waveforms φ1(t) and φ2(t) differ only by noise so that

the actual relative dilation without noise, is zero. We then ask for the apparent (non-zero in general)

value of ε at which the corresponding X in equation (1) achieves its maximum. The next section

calculates the root mean square
〈
ε2
〉

of this apparent, and erroneous, relative dilation. The subsequent

sections compare this prediction with experiment.
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2 DILATION CORRELATION COEFFICIENT

Here we examine the apparent waveform-dilation between two nominally identical signals. Theoret-

ically, one ought to infer a relative dilation ε of zero, however, noise can corrupt the inference. Key

to the following analysis is an understanding that the signals being discussed are like coda, in that

they are statistically stationary with durations long compared to an inverse bandwidth. We take the

two waveforms to have an identical part ψ(t), and to differ by noise 2µχ(t). In the limit µ → 0, the

waveforms become identical and have no relative dilation. If µ 6= 0, there will be an apparent, but

actually meaningless, temporal dilation between them. We wish to estimate this erroneous apparent

relative dilation, and to identify any signatures that could be used to alert to the possibility of error.

Note that the common part ψ of the signals need not be the local Green’s functions.

We split the difference between these two waveforms φ1 and φ2, and define two signals ψ and χ;

φ1,2 = ψ(t)± µχ(t) (2)

The waveform dilation-correlation coefficient (1) between them is

X(ε, µ) =

∫
φ1(t(1 + ε/2)) φ2(t(1− ε/2)) dt√∫
φ21(t(1 + ε/2)) dt

∫
φ22(t(1− ε/2)) dt

=
√
1− ε2/4

∫
[ψ(t(1 + ε/2)) + µχ(t(1 + ε/2))] [ψ(t(1− ε/2))− µχ(t(1− ε/2))] dt√

[
∫
(ψ2 + µ2χ2) dt]2 − 4µ2 [

∫
χψ dt]2

(3)

=
√
1− ε2/4 N(ε, µ)

D(µ)

with N and D defined as, respectively, the numerator and the denominator of X . The integrations are

typically taken over a finite time-window with tapered edges. We make the approximation that the

change of variable t(1 + ε/2) → t and t(1 − ε/2) → t in the denominator only leaves a prefactor√
1− ε2/4.

The value of ε at which X achieves its maximum is the practitioner’s estimate of the dilation

between the waveforms φ1 and φ2. It occurs at ε such that ∂X/∂ε = 0, or,

0 =
√
1− ε2/4 D(µ)

∂X(ε, µ)

∂ε
= −ε N(ε, µ)

4
+ (1− ε2/4)∂N(ε, µ)

∂ε
. (4)

If the phase shift due to time dilation is much less than one oscillation, which implies tωε� 1 for

all times t and frequencies ω of interest, it suffices to expand N(ε, µ) through only the second power

of ε:

N(ε, µ) =

∫ [
ψ(t) +

tε

2
ψ̇(t) +

t2ε2

8
ψ̈(t) + µχ(t) +

µεt

2
χ̇(t) +

µt2ε2

8
χ̈(t)

]
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×
[
ψ(t)− tε

2
ψ̇(t) +

t2ε2

8
ψ̈(t)− µχ(t) + µεt

2
χ̇(t)− µt2ε2

8
χ̈(t)

]
dt. (5)

On collecting terms in N(ε, µ) that are linear and quadratic in ε obtains:

N(ε, µ) ∼
∫ [

ψ(t)2 − µ2χ(t)2
]
dt+

∫ [
tε

2
ψ̇(t) +

µεt

2
χ̇(t)

]
[ψ(t)− µχ(t)] dt

+

∫ [
− tε

2
ψ̇(t) +

µεt

2
χ̇(t)

]
[ψ(t) + µχ(t)] dt

+

∫ [
t2ε2

8
ψ̈(t) +

t2µε2

8
χ̈(t)

]
[ψ(t)− µχ(t)] dt

+

∫ [
t2ε2

8
ψ̈(t)− t2µε2

8
χ̈(t)

