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We solve explicitly the shifted wave equation

)u(x, t) on Damek-Ricci spaces, using Ásgeirsson's theorem and the inverse dual Abel transform. As an application, we investigate Huygens' principle. A similar analysis is carried out in the discrete setting of homogeneous trees.

Introduction

In the book [START_REF] Helgason | Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators, and Spherical Functions)[END_REF] Helgason uses Ásgeirsson's mean value theorem (see Theorem II.5.28) to solve the wave equation (1) ∂ 2 t u(x, t) = ∆ x u(x, t), u(x, 0) = f (x), ∂ t | t=0 u(x, t) = g(x), on Euclidean spaces R d (see Exercise II.F.1 and its solution pp. 574-575) and the shifted wave equation

(2) ∂ 2 t u(x, t) = ∆ x + [ d-1 2 ] 2 u(x, t), u(x, 0) = f (x), ∂ t | t=0 u(x, t) = g(x),
on real hyperbolic spaces H d (R) (see Exercise II.F.2 and its solution pp. 575-577). In this work we extend this approach both to Damek-Ricci spaces and to homogeneous trees. Along the way we clarify the role of the inverse dual Abel transform in solving the shifted wave equation.

Recall that Damek-Ricci spaces are Riemannian manifolds, which contain all hyperbolic spaces H d (R), H d (C), H d (H), H 2 (O) as a small subclass and share nevertheless several features with these spaces. Before [START_REF] Helgason | Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators, and Spherical Functions)[END_REF] the shifted wave equation ( 2) on H d (R) was solved explicitly in [24, Section 7]. Other hyperbolic spaces were dealt with in [START_REF] Bunke | The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one (theta functions, trace formulas and the Selberg zeta function)[END_REF][START_REF] Intissar | Solution explicite de l'équation des ondes dans un espace symétrique de type non compact de rang 1[END_REF][START_REF] Intissar | Solution explicite de l'équation des ondes dans l'espace symétrique de type non compact de rang 1[END_REF] and Damek-Ricci spaces in [START_REF] Noguchi | The solution of the shifted wave equation on Damek-Ricci space[END_REF]. All these approaches are awkward in our opinion. On one hand, [START_REF] Lax | The asymptotic distribution of lattice points in euclidean and noneuclidean spaces[END_REF], [START_REF] Bunke | The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one (theta functions, trace formulas and the Selberg zeta function)[END_REF] and [START_REF] Intissar | Solution explicite de l'équation des ondes dans un espace symétrique de type non compact de rang 1[END_REF][START_REF] Intissar | Solution explicite de l'équation des ondes dans l'espace symétrique de type non compact de rang 1[END_REF] rely on the method of descent i.e. on shift operators, which reduce the problem to checking formulae in low dimensions. Moreover [START_REF] Bunke | The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one (theta functions, trace formulas and the Selberg zeta function)[END_REF] involves classical compact dual symmetric spaces and doesn't cover the exceptional case. On the other hand, [START_REF] Noguchi | The solution of the shifted wave equation on Damek-Ricci space[END_REF] involves complicated computations and follows two different methods : Helgason's approach for hyperbolic spaces and heat kernel expressions [START_REF] Anker | Spherical analysis on harmonic AN groups[END_REF] for general Damek-Ricci spaces. In comparison we believe that our presentation is simpler and more conceptual.

Several other works deal with the shifted wave equation (2) without using explicit solutions. Let us mention [START_REF] Branson | Huygens' principle in Riemannian symmetric spaces[END_REF] (see also [START_REF] Helgason | Geometric Analysis on Symmetric Spaces[END_REF]Section V.5]) for Huygens' principle and the energy equipartition on Riemannian symmetric spaces of the noncompact type. This work was extended to Damek-Ricci spaces in [START_REF] Astengo | Huygens' principle and a Paley-Wiener type theorem on Damek-Ricci spaces[END_REF], to Chébli-Trimèche hypergroups in [START_REF] Kamel | Huygens' principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian[END_REF] and to the trigonometric Dunkl setting in [START_REF] Said | Huygens' principle for the wave equation associated with the trigonometric Dunkl-Cherednik operators[END_REF][START_REF] Ayadi | Equipartition of energy for the wave equation associated to the Dunkl-Cherednik Laplacian[END_REF]. The nonlinear shifted wave equation was studied in [START_REF] Tataru | Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation[END_REF][START_REF] Anker | The wave equation on hyperbolic spaces[END_REF][START_REF] Anker | The wave equation on Damek-Ricci spaces[END_REF], first on real hyperbolic spaces and next on Damek-Ricci spaces. These works involve sharp dispersive and Strichartz estimates for the linear equation. Related L p → L p estimates were obtained in [START_REF] Ionescu | Fourier integral operators on noncompact symmetric spaces of real rank one[END_REF] on hyperbolic spaces.

Our paper is organized as follows. In Section 2, we review Damek-Ricci spaces and spherical analysis thereon. We give in particular explicit expressions for the Abel transform, its dual and the inverse transforms. In Section 3 we extend Ásgeirsson's mean value theorem to Damek-Ricci spaces, apply it to solutions to the shifted wave equation and deduce explicit expressions, using the inverse dual Abel transform. As an application, we investigate Huygens' principle. Section 4 deals with the shifted wave equation on homogeneous trees, which are discrete analogs of hyperbolic spaces.

