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Linear forms at a basis of an algebraic

number field

Bernard de Mathan

Abstract. It was proved by Cassels and Swinnerton-Dyer that Littlewood conjecture in simultane-
ous Diophantine approximation holds for any pair of numbers in a cubic field. Later this result was
generalized by Peck to a basis (1, α1, · · · , αn) of a real algebraic number field of degree at least 3. By
transference, this result provides some solutions for the dual form of Littlewood’s conjecture. Here
we find another solutions, and using Baker’s estimates for linear forms in logarithms of algebraic
numbers, we discuss whether the result is best possible.

1 Introduction

The celebrated Littlewood conjecture asserts that for any real numbers α and β, one has:

inf
q>0

q‖qα‖‖qβ‖ = 0 , (1.1)

where q runs among the positive integers, and, for a real number x, ‖x‖ is the distance between
x and the nearest integer. It is not known whether this conjecture is true. If n is an integer with
n ≥ 2, one may also ask whether

inf
q>0

q‖qα1‖ · · · ‖qαn‖ = 0 (1.2)

holds for any real numbers α1,..., αn. This weaker problem is neither solved.
Littlewood’s conjecture has a dual form: is it true that for any real numbers (α1, ..., αn), one has

inf
x1,...,xn

max{|x1|, 1} · · ·max{|xn|, 1}‖x1α1 + ...+ xnαn‖ = 0 , (1.3)

for (x1, ..., xn) running in Zn\{0}? It is well known (see [10]) that this problem is equivalent to the
previous:



Theorem 1.1 ([10]) For any real numbers α1, ..., αn, conditions (1.2) and (1.3) are equivalent.

A famous theorem of Cassels and Swinnerton-Dyer [10] asserts that, in the case n = 2, condition
(1.2) is satisfied for any pair α1, α2, of numbers in a cubic field. This result was generalized by
Peck [17] who proved that:

Theorem 1.2 [17] If (1, α1, ..., αn) is a basis of a real algebraic number field, with n ≥ 2, there
exist infinitely many integers q > 1 with

‖qαk‖ ≪ q−1/n(log q)−1/(n−1) , 1 ≤ k ≤ n− 1 , (1.4)

and

‖qαn‖ ≪ q−1/n. (1.5)

As usual, the Vinogradov symbol A ≪ B, where A and B are positive quantities, means that
there exists a positive real constant C such that A ≤ CB. We shall also use the symbol A ≍ B for
A≪≫ B.

The constants involved by the symbol ≪ in (1.4) and (1.5) depend upon the αk’s. We deduce
from (1.4) and (1.5) that:

lim inf q log q‖qα1‖ · · · ‖qαn‖ < +∞ , (1.2’)

which implies (1.2). In Theorem 1.2, the logarithmic factor in inequality (1.4) is close to be best
possible (see [14]).
It is easy to see that Theorem 1.2 provides, via the proof of Theorem 1.1 ([10]), solutions of (1.3)

satisfying the following conditions:

Corollary 1.3 If (1, α1, ..., αn) is a basis of a real algebraic number field, with n ≥ 2, there exist

arbitrarily large real numbers M , for which there are integers x0, ..., xn, not all zero, such that:

|xi| ≪ M logM1/(n2(n−1)) , i = 0, ..., n− 1 ,

|xn| ≪ M logM−(n+1)/n2

,

and

|x0 + x1α1 + . . .+ xnαn| ≪M−n.

We thus have

lim inf(log max
1≤i≤n

|xi|)1/n max{|x1|, 1} · · ·max{|xn|, 1}‖x1α1 + ... + xnαn‖ < +∞ , (1.3’)

which implies (1.3).
By the pigeon hole principle, one sees that for any real numbers α1, ..., αn, and for each positive

integer M , there exist integers x0, ..., xn, not all zero, satisfying the conditions:

max
0≤i≤n

|xi| ≤M,

and
|x0 + x1α1 + . . .+ xnαn| ≪M−n,
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where the constant involved is only depending upon the αi’s (this constant can be taken equal to
1+ |α1|+ . . .+ |αn|). Comparing with Theorem 1.2, one may ask whether, for a basis 1, α1, ..., αn,
of an algebraic number field E of degree n+ 1 ≥ 3, there exist infinitely many positive integers M
for which there are integers x0, ..., xn, not all zero, such that

|xi| ≤M , 0 ≤ i ≤ n− 1 ,

|xn| = o(M),

and
|x0 + x1α1 + . . .+ xnαn| ≪ M−n .

