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The Schrodinger equation is applied to the photon-electron interaction to give a unified 
picture of the ponderomotive refraction effect, Kapitza-Dirac diffraction as well as near 
field energy gain and loss processes.  Analytical solutions are studied for simple cases 
and the potential use of these phenomena in applications of electron microscopy is 
discussed. 

 
1 Introduction 
 
Although almost 80 years have elapsed since Kapitza and Dirac pointed out [1] the 
possibility of an elastic scattering diffraction interaction between an electron and a 
standing light wave, it is only quite recently that experiments demonstrating and now 
extending that picture have been conducted.  Thanks to the use of lasers in generating the 
required high light intensity, the diffraction effect has now been observed [2] and its 
dependence on light intensity studied (for reviews see Batelaan [3,4]).  Closely related to 
this manifestation of the periodic part of the Kapitza-Dirac potential is the refraction 
effect produced by its average value known as the ponderomotive potential.  Electrons 
crossing a confined region of high light intensity experience a repulsive potential and 
consequent phase shift [5]. This simpler effect has yet to be explored in detail, but is the 
key part of a recent proposal to build a novel device for Zernike phase contrast electron 
microscopy [6].  The third and most spectacular recent development is the observation of 
electron energy losses and gains generated at an electron beam that crosses a high 
intensity light field in the vicinity of nano wires or nanotubes [7].  This experiment was 
conducted using synchronous femto-second light and electron pulses in the context of a 
pioneering programme for ultrafast electron microscopy using the pump-probe principle 
[8].  The effect was predicted [9] and the results obtained [7] have been quantitatively 
explained by computation of electron’s interaction with what were identified as 
evanescent light waves in the near field region [10]. 
 
These developments undoubtedly bring fresh impetus to deeper study of the electron-
photon interaction and its potential exploitation in the electron microscope.  To 
supplement image information available from elastic and inelastic electron scattering, 
routine use is already made of X-ray energy dispersive spectroscopy (XEDS) and 
cathodoluminescence (CDL) both in scanning electron microscopy (SEM) and in 
scanning transmission electron microscopy (STEM) [11, 12]. The advantages of photons 
over electrons for precise spectroscopy and energy-targeted excitation have also led to 
suggestions for inverse CDL and energy gain experiments [13, 14].  These proposals 
have not so far been realised but, like XEDS and CDL, rather than depending on a direct 
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interaction between photons and fast electrons, would involve an indirect interaction 
through their mutual involvement in real excitation and de-excitation of electrons in the 
object studied.  The direct interaction that characterizes the recent work just mentioned 
provides the focus here.   A theory covering all three of these recent developments is 
developed from the Schrodinger equation which is more familiar to electron 
microscopists than the Dirac eqn. used in [6].  Furthermore, analytical expressions for the 
energy loss and gain probabilities can be obtained for typical near field situations.  These 
enable the effects of different geometries or changes in other parameters to be swiftly 
assessed.  Finally we discuss the potential usefulness of these developments which are as 
usual in competition with other approaches.    
 
2 The Schrodinger semi-classical picture of light interactions 
 
2.1 Ponderomotive potential in an optical standing wave 

 
Using a simple vector potential A in the Coulomb gauge with divA = 0, the time-
dependent Schrodinger equation has the form 
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With relativistic mass m = m0/√(1-v2/c2) and wave vector k = m/ħv = 2π/λe, this equation 
can be used to describe an electron of velocity v, wavelength λe and energy E = ħ2k2/2m 
moving in an optical field of frequency ω.  Effects such as stimulated absorption and 
emission (but not spontaneous emission, pair production or spin effects) are then 
included. 
 
