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Abstract

This paper presents the development of the differential importance measures (DIM),

proposed recently for the use in risk-informed decision-making, in the context of Markov

reliability models. The proposed DIM measures are essentially based on directional deriva-

tives. They can be used to quantify the relative contribution of a component (or a group

of components, a state or a group of states) of the system on the total variation of system

performance provoked by the changes in system parameters values. The estimation of

DIM measures at steady state using only a single sample path of a Markov process is also

investigated. A numerical example of a dynamic system is finally introduced to illustrate

the use of DIM measures, as well as the advantages of proposed evaluation approaches.

Keywords: reliability, sensitivity analysis, differential importance measures, Markov

process
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1 Introduction

Reliability importance measures providing information about the importance of compo-

nents on the system performance (reliability, maintainability, safety, or any performance

metrics of interest) have been widely used in reliability studies and risk analyses. They

are useful tools to identify design weakness or operation bottlenecks and to suggest op-

timal modifications for system upgrades. Recently, a new importance measure, called

Differential Importance Measure (DIM), has been introduced for use in risk-informed

decision-making [1, 2, 17, 24]. DIMI is defined as a first-order sensitivity measure that

ranks the parameters of the risk model according to the fraction of the total change in the

risk metric that is due to a small change in the parameters’ values, taken one at a time.

Since DIMI accounts for only the first-order effects of changes of system parameters, a

second-order extension of DIMI , named DIMII , is considered in [25]. However, DIMII is

limited to the second-order effects of changes. Hence the third and higher-order effects of

changes of system parameters can not be quantified. Furthermore, several existing meth-

ods to compute DIMI & DIMII are based on the system structure function and require

the assumptions of stochastic independent components. Consequently, in the realistic

case of stochastic dependencies existing between some components (shared maintenance

resource, cold spare, shared load, ...), and/or high-order effects requirements, the problem

remains wide open.

The first objective of this paper is to develop the differential importance measures in

the context of dynamic systems including inter-component, functional dependencies, or

more generally, systems described by Markov models. In such systems, the (un)availability

of a component does not depend only on its characteristics but also on other system

parameters, and its (un)availability in the system can be different from its (un)availability

out of the system, see e.g. [22]. In this context, the partial derivatives with respect to the

system parameters, rather than to the components’(un)availability, appear to be more

relevant and are often preferred for design purposes. Hence, for steady state, DIMI is

firstly developed based on directional derivative in the direction defined by a matrix in

an appropriate space [6, 11]. The direction can be related to a given parameter, a group

of parameters, or more generally, transition rates between states of the system. In its

version proposed in this paper, DIMI can be used to quantify the relative contribution

of a component or a group of components, a state or a group of states, on the first-order

variation of system performance. An extension of DIMI , namely the total differential
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importance measure (DIMT ) taking into account all order effects of changes of system

parameters, is next investigated. DIMT can therefore provide better and more insightful

results than those obtained from DIMI , DIMII and can be used with any magnitude of

change in system parameters.

From a practical point of view, the system’s data may not always be available. For

example, the reliability behaviour (failure rate, repair rate, etc) of some components of

the system may be unknown. The analytical calculation can no longer be used. The

second goal of the present paper is to show how DIMI and DIMT at steady state can be

estimated from the operating feedback data of the system, i.e. a single sample path of a

Markov process, by using an estimation method mentioned in [6, 5]. Through a numerical

example, it is shown that the estimated results are closely related to those obtained by

the analytical method.

This paper is organized as follows. The first section is devoted to define the first-order

differential importance measure (DIMI) in the context of Markov models. The analytical

calculation of DIMI is also considered. The second section focuses on the total differential

importance measure (DIMT ). A simple numerical example is introduced in this section to

illustrate the use of DIMI and DIMT in reliability studies. The estimation of both DIMI

and DIMT at steady state from a single sample path of a Markov process is presented in

the third section. Some numerical results are in addition discussed here. Finally, the last

section presents the conclusions drawn from this work.