]
[ψ(t) + µχ(t)] dt

+

∫ [
tε

2
ψ̇(t) +

µεt

2
χ̇(t)

] [
− tε

2
ψ̇(t) +

µεt

2
χ̇(t)

]
dt (6)

=

∫ [
ψ(t)2 − µ2χ(t)2

]
dt+ ε

∫
tµ
[
(χ̇(t)ψ(t)− χ(t)ψ̇(t)

]
dt

+
ε2

4

∫
t2
[
ψ̈(t)ψ(t)− µ2χ̈(t)χ(t)

]
dt (7)

−ε
2

4

∫
t2
[
ψ̇(t)2 − µ2χ̇(t)2

]
dt.

The first term in ε2 may be integrated by parts.

N(ε, µ) ∼
∫ [

ψ(t)2 − µ2χ(t)2
]
dt+ ε

∫
tµ
[
χ̇(t)ψ(t)− χ(t)ψ̇(t)

]
dt

−1

2
ε2
∫
t2
[
ψ̇(t)2 − µ2χ̇(t)2

]
dt+

1

4
ε2r (8)

where the quantity r is:

r =

∫ [
ψ(t)2 − µ2χ(t)2

]
dt− t

[
ψ(t)2 − µ2χ(t)2

]
− t2

[
ψ(t)ψ̇(t)− µ2χ(t)χ̇(t)

]
, (9)

whose expectation is zero and whose typical value is much less (by a factor of t2ω2) than the other

coefficient of ε2 in Eq. (8). For this reason we henceforth neglect it.

So finally, neglecting high order of ε,

∂N(ε, µ)/∂ε ∼
∫
µt
[
χ̇(t)ψ(t)− χ(t)ψ̇(t)

]
dt− ε

∫
t2
[
ψ̇(t)2 − µ2χ̇(t)2

]
dt. (10)

Equation (4) is satisfied for:

ε = n/d, (11)

with
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n = µ

∫
t
[
χ̇(t)ψ(t)− χ(t)ψ̇(t)

]
dt,

d =

∫ [
t2(ψ̇(t)2 − µ2χ̇(t)2)

]
dt+

1

4

∫ [
ψ(t)2 − µ2χ(t)2

]
dt.

Equation (11) is an expression for the apparent dilation induced by the difference 2µχ between the

original waveforms φ1 and φ2. Given specific ψ and χ, one could evaluate it. It will be more useful,

however, to obtain statistical estimates for the apparent dilation given assumptions about the envelopes

and spectra of ψ and χ. The numerator n has expectation zero, as χ and ψ are statistically unrelated.

Thus within the stated limit ωtε << 1, differences φ2 − φ1 do not manifest as an apparent dilation

and the expected dilation ε is zero.

3 VARIANCE ESTIMATION AND STATISTICAL ERROR

Given 〈n〉 = 0, one then seeks estimates for the root-mean-square of equation (11) in order to judge

typical fluctuations around the expected zero. These will be made based on assumptions that ψ and

χ are stationary, noise-like and Gaussian, with similar spectra, having central frequency ωc. ψ and

χ have the same duration, long compared to the inverse of ωc. Without loss of generality it is also

assumed that they have the same amplitudes 〈ψ2〉 = 〈χ2〉 = 1. They are taken to extend from a start

time t1 to an end time t2. Under these assumptions the denominator of (11) is estimated as :

d ≈ (1− µ2)
[
1

3
ω2
c (t

3
2 − t31) +

1

4
(t2 − t1)

]
≈ (1− µ2)1

3
ω2
c (t

3
2 − t31). (12)

The square of the numerator of (11) is

n2 ≈ µ2
[∫ ∫

tt′
{
ψ(t)χ̇(t)− ψ̇(t)χ(t)

}{
ψ(t′)χ̇(t′)− ψ̇(t′)χ(t′)

}
dt dt′

]
. (13)

On changing variables: t+ t′ = 2τ , t− t′ = ξ and dropping the cross terms as having expectation

zero, (13) becomes:

〈n2〉 ≈ µ2
∫ (

τ2 − ξ2

4

){
ψ

(
τ +

ξ

2

)
χ̇

(
τ +

ξ

2

)
ψ

(
τ − ξ

2

)
χ̇

(
τ − ξ

2

)
+ψ̇

(
τ +

ξ

2

)
χ

(
τ +

ξ

2

)
ψ̇

(
τ − ξ

2

)
χ

(
τ − ξ

2

)}
dτ dξ. (14)

Auto-correlation functions may be defined as

〈ψ
(
τ +

ξ

2

)
ψ

(
τ − ξ

2

)
〉 = 〈ψ2(τ)〉Rψ(ξ) = R(ξ), (15)

such that

〈ψ̇
(
τ +

ξ

2

)
ψ̇

(
τ − ξ

2

)
〉 ≈ ω2

c 〈ψ2(τ)〉Rψ(ξ) = ω2
cR(ξ), (16)
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with similar expressions for χ. Then the expectation of the square of the numerator of (11) is:

〈n2〉 ≈ 2µ2
[∫ (

τ2 − ξ2

4

)
ω2
c R

2(ξ) dτ dξ

]
≈ 2 µ2 ω2

c

[∫
τ2dτ

] [∫
R2(ξ)dξ

]
. (17)

The first integral is merely (t32 − t31)/3. The second requires knowing something of the spectra of

ψ and χ, so we take these to be Gaussian and identical:∼ exp(−(ω−ωc)2T 2)+exp(−(ω+ωc)2T 2).

T may be identified by noting that the -10 dB points are at ωc plus or minus ln 10/T . In this case R is

related to the inverse Fourier transform of the power spectrum: R(ξ) = cos(ωc ξ) exp(ξ
2/4T 2). Then

the second integral in (17) is identified as T
√
π/2.

Application of equations (11), (12), (17) requires that we also estimate the µ. The quantity µ is

related to the maximum of the waveform dilation-correlation coefficient

X(0, µ) =
N(0, µ)

D(µ)
=

∫
ψ(t)2 − µ2χ(t)2dt√

[
∫
ψ2 + µ2χ2dt]2 − 4µ2 [

∫
χ ψ dt]2

(18)

As χ and ψ are statistically independent, one estimates the following relation between the maximum

of the dilation correlation coefficient and the parameter µ:

X =
1− µ2

1 + µ2
(19)

Finally, the root mean square of the practitioner’s (erroneous) estimate for the relative dilation between

φ1 and φ2 is

rms ε =
〈n2〉1/2

d
=

√
1−X2

2X

√√√√ 6
√

π
2T

ω2
c (t32 − t31)

(20)

We recall that T is the inverse of the frequency bandwidth, t1 and t2 are begin and end time of the

processed time-window in the coda, respectively, and ωc is the central pulsation. This expression scales

inversely with the duration of the correlation waveform in units of the period, and inversely with the

square root of the duration in units of the inverse bandwidth. In practice Eq. (20) can be very small.

The quantity ω(t2 − t1) represents the available time where coda waves are significantly larger than

the noise; the duration of the waveform is in units of the period. The quantity T is the amount of time

for one bit of information to be delivered, and corresponds roughly to the time of the initial source

(Derode et al. 1999). Thus Eq. (20) can be recognized as scaling inversely the available time in the

coda (this time is related to coda-Q), and inversely with the square root of the amount of information.

It also may be recognized that small X corresponding to waveforms φ1 and φ2 that are very different,

permits the practitioners erroneous estimate of dilation to be large. It may be that lengthening the

considered time interval t2 − t1 would increase the precision, however it could also diminish X: in

principle there are trade-offs.

Application of Eq. (20) is straightforward. A practitioner’s estimate of the relative dilation ε be-

tween two waveforms φ1 and φ2 may be compared to Eq. (20). Values in excess of Eq. (20) are
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consistent with the inference that the observed dilation is real. Changes in waveform source or other

character should not generate apparent dilations in excess of Eq. (20). Furthermore, in absence of any

actual dilation, estimates of ε of the order Eq. (20) will nevertheless be generated in practice. Such

should be regarded as un-meaningful.