We now consider the interaction of such a fast electron travelling in the z direction with 
energy E and an electric field Epsin(qx)sin(ωt) = (Ep/2)[cos(qx-ωt) – cos(qx+ωt)] 
corresponding to a standing light wave.  The vector potential A lies in the electric field 
polarisation direction η (y or z) and has magnitude A = (Ep/ω) sin(qx)cos(ωt).  
Substituting in equation [1] we then find 
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The second term on the right in the top line of equation (2) can be recognised as the usual 
time-independent ponderomotive potential. It does not depend on the polarisation of the 
light and is repulsive in the regions of high light E-field intensity.  The remaining two 
terms would stimulate energy loss and gain processes and, as discussed later below, can 
in suitable contexts cause real transitions.  However in the plane wave situation 
considered here, they cannot conserve energy and momentum so we ignore them.   
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2.2 Ponderomotive refraction and Kapitza-Dirac scattering 
 
In the absence of the two time-dependent terms eqn (2) reduces to the stationary 
Schrodinger equation for ψ(x,z) = Ψexp(iΩt) describing an electron of energy E = ħΩ = 
ħ2k2/2m moving in the ponderomotive potential.  The behaviour of fast electrons in such 
periodic potentials is familiar from crystal propagation problems and involves Bragg 
reflection, channelling, energy band structure etc.  At low light intensities we are in the 
single scattering, kinematical diffraction regime where the electron beam direction is 
critical for even one of the two possible Bragg reflections k -> k + 2q or k -> k - 2q to be 
significantly excited.  With increasing light intensity, these two Bragg reflections can be 
significantly excited simultaneously and we progressively move to a many beam situation 
involving Bragg reflections of higher and higher order ±2nq.  The Bragg angles involved 
here are however at least three orders of magnitude smaller than those familiar in electron 
diffraction from crystals.  An important consequence then is that, even after quite a long 
propagation distance L in the potential, the lateral spreading of the beams Lnθ = 2Lnq/k 
may still be very small compared with the “lattice parameter” π/q.  When all the beams 
then effectively move in the same direction as the incident electron (along z for instance 
with the trajectory e1 in fig. 1), the Schrodinger eqn. has a simple one-dimensional 
“phase grating” solution which has already been applied in Kapitza-Dirac theory [3]. 
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Here the progressive development with increasing propagation distance z of higher order 
Bragg reflections 2nq just discussed is described more precisely by the Bessel function 
expansion.  After a distance z = L, reflections of order n = ±βL will be significantly 
excited which indicates that the condition for the validity of the phase grating 
approximation is 2βL2q2 << πk or (eEp/ħω)2 < < 4π(k/qL)2 = 8π3/(qLλe)2.  Even at the 
very high peak intensity levels of 1015 Wm-2 available with pulsed lasers, (eEp/ħω)2 
would be a million times less than this value. 
 
To get a the -π/2 phase shift required for phase contrast electron microscopy with a 
200keV electron propagating a distance L= 1μm in a direction where it samples the 
average ponderomotive potential (eEp)2/8mω2 then implies 
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Choosing a wavelength λ = 2μm (i.e. ħω = 0.56eV) for the plane wave of amplitude Ep/2 
incident on the cavity, this corresponds to a very high intensity of I = cε0Ep

2/4 = 6.6 x1015 
Wm-2.  A similar figure arises in the analysis of Muller et al [5] who suggest various 
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ways of using cavities with highly reflecting walls to increase the field from readily 
obtainable continuous wave lasers.  The high intensities required could also be produced 
by employing pulsed operation for both the optical and the electron beam. In the last few 
years, Zewail and colleagues have impressively demonstrated precise synchronisation of 
optical and electron pulses on the near femto-second time scale for ultrafast microscopy 
as well as stimulated energy loss and gain processes [7, 8].  The 108 s-1 pulse repetition 
rate allows a high resolution image to be acquired in a few seconds.   
 
For propagation parallel to the optical nodes and antinodes however equation (4) shows 
that the phase shift will vary periodically with x, resulting in undesirable oscillations 
between phase and amplitude contrast across the diffraction plane.  This effect would be 
mitigated for propagation across the curved wave fronts in a spherical or parabolic cavity 
but, for propagation through less sharply focused standing wave systems, it would be 
better for the fast electron to travel cross the antinodes at an angle chosen to sample them 
evenly (as for direction e2 in fig 1). 
 