NOTATION LIST

λi, µi failure and repair rate of component i

M transition rate matrix of Markov models

M♯ group inverse of M

π row vector of steady-state probabilities

X irreducible homogenous Markov process with finite space

Q directional perturbation matrix

A asymptotic performance measure of the system

δIAΣ, δAΣ first-order and total variation of system performance A

dA

dQ
directional derivative of A in the direction Q

DIMI ,DIMT first-order and total differential importance measure
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2 First-order differential importance measure DIMI

Markov processes have been widely used to analyse and assess the performances (reli-

ability, availability, maintainability, production capacity, etc...) of many complex dy-

namic systems with inter-component and functional dependencies (cold spare, shared load,

shared resources, ...). This section explores the development of the differential importance

measure in the context of Markov models at steady state.

Consider an n-components dynamic system described by an irreducible homogenous

Markov process X = {Xt, t ≥ 0} with finite state space E and the transition rate matrix

M. This Markov process is ergodic and a single stationary distribution exists [23]. The

vector of steady state probabilities (stationary distribution vector) π = (π1, π2, ...) verifies

the Chapman-Kolmogorov equations:

πM = 0. (1)

The system performance (availability, production capacity, etc.) is usually considered

as the expected performance function:

A = Eπ(f) =
∑

i∈E

πifi = πf , (2)

where Eπ denotes the expectation with respect to the steady state probabilities π, and

f = (f1, f2, ..., )
T is a column vector representing the performance function associated to

the system states. For example, for the system availability fi = 1 when the system is

operational in state i and fi = 0 otherwise.

2.1 Variation of system parameters

Consider now a perturbation on the transition rate matrix M of the Markov process and

the perturbed transition rate matrix Mδ:

Mδ = M+ δQ = M+Qδ, (3)

where Qδ = δQ, δ is a real number and Q is a matrix representing the direction of

perturbation. Within the structured perturbation framework considered in this work, the

state diagram of the perturbed system remains unchanged. Hence, if an entry Mij is equal

to 0 (i.e. there is no link between states i and j), the corresponding entry Qij must then

be equal to 0. An entry Qij = α different from 0 indicates that the transition rate from
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state i to state j is perturbed by an amount αδ. The only condition on the structure of

Q to ensure that the matrix Mδ remains a transition rate matrix of a Markov process is

that the sum of each row of Q equals 0, i.e. Qe = 0 with e = (1, 1, ..., 1)⊤ .

The variations in the transition rate matrix affect the system performance A which

becomes Aδ so that Aδ = πδf where the steady state probabilities vector πδ of the

perturbed system verifies:

πδMδ = 0. (4)

The directional derivative of the system performance A in the direction Q can be defined

as, see [6, 7]:

dA

dQ
= lim

δ→0

Aδ −A

δ
= lim

δ→0

πδ − π

δ
f . (5)

This directional derivative is used as an importance measure in reliability and productivity

sensitivity analysis in [11] and [9] respectively.

The directional matrix Q can be used to describe the change of one parameter, a group

of parameters, more generally, the change in any direction of transition rates, see [11].

If one considers the case in which the transition rate matrix is perturbed in K different

directions (Q1,Q2, · · · ,QK), the perturbed transition rate matrix is then:

Mδ = M+ δ1Q1 + δ2Q2 + ...+ δKQK = M+

K
∑

i=1

δiQi, (6)

with δ1, δ2, ..., δK are the amounts of variation in directions Q1,Q2, ...,QK respectively.

2.2 Definition of DIMI

The variations in transition rate matrix described in Equation (6) may lead to a variation

of the system performance A, noted δAΣ. If the changes of parameters are small enough,

δAΣ can be then approximated by the first-order contribution δIAΣ, see [2]:

δAΣ ≃ δIAΣ =

K
∑

i=1

δi
dA

dQi
=

K
∑

i=1

δIAi,

where:

•
dA

dQi
is the directional derivative of A in the direction Qi (see again Equation (5)),
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• δIAi = δi
dA

dQi
is the first-order contribution of the change in transition rate matrix

with respect to the direction Qi and the amount δi.

The first-order differential importance measure (named DIMI [2, 18]) can be extended

here by using the directional derivatives. More precisely, DIMI in direction Qi can be

defined as:

DIMI(Qi) =
δIAi

δIAΣ
=

δi
dA

dQi

∑K
j=1 δj

dA

dQj

. (7)

If the direction Qi relates to a component (or a group of components), a state (or a group

of states), DIMI in direction Qi represents then the relative contribution, on the total

variation of the system performance, of a component (or a group of components), a state

(or a group of states) respectively. The applications of DIMI in reliability sensitivity

analysis are described in more detail in later sections of this paper.