4 COMPARISON WITH EXPERIMENT

The prediction Eq. (20) has been compared to waveform dilation measurements in a laboratory ultra-

sonic experiment (Hadziioannou et al. 2009). For practical reasons, we mimicked here ambient noise

correlation with diffuse waves correlation. Several piezoelectric sensors and sources were applied to

a multiply scattering air-bubble filled gel (see Fig. 1). Sources and receivers were placed on opposite

sides, 64 mm apart. Multiple scattering was strong: received waveforms fsr(t) from sources s to re-

ceivers r were coda-like, with envelopes that resembled the solution of a diffusion equation (fig. 2).

The auto-correlation of each fsr(t) was windowed between lapse times of 12.5 to 50 µsec, to yield

the waveforms which we call gsr(τ) (see fig. 3). Details of the experimental set-up are described in

Hadziioannou et al (2009). The details are, however, unimportant here, as the present theory applies

to any pair of coda-like waveforms φ1 and φ2. The typical gsr is stationary over this interval and has

a power spectrum centered on 2.35 MHz with -10 dB points at 1.7 and 3.0 MHz.

The tables below are formed by maximizing the dilation correlation coefficient X between sums

φ =
∑
s gsr over different sets of sources {s}. Note that the φ are not Green’s functions Grr, as the

fields fsr(t) used to compose them were not fully equipartitioned. The excellent impedance match

between the gel and the receivers prevented the field to be reflected back to the medium. The noise

field thus lacked any components traveling from receiver to receiver. All tests were conducted at fixed

temperature, the actual relative temporal dilation is therefore zero. Also, to mimic signals acquired at

different date, we averaged correlations over different set of sources to eventually compare them. The

addition of different sources results in an additional noise χ(t) in the correlations. The goal of the test

is to measure the dilation induced by the difference in waveform due to a different source distribution.

Autocorrelation waveforms, like that illustrated in figure 3, in the interval from 12.5 to 50 µsec

appear stationary. Thus we take t1=12.5 µsec, t2 = 50 µsec, ωc = 15 rad/µsec; and T = 0.56 µsec and

conclude from (20),

rms ε = 4× 10−4
√
1−X2

2X
(21)

Tables 1 and 2 show two case studies. In the first case, autocorrelations calculated from the signals

at a receiver r, as produced by eleven distinct sources s, were summed over to generate the reference

waveform φ1 =
∑
s gsr. For each of three comparison waveforms φ2, the same sum was done, keeping
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X for seven receivers and three different choices for the set of sources

Sources 1 to 11 & 12 0.9312 0.9169 0.8893 0.8458 0.8226 0.8852 0.8683

Sources 1 to 11 & 13 0.9394 0.8833 0.9083 0.8464 0.8872 0.8631 0.8928

Sources 1 to 11 & 14 0.9458 0.9009 0.8730 0.7942 0.8322 0.8396 0.7979

The dilation ε (×10−3) as obtained by maximizing X for each of these cases

Sources 1 to 11 & 12 0.06 0.04 -0.16 0.08 -0.04 -0.10 0.18

Sources 1 to 11 & 13 -0.04 -0.04 -0.08 0.06 -0.14 -0.08 0.10

Sources 1 to 11 & 14 -0.16 0.08 -0.12 0.00 -0.14 -0.24 -0.12

Experimental root mean square dilation ε (×10−3)

all sets 0.1013 0.0566 0.1244 0.0577 0.1166 0.1571 0.1376

Theoretical root mean square (×10−3) from Eq. (21)

all sets 0.07 0.09 0.09 0.12 0.11 0.10 0.11

Table 1. Comparison of best-fit waveform dilations ε with the predictions of equation (21). A maximum value

of X and the ε at which that X is maximum, are constructed for each of seven receivers (the seven columns)

and the three choices for the set of sources described in the text (the three rows). The root mean square of those

