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Structure, Deformations and Gravitational Wave

Emission of Magnetars

L Gualtieri, R Ciolfi and V Ferrari

Dipartimento di Fisica, “Sapienza” Università di Roma and Sezione INFN Roma1,
piazzale Aldo Moro 2, I-00185 Roma, Italy

Abstract. Neutron stars can have, in some phases of their life, extremely strong
magnetic fields, up to 1015−16 G. These objects, named magnetars, could be powerful
sources of gravitational waves, since their magnetic field could determine large
deformations. We discuss the structure of the magnetic field of magnetars, and the
deformation induced by this field. Finally, we discuss the prospects of detection of the
gravitational waves emitted by these stars.

PACS numbers: 04.40.Dg, 04.30.Db

1. Introduction

Magnetars are neutron stars (NSs) whose spin-down and bright emission activity are

powered by the stellar magnetic field. The interest of the scientific community in these

objects has been growing since 1992, when Thompson and Duncan [1, 2] first proposed

a model which explains the spin-down rate and the emission properties of two classes

of astrophysical objects, the soft-gamma repeaters (SGRs) and the anomalous X-ray

pulsars (AXPs) in terms of strong magnetic fields.

These objects have a very steep spin-down, and a very intense X-ray (and gamma-

ray) activity, with periodic bursts of ∼ 1041 erg/s. Furthermore, in the last decades

three giant flares from SGRs have been observed, with luminosities reaching ∼ 1047

erg/s. The observed spin-down of SGRs and AXPs corresponds (through the well-known

dipole emission formula PṖ ∝ B2) to surface magnetic fields of the order of 1014 − 1015

G. In the model of Thompson and Duncan, the gamma activity is understood in terms

of the evolution of the interior magnetic field, which is as large as the surface field, or

even larger; in their model, the field (or a significant fraction of it) is a toroidal field‡.
This magnetic field has been produced in the early phases of the NS life, just after

the supernova explosion, due to flux conservation in the core collapse and/or to dynamo

processes, related to convective motion and differential rotation. It is worth noting that,

although observed magnetars are slowly rotating, with periods P of the order of 10 s,

‡ If we define a polar coordinate frame (r, θ, φ) about the magnetic axis, the r- and θ-components of
the magnetic field are called poloidal, the φ-component is called toroidal.
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newly born magnetars could have much higher rotation rates, with periods P ∼ 10−3 s.

Today we know 18 magnetars§, but it is believed that a significant fraction (& 10%) of

NSs would possibly become magnetars at some stage of their evolution [3].

Due to their extreme properties, magnetars are very interesting objects both for

astrophysics and for gravitational wave physics. Quasi-periodic oscillations have been

detected in the aftermath of the giant flares of SGRs; this is the first observational

evidence of NS oscillations [4]. It has been suggested that magnetars may be the central

engine for some gamma-ray bursts [1, 5, 6]. Last but not least, as we discuss below,

the magnetic field could produce a deformation much larger than that due to other

mechanisms, thus magnetars are also interesting sources of gravitational waves [7]-[12].

We also remark that the present and future observational properties of magnetars could

shed light on the internal composition of NSs, and thus on the behaviour of matter at

supranuclear densities.

For these reasons, in the last decades magnetars have been widely studied. However,

their internal structure is still poorly understood. We do not know, for instance, how

strong is the interior magnetic field, and whether the toroidal components prevail on

the poloidal ones; we do not know whether the field is mainly dipolar or the higher

order multipoles dominate. This information would be very important, to understand

the astrophysical processes involving magnetars, and to assess the relevance of these

stars as gravitational wave sources.

The magnetar model proposed in [1, 2] is dynamical, and the magnetic field evolves

from its birth to its decay [13, 14], through different processes (ambipolar diffusion,

Hall drift, Ohmic decay). However, in some phases of the early life of a neutron

star it is legitimate to describe a magnetar as a stationary object, using the ideal

magnetohydrodynamics (MHD) approximation, as we shall briefly explain.

Let us consider what happens when a strongly magnetized neutron star is born.

• In the first seconds after the supernova explosion, the proto-neutron star is a very

complicate and dynamical object, with turbulent and convective motion, differential

rotation, and (eventually unstable) oscillations. In this period dynamo processes

amplify the stellar magnetic field.

• After few (or few tens of) seconds, convective instability is suppressed, and the

matter composing the star can be described by a single, non-superfluid perfect

fluid with infinite conductivity (ideal MHD approximation). As shown by numerical

simulations in the ideal MHD approximation [15, 16], the fluid is likely to settle

down to a stationary configuration on a dynamical timescale of the order of Alfvén’s

time (tA ∼ 0.01−10 s).