By construction, DIMI owns two interesting properties:

Property 1: Additivity. If one is interested in the DIMI for a subset of directions

Qi,Qj, ...Qs, then:

DIMI(Qi,Qj, ...,Qs) =
δIAi,j,..,s

δIAΣ
=

δi
dA

dQi
+ δj

dA

dQj
+ ...+ δs

dA

dQs

∑K
j=1 δj

dA

dQj

= DIMI(Qi) + DIMI(Qj) + ...+DIMI(Qs).

This relationship shows that DIMI is additive. This important property can be used to

calculate DIMI relating to a group components given DIMI relating to each component

in this group.

Property 2: The sum of the DIMIs of all directions equals unity, that is:

DIMI(Q1) + DIMI(Q2) + ...+DIMI(QK) = 1.

This property can be used to determine the DIMI of a direction from the others.

2.3 Calculation of DIMI

Theorem 1. If the transition rate matrix is perturbed in the directional matrix Q, i.e.

Equation (3) holds, the directional derivative of A in this direction Q can then be written
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as:
dA

dQ
= −πQM♯f , (8)

where M♯ is the generalized inverse (or group inverse) of M: M♯ = (M− eπ)−1 − eπ.

Proof: From (1) and (4), one gets

(πδ − π)Mδ + π(Mδ −M) = 0,

so from (3)

−
πδ − π

δ
Mδ = π

Mδ −M

δ
= πQ. (9)

Since the perturbed transition rate matrix Mδ is not invertible, the generalized inverse

M
♯
δ of Mδ is introduced, see e.g. [19]:

M
♯
δ = (Mδ − eπδ)

−1 − eπδ,

and,

MδM
♯
δ = M

♯
δMδ = I− eπδ, (10)

where I is identical matrix. Right-multiplying both sides of Equation (9) with M
♯
δ and

using (10), one obtains:

−
πδ − π

δ
(I− eπδ) = πQM

♯
δ.

Remember that πe = πδe = 1, hence:

πδ − π

δ
= −πQM

♯
δ.

If δ → 0, one obtains:

lim
δ→0

πδ − π

δ
= − lim

δ→0
πQM

♯
δ = −πQ

[

lim
δ→0

M
♯
δ

]

.

Since the continuity of the matrix M
♯
δ is proved in [6], therefore limδ→0 M

♯
δ = M♯. Con-

sequently,

lim
δ→0

πδ − π

δ
= −πQM♯.

By using this result and the definition of the directional derivative of A in the direction

Q (see again (5)), the final result is (8).�

Applying now Theorem 1, one obtains:

δIAi = δi
dA

dQi

= −πQδ
iM

♯f with Qδ
i = δiQi,

δIAΣ =

K
∑

i=1

δIAi = −πQδ∑M♯f with Qδ∑ =

K
∑

i=1

Qδ
i . (11)
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Thus, equation (7) can be finally expressed as:

DIMI(Qi) =
πQδ

iM
♯f

πQδ∑M♯f
. (12)

This formula shows that the DIMI in different directions can be easily obtained

by changing only the directional matrix without additional calculations. Moreover,

DIMI for a group of directions can be directly obtained by using the following:

DIMI(Qi,Qj, ...,Qs) =
πQδ

i,j,...sM
♯f

πQδ∑M♯f
,with, Qδ

i,j,...s = Qδ
i +Qδ

j + ...+Qδ
s.

The DIMI can be easily calculated by using Equation (12), it does not however

account for the effects of simultaneous changes of several parameters, and it can

therefore be used only when the changes of parameters are small enough to neglect

the interaction effects. The idea of a second-order extension of DIMI , is considered

in [25]. However, this extension is only applicable when the higher-order interaction

effects are neglected. From a practical point of view, this assumption is not always

true. Thus, the next section is devoted to presenting an extension of DIMI , namely

the total differential importance measure which can take into account all the higher-

order interaction effects of changes in system parameters.

3 Total differential importance measure DIMT

3.1 Exact calculation of the variation of system performance

The purpose of this subsection is to calculate precisely the variation of the system

performance provoked by the change in some specific directions of the transition

rate matrix.