ε is compared with the predictions of theory. That X is of order 90% is consistent with one source in ten having

changed.

the first ten sources unchanged. In order to deliberately change the waveform without dilation, the

eleventh source is replaced with sources number twelve, thirteen and fourteen respectively. This was

repeated for each of seven receivers. In each case we compare three waveforms φ2 with the reference

φ1 and evaluateX(ε). The table shows the maximum value ofX(ε), and the value of ε that did this, for

each of the 21 cases. For each of the seven receivers we calculate the rms of these three ε. If the only

changes were to the source of the noise field, and not the medium, one would expect no dilation, or

ε = 0. Nevertheless, the differences in sources do generate apparent (feeble but noticeable) dilations

∼ ε. Theoretical and experimental rms(ε) are of the same order of magnitude. Theory, especially in

light of the approximate modeling of the spectrum, may be said to have done a good job predicting

the fluctuations.

In the second study (Tab. 2), four sources were held constant, and two were varied. Here the

reference waveform was constructed from a sum over six sources
∑
s gsr; each of the other three
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X for seven receivers and three different choices for the set of sources

Sources 1 to 4 & 5-6 0.6181 0.7864 0.7143 0.8400 0.7149 0.8458 0.7863

Sources 1 to 4 & 7-8 0.6359 0.7340 0.7011 0.8451 0.8020 0.8285 0.8194

Sources 1 to 4 & 9-10 0.5948 0.7397 0.5837 0.8165 0.8294 0.8451 0.8745

The dilation ε (×10−3) as obtained by maximizing X for each of these cases

Sources 1 to 4 & 5-6 -0.0800 0.0400 0.4600 -0.0200 0.1400 0.0400 0.1600

Sources 1 to 4 & 7-8 -0.0200 0.0400 0.0400 -0.3400 -0.0800 -0.1400 0.0800

Sources 1 to 4 & 9-10 -0.4600 0.1600 0.5600 -0.0400 0.0800 -0.0400 0.0400

Experimental root mean square dilation ε (×10−3)

all sets 0.27 0.098 0.419 0.198 0.104 0.087 0.106

Theoretical root mean square (×10−3) from Eq. (21)

all sets 0.19 0.14 0.17 0.12 0.14 0.12 0.11

Table 2. As in table 1, but for sources that differ by more: fewer sources are kept fixed (four) and more sources

are changing (two). This results in as maller values of X and a larger value of error (uncertainty).

waveforms was constructed by replacing sources number five and six in that sum with two others.

Again theory may be said to have done a good job: the rms theoretical predictions accurately fit

the actual experimental errors within 40%. This means that Eq. 20 properly predicts the order of

magnitude of the error.

5 COMPARISON WITH SEISMIC DATA FROM PARKFIELD

We also analyze data from seismic measurements near Parkfield, California. Brenguier et al. (2008)

showed that correlation waveforms obtained from ambient seismic noise over a period of five years

from 2002 to 2007 changed in a manner consistent with a decrease of the seismic velocity after the

earthquake of 2004 (Fig. 4). This decreased velocity then relaxed like log(t) after the earthquake.

While they used the doublet technique, we have re-analyzed their data using the dilation coefficient

(see Eq. 1). For each of 78 receiver pairs, we compared the 1550-day average correlation wave-

form with the correlation waveforms constructed from each of 1546 overlapping 5-day segments. The

whitening operation before correlation ensures that the spectrum of the correlations is constant. Note

that direct arrivals are never processed. A representative correlation waveform is shown in figure 5.
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Each such waveform was windowed between -50 and -20 seconds, and again from 20 to 50 seconds

(thus excluding direct Rayleigh arrivals and emphasizing the multiply scattered diffuse part of the

signal for which the theory was developed). As in the previous section, the details of the measure-

ments are available elsewhere (Brenguier, Campillo et al. 2008) but are unimportant for the present

purposes. An X and an ε were deduced for each day. Power spectra were centered on 0.5 Hz, with