3 Stimulated energy loss and gain processes 
 
3.1 Phase grating theory for time-dependent potentials 
 
The phase grating theory employed above can be usefully extended to deal with potential 
energy loss and gain events like those in equation (2) arising from a time-dependent 
potential  
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A specific form for the potential V(x,y,z) will be used later but here we assume only that 
it is small in magnitude compared with the electron energy E = ħΩ and varies extremely 
slowly with position on the scale of the electron wavelength λe = 2π/k (2.5 pm for E = 
200 keV).  For an electron incident in the z direction we therefore can ignore the x and y 
derivatives of Ψ and look a quasi-one dimensional solution of WKB type analogous to 
the phase grating solution studied above. 
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Substituting in eqn (5), identifying the different frequency components and introducing r' 
with the same x and y components as r but with its own z component z', we find 
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The integral in eqn (7), describes the energy gain process with appropriate momentum 
change for the fast electron.  For scattering to occur, the potential V must have a Fourier 
transform with wave vector component along z of ω/v which is impossible in the case of 
far field light waves whose field has a Fourier transform only at wave vector components 
qz  ≤ ω/c < ω/v.  As will be seen below, scattering is however possible in the near field 
region of a light scattering or emitting object or in the case of an evanescent light wave.  
Since the complex conjugate of equation (7) holds for S* and describes the energy loss 
process, we can rewrite equation (6) as  
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In eqn (8) the positive integer n is associated with both energy loss and gain ± nħω with 
appropriate change of the fast electron wave vector in each case  The probabilities of  a 
energy loss nħω or gain -nħω are always the same and equal to  [Jn(|I(x,y,z)|)]2  which for 
each image point (x,y) usually first increases with z but can then decrease either because 
|I| decreases or because the loss (or gain) spreads to higher values.  This simple analytic 
behaviour of course depends on the validity of the phase grating approximation.  
Although the peak heights for gains and losses actually observed [7] do not conform to 
the simple Bessel function law for a single value of |I|, it should be realised that in 
practice the spectra are collected from a range of image points and are therefore averaged 
over a range of values of |I|. We can now apply this theory to a simple example. 
 
3.2 Cylindrical wave analysis 
 
As a first step in modelling the radiation from the illuminated silver wire and nanotube 
studied in [7], we refer to the general expressions given by Stratton [15] for scattered 
waves emerging from a long, slender cylinder lying in the y direction and illuminated 
with light at a frequency ω = qc polarised along θ = 0.  For the dipole waves associated 
with azimuthal  quantum numbers m = ± 1 the vector potential components Aρ and Aθ 
and the closely related electric field components Eρ and Eθ in the ρ-θ (i.e. x-z) plane are 
given by  
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Here the amplitude constant Es for the scattered field arises from the boundary conditions 
at the cylinder surface and would depend not only on the incident light amplitude but also 
on the dielectric response function of the cylinder material with associated resonance 
frequencies. H1

(1) = J1 + iY1 is the usual Hankel function describing an outgoing wave in 
the far field where only the Eθ component survives.  To find the potential V(r) used in 
equation (5) for interaction with a fast electron moving in the z direction we require the 
vector potential component Az . In the simplest case, with the polarisation direction θ = 0 
taken along x as shown in fig. 2, Az is given by the expression 
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Finally, to compute the quantity I(r) used in equation (8), it is convenient to resort to 
dimensionless coordinates X,Y,Z defined by x/X = y/Y = z/Z = v/ω and also to note that 
qv/ω = v/c. Provided that the unobstructed electron path length near the cylinder is many 
times the impact parameter x we can integrate in equation (9) over the whole range of z 
to obtain I which is then just a function of X. 
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As indicated in equation (8) the strength of the energy losses and gains in these two cases 
is controlled by |I(r)| and hence in this case |K(X)| which is plotted in fig 4. |K(X)| 
reaches a maximum at 1 = X = ωx/v i.e. x = (v/2πc)λ ≈ 57nm for 2.4 eV photons. This 
lies slightly inside the 150 nm diameter nanotube studied in [7]. Of course analysis of this 
section applies only to points outside the cylinder where in this case |K(X)| will be a 
monotonically decreasing function of impact parameter.   As already mentioned, the 
dependence on X generally means that the spectral peaks will deviate from the simple 
Bessel behaviour when collected over a range of X values.  
 