The simplest method to calculate the variation of the system performance δA

(δAΣ, δA1, δA2, ..., δAK) relies on the use of finite differences [8]. Thus,

δA = Aδ −A = (πδ − π)f . (13)

This method requires however the knowledge of both a nominal model (with tran-

sition rate matrix M) and a perturbed model (with perturbation transitions rates
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matrix Mδ). From a practical point of view, the data of the perturbed model is

not always available. Hence, a simulation is needed for this case but it would be

computationally burdensome. The following theorem will give an exact calculation

of δA based solely on the nominal model:

Theorem 2. If the transition rate matrix is perturbed by a perturbation matrix Qδ,

i.e. Equation (3) holds, the variation of the system performance is then:

δA = −πQδM♯(I+QδM♯)−1f . (14)

Proof: First, it is shown in [19, 6] that the relationship between the group inverse

M♯ and the transition rate matrix M is parallel to (10):

MM♯ = I− eπ.

Multiplying both sides of this equation on the left with πδ and using M = Mδ−Qδ

and πδe = 1, one gets:

πδMδM
♯ − πδQ

δM♯ = πδ − π.

From (4) one obtains:

πδ(I+QδM♯) = π.

It is shown in [20, 21] that (I+QδM♯) is non-singular. Consequently:

πδ = π(I+QδM♯)−1,

or,

πδ − π = π[(I+QδM♯)−1 − I].

Taking into account that (I+QδM♯)−1 − I = −QδM♯(I+QδM♯)−1, one obtains:

πδ − π = −πQδM♯(I+QδM♯)−1. (15)

Finally, substituting (15) for (13), Equation (14) is verified �.

By using (14), if the transition rate matrix is perturbed by a perturbation matrix

Qδ
i (Qδ

i = δQi), the variation of the system performance provoked by this change

is then:
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δAi = −πQδ
iM

♯(I+Qδ
iM

♯)−1f . (16)

Similarly, the total variation of the system performance caused by the change in

transition rate matrix M with the perturbation matrix Qδ∑ (Qδ∑ =
∑K

i=1Q
δ
i ) is:

δAΣ = −πQδ∑M♯(I+Qδ∑M♯)−1f . (17)

The previous development requires no assumption on δ. Hence, the total varia-

tion of the system performance can be calculated with equation (17) for any value

of δ, i.e. for any magnitude of change. This interesting property relies on the in-

vertibility of the matrix (I+Qδ∑M♯) and on series convergence properties that are

examined and proved in [10, 12].

3.2 Definition of DIMT

As in [3, 12], we propose to extend DIM to the total order and to define the total

differential importance measure, denoted DIMT , as:

DIMT (Qi) =
δAi

δAΣ

. (18)

Since the variation of system performance δAi and δAΣ can be exactly calculated, an

”exact differential importance” is obtained which is the fraction of the total change

of the system performance related to direction matrix Qi. Remember that this

direction matrix can be associated with a component (or a group of components),

as well as a state (or a group of states) of the system.

Substituting (16) and (17) for (18), DIMT can be calculated:

DIMT (Qi) =
πQδ

iM
♯(I+Qδ

iM
♯)−1f

πQδ∑M♯(I+Qδ∑M♯)−1f
. (19)

Since DIMT is an ”exact differential importance”, the results obtained from

DIMT are more precise than those provided by the first-order differential importance

DIMI . However, the calculation of DIMI is less difficult than that of DIMT . The

comparison of both measures are discussed in more detail through the numerical

example shown below.
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3.3 Numerical example

This subsection shows how the differential importance measures can be used in order

to analyse the system availability at steady state and to investigate the importance

of a given component (or group of components) as well as the importance of a given

state. The comparison between DIMI and DIMT is also studied.

C1 C2

C3

Main generator Emergency generator

Transformer

Load

Figure 1: Power generation system.

Consider a power generation system with 3 units, whose structure is presented

in Figure 1:

• units C1 and C2 are two generators supplying the power required by customers.

In this system, C1 is the main generator and C2 is the emergency one. When

C1 operates, C2 is on standby and it becomes an active component immediately

if C1 fails. As soon as C1 is repaired, C2 stops. When both C1 and C2 fail,

the maintenance priority is always given to unit C1 (see Figure 2),

• unit C3 is a power transformer that steps down generator voltages to customer

voltages.