Most of this work was done several years ago. The results on Damek-Ricci spaces were cited in [START_REF] Rouvière | Espaces de Damek-Ricci (géométrie et analyse)[END_REF] and we take this opportunity to thank François Rouvière for mentioning them and for encouraging us to publish details. We are also grateful to Nalini Anantharaman for pointing out to us the connection between our discrete wave equation ( 16) on trees and recent works [START_REF] Brooks | Non-localization of eigenfunctions on large regular graphs[END_REF][START_REF] Brooks | Graph eigenfunctions and quantum unique ergodicity[END_REF] of Brooks and Lindenstrauss.

Spherical analysis on Damek-Ricci spaces

We shall be content with a brief review about Damek-Ricci spaces and we refer to the lecture notes [START_REF] Rouvière | Espaces de Damek-Ricci (géométrie et analyse)[END_REF] for more information.

Damek-Ricci spaces are solvable Lie groups S = N⋊A, which are extensions of Heisenberg type groups N by A ∼ = R and which are equipped with a left-invariant Riemannian structure. At the Lie algebra level,

s ≡ R m ⊕ z R k n ⊕ R a , with Lie bracket [(X, Y, z), (X ′ , Y ′ , z ′ )] = ( z 2 X ′ -z ′ 2 X, z Y ′ -z ′ Y + [X, X ′ ], 0) and inner product (X, Y, z), (X ′ , Y ′ , z ′ ) = X, X ′ R m + Y, Y ′ R k + z z ′ . At the Lie group level, S ≡ R m × Z R k N × R A , with multiplication (X, Y, z) • (X ′ , Y ′ , z ′ ) = (X + e z 2 X ′ , Y + e z Y ′ + 1 2 e z 2 [X, X ′ ], z + z ′
). So far N could be any simply connected nilpotent Lie group of step ≤ 2. Heisenberg type groups are characterized by conditions involving the Lie bracket and the inner product on n, that we shall not need explicitly. In particular Z is the center of N and m is even. One denotes by n = m + k +1 the (manifold) dimension of S and by

Q = m 2 + k the so-called homogeneous dimension of N.
Via the Iwasawa decomposition, all hyperbolic spaces

H d (R), H d (C), H d (H), H 2 ( 
O) can be realized as Damek-Ricci spaces, real hyperbolic spaces corresponding to the degenerate case where N is abelian. But most Damek-Ricci spaces are not symmetric, although harmonic, and thus provide numerous counterexamples to the Lichnerowicz conjecture [START_REF] Damek | A class of nonsymmetric harmonic Riemannian spaces[END_REF]. Despite the lack of symmetry, radial analysis on S is similar to the hyperbolic space case and fits into Jacobi function theory [START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF].

In polar coordinates, the Riemannian volume on S may be written as δ(r)drdσ, where

δ(r) = const. 2 m+1 π n 2 Γ n 2 -1 sinh r 2 m (sinh r) k = 2 n π n 2 Γ n 2 -1 const. cosh r 2 k sinh r 2 n-1
is the common surface measure of all spheres of radius r in S and dσ denotes the normalized surface measure on the unit sphere in s. We shall not need the full expression of the Laplace-Beltrami operator ∆ on S but only its radial part

rad ∆ = ∂ ∂r 2 + n-1 2 coth r 2 + k 2 tanh r 2 δ ′ (r) δ(r) ∂ ∂r
on radial functions and its horocyclic part

(3) ∆f = ∂ ∂z 2 f -Q ∂ ∂z f
on N-invariant functions i.e. on functions f = f (X, Y, z) depending only on z. The Laplacian ∆ commutes both with left translations and with the averaging projector

f ♯ (r) = 1 δ(r) S(e,r) dx f (x) ,
hence with all spherical means

f ♯ x (r) = 1 δ(r) S(x,r)
dy f (y) .

Thus (4) (∆f ) ♯ x = (rad ∆)f ♯ x .
Finally ∆ has a spectral gap. More precisely its L 2 -spectrum is equal to the half-line -∞, -Q 2 4 . Radial Fourier analysis on S may be summarized by the following commutative diagram in the Schwartz space setting [START_REF] Anker | Spherical analysis on harmonic AN groups[END_REF] :

S(R) even H ր ≈ ≈ տ F S(S) ♯ ≈ -→ A S(R) even
Here

Hf (λ) = S dx ϕ λ (x) f (x)
denotes the spherical Fourier transform on S,

Af (z) = e -Q 2 z R m dX R k dY f (X, Y, z)
the Abel transform,

Ff (λ) = R dz e iλz f (z)
the classical Fourier transform on R and S(S) ♯ the space of smooth radial functions

f (x) = f (|x|) on S such that sup r ≥0 (1+ r) M e Q 2 r ∂ ∂r N f (r) < +∞
for every M, N ∈ N. Recall that the Abel transform and its inverse can be expressed explicitly in terms of Weyl fractional transforms, which are defined by

W τ µ f (r) = 1 Γ(µ+M ) +∞ r d(cosh τ s) (cosh τ s -cosh τ r) µ+M -1 -d d(cosh τ s) M f (s)
for τ > 0 and for µ ∈ C, M ∈ N such that Re µ > -M. Specifically,

A = c 1 W 1/2 m/2 • W 1 k/2 and A -1 = 1 c 1 W 1 -k/2 • W 1/2
where c 1 = 2

3 m+k 2 π m+k 2 . More precisely, A -1 f (r) = 1 c 1 -d d(cosh r) k 2 -d d (cosh r 2 ) m 2 f (r)
if n is odd i.e. k is even, and