3.3 Real cylindrical wave situations 
 
The ideally simple geometry just assumed for the cylindrical system is scarcely likely to 
apply exactly in practice.  Although only schematic diagrams are available, these indicate 
that illumination used in [7, 8] enters the microscope column in the x direction but is then 
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deflected by a mirror to travel at an angle θp of perhaps 200 to the electron beam direction 
z.  The preceding analysis can easily be extended to cover any value of θp and energy 
losses and gains will still result if the scattered light field has an electric field component 
along z.  An additional complication may arise when the polarization does not lie either 
in or normal to the x-z plane since its direction may then be modified by such a mirror. 
 
Furthermore, our analysis so far assumes that the cylindrical object illuminated has its 
axis along the y-direction normal to the x-z plane jointly defined by the incident photon 
and electron beams.  Provided that the angle of rotation about z between object and image 
is known, suitable objects can be selected whose image projections in the x-y plane lie 
make an angle φL with y which is as small as possible.  As indicated in figure 3, the axis 
of the chosen cylinder may then lie at some non-zero angle θL to the x-y plane with 
direction cosines {-cos(θL)sin(φL), cos(θL)cos(φL),sin(θL)}.  The photon wave vector q 
will then have a component parallel to the cylinder axis which will be given by  qL = 
q{cos(θL)sin(θp)sin(φL) + sin(θL)cos(θp)}and can excite waves with this component.  The 
image actually obtained with y polarization [7] does indeed show weak fringes along the 
surface of the wire which may depict the excitation of a standing wave with intensity 
maxima separated by π/qL  ≈ 400nm. Photons of energy 2.4 eV photons with λ = 2π/q = 
524 nm were used so qL/q ≈ 0.67.  Unless the azimuthal misalignment angle φ was rather 
large, this would therefore imply a tilt angle θL of about 45 degrees.  When waves with a 
wave vector component qL along the wire are excited, the scattered wave vector in the 
normal to the wire becomes √(q2 – qL

2).  The wave becomes evanescent in this direction 
only for qL > q but such waves cannot be excited by external light illumination. 
 
     
 
5. Discussion of future prospects 
 
Many thin phase objects of intense interest, particularly in biology, are currently imaged 
in the electron microscope by defocus phase contrast methods.  Electron holography can 
be an effective alternative solution in some cases, particularly near the edge of a hole in 
the specimen to allow for transmission of an undisturbed reference beam.  In principle a 
Zernike-style phase shifting plate placed in the back-focal plane could more generally 
produce phase contrast over a wide range of spatial frequencies but physical plates also 
scatter the electrons and suffer from a variety of problems, particularly contamination and 
beam damage.  An obstruction-free phase shifting device based purely on the action of 
external fields in vacuum is therefore attractive.  To achieve the necessary light intensity 
in a region just a few microns in extent with current continuous-wave lasers is very 
demanding however and will require an efficient optical cavity [5].   
 
Using the much higher light intensities available in pulsed mode operation [7, 8] it might 
be possible to achieve the desired result without any very sophisticated cavity.  As 
already noted, the pulsed mode technology is already successfully employed for high 
resolution pump-probe electron microscopy and has produced the photon-induced 
electron energy loss and gain events discussed above.  Equation (4) indicates that in these 
experiments the ponderomotive potential must also give rise to a phase shift φ = e2Ep

2λeL 
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/ 16π. The 400 fs interaction time indicated in [7] for the photon and electron pulses 
would correspond for a 200 keV electron to a propagation distance L of 80 μm in the 
illumination field Ei with peak radiance cε0Ei

2/4 of 1015 Wm-2.  The resulting large phase 
shift of nearly 6π is slowly varying over perhaps an area of diameter 10μm or greater and 
not readily detectable in the image except possibly at large defocus.   Near the nanowire 
however the phase shift will be locally increased by the presence of the scattered field Es 
given by eqn. (9).  Since Ep

2 = (Ei + Es)2 we should strictly add these fields vectorially 
but for simplicity here we assume that on average they are in quadrature and of equal 
amplitude so that Ep

2 is locally doubled over a path length L of about 150 nm equal to the 
nanotube diameter.  The additional phase shift localised near the nanotube is thus 
estimated as 10-2π.  At still higher peak laser power this additional phase local shift could 
be detected. 
 