• After few minutes, matter becomes superfluid and the crust forms; thus the ideal

MHD approximation no longer applies. The magnetic field evolves on timescales

∼ tdecay of the order of thousands of years or more.

§ For an up-to-date catalog, see http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html
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We remark that as the crust forms, the magnetic field is likely to freeze in the stationary

configuration reached in the previous stage. Therefore, this configuration could be an

appropriate description of the stellar magnetic field for timescales tA . t . tdecay.

Figure 1. The field lines of a twisted-torus magnetic field configuration, projected
in the meridional plane. The toroidal field is confined in the region inside the thick
curves.

In the last decade many authors have been developing models of stationary

magnetized neutron stars in ideal MHD [17]-[23],[10],[11], including more and more

ingredients in order to capture the essential features of the system: poloidal and toroidal

fields, general relativity, “realistic” equation of state (EOS). In recent papers on the

subject [21]-[23], [11] a twisted-torus configuration has been considered, in which the

poloidal magnetic field extends throughout the star and in the exterior, whereas the

toroidal field is confined into a torus-shaped region inside the star, where the field lines

are closed (see Fig. 1). There are different reasons for this choice:

• It has long been known that purely toroidal and purely poloidal magnetic field

configurations are unstable [24, 25, 26]; it is expected that a stable configuration

should have both components [27], with comparable amplitudes.

• Numerical simulations [15, 16] have shown that the magnetic field tends to a

twisted-torus configuration in which the toroidal and poloidal components have

comparable amplitudes, for quite generic initial conditions (see also the analysis

of [28]). This configuration appears to be stable, at least on a timescale tA .
t� tdecay. We remark that these simulations have been performed in a Newtonian

framework, assuming a polytropic EOS for the stellar fluid.

• The results of [15, 16] can be understood, at least qualitatively, as follows. Let us

consider the magnetic helicity

Hm =

∫
A · B dV (1)

where A, B are the vector potential and the magnetic field, respectively (note that

magnetic helicity can also be defined in a relativistic framework). The following

properties hold.
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– The magnetic helicity is conserved on a timescale � tdecay.

– It vanishes if the field is either purely poloidal or purely toroidal. Thus, if the

field is mixed (poloidal and toroidal) at the beginning, it must remain mixed

for a long time.

– The toroidal field is proportional to the electric current, thus, neglecting the

stellar magnetosphere, it must vanish outside the star.

– The ratio between the toroidal and poloidal amplitudes can be described by a

function ζ, which is constant along each field line [19]. Therefore, a field line

which extends outside the star must have ζ = 0, i.e. it must be purely poloidal.

It follows that, as the magnetic field reaches a stationary configuration, it must

retain a mixed character, and the toroidal field must be confined inside the star,

since the field lines with a non-vanishing toroidal component cannot cross the stellar

surface. Such lines cover a torus-shaped region, tangent to the stellar surface at

the equator. This is the twisted-torus configuration (see Fig. 1).

In the next Sections we discuss the features of magnetars with twisted-torus magnetic

fields; our study is based on a model we have recently developed [22, 11] (see also [10]).

In Section 2 we briefly describe our model, and determine the magnetic field structure,

discussing the relative amplitude of toroidal and poloidal fields we expect. In Section

3 we determine the stellar deformation induced by the magnetic field, discussing how

it depends on the EOS of the matter composing the star. In Section 4 we discuss the

possible gravitational emission of magnetars. We remark that, while Sections 2, 3 are

based on the results of [22, 11], Section 4 is a new contribution to the debate on the

relevance of magnetars as sources for present and future gravitational wave detectors.

2. Structure

We consider (see [22, 11] for more details) a stationary, axisymmetric magnetized NS

in the framework of general relativity. We neglect stellar rotation (note that, as shown

in [21], twisted-torus configurations are not significantly affected by stellar rotation)

and the effect of the magnetosphere. Furthermore, we assume that the stellar matter is

described by a single perfect fluid with infinite conductivity (ideal MHD approximation).

The magnetic field is treated as a perturbation of a spherically symmetric background

with metric

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2) (2)

(ν, λ solutions of the unperturbed Einstein’s equations describing the stellar structure)

and four-velocity uµ = (e−ν/2, 0, 0, 0). We choose two EOSs, named APR2 [30] and

GNH3 [31], to model stars with large and small compactnesses, respectively; indeed, a

NS with mass M = 1.4M� has radius R = 11.58 km (APR2 EOS) or R = 14.19 km

(GNH3 EOS).