A -1 f (r) = 1 c 1 √ π +∞ r ds √ cosh s -cosh r -d ds -d d(cosh s) k-1 2 -d d(cosh s 2 ) m 2 f (s)
if n is even i.e. k is odd. Similarly, the dual Abel transform (5)

A * f (r) = f ♯ (r), where f (X, Y, z) = e Q 2 z f (z)
, and its inverse can be expressed explicitly in terms of Riemann-Liouville fractional transforms R τ µ , which are defined by

R τ µ f (r) = 1 Γ(µ+M ) r 0 d(cosh τ s) (cosh τ r -cosh τ s) µ+M -1 d d(cosh τ s) M f (s) for τ > 0 and for µ ∈ C, M ∈ N such that Re µ > -M. Theorem 2.1. The dual Abel transform (5) is a topological isomorphism between C ∞ (R) even and C ∞ (S) ♯ ≡ C ∞ (R) even . Explicitly, A * f (r) = c 2 2 sinh r 2 -m (sinh r) -(k-1) R 1 k/2 cosh • 2 -1 R 1/2 m/2 sinh • 2 -1 f (r) and (A * ) -1 f (r) = 1 c 2 d dr R 1/2 -m/2 • R 1 -k/2+1 sinh • 2 m (sinh •) k-1 f (r)
where

c 2 = 2 n-1 2 Γ( n 2 ) √ π = (n-1)! 2 n-1 2 Γ( n +1 2 )
. More precisely,

(A * ) -1 f (r) = 1 c 2 d dr d d(cosh r 2 ) m 2 d d(cosh r) k 2 -1 sinh r 2 m (sinh r) k-1 f (r)
if n is odd i.e. k is even, and

(A * ) -1 f (r) = 1 c 2 √ π d dr d d(cosh r 2 ) m 2 d d(cosh r) k-1 2 r 0 ds √ cosh r -cosh s sinh s 2 m (sinh s) k f (s) if n is even i.e. k is odd. Proof. Everything follows from the duality formulae R dr Af (r) g(r) = S dx f (x) A * g(x) , +∞ 0 d(cosh τ r) W τ µ f (r) g(r) = +∞ 0 d(cosh τ r) f (r) R τ µ g(r) ,
and from the properties of the Riemann-Liouville transforms, in particular

R τ 1/2 : r ℓ C ∞ (R) even ≈ -→ r ℓ+1 C ∞ (R) even
for every integer ℓ ≥ -1.

Remark 2.2. In the degenerate case m = 0, we recover the classical expressions for real hyperbolic spaces H n (R):

Af (r) = (2π) n-1 2 Γ( n-1 2 ) +∞ r d(cosh s) (cosh s -cosh r) (n-3)/2 f (s) , A * f (r) = c 3 (sinh r) -(n-2) r 0 ds (cosh r -cosh s) n-3 2 f (s) ,
where

c 3 = 2 n-1 2 Γ( n 2 ) √ π Γ( n-1 2 ) = (n-2)! 2 n-3 2 Γ( n-1 2 ) 2 , A -1 f (r) = (2π) -n-1 2 -d d(cosh r) n-1 2 f (r) , (A * ) -1 f (r) = 2 n-1 2 ( n-1 2 )! (n-1)! d dr d d(cosh r) n-3 2 (sinh r) n-2 f (r)
if n is odd and

A -1 f (r) = 1 2 n-1 2 π n 2 +∞ r ds √ cosh s -cosh r -d ds -d d(cosh s) n 2 -1 f (s) , (A * ) -1 f (r) = 1 2 n-1 2 ( n 2 -1)! d dr d d(cosh r) n 2 -1 r 0 ds √ cosh r -cosh s (sinh s) n-1 f (s)
if n is even. 

dy ′ U(x ′ , y ′ ) = S(x,s) dx ′ S(y,r) dy ′ U(x ′ , y ′ )
for every x, y ∈ S and r, s > 0.

The proof is similar to the real hyperbolic space case [17, Section II.5.6] once one has introduced the double spherical means

U ♯,♯ x,y (r, s) = 1 δ(r) S(x,r) dx ′ 1 δ(s) S(y,s) dy ′ U(x ′ , y ′ )
and transformed (6) into

(rad ∆) r U ♯,♯ x,y (r, s) = (rad ∆) s U ♯,♯ x,y (r, s) .
Ásgeirsson's Theorem is the following limit case of Theorem 3.1, which is obtained by dividing (7) by δ(s) and by letting s → 0. Corollary 3.2. Under the same assumptions,

S(x,r) dx ′ U(x ′ , y) = S(y,r) dy ′ U(x, y ′ ) .
Given a solution u ∈ C ∞ (S ×R) to the shifted wave equation ( 8)

∂ 2 t u(x, t) = ∆ x + Q 2 4 u(x, t) on S with initial data u(x, 0) = f (x) and ∂ t | t=0 u(x, t) = 0, set (9) U(x, y) = e Q 2 t u(x, t
), where t is the z coordinate of y. Then ( 9) satisfies ( 6), according to [START_REF] Anker | The wave equation on Damek-Ricci spaces[END_REF]. By applying Corollary 3.2 to (9) with y = e and r = |t|, we deduce that the dual Abel transform of t → u(x, t), as defined in [START_REF] Ayadi | Equipartition of energy for the wave equation associated to the Dunkl-Cherednik Laplacian[END_REF], is equal to the spherical mean f ♯ x (|t|) of the initial datum f . Hence u(x, t) = (A * ) -1 f ♯ x (t). By integrating with respect to time, we obtain the solutions

u(x, t) = t 0 ds (A * ) -1 g ♯ x (s)
to [START_REF] Brooks | Non-localization of eigenfunctions on large regular graphs[END_REF] with initial data u(x, 0) = 0 and

∂ t | t=0 u(x, t) = g(x).
In conclusion, general solutions to the shifted wave equation ( 10)

∂ 2 t u(x, t) = ∆ x + Q 2 4 u(x, t) u(x, 0) = f (x), ∂ t | t=0 u(x, t) = g(x)
on S are given by

u(x, t) = (A * ) -1 f ♯ x (t) + t 0 ds (A * ) -1 g ♯ x (s).
By using Theorem 2.1, we deduce the following explicit expressions.