In this paper, we shall prove that there are also solutions of (1.3) satisfying the previous conditions.
By using a direct method, which is an inhomogeneous version of Peck’s method, we shall obtain
the following result:

Theorem 1.4 Let (1, α1, ..., αn) be a basis of a real algebraic number field E of degree n + 1 ≥ 3
over Q. Then there exist infinitely many positive integers M for which there are integers x0 , ...,

xn, not all zero, such that

max
0≤i≤n

|xi| =M , (1.6)

|xn| = o(M) , (1.7)

and

|x0 + x1α1 + . . .+ xnαn| ≪M−n. (1.8)

Obviously this result also provides solutions of (1.3).
One can notice that for any integers x0, ..., xn, not all zero, we have

|x0 + x1α1 + · · ·+ xnαn| ≫ (max
0≤i≤n

|xi|)−n (1.9)

where the constant involved depends upon the αi’s. Indeed, setting x0 + · · ·xnαn = x, we have for
each isomorphism σ from E to C,

|σ(x)| ≪ max
0≤i≤n

|xi|,

hence
|NE/Q(x)| ≪ |x| max

0≤i≤n
|xi|n,

which leads to (1.9) because, denoting by D a positive integer such that Dαi is an algebraic integer
for each i, we see that Dx is an algebraic integer, hence we have Dn+1|NE/Q(x)| ≥ 1. Accordingly
when (1.6) and (1.8) are satisfied, we get

|x0 + ...+ xnαn| ≍M−n.

In the case n = 2, Theorem 1.4 can be improved:
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Theorem 1.5 Let (1, α1, α2) be a basis of a real cubic field E over Q. There exists a positive real

constant κ for which there are arbitrarily large integers M , and non zero integers x0, x1, x2, with

max{|x0|, |x1|, |x2|} =M, (1.6’)

|x2| ≪M logM−κ, (1.10)

and

|x0 + x1α1 + x2α2| ≪M−2. (1.8’)

We thus obtain the estimation:

lim inf(logmax{|x1|, |x2|})κmax{|x1|, 1}max{|x2|, 1}‖x1α1 + x2α2‖ < +∞ ,

which implies (1.3).
Note for comparison that Corollary 1.3 leads in this case to

|x0 + x1α1 + x2α2| ≪M−2,

with
|x1| ≪M logM1/4

and
|x2| ≪M logM−3/4.

A dual form of Schmidt’s Theorem [18] asserts that, if α1, ..., αn, are real algebraic numbers such
that 1, α1, ..., αn, are linearly independent over Q, then for any real number ǫ > 0, and for every
(x1, ..., xn) ∈ Zn\{0}, one has

‖x1α1 + ... + xnαn‖
n
∏

i=1

max{1, |xi|1+ǫ} ≫ǫ 1 .

Here, we shall prove:

Theorem 1.6 Assume that (1, α1, ..., αn) is a basis of an algebraic number field E, with n ≥ 2.
If S is an infinite set of (n + 1)-tuples (x0, ..., xn) ∈ Zn+1 satisfying (1.8) and (1.6), with M =
max0≤i≤n |xi| ≥ 2, then there exists a positive real constant λ such that we have for each (x0, ..., xn) ∈
S,

max
2≤i≤n

|xi| ≫M logM−λ. (1.11)

Moreover, if Q(α1) 6= E, then we get

max
2≤i≤n

|xi| ≫M. (1.12)

The constant λ and the constants involved in (1.11) or (1.12), depend upon the α′
is and upon

the set S. Schmidt’s Theorem provides in this case the lower bound

max
2≤i≤n

|xi| ≫M1−ǫ

for any ǫ > 0. Hence, in this case, our result is more precise, but it is very particular. We are not
able to obtain, in Theorem 1.6, a constant λ independent upon S.
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Note that, if we take for instance E = Q(
√
2,
√
3), and α1 =

√
2, α2 =

√
3, α3 =

√
6, then

Theorem 1.6 implies that if we consider any infinite set S of (x0, x1, x2, x3) ∈ Z4\{0} for which

|x0 + x1α1 + x2α2 + x3α3| ≪ (max
0≤i≤3

|xi|)−3 ,

then there is at most one index 0 ≤ i ≤ 3 such that

|xi| = o(max
0≤j≤3

|xj|)

for every (x0, x1, x2, x3) ∈ S. Thus Theorem 1.4 cannot be improved by setting condition (1.7) for
two indices.