The background is perturbed by a stationary, axisymmetric electromagnetic tensor

Fµν = Aµ,ν − Aν,µ, associated to a current jµ, an electric field Eµ = Fµνu
ν and
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a magnetic field Bα = 1
2
εαβµνu

βF µν. The equations of ideal MHD are the baryon

number conservation (nuµ);µ = 0 (n baryon density), the relativistic Euler equation

(ρ+p)aµ +p,µ +uµu
νp,ν −fµ = 0 (ρ mass-energy density, p pressure, fµ = Fµνj

ν Lorentz

force), and the vanishing of the electric field Eµ = 0.

With an appropriate gauge choice, the vector potential can be written as

Aµ = (0, e(λ−ν)/2Σ, 0, ψ) (3)

where the “flux function” ψ(r, θ) describes the poloidal field, and the function Σ(r, θ)

describes the toroidal field. Neglecting higher order terms in the perturbation (O(B4)),

a remarkable property holds: the quantity sin θΣ,θ only depends on the flux function ψ

(which is constant along each field line). We can then define a function β as

sin θΣ,θ ≡ β = β(ψ) . (4)

Then, once we impose a form for β(ψ), the magnetic field configuration is entirely

determined by the flux function ψ(r, θ), which can be found by solving the relativistic

Grad-Shafranov equation:

− e−λ

4π

[
ψ′′ +

ν ′ − λ′

2
ψ′

]
− 1

4πr2
[ψ,θθ − cot θψ,θ]

− e−ν

4π
β
dβ

dψ
= (ρ + P )r2 sin2 θ[c0 + c1ψ] (5)

with c0, c1 arbitrary constants. This equation follows from the ideal MHD equations.

By expanding the flux function ψ(r, θ) in Legendre polynomials as

ψ(r, θ) =

∞∑

l=1

al(r) sin θPl,θ(cos θ) , (6)

Eq. (5) gives a coupled system of ordinary differential equations for the functions

{al(r)}l=1,2,.... These equations admit two particular sets of solutions: the symmetric

(with respect to the equatorial plane) solutions, with vanishing even-order components

(a2l ≡ 0) and the antisymmetric solutions, with vanishing odd-order components

(a2l+1 ≡ 0). It is reasonable to expect that the actual field configuration of these stars is,

with a good approximation, symmetric with respect to the equatorial plane. Indeed, the

magnetic field has a non-vanishing dipole (l = 1) component outside the star, and the

antisymmetric solutions have vanishing magnetic helicity, therefore symmetric solutions

are energetically favoured with respect to the others. Furthermore, an antisymmetric

solution would likely be unstable on a dynamical timescale, since two opposite magnetic

field loops could annihilate each other. This would be in some sense similar to the

Flowers-Ruderman instability of purely poloidal fields [25] (see also [6, 26]).

The twisted-torus configurations are those for which β(ψ) is continuous and has

the form

β(ψ) ∼ Θ(|ψ/ψ̄| − 1) , (7)

where ψ̄ ≡ ψ(R, π/2) is the value of the function ψ on the stellar surface at the equator,

and Θ is the Heaviside step function. This can be understood by looking at Fig. 1.
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The magnetic field lines are also lines of constant ψ, and the thick line corresponds to

ψ = ψ̄. The toroidal region inside the thick line has ψ > ψ̄, and Eq. (7) implies that

β 6= 0, i.e. the toroidal field is non-vanishing, only in this region.

In [11] we solved the relativistic Grad-Shafranov equation, expanded in Legendre

polynomials (with l odd), assuming a quite general parametrization for β(ψ) (compatible

with the twisted-torus condition (7)) and employing the two EOSs APR2 and GNH3,

which span a wide range of stellar compactness. A remarkable result we have found is

that the toroidal field never contributes to more than 13% of the total magnetic energy

of the star. This is due to the fact that, if we enhance the amplitude of the toroidal

field (roughly speaking, by making β larger), the region where the toroidal field is non-

vanishing shrinks. Note however that, in this region, the toroidal field can be larger than

the poloidal field. Similar results have been obtained in [23], using a polytropic EOS in

a Newtonian framework. We remark that this result, if confirmed, would challenge an

assumption often used in magnetar models [32, 9], i.e. that the toroidal field prevails

onto the poloidal inside the star.