Theorem 3.3. (a) When n is odd, the solution to [START_REF] Bunke | The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one (theta functions, trace formulas and the Selberg zeta function)[END_REF] is given by

u(x, t) = c 4 ∂ ∂t ∂ ∂ (cosh t 2 ) m 2 ∂ ∂ (cosh t) k 2 -1 1 sinh t S(x,|t|) dy f (y) + c 4 ∂ ∂ (cosh t 2 ) m 2 ∂ ∂ (cosh t) k 2 -1 1 sinh t S(x,|t|)
dy g(y) ,

with c 4 = 2 -3m+k 2 -1 π -n-1 2 . (b) When n is even, the solution to (10) is given by u(x, t) = c 5 ∂ ∂|t| ∂ ∂ (cosh t 2 ) m 2 ∂ ∂ (cosh t) k-1 2 B(x,|t|) dy f (y) √ cosh t -cosh d(y,x) + c 5 sign(t) ∂ ∂ (cosh t 2 ) m 2 ∂ ∂ (cosh t) k-1 2 B(x,|t|) dy g(y) √ cosh t -cosh d(y,x)
,

with c 5 = 2 -3m+k 2 -1 π -n 2 .
Remark 3.4. These formulae extend to the degenerate case m = 0, which corresponds to real hyperbolic spaces H n (R) : (a) n odd :

u(t, x) = c 6 ∂ ∂t ∂ ∂ (cosh t) n-3 2 
1 sinh t S(x,|t|) dy f (y) + c 6 ∂ ∂ (cosh t) n-3 2 
1 sinh t S(x,|t|)
dy g(y) ,

with c 6 = 2 -n+1 2 π -n-1 2 . (b) n even : u(t, x) = c 7 ∂ ∂|t| ∂ ∂ (cosh t) n 2 -1 B(x,|t|) dy f (y) √ cosh t -cosh d(y,x) + c 7 sign(t) ∂ ∂ (cosh t) n 2 -1 B(x,|t|) dy g(y) √ cosh t -cosh d(y,x) , with c 7 = 2 -n+1 2 π -n 2 .
As an application, let us investigate the propagation of solutions u to the shifted wave equation [START_REF] Bunke | The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one (theta functions, trace formulas and the Selberg zeta function)[END_REF] with initial data f, g supported in a ball B(x 0 , R). The following two statements are immediate consequences of Theorem 3.3. Firstly, waves propagate at unit speed. Corollary 3.5. Under the above assumptions,

supp u ⊂ {(x, t) ∈ S | d(x, x 0 ) ≤ |t|+ R } .
Secondly, Huygens' principle holds in odd dimension, as in the Euclidean setting. This phenomenon was already observed in [START_REF] Noguchi | The solution of the shifted wave equation on Damek-Ricci space[END_REF].

Corollary 3.6. Assume that n is odd. Then, under the above assumptions,

supp u ⊂ {(x, t) ∈ S | |t|-R ≤ d(x, x 0 ) ≤ |t|+ R } .
In even dimension, u(x, t) may not vanish when d(x, x 0 ) < |t|-R, but it tends asymptotically to 0. This phenomenon was observed in several settings, for instance on Euclidean spaces in [START_REF] Strichartz | Asymptotic behavior of waves[END_REF], on Riemannian symmetric spaces of the noncompact type [START_REF] Branson | Huygens' principle in Riemannian symmetric spaces[END_REF], on Damek-Ricci spaces [START_REF] Astengo | Huygens' principle and a Paley-Wiener type theorem on Damek-Ricci spaces[END_REF], for Chébli-Trimèche hypergroups [START_REF] Kamel | Huygens' principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian[END_REF], ... Our next result differs from [START_REF] Branson | Huygens' principle in Riemannian symmetric spaces[END_REF][START_REF] Kamel | Huygens' principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian[END_REF][START_REF] Astengo | Huygens' principle and a Paley-Wiener type theorem on Damek-Ricci spaces[END_REF] in two ways. On one hand, we use explicit expressions instead of the Fourier transform. On the other hand, we aim at energy estimates as in [START_REF] Strichartz | Asymptotic behavior of waves[END_REF], which are arguably more appropriate than pointwise estimates. Recall indeed that the total energy ( 11)

E(t) = K(t) + P(t)
is time independent, where

K(t) = 1 2 S dx |∂ t u(x, t)| 2
is the kinetic energy and

P(t) = 1 2 S dx -∆ x -Q 2 4 u(x, t) u(x, t) = 1 2 S dx |∇ x u(x, t)| 2 -Q 2 4 |u(x, t)| 2
the potential energy. By the way, let us mention that the equipartition of ( 11) into kinetic and potential energies was investigated in [START_REF] Branson | Huygens' principle in Riemannian symmetric spaces[END_REF] and in the subsequent works [START_REF] Kamel | Huygens' principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian[END_REF][START_REF] Ayadi | Equipartition of energy for the wave equation associated to the Dunkl-Cherednik Laplacian[END_REF][START_REF] Astengo | Huygens' principle and a Paley-Wiener type theorem on Damek-Ricci spaces[END_REF] (see also [18, Section V.5.5] and the references cited therein).