The operational modes of the system are described in Table 1 where “O” denotes

an operating state, “S” denotes a standby state, and “F” denotes a failed state. The

corresponding Markov process is sketched in Figure 2. One assumes that the failure
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rate λi and repair rate µi of unit i (i = 1, 2, 3) are constant and their values are

reported in Table 2.

Table 1: System states

Component

State C1 C2 C3 System

1 O S O O

2 O S F F

3 F O O O

4 O F O O

5 F O F F

6 F F O F

7 O F F F

Table 2: Components’ failure and repair rates.

Unit λi(h
−1) µi(h

−1)

C1 0.00801 1/200

C2 0.001 1/100

C3 0.0011 1/155

According to the Markov diagram shown in Figure 2, the system availability at

steady state is :

A = π1 + π3 + π4 = πf ,with f = (1, 0, 1, 1, 0, 0, 0)T .

By resolving the Chapman-Kolmogorov equations at steady state (1), one obtains

the steady state availability A = 0.7324.
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1

2

3

4

5

6

7

λ1

λ1 λ2

λ3

λ3λ3

µ1

µ1

µ2

µ3

µ3µ3

Figure 2: Markov diagram of system with priority repair of C1.

As it is usual in a DIM analysis, assume that all component failure rates are

simultaneously changed. This could be due to, for example, brutal changes of en-

vironmental conditions, an overload, etc. To illustrate the application of the differ-

ential importance measures DIMI and DIMT , we compute the relative importance

of the corresponding changes in some specific directions related to a parameter, a

group of parameters or a state. The case of proportional changes in the failure rates

is considered here, [2], i.e.:

δλ1

λ1
=

δλ2

λ2
=

δλ3

λ3
= ω.

If this relationship is substituted in (7), the first-order differential importance mea-

sure DIMI does not then depend on the percentage of change ω. Note however that

this is not true for DIMT , i.e. ω can not be eliminated in the calculation expression

of DIMT . In the following numerical experiments, ω varies from 1% to 100% and

we compare the results given by DIMI and DIMT and we analyze the corresponding

importance rankings for the considered change directions.
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3.3.1 Variation of the system availability

These changes in failure rates lead to a variation in the system availability. Figure

3 shows the results of the approximation of this variation (δIAΣ) and its exact

calculation (δAΣ) by using the computing equations (11) and (17) respectively.

Obviously, a failure rate increase results in a decrease of the system availability.

The results show that the larger the ω is, the larger the difference between δIAΣ

and δAΣ is. δIAΣ can be used as a good approximation of δAΣ only when ω is

small.

0 10 20 30 40 50 60 70 80 90 100
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

δIA∑

δA∑

ω[%]

Figure 3: Variation of the system availability at steady state as a function of ω

The results show that δIAΣ remains close to δAΣ until around ω = 30%. In the

next paragraph, it will however be shown that the differential importance measures

(DIMI and DIMT ) based on these quantities (δIAΣ and δAΣ respectively) can lead

to different importance rankings.

3.3.2 DIMs for a component or a group of components

The application of DIMs (DIMI and DIMT ) to quantify the relative contribution

of a component, a group of components, on the variation of system availability is

examined here.

A directional perturbation matrixQλi
is first considered corresponding to changes

in the direction of a single parameter of interest, e.g. the failure rate of component
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i, λi.

Table 3: DIMs and component ranking - ω = 4%.

DIMs λ1 λ2 λ3 Order

DIMI(Qλi
) 0.3264 0.3374 0.3362 C2>C3>C1

DIMT (Qλi
) 0.3258 0.3360 0.3365 C3>C2>C1

DIMI and DIMT in the different directions Qλi
(i = 1, 2, 3) are obtained by using

the analytical expressions (12) and (19) respectively. Table 3 presents the results of

DIM measures in the case where ω = 4%. According to these DIMI measures, the

contribution of C2 on the variation of system availability is more important than

that of C3 and C1, and the components’ importance ranking is C2>C3>C1. This

importance ranking is not the same as the one based on DIMT measures.