The main open issue regarding these configurations is their stability. Indeed, they

are stationary by construction, but may be unstable. Actually, in [28] it has been found

that magnetic field configurations in which the toroidal field accounts for less than 20%

of the total magnetic energy appear to be unstable (in the framework of Newtonian

gravity and assuming a polytropic EOS). However, recent stability analyses of purely

poloidal magnetic field configurations (see [29] and references therein) show that the

onset of the instability is localized along the “neutral line”, which is the circle in the

equatorial plane threading the closed field lines inside the star (see Fig. 1); as argued in

[29], a strong toroidal component along this line, like in the twisted-torus configurations,

could suppress the instability even when the overall energy of the toroidal field is small.

3. Deformations

Once the magnetic field configuration has been determined with the perturbative

approach outlined above, it is possible to compute (perturbatively) the corresponding

stellar deformation by solving Einstein’s equations δGµν = 8πG
c4
δTµν [10, 11]. The

quadrupole ellipticity

εQ =
Q

I
(8)

(Q mass-energy quadrupole moment, I mean momentum of inertia) is the most relevant

quantity encoding the stellar deformation: it depends on the distribution of matter

throughout the entire star (note that the gravitational wave emission depends on εQ).

The mass-energy quadrupole moment Q can be extracted by the far field limit of the

metric

g00 → . . .− 2Q
eν

r3
P2(cos θ) (9)

and in the weak field limit it reduces to Q '
∫

V
ρ(r, θ)r2P2(cos θ)dV .
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The poloidal field tends to make the star oblate, which corresponds to εQ > 0. The

toroidal field, instead, tends to make it prolate, i.e. with εQ < 0. The determination of

the sign of εQ is important, because if εQ < 0 a “spin flip” mechanism, suggested by Jones

and Cutler [7, 8], could take place: the angle between the rotation axis and the magnetic

axis would grow until they become orthogonal. This process would be associated

to a large gravitational emission. However, as discussed in Section 2, the stationary

twisted-torus configurations seem to be mainly poloidal, and indeed the corresponding

deformations always have εQ > 0. Therefore, the twisted-torus configurations seem not

to be compatible with the Jones-Cutler mechanism.

The stellar deformation induced by twisted-torus magnetic field configurations

depends on the EOS: less compact stars have larger deformations. Furthermore, if

one changes the magnetic field configuration (i.e. changes the choice of β(ψ) satisfying

(7), see Section 2), the stellar deformation changes less than 10%. Note that, since

the poloidal and toroidal fields have competing effects and the poloidal field prevails, it

follows that larger toroidal fields correspond to smaller deformations.

It is possible to summarize the deformations of these magnetized NSs as follows:

εQ ' k

[
Bpole(G)

1016

]2

× 10−4 . (10)

(Bpole is the amplitude of the dipolar surface magnetic field at the stellar pole). Here

k is a coefficient which depends on the EOS: k ∼ 4 for the APR2 EOS, k ∼ 9 for the

GNH3 EOS. We do not expect other EOSs to give results very different from these (the

results of [23] for a polytropic EOS are also similar).

The ellipticities (10) are larger than the bounds derived in [33, 34] (see also [35]),

|ε| . 10−5−10−6, by evaluating the maximal strain that the crust can sustain. However,

these bounds do not apply necessarily to our case. Indeed, here we consider a fluid star

which is deformed by the magnetic field before the crust forms. In this scenario, the

equilibrium configuration of the crust would be its initial, non-spherical shape, and the

limits derived in [33, 34] may be violated. However, we do not know how long the crust

would remain in a non-spherical shape: in order to understand the evolution and the

persistence of the stellar deformation, a dynamical study of the magnetic field evolution

on longer time-scales would be needed.

4. Gravitational wave emission

If an axisymmetric NS with quadrupole ellipticity εQ induced by a magnetic field, rotates

about an axis forming an angle α with the magnetic axis, it emits gravitational waves.

If α is small, gravitational radiation is mainly emitted at the same frequency ν as the

rotation rate, with amplitude

h0 '
4G

rc4
(2πν)2I|εQ| sinα . (11)

We remark that the best available estimate of the “wobble angle” α of a neutron star

is α = 3o for PSR B1828-11 [36]. In the Jones-Cutler process, which takes place as



Structure, Deformations and Gravitational Wave Emission of Magnetars 8

εQ < 0, the wobble angle increases towards α = 90o, with a great enhancement of the

gravitational radiation. However, as discussed in Section 3, this is not the case for the

twisted-torus configurations.

The detectability of gravitational emission from magnetically deformed NS,

described by Eq. (11), depends both on the overall magnetic field amplitude, which

determines εQ, and on the duration of the emission process. Indeed, different dissipative

processes tend to reduce both the wobble angle and the rotation frequency, then

reducing the time the emission frequency spends in the bandwidth of ground-based

interferometers (from few tens to few hundreds of Hertz).