-10dB shoulders at 0.1 and 0.9 Hz. These numbers permit the evaluation of (20):

rms ε = 2, 4× 10−3
√
1−X2

2X
(22)

Figures 6 (top and bottom) show the mean (over the 78 receiver pairs) values of X and ε between

each of the 1546 overlapping 5-day correlation waveforms, φ1, and the correlation waveform φ2 as

obtained by averaging over the entire 5 year period. Except for the two events on days 152 and 437,

and the slow relaxation after the latter, the dilation appears constant, with daily random fluctuations

of order 10−4. A correlation coefficient X of 0.8 predicts a rms fluctuation of 10−3 (Eq. (22)). On

averaging over 78 pairs, this prediction is reduced by a factor
√
78, to 1.1× 10−4, consistent with the

observed fluctuations in ε. In light of the approximations, in particular that of modeling the spectrum

as Gaussian and the waveform as stationary, we count this as excellent agreement.

The discontinuities in ε at December 22, 2003 and September 28, 2004 are of particular interest.

The latter is coincident with the Parkfield earthquake. Jumps in dilation on those dates by∼ 0.8×10−3

were interpreted (Brenguier, Campillo et al. 2008) as decrease of local seismic wavespeed. But one

might wish to entertain the hypothesis that these jumps are due to a change in the source of the noise.

To examine the question, we evaluated X and ε using correlation waveforms φ1 as averaged over a

70-day period before each event as a reference and correlation waveforms φ2 obtained over a series

of 5 day spans after the events. The relative dilation across the events are the same as seen in figure 6

(top), of order 5 × 10−4. The values of X for these pairs of waveforms varied between 60% and

70%. According to equation (22) divided by
√
78, the value of X would have had to be below 33%

if this large and apparent dilation were to be due to a random function with no actual dilation. The

relative dilation between correlation waveforms before and after the event is therefore due to changes

in seismic Green’s function, and not to changes in the source of the waves.

6 SUMMARY

Waveforms constructed by noise correlation can be extraordinarily sensitive to changes in material

properties. Such waveforms are in principle affected by both changes in noise sources and changes

in the acoustic properties of the medium in which the waves propagate. It has been shown here that
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long-duration diffuse waveforms permit changes in the source of the noise to be distinguished with

high precision from changes due to a temporal dilation.

An expression was derived for the rms of the apparent dilation ε measured on two waveforms,

when there is no actual dilation between the two. This apparent dilation can be an effect of e.g. a

change in noise sources. The rms value thus allows us to distinguish between an erroneous dilation

measurement due to waveform change, and a physical wavespeed change in the medium.

We have tested the validity of the rms value using data from laboratory experiments, and we find

that the theory predicts errors well.
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Figure 1. Experimental setup with ultrasound. An air-gel mixturemimics a multiple scattering medium. Coda

waves sensed by the receivers (see Fig. 2) are processed like ambient seismic noise : they are autocorrelated and

compared from one date to another.

Figure 2. A typical signal fsr(t) in the gel resembles noise, under an envelope which is a solution of a diffusion

equation.

Figure 3. A typical autocorrelation gsr, of the signal from one of the sources to one of the receivers. The interval

from 12.5 to 50 µsec was selected for dilation coefficient evaluation.

Figure 4. Map of the seismic stations used in our study. They are part of the High Resolution Seismic Network

operated by the Berkeley Seismological Laboratory.

Figure 5. A typical daily correlation waveform from the Parkfield data set. Dilations were constructed by com-

paring waveforms like this as windowed from 50 to +50 seconds, with the direct signal from 20 to +20 omitted.

Figure 6. Top: Dilation ε averaged over 78 receiver pairs, using a 5-day sliding window. The grey squares

indicate the 70-day reference windows. The best fit ε varied weakly and stochastically over this period, with

two notable jumps, after December 22, 2003 and after the Parkfield earthquake on September 28, 2004. The

latter jump was followed by a slow recovery. Fluctuations have an rms strength of about 10−4. Bottom: Dilation

coefficient X . the maximum value of the dilation coefficient X , averaged over 78 receiver pairs.
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