0 10 20 30 40 50 60 70 80 90 100
0.32

0.325

0.33

0.335

0.34

0.345

0.35

0.355

0.36

D
IM

T

DIMT (Qλ1
)

DIMT (Qλ2
)

DIMT (Qλ3
)

ω[%]

Figure 4: DIMT (Qλi
), i = 1, 2, 3, as a function of ω

Since DIMI is independent of ω, DIMI measures remain unchanged when ω

varies and consequently, the components’ importance ranking based on DIMI does

not change with ω. However, the evolution of DIMT (Qλi
), i = 1, 2, 3 represented in

Figure 4 shows that DIMT measures change significantly with ω, leading to different
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components’ importance rankings. When ω ≥ 4%, the importance rankings based

on DIMT become different from the one given by DIMI . These results can be

explained by the fact that DIMT integrates the all-order interactions between the

parameters changes, whereas DIMI does not. They clearly show that DIMI should

be used with care when high percentages of parameters change are considered and

that DIMT should be preferred in theses cases.

From the additivity property, the results of DIMI for the pairs of parameters are

shown in Table 4. Considering these results, the groups’/components’ ranking is:

C3<C1<C2<(C1,C3)<(C1,C2)<(C2,C3).

Table 4: DIMI for a group of parameters with any ω’s value.

DIMI (λ1, λ2) (λ1, λ3) (λ2, λ3) Order

DIMI(Qλi,λj
) 0.6638 0.6626 0.6736 (C1,C3)<(C1,C2)<(C2,C3)

0 10 20 30 40 50 60 70 80 90 100
0.6

0.65

0.7

0.75

0.8

D
IM

T

DIMT (Qλ1,λ2
)

DIMT (Qλ1,λ3
)

DIMT (Qλ2,λ3
)

ω[%]

Figure 5: DIMT (Qλi,λj
), i, j = 1, 2, 3, as a function of ω

From the results given in Figure 5, DIMT measures change with ω and lead to

different importance ranking when ω varies:

• when ω < 4%, the groups’/components’ ranking based on DIMT is the same

as the one obtained with DIMI ;
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• when ω ≥ 4%, DIMT measures lead to a different importance ranking (and

this ranking changes again when ω ≥ 54%).

Note however that the components’ ranking thus obtained are not absolute im-

portance rankings, but rankings based on DIM criterion. Obviously, different rank-

ings could be obtained if a different importance measure was used.

3.3.3 DIMs for a given state

To study the sensitivity of a given state, some specific directions of sensitivity are

considered. In Table 5 and Figure 6, Qi represents the direction of all failure rates

corresponding to transitions exiting from the operational state i (i = 1, 3, 4). λij

indicates the transition rate from state i to state j. The differential importance

measure of the direction Qi provides the relative contribution of state i on the total

variation of system availability provoked by the changes in components failure rate

mentioned above.

Table 5: DIMI for a state.

State i Transitions DIMI(Qi) Order

1 λ12, λ13 0.2918 2

3 λ35, λ36 0.5192 1

4 λ46, λ47 0.1890 3

The results of DIMI measures, for any ω, are reported in Table 5. According to

these measures, state 3 is the most important and state 1 is more important than

state 4. This importance ranking still holds if one considers DIMT measures for

the cases where ω < 92%, see Figure 6. When ω ≥ 92% DIMT measures lead to a

different ranking: state 1 < state 4 < state 3.
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Figure 6: DIMT (Qi), i = 1, 3, 4, as a function of ω

4 Single sample path-based estimation

From a practical point of view, the analytical methods developed in the previous

section can be used in order to compute DIMI and DIMT . These methods may

however lead to some difficulties. The reliability behaviour (failure rate, repair

rate) of some components of the system may be unknown, and the transition rate

matrix of the Markov process modeling the system may even be unknown. In these

cases, the analytical methods may be unusable. Moreover, these methods could be

computationally burdensome or highly inefficient when the state space dimension is

too high. It is therefore interesting to dispose of an effective method for estimating

DIMI and DIMT from the observed data of the system, i.e. from a single sample

path of the corresponding Markov process.

It has been shown in [6] and [11] that perturbation analysis can be a promising

approach since this method can provide the estimate of the directional derivatives.

As a consequence, the estimation of DIMI can be easily obtained using perturbation

analysis, see (7). In order to estimate both DIMI and DIMT , the approach presented

here is based on a single sample path of a Markov process.

Looking at the computing equations (12) and (19), if the steady state probabil-

ities vector π and the group inverse M♯ can be estimated, an evaluation of DIMI

and DIMT can be then easily obtained. The estimation of π and M♯ from a single

sample path of the Markov process will now be shown.
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4.1 Estimation of π and M♯

It has been demonstrated that the transition rate matrix M can be estimated from a

single sample path by using the maximum likelihood estimation (see [15, 16]). Note

however that the matrix has to be inverted to obtain M♯ (M♯ = (M−eπ)−1−eπ).