Lemma 3.7. Let u be a solution to [START_REF] Bunke | The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one (theta functions, trace formulas and the Selberg zeta function)[END_REF] with smooth initial data f, g supported in a ball B(x 0 , R). Then

u(x, t), ∂ t u(x, t), ∇ x u(x, t) are O e -(Q/2)|t|
for every x ∈ S and t ∈ R such that d(x, x 0 ) ≤ |t|-R-1.

Proof. Assume t > 0 and consider the second part

(12) v(x, t) = ∂ ∂ (cosh t 2 ) m 2 ∂ ∂ (cosh t) k-1 2 B(x,t) dy g(y) √ cosh t -cosh d(y,x)
of the solution u(x, t) in Theorem 3.3.b. The case t < 0 and the first part are handled similarly. As B(x 0 , R) ⊂ B(x, t), we have

B(x,t) dy g(y) √ cosh t -cosh d(y,x) = B(x 0 ,R) dy g(y) √ cosh t -cosh d(y,x)
and thus it remains to apply the differential operator

D t = ∂ ∂ (cosh t 2 ) m 2 ∂ ∂ (cosh t) k-1 2
to cosh t -cosh d(y, x)

-1 2 . Firstly ∂ ∂ (cosh t) k-1 2 cosh t -cosh d(y, x) -1 2 = const. cosh t -cosh d(y, x) -k 2 and secondly ∂ ∂ (cosh t 2 ) m 2 cosh t -cosh d(y, x) -k 2 = 0≤j ≤ m 4 a j cosh t 2 m 2 -2j cosh t -cosh d(y, x) -m+k 2 +j ,
for some constants a j . As cosh t -cosh d(y, x) = 2 sinh t+d(y,x)

2 sinh t-d(y,x) 2 ≍ e t ,
we conclude that D t cosh t-cosh d(y, x)

-1
2 and hence v(x, t) are O e -Q 2 t . The derivatives ∂ t v(x, t) and ∇ x v(x, t) are estimated similarly. As far as ∇ x v(x, t) is concerned, we use in addition that sinh d(y, x) = O(e t ) and |∇ x d(y, x)| ≤ 1. This concludes the proof of Lemma 3.7.

Theorem 3.8. Let u be a solution to [START_REF] Bunke | The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one (theta functions, trace formulas and the Selberg zeta function)[END_REF] are O e -Q R(t) and hence tend to 0 as t → ±∞.

The shifted wave equation on homogeneous trees

This section is devoted to a discrete setting, which is similar to the continuous setting considered so far. A homogeneous tree T = T q of degree q +1 > 2 is a connected graph with no loops and with the same number q +1 of edges at each vertex. We shall be content with a brief review and we refer to the expository paper [START_REF] Cowling | An overview of harmonic analysis on the group of isometries of a homogeneous tree[END_REF] for more information (see also the monographs [START_REF] Figà-Talamanca | Harmonic Analysis on Free Groups[END_REF][START_REF] Figà-Talamanca | Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees[END_REF]).

For the counting measure, the volume of any sphere S(x, n) in T is given by

δ(n) = 1 if n = 0, (q +1) q n-1 if n ∈ N * .
Once we have chosen an origin 0 ∈ T and a geodesic ω : Z → T through 0, let us denote by |x| ∈ N the distance of a vertex x ∈ T to the origin and by h(x) ∈ Z its horocyclic height (see Figure 1).

The combinatorial Laplacian is defined on Z by

L Z f (n) = f (n) -f (n+1) + f (n-1) 2 , 0 0 1 2 -1 h ω Figure 1. Upper half-space picture of T 3
and similarly on T by ( 13)

L T f (x) = f (x) -1 q +1 y∈S(x,1) f (y). The L 2 -spectrum of L T is equal to the interval [1-γ, 1+ γ ],
where

γ = 2 q 1/2 + q -1/2 ∈ (0, 1). We have (14) L T f (n) = f (0) -f (1) if n = 0 f (n) -1 q +1 f (n -1) -q q +1 f (n +1) if n ∈ N * on radial functions and L T f (h) = f (h) -q q +1 f (h -1) -1 q +1 f (h +1) = γ q h 2 L Z h q -h 2 f (h) + (1-γ) f (h) (15)
on horocyclic functions.

Again, radial Fourier analysis on T may be summarized by the following commutative diagram

C ∞ (R/τ Z) even H ր ≈ ≈ տ F S(T) ♯ ≈ -→ A S(Z) even Here Hf (λ) = x∈T ϕ λ (x) f (x) ∀ λ ∈ R
denotes the spherical Fourier transform on T,

Af (h) = q h 2 x∈T h(x)=h f (|x|) ∀ h ∈ Z
the Abel transform and

Ff (λ) = h∈Z q iλh f (h) ∀ λ ∈ R
a variant of the classical Fourier transform on Z. Moreover τ = 2π log q , S(Z) even denotes the space of even functions on Z such that

sup n∈N * n k |f (n)| < +∞ ∀ k ∈ N,
and S(T) ♯ the space of radial functions on T such that

sup n∈N * n k q n 2 |f (n)| < +∞ ∀ k ∈ N.
Consider finally the dual Abel transform

A * f (n) = 1 δ(n) x∈T |x|=n q h(x) 2 f h(x) ∀ n ∈ N.
The following expressions are obtained by elementary computations. 

Af (h) = q |h| 2 f (|h|) + q -1 q +∞ k=1 q |h| 2 +k f (|h|+ 2k) = +∞ k=0 q |h| 2 +k f (|h|+ 2k) -f (|h|+ 2k + 2) ∀ h ∈ Z
and the dual Abel transform by

A * f (n) = 2 q q +1 q -|n| 2 f (±n) + q -1 q +1 q -|n| 2 -|n| < k < |n| k has same parity as n f (±k) if n ∈ Z * , resp. A * f (0) = f (0). (

b) The inverse Abel transform is given by

A -1 f (n) = +∞ k=0 q -n 2 -k f (n + 2k) -f (n + 2k + 2) = q -n 2 f (n) -(q -1) +∞ k=1 q -n 2 -k f (n + 2k) ∀ n ∈ N
and the inverse dual Abel transform by

(A * ) -1 f (h) = 1 2 q h 2 f (h) + 1 2 q -h 2 f (1) + 1 2 h-1 2 k=1 q h 2 -2k+1 f (h -2k + 2) -f (h -2k) = q 1/2 + q -1/2 2 q h-1 2 f (h) -q -q -1 2 q -h 2 0< k odd < h q k f (k) if h ∈ N is odd, respectively (A * ) -1 f (0) = f (0) and (A * ) -1 f (h) = 1 2 q h 2 f (h) + 1 2 q -h 2 f (0) + 1 2 h 2 k=1 q h 2 -2k+1 f (h -2k + 2) -f (h -2k) = q 1/2 + q -1/2 2 q h-1 2 f (h) -q 1/2 -q -1/2 2 q -h-1 2 f (0) -q -q -1 2 q -h 2 0< k even < h q k f (k) if h ∈ N * is even.
We are interested in the following shifted wave equation on T :

(16) γ L Z n u(x, n) = L T x -1+ γ u(x, n), u(x, 0) = f (x), {u(x, 1) -u(x, -1)}/2 = g(x).
As was pointed out to us by Nalini Anantharaman, this equation occurs in the recent works [START_REF] Brooks | Non-localization of eigenfunctions on large regular graphs[END_REF][START_REF] Brooks | Graph eigenfunctions and quantum unique ergodicity[END_REF]. The unshifted wave equation with discrete time was studied in [START_REF] Cohen | Explicit solutions for the wave equation on homogeneous trees[END_REF] and the shifted wave equation with continuous time in [START_REF] Medolla | The wave equation on homogeneous trees[END_REF].

We will solve ( 16) by applying the following discrete version of Ásgeirsson's mean value theorem and by using the explicit expression of the inverse dual Abel transform. Theorem 4.2. Let U be a function on T such that

(17) L T x U(x, y) = L T y U(x, y) ∀ x, y ∈ T. Then x ′ ∈S(x,m) y ′ ∈S(y,n) U(x ′ , y ′ ) = x ′ ∈S(x,n) y ′ ∈S(y,m) U(x ′ , y ′ )
for every x, y ∈ T and m, n ∈ N. In particular [START_REF] Helgason | Geometric Analysis on Symmetric Spaces[END_REF] x ′ ∈S(x,n)

U(x ′ , y) = y ′ ∈S(y,n) U(x, y ′ ) .
In order to prove Theorem 4.2, we need the following discrete analog of (4).

Lemma 4.3. Consider the spherical means

f ♯ x (n) = 1 δ(n) y∈S(x,n) f (y) ∀ x ∈ T, ∀ n ∈ N. Then (L T f ) ♯ x (n) = (rad L) n f ♯ x (n), where rad L denotes the radial part (14) of L T .
Proof of Lemma 4.3. We have

(L T f ) ♯ x (n) = f (x) -f ♯ x (1) if n = 0, f ♯ x (n) -1 q +1 f ♯ x (n -1) -q q +1 f ♯ x (n +1) if n ∈ N * .
Proof of Theorem 4.2. Fix x, y ∈ T and consider the double spherical means

U ♯,♯ x,y (m, n) = 1 δ(m) x ′ ∈S(x,m) 1 δ(n) y ′ ∈S(y,n) U(x ′ , y ′ ) ,
that we shall denote by V (m, n) for simplicity. According to Lemma 4.3, our assumption (17) may be rewritten as

(19) (rad L) m V (m, n) = (rad L) n V (m, n) .
Let us prove the symmetry 20) is trivial if ℓ = 0 and (20) with ℓ = 1 is equivalent to [START_REF] Intissar | Solution explicite de l'équation des ondes dans un espace symétrique de type non compact de rang 1[END_REF] with m = n = 0. Assume next that ℓ ≥ 1 and that (20) holds for m + n ≤ ℓ. On one hand, let m > n > 0 with m + n = ℓ +1 and let 1 ≤ k ≤ m -n. We deduce from [START_REF] Intissar | Solution explicite de l'équation des ondes dans un espace symétrique de type non compact de rang 1[END_REF] at the point (m -k, n + k -1) that ( 21)

(20) V (m, n) = V (n, m) ∀ m, n ∈ N by induction on ℓ = m + n. First of all, (
V (m -k +1, n + k -1) -V (m -k, n + k) = = q { V (m -k, n + k -2) -V (m -k -1, n + k -1)} .
By adding up ( 21) over k, we obtain

(22) V (m, n) -V (n, m) = q { V (m -1, n -1) -V (n -1, m -1)} ,
which vanishes by induction. On the other hand, we deduce from [START_REF] Intissar | Solution explicite de l'équation des ondes dans un espace symétrique de type non compact de rang 1[END_REF] at the points (ℓ, 0) and (0, ℓ) that V (ℓ +1, 0) = (q +1) V (ℓ, 1) -q V (ℓ, 0), V (0, ℓ +1) = (q +1) V (1, ℓ) -q V (0, ℓ).

Hence V (ℓ +1, 0) = V (0, ℓ +1) by using [START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF] and by induction. This concludes the proof of Theorem 4.2.

Let us now solve explicitly the shifted wave equation ( 16) on T as we did in Section 3 for the shifted wave equation [START_REF] Bunke | The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one (theta functions, trace formulas and the Selberg zeta function)[END_REF] on Damek-Ricci spaces. Consider first a solution u to [START_REF] Figà-Talamanca | Harmonic Analysis on Free Groups[END_REF] with initial data u(x, 0) = f (x) and {u(x, 1)-u(x, -1)}/2 = 0. On one hand, as (x, n) → u(x, -n) satisfies the same Cauchy problem, we have u(x, -n) = u(x, n) by uniqueness. On the other hand, according to [START_REF] Figà-Talamanca | Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees[END_REF], the function U(x, y) = q h(y) 2 u(x, h(y)) ∀ x, y ∈ T satisfies [START_REF] Helgason | Groups and Geometric Analysis (Integral Geometry, Invariant Differential Operators, and Spherical Functions)[END_REF]. Thus, by applying [START_REF] Helgason | Geometric Analysis on Symmetric Spaces[END_REF] to U with y = 0, we deduce that the dual Abel transform of n → u(x, n) is equal to the spherical mean f ♯ x (n) of the initial datum f . Hence

u(x, n) = (A * ) -1 f ♯ x (n) ∀ x ∈ T, ∀ n ∈ N.
Consider next a solution u to [START_REF] Figà-Talamanca | Harmonic Analysis on Free Groups[END_REF] with initial data u(x, 0) = 0 and {u(x, 1)-u(x, -1)}/2 = g(x). Then u(x, n) is an odd function of n and v(x, n) = u(x,n +1) -u(x,n -1) 2 is a solution to [START_REF] Figà-Talamanca | Harmonic Analysis on Free Groups[END_REF] with initial data v(x, 0) = g(x) and {v(x, 1) -v(x, -1)}/2 = 0. Hence

u(x, n) =    2 0<k odd <n v(x, k) if n ∈ N * is even, g(x) + 2 0<k even <n v(x, k) if n ∈ N * is odd, with v(x, n) = (A * ) -1 g ♯ x (n)
. By using Lemma 4.1.b, we deduce the following explicit expressions.

Theorem 4.4. The solution to [START_REF] Figà-Talamanca | Harmonic Analysis on Free Groups[END_REF] is given by

u(x, n) = 1 2 q -|n| 2 d(y,x)=|n| f (y) -q -1 2 q -|n| 2 d(y,x)< |n| |n|-d(y,x) even f (y) + sign(n) q -|n|-1 2 d(y,x)< |n| |n|-d(y,x) odd g(y) ∀ x ∈ T, ∀ n ∈ Z * ,
In other words,

(23) u(x, n) = C n M |n| -M |n|-2 2 f (x) + S n sign(n) M |n|-1 g(x) ,
where

(24) M n f (x) = q -n 2 d(y,x)≤ n n-d(y,x) even f (y) if n ≥ 0 and M -1 = 0.
Remark 4.5. Notice that the radial convolution operators C n and S n above correspond, via the Fourier transform, to the multipliers cos q nλ and sinq nλ sinq λ , where cos q λ = q i λ + q -i λ 2 and sin q λ = q i λ -q -i λ 2 i

.

As we did in Section 3, let us next deduce propagation properties of solutions u to the shifted wave equation [START_REF] Figà-Talamanca | Harmonic Analysis on Free Groups[END_REF] with initial data f, g supported in a ball B(x 0 , N). Corollary 4.6. Under the above assumptions,

(a) u(x, n) = O q -|n| 2 ∀ x ∈ T, ∀ n ∈ Z, (b) supp u ⊂ {(x, n) ∈ T×Z | d(x, x 0 ) ≤ |n|+ N } .
Obviously Huygens' principle doesn't hold for [START_REF] Figà-Talamanca | Harmonic Analysis on Free Groups[END_REF], strictly speaking. Let us show that it holds asymptotically, as for even dimensional Damek-Ricci spaces. For this purpose, define as follows the kinetic energy

K(n) = 1 2 x∈T u(x,n+1) -u(x,n-1) 2 
2
and the potential energy ( 25)

P(n) = 1 4 q x,y∈T d(x,y)=2 u(x,n) -u(y,n) 2 2 -(q -1) 2 8 q x∈T |u(x, n)| 2 = q +1 8 x∈T L x -γ u(x, n) u(x, n)
for solutions u to [START_REF] Figà-Talamanca | Harmonic Analysis on Free Groups[END_REF]. Here

Lf (x) = f (x) -1 q (q +1) y∈S(x,2) f (y)
is the 2-step Laplacian on T and γ = (q -1) 2 q (q +1) ∈ (0, 1).

Lemma 4.7. (a) The L 2 -spectrum of L is equal to the interval γ, q +1 q . Thus the potential energy [START_REF] Noguchi | The solution of the shifted wave equation on Damek-Ricci space[END_REF] 

is nonnegative. (b) The total energy E(n) = K(n) + P(n) is independent of n ∈ Z.
Proof. (a) follows for instance from the relation

L = q +1 q L T (2 -L T ) and from the fact that the L 2 -spectrum of L T is equal to the interval [1-γ, 1+ γ ]. (b) Notice that the shifted wave equation γ L Z n u(x, n) = L T x -1+ γ u(x, n) amounts to u(x, n +1) + u(x, n -1) = 1 √ q y∈S(x,1) u(y, n) . As x∈T y,z∈S(x,1) u(y, n) u(z, n) = (q +1) x∈T |u(x, n)| 2 + y,z∈T d(y,z)=2 u(y, n) u(z, n) ,
we have on one hand ( 26)

K(n) = q +1 8 q x∈T |u(x, n)| 2 + 1 2 x∈T |u(x, n ±1)| 2 + 1 8 q x,y∈T d(x,y)=2 u(x, n) u(y, n) -1 2 √ q x,y∈T d(x,y)=1 Re u(x, n) u(y, n ±1) .
On the other hand, ( 27)

P(n) = 3q -1 8 q x∈T |u(x, n)| 2 -1 8 q x,y∈T d(x,y)=2 u(x, n) u(y, n) .
By adding up ( 26) and ( 27), we obtain

E(n) = 1 2 x∈T |u(x, n)| 2 + 1 2 x∈T |u(x, n ±1)| 2 -1 2 √ q x,y∈T d(x,y)=1 Re u(x, n) u(y, n ±1)
and we deduce from this expression that

E(n) = E(n ±1).
This concludes the proof of Lemma 4.7.

Remark 4.8. Alternatively, Lemma 4.7.b can be proved by expressing the energies K(n), P(n), E(n) in terms of the initial data f, g and by using spectral calculus. Specifically,

K(n) = 1 8 x∈T (C n+1 -C n-1 ) 2 f (x) f (x) + 1 8 x∈T (S n+1 -S n-1 ) 2 g(x) g(x) + 1 4 Re x∈T (C n+1 -C n-1 )(S n+1 -S n-1 )f (x) g(x)
and

P(n) = 1 4 x∈T (1-C 2 ) C 2 n f (x) f (x) + 1 4 x∈T
(1-C 2 ) S 2 n g(x) g(x)

+ 1 2 Re x∈T (1-C 2 ) C n S n f (x) g(x) .
Here we have used the fact that

q +1 8 ( L -γ ) = 1 8 (3 -M 2 ) = 1 4 (1 -C 2 )
. Hence By considering the corresponding multipliers, we obtain

E(n) = x∈T U + n f (x) f (x) + x∈T V + n g(x) g(x) + 2 Re
U + n = 1 4
(1-C 2 ) , V + n = 1 2 , W + n = 0 , and we conclude that

E(n) = 1 4 x∈T (1-C 2 )f (x) f (x) + 1 2 x∈T |g(x)| 2 = E(0) .
Let us turn to the asymptotic equipartition of the total energy E = E(n).

Theorem 4.9. Let u be a solution to [START_REF] Figà-Talamanca | Harmonic Analysis on Free Groups[END_REF] with finitely supported initial data f and g. Then the kinetic energy K(n) and the potential energy P(n) tend both to E/2 as n → ±∞.

Proof. Let us show that the difference K(n) -P(n) tends to 0. By resuming the computations in Remark 4.8, we obtain

K(n) -P(n) = x∈T U - n f (x) f (x) + x∈T V - n g(x) g(x) + 2 Re x∈T W - n f (x) g(x) , with U - n = 1 8 (C n+1 -C n-1 ) 2 -1 4 (1-C 2 ) C 2 n = -1 4 (1-C 2 ) C 2n , V - n = 1 8 (S n+1 -S n-1 ) 2 -1 4 (1-C 2 ) S 2 n = 1 2 C 2n , W - n = 1 8 (C n+1 -C n-1 ) (S n+1 -S n-1 ) -1 4 (1-C 2 ) C n S n = -1 4 (1-C 2 ) S 2n . As C 2n f ℓ ∞ ≤ q -1 2 q -|n| f ℓ 1 and (1-C 2 )f ℓ 1 ≤ q -q -1 2 + 2 f ℓ 1 ,
the expression 

S 2n f (x) (1-C 2 )f (x)
are handled in the same way. This concludes the proof of Theorem 4.9.

Let us conclude with the asymptotic Huygens principle. The proof is similar to the proof of Theorem 3.8.
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  with initial data f, g ∈ C ∞

			c (S) and let R = R(t)
	be a positive function such that
		R(t) → +∞ R(t) = o(|t|)	as t → ±∞.
	Then	
	d(x,e)<|t|-R(t)	dx |u(x, t)| 2 + |∇ x u(x, t)| 2 + |∂ t u(x, t)| 2
	tend to 0 as t → ±∞. In other words, the energy of u concentrates asymptotically inside the spherical shell

{ x ∈ S | |t|-R(t) ≤ d(x, e) ≤ |t|+R(t)} .

Proof of Theorem 3.8. By combining Lemma 3.7 with the volume estimate vol B e, |t|-R(t) ≍ e Q{|t|-R(t)} as t → ±∞, we deduce that the three integrals

d(x,e)<|t|-R(t) dx |u(x, t)| 2 , d(x,e)<|t|-R(t) dx |∇ x u(x, t)| 2 , d(x,e)<|t|-R(t) dx |∂ t u(x, t)| 2
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