2 A metrical point of view.

Theorems 1.4, 1.5 and 1.6 can also be examined from a metrical point of view. For any real
numbers ω1, ..., ωn, and every positive real number ν, we can consider the following diophantine
problems:
(P1): given positive real constants C and C ′, does there exist infinitely many (n + 1)-tuples
(x0, x1, · · · , xn) ∈ Zn+1, with max1≤i≤n−1 |xi| > 1, such that

|x0 + x1ω1 + . . .+ xnωn| ≤ C( max
1≤i≤n−1

|xi|)−n (2.1)

and
|xn| ≤ C ′( max

1≤i≤n−1
|xi|)(log( max

1≤i≤n−1
|xi|)−ν ; (2.2)

(P2): does there exist infinitely many (n + 1)-tuples (x0, x1, · · · , xn) ∈ Zn+1, with |x1| > 1, such
that

|x0 + x1ω1 + . . .+ xnωn| ≤ C|x1|−n (2.1’)

and
|xi| ≤ C ′|x1|(log |x1|)−ν , 2 ≤ i ≤ n . (2.3)

By comparison with (1.3) or with Schmidt’s Theorem, one can also consider the multiplicative
problem:
(P3) : does there exist infinitely many n-tuples (x1, ..., xn) ∈ Zn such that

‖x1ω1 + ...+ xnωn‖
n
∏

i=1

max{1, |xi|}(log
n
∏

i=1

max{1, |xi|})ν ≤ C . (2.4)

Given integers x1, ..., xn, not all zero, and a real number r with 0 < r ≤ 1/2, the set A(x1, ..., xn, r)
of (ω1, ..., ωn) ∈ IR/Z such that ‖x1ω1 + ... + xnωn‖ ≤ r, has measure (for the Haar measure):

µ(A(x1, ..., xn, r)) = 2r.

Now it is easy to see that the series
∑

(x1,...,xn)(max1≤i≤n−1 |xi|)−n, where (x1, ..., xn) runs among the
n-tuples in Zn with max1≤i≤n−1 |xi| > 1, satisfying (2.2), is convergent for ν > 1, since we are led to
the convergent series

∑

m≥2m
−1(logm)−ν . Hence it follows from the usual Borel-Cantelli Lemma

that for almost all (ω1, ..., ωn) ∈ IRn (in the sense of the Lebesgue measure), there are only finitely
many (x0, x1, ..., xn) ∈ Zn+1 satisfying (2.1) and (2.2), with ν > 1.
In [20] (page 162, Theorem 1), we find the following result:
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Theorem 2.1 ([20]) Let n be an integer with n ≥ 2. For every primitive vector (x1, ..., xn) ∈ Zn,

let A(x1, ..., xn) be a measurable subset of IR/Z. Suppose that

∑

(x1,...,xn)=1

µ(A(x1, ..., xn)) = +∞.

Then for almost all (ω1, ..., ωn) ∈ IRn, in the sense of Lebesgue measure, there are infinitely many

primitive vectors (x1, ..., xn) ∈ Zn such that

x1ω1 + ...+ xnωn ∈ A(x1, ..., xn) mod 1 .

It is easy to see that the series
∑

x−n
1 where (x1, ..., xn) runs among the primitive vectors of Zn

with max1≤i≤n−1 |xi| = x1 > 1, satisfying (2.2), is divergent for ν = 1. Indeed, in order to ensure
that (x1, ..., xn) is primitive, it is enough to take x1 and xn coprime. Thus, using the Euler function
ϕ, and recalling that

∑

1≤k≤K

ϕ(k)

k
∼ 6

π2
K , (2.5)

we are led to the sum

∑

x1≥2

x−2
1

∑

1≤xn≤x1/ log x1

ϕ(xn)/xn ≫
∑

x1≥2

x−1
1 (log x1)

−1 = +∞ .

Accordingly, for almost all (ω1, ..., ωn) ∈ IRn, there are infinitely many vectors (x1, ..., xn) ∈ Zn

satisfying (2.1) and (2.2), with ν = 1. One can thus expect the value κ = 1 in Theorem 1.5, and
Theorem 1.4 presumably holds true when replacing condition (1.7) by

|xn| ≪ M(logM)−1.

Similarly the series
∑ |x1|−n where (x1, ..., xn) runs among the vectors of Zn with |x1| > 1,

satisfying (2.3), is convergent if ν > 1/(n − 1), and divergent for ν = 1/(n − 1) (even when we
restrict ourselves to primitive vectors). Hence, for ν > 1/(n − 1) (respectively ν = 1/(n − 1)),
for almost all (ω1, ..., ωn) ∈ IRn, there are finitely (respectively infinitely) many (x1, ..., xn) ∈ Zn

satisfying (2.1’) and (2.3). The expected value of the constant λ in Theorem 1.6 is thus λ = 1/(n−1).
One can also study problem (P3) by the same method. Although the convergence case follows

from a much more general result in [4], let us give a short proof of the following assertion: for
ν > n, one has

S =
∑

max
1≤i≤n

|xi| ≥ 2

(
∏

1≤i≤n

max{1, |xi|})−1(log
∏

1≤i≤n

max{1, |xi|})−ν < +∞.

Indeed, considering for non-negative integers (m1, ..., mn) with m1 + ... + mn ≥ 1, the n-tuples
(x1, ..., xn) ∈ Zn with

4mi ≤ max{1, |xi|} < 4mi+1 ,

we see that
S ≪

∑

m1+...+mn≥1

(m1 + ...+mn)
−ν <∞ .
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Thus, if ν > n, then for almost all (ω1, ..., ωn) ∈ IRn, there are only finitely many (x1, ..., xn) ∈ Zn

satisfying (2.4).
Now, consider the sum

S ′ =
∑

(x1,...,xn)=1

∏

1≤i≤n

x−1
i (log

∏

1≤i≤n

xi)
−n,

where xi ≥ 1 and
∏

1≤i≤n xi > 1. We deduce from (2.5) that

∑

4m1≤x1<4m1+1

∑

4m2≤x2<4m2+1 , (x1,x2)=1

1 ≫ 4m1+m2 .

We thus have
∑

4mi≤xi<4mi+1 , (x1,...,xn)=1

1 ≫ 4m1+...+mn,

hence we get
S ′ ≫

∑

m1+...+mn≥1

(m1 + ...+mn)
−n = +∞ .

Accordingly, Sprindzǔk’s Theorem applies, and we conclude that, for almost all (ω1, ..., ωn) ∈
(IR/Z)n, there are infinitely many n-tuples (x1, ..., xn) ∈ Zn satisfying (2.4) with ν = n. Hence, one
can expect that for algebraic real numbers α1,..., αn, such that 1, α1,..., αn, are linearly independent
over Z, the inequality (2.4) is satisfied by infinitely many (x1, ..., xn) ∈ Zn for ν = n, and only by
finitely many if ν > n. Of course, proving such statements is out of reach, however, in Theorem 1.5,
the value κ=1, or maybe any value less than 1, is consistent with the proof that we give (although
we are unable to obtain such values). On the other hand, the comparison between metrical results,
and results concerning particular numbers, may obviously be wrong. For instance, considering a
diophantine inequality in the form

‖x1ω1 + ...+ xnωn‖ ≤ ψ(max
1≤i≤n

|xi|), (2.6)

where ψ is a non negative monotonic function over IN, Khintchine has proved that for almost
all (ω1, ..., ωn) ∈ IRn, there are infinitely many (x1, ..., xn) ∈ Zn\{0} satisfying (2.6) whenever
∑

m≥1m
n−1ψ(m) = +∞ (actually, the monotonicity assumption is unnecessary if n ≥ 2, see for

instance [3]; more general results may also be found in [2]). Nevertheless, if (1, α1, ..., αn) is a basis
of a real algebraic number field, this conclusion is false when ψ(m) = o(m−n), since in this case
(1.9) holds.

The logarithmic exponent n for the dual Littlewood conjecture is the same as for the direct
conjecture. It was proved by D.C Spencer [19] that for each positive real number ν > n, and for
almost all (ω1, ..., ωn) ∈ IRn, one has

lim q(log q)ν‖qω1‖ · · · ‖qωn‖ = +∞,

and P. Gallagher [12] proved that for almost all (ω1, ..., ωn), one has

lim inf q(log q)n‖qω1‖ · · · ‖qωn‖ = 0.
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We refer to [8] for a more precise result. A mixed Littlewood-type problem was also studied, and
it was proved in [6] that, given n distinct prime numbers p1, ..., pn, where n ≥ 1, for almost all
ω ∈ IR, one has

lim q(log q)ν |q|p1 · · · |q|pn‖qω‖ = +∞
when ν > n + 1, and

lim inf q(log q)n+1|q|p1 · · · |q|pn‖qω‖ = 0.

About the mixed Littlewood-type problem, analogues of Theorems 1.5 and 1.6 have already been
established for quadratic numbers ([15], [13]).

3 Proof of Theorems 1.4 and 1.5.

3.1 Some notations.

Let σk (0 ≤ k ≤ n) be the isomorphisms from E into C, where σ0 = id. Denoting by r1 ≥ 1 the
number of isomorphisms from E into IR, we can suppose that σk is real for 0 ≤ k < r1. The number
of non real isomorphisms from E into C is an even number 2r2 ≥ 0 such that r1+2r2 = n+1, and
we may also suppose that for r1 ≤ k < r1 + r2 we have

σk(x) = σk+r2(x)

for every x ∈ E.
Recall that we put α0 = 1. Using the Q-linear form Tr = σ0+ ...+σn on E, we consider the dual

basis (β0, ..., βn) of (α0, ..., αn) for the bilinear form on E ×E, (x, y) 7−→