Another potential rival for an obstruction-free phase shifter proposed by Rose [16] 
involves an additional static field stage in the multipolar lens stack now widely used for 
aberration correction. The required π/2 phase shift over the whole 2π range of azimuthal 
angles in the x-y plane is applied in two steps of π/4 acting over the x and y sectors in 
turn.  Both of these schemes are very sophisticated but, if eventually available at 
reasonable cost and routinely operable, would find a large market. 
 
As a means of accessing the electromagnetic near field region, the electron energy loss 
and gain processes recently observed [7] offer an intriguing new option in addition to 
those already being actively pursued through the use of an ultra-sharp tip as in near-field 
scanning optical microscopy or with a sub-wavelength super-lens [17]. The optical fields 
required are rather high however and are perhaps only achievable in simple elastic 
scattering processes with intense laser pulses.  In this context it is not clear whether they 
can supply any significant information about the object not already more simply available 
from electron microscope imaging in conjunction with normal electron energy loss 
spectroscopy (EELS).  Aloof beam mode EELS depends on a rather similar interaction 
but the exciting wave comes from the electron itself and is intrinsically evanescent.  On 
small objects such as spheres, radiating waves can thus be excited by a passing electron 
but, and particularly in closer encounters, not just dipolar waves as in the case of light 
excitation considered here. On more extended objects the both the exciting and the 
excited waves associated with a passing electron are evanescent.  All of these factors 
mean that e-beam exploration of the near field or evanescent wave regions can be carried 
out with higher spatial resolution than will be achieved with the photon interactions 
considered here.  Aloof beam electron excitation also extends over a very wide frequency 
range so that the full spectral response of the object, including any resonances, is covered 
in each observation.  Tuned laser excitation, becoming more available in pulsed mode, 
would be needed to achieve a comparable result. 
 
In addition to the exploration of ultrafast processes facilitated by the precise timing 
capability in the pump probe experiments, the very high light intensities available may 
open up new spectral opportunities through non-linear sample response.  Sum difference 
spectroscopy for instance depends on the second order response and is sensitive to the 
surface region because an absence of inversion symmetry is necessary.  So far however, 
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although applied to assemblies of particles as well as to flat surfaces, it is still a broad 
beam technique [18, 19].  A degree of spatial localisation has been achieved in other non-
linear spectroscopies such as coherent anti-Stokes Raman spectroscopy by operating in 
the near field enhancement region of an AFM tip and using three pulsed input beams of 
different frequencies [20].  In an electron microscope experiment several input pulses of 
different frequencies could likewise be used.   The electron beam could in principle 
interact directly only with output beams in their near field region and if any of the non-
linear outputs had sufficient intensity to produce detectable electron energy losses and 
gains the spatial resolution and scope of these spectroscopies could perhaps be 
dramatically improved.  Once again however it could be more practical to regard the 
electron beam as an input source either in substitution or addition to the optical inputs 
already used. Pulsed mode operation and phase sensitive detection would then offer 
additional advantages.  Infrared or Raman spectra of selected nano-scale objects, altered 
under e-beam excitation, might then be detected in the far-field optical output signals.   
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Figure captions 
 
Fig. 1.  Schematic diagram of electron beam paths near the antinodes in a standing light 
wave.  Such a phase shifting device, placed in the back-focal plane, would not intercept 
the waves scattered by the object but only the unscattered wave.  For aligned paths such 
as e1, the periodic optical potential would generate Kapitza-Dirac diffraction but this 
effect would be averaged out for trajectories like e2. 
 
Fig. 2. Illumination arrangement and coordinate set up assumed for the illustrative 
calculation of  photon- electron interaction near a cylinder . 
 
Fig. 3.  Depiction of the cylindrical scattering geometry more likely in practical cases. 
 
Fig. 4.  Computed results for |K(X)|  given by equation (11). 
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Figure 2 
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Figure 3 
 

  e    z 

y 

x 

θp       p 

    θL        
 
   φ L 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 14



Figure 4 
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