This may lead to numerical errors [13]. The interest here is in the direct estimation of

the group inverse M♯ without using the transition rate matrix M. Some numerical

results will be considered in the next paragraph to show that this approach can

provide a good estimation of DIMI and DIMT .

First, it is shown in [6] that the group inverse M♯ can be written as:

M♯ = −

∫ ∞

0

(exp{Mt} − eπ)dt,

= − lim
T→∞

{

∫ T

0

exp{Mt}dt− Teπ
}

. (20)

From (20), one gets:

M♯ = lim
T→∞

M♯(T ),

where,

M♯(T ) = −
{

∫ T

0

exp{Mt}dt− Teπ
}

. (21)

The results in [7, 5] shows that M♯(T ), for a fixed T , can be used as a good estimate

of M♯.

For any constant vector C = (c1, c2, ...), let’s defineM
♯
= M♯+eC. SinceQδ

ie = 0

andQδ∑e = 0, one has: Qδ
iM

♯
= Qδ

iM
♯ andQδ∑M

♯
= Qδ∑M♯ respectively. In order

to compute DIMI and DIMT (see (12) and (19)), M♯ can be replaced by M
♯
. For

example, one can simply use

M
♯
(T ) = −

∫ T

0

exp{Mt}dt (22)

instead of M♯(T ) as an estimate of the group inverse in (12) and (19).

Let pij(t) = P{Xt = j|X0 = i} and P(t) = [pij(t)]i,j∈E. Then one has P(t) =

exp(Mt) (see e.g. [14]). Thus, from (22) the (i, j) entry of M
♯
(T ) is

m
♯
ij(T ) = −

∫ T

0

pij(t)dt. (23)
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Let us define ǫj(v) so that ǫk(v) = 1 if v = k and ǫk(v) = 0 otherwise. One gets:

m
♯
ij(T ) = −E

[

∫ T

0

ǫj(Xt)dt|X0 = i
]

. (24)

Let Tk be the kth transition epoch of {Xt} and Xk be state of {Xt} after the kth

transition. By the definition, Xk = Xt|t=T+
k
and the steady state probability of state

i is:

πi = lim
N→∞

1

TN

∫ TN

0

ǫi(Xt)dt, for all i ∈ E (25)

where N represents the number of transition of the Markov process. Based on the

ergodicity of the Markov process, (24) leads to:

m
♯
ij(T ) = − lim

N→∞

∑N−m

k=0

{

ǫi(Xk)
∫ Tk+T

Tk
ǫj(Xt)dt

}

∑N−m
k=0 ǫi(Xk)

, (26)

where m = max{x|TN−x + T ≤ TN}. This relationships is proved in appendix A.

One problem remaining here is the choice of the length T . It is shown in [7, 5] that

T should be comparable to the mean of first passage time between state j and i,

named Γj(i) = inf{t, t > 0|Xt = i, X0 = j}.

Estimation of first passage time A Markov process Xt with the transition

matrix M is observed with the two time sequences {js} and {is} so that:

• i0 = 0,

• js is the time upon which Xt is in state j for the first time after time is−1,s ≥ 1,

• is is the time upon which Xt is in state i for the first time after time js, s ≥ 1.

{js} and {is} are well defined on a sample path. Now define: Lj
s(i) = is − js for

s ≥ 1 (see Figure 7). The mean of a first passage time between state j and i is :

Γj(i) = lim
n→∞

1

n

n
∑

s=1

Lj
s(i).

4.2 Numerical results

Reconsidering the example presented in subsection 3.3, the DIMs’ measures men-

tioned above are obtained by using the analytical calculation under the hypothesis
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Figure 7: Illustration of Lj
s(i) on observed single sample path Xt.

that the transition rate matrix M of the Markov process is available. Assume now

that M is unknown and that the only available data is a single sample path of the

Markov process. Since the realistic data set of this trajectory is not available here,

it need to be simulated with the parameter values given in Table 2. The goal is to

estimate these DIM measures from this data set using the estimation approach. In

fact, the simulation is made for 7.104 transitions.