• As discussed in [37], the wobble angle of an oblate (εQ > 0) star with rotation

period P would decay, due to internal dissipation, in a timescale

τd ∼ nP

εQ
(12)

where the parameter n is unknown, since we do not have a clear understanding of

the damping mechanism. However, all the possible damping processes which have

been considered so far (see [8, 37] and references therein) lead to typical values for

n in the range 102−105. This would correspond to a damping timescale ranging

from few months to few tens of years if Bpole ∼ 1015 G. Therefore, after at most few

tens of years the rotation and symmetry axis would become nearly parallel, and the

gravitational emission would become negligible, unless some pumping mechanism

[37] takes place which increases the wobble angle.

• A NS with dipolar field at the pole Bpole and wobble angle α spins down with a

period derivative Ṗ given by [3, 38]

Bpole ' 6.4 × 1019

√
PṖ

sinα
G (13)

(note that many authors consider the average surface magnetic field, which is 1
2
Bpole

[39, 40]). Since Eq. (13) implies that Ṗ = K/P (where K is a constant), the star

slows down from an initial period Pin to a period Pfin in the characteristic time

τc =
1

2K
(P 2

fin − P 2
in) '

P 2
fin

2K
. (14)

Therefore, a NS with Bpole of the order of 1015 G and a small wobble angle could

lie in the bandwidth of ground based interferometers for a time ranging from few

months to few years. If the magnetic field is larger the star spins down more rapidly,

making detection more difficult. The detection is also unlikely if the parameter n

in (12) is much smaller than the upper limit ∼ 104, since in this case the wobble

angle would rapidly decay.

In Fig. 2 we show the signal emitted from a NS with Bpole = 1015 G and wobble angle

α = 3o, at a distance of 10 kpc (i.e. in our galaxy), computed by Eqns. (10), (11). The

star initially rotates with ν = 700 Hz, which is close to the largest rotation frequency

of known pulsars; note that magnetars are believed to rotate rapidly at birth [1]. This
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Figure 2. Gravitational signal emitted by a rotating NS at a distance of 10 kpc,
deformed by a twisted-torus magnetic field, with Bpole = 1015 G, α = 3o, M = 1.4 M�
and EOS GNH3 (solid line) and APR2 (dotted line). The sensitivity curves of
advanced LIGO, advanced VIRGO (with integration time of three months) and ET
(with integration time of one year) are shown for comparison.

signal is compared with the sensitivity curves of the advanced detectors LIGO, VIRGO

(assuming an integration time of three months) and of the third generation detector ET

(assuming one year integration time)‖. An estimate of the spin-down time τc by Eq. (14)

shows that, if the wobble angle decay is not too fast, the signal lies in the bandwidth of

advanced LIGO/VIRGO for a few months, and it lies in the bandwidth of ET for a few

years, consistently with the integration times we have employed (see also [41]).

Figure 2 shows that the signal could be well detected by ET, and marginally

detected by advanced LIGO/VIRGO. However, one should also take into account the

event rate of the process generating the gravitational wave signal. In our scenario, a NS

could maintain a strong, twisted-torus magnetic field and the corresponding deformation

for several years (in the most optimistic case, up to thousands of years), thus there may

be several NS in our galaxy with large deformation. However, only few of them would

rotate rapidly enough to be detected by ground based interferometers. If there is no

spin-up process, the rate of the events described in Fig. 2 would be at most the same

as NS birth rate, i.e. few per century in our galaxy. On the other hand, accretion

from a companion star could spin-up the star and increase the wobble angle; in this

case the event rate may be significantly larger. However, it should be remarked that no

evidence of a companion has been found for any of the observed magnetars so far. We

also mention that, as discussed in [12], the stochastic background of gravitational waves

from magnetars could be detectable by the third generation detector ET.

Finally, we mention that LIGO and Virgo set an upper limit of the order of ∼ 10−4

on the deformations of known pulsars (Crab, J0537-6910 and J1952+3252) [42]. Indeed,

larger deformations would have produced signals strong enough to be detected. These

limits are stronger than current limits arising from spin-down [38]. We remark that the

deformations considered in the analysis of [42] are different from those considered here

‖ http://www.ligo.caltech.edu; http://www.ego-gw.it; http://www.et-gw.eu
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and in current literature on magnetars. Indeed, we consider axially symmetric stars

inclined by an angle α with respect to the rotation axis (which yield gravitational waves

at frequency ν). In the data analysis carried on in [42], instead, tri-axial deformations

(without inclination) have been considered, which yield gravitational waves at frequency

2ν.
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