Table 6: Estimation of DIMs for a component - ω = 20%

DIMs λ1 λ2 λ3

ˆDIM
I
(Qλi

) 0.3260 0.3376 0.3361

ˆDIM
T
(Qλi

) 0.3248 0.3316 0.3378

Based on this simulated data set, the steady state vector π and the group in-

verse M♯ have been estimated by using (25) and (26) respectively. All the results

presented in Tables 6 and 7 are obtained by changing only the directional matrix in

(12) and (19). The numerical results show that the estimated values are very close

to those given by the analytical method presented in the previous section.

To illustrate the convergence of the proposed estimation approach, Figures 8, 9

and 10 sketch the evolution of the estimators ˆDIM
T
(Qλi

) (i = 1, 2, 3) as a function

of the sample size for the case where ω = 20%.
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Table 7: Estimation of DIMs for a state - ω = 20%.

State i Transitions ˆDIM
I
(Qi) ˆDIM

T
(Qi)

1 λ12, λ13 0.2912 0.2650

3 λ35, λ36 0.5189 0.5015

4 λ46, λ47 0.1896 0.1938
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Figure 8: Estimator ˆDIM
T
(Qλ1) as a function of the sample size, case ω = 20%
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5 Conclusions

In this work, the differential importance measures at different orders (including

the total order) are extended to dynamic systems including e.g. inter-components

or functional dependencies, described by Markov models. DIM measures permit

quantifying the relative contribution of a component (or a group of components, a

state or a group of states) on the total variation of system performance provoked by

the changes in system parameters values. When compared to the DIMI measure,

the proposed total order measure DIMT provides more insightful results to analyse

the system performance variation in response to parameters changes. Moreover,

DIMT can be used with any magnitude of change in system parameters.

In order to compute DIMs (DIMI and DIMT ) at steady state, both analytical

and estimation methods are investigated. Particularly, the second method based

on a single sample path of a Markov process can provide a very good estimation

result. From a practical point of view, this approach can be therefore a powerful

tool to estimate DIMs’ measures from the operating feedback data of the system

without knowing components reliability behaviour (failure and/or repair rate,...),

and consequently, the transition rate matrix of a Markov model.

This paper is the development of our research in the framework of the importance

analysis of dynamic systems presented in part in [10]. Our future research work

will focus on the development DIMT measure in the transient state, as well as more

detailed applications of these measures to decision-making in reliability engineering,

e.g. to the optimization of maintenance policies.

Appendix

A Proof of (26)

The proof of (26) is based on a fundamental theorem on ergodicity, see e.g. [4]. Let

X = {Xk|k ≥ 0}, be an ergodic process with finite space. The process Z = {Zk|k ≥

0} with Zk = ǫi(Xk)
∫ Tk+T

Tk
ǫj(Xt)dt is then ergodic. Thus,
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lim
N→∞

∑N−m

k=0

{

ǫi(Xk)
∫ Tk+T

Tk
ǫj(Xt)dt

}

∑N−m
k=0 ǫi(Xk)

= lim
N→∞

{ N −m+ 1
∑N−m

k=0 ǫi(Xk)

}{

∑N−m
k=0

{

ǫi(Xk)
∫ Tk+T

Tk
ǫj(Xt)dt

}

N −m+ 1

}

. (27)

Note that:

E

[

Xk = i
]

= lim
N→∞

∑N−m
k=0 ǫi(Xk)

N −m+ 1
,

and,

E[Zk] = E

[

ǫi(Xk)

∫ Tk+T

Tk

ǫj(Xt)dt
]

= lim
N→∞

∑N−m
k=0

{

ǫi(Xk)
∫ Tk+T

Tk
ǫj(Xt)dt

}

N −m+ 1
.

Consequently, (27) can be expressed as:

lim
N→∞

∑N−m

k=0

{

ǫi(Xk)
∫ Tk+T

Tk
ǫj(Xt)dt

}

∑N−m
k=0 ǫi(Xk)

=
E

[

ǫi(Xk)
∫ Tk+T

Tk
ǫj(Xt)dt

]

E

[

Xk = i
]

= E

[

∫ T

0

ǫj(Xt)dt|X0 = i
]

�
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[9] P. Do Van, A. Barros, and C. Bérenguer. Importance measure on finite time

horizon and application to Markovian multi-state production systems. Journal

of Risk and Reliability, 222:449–461, 2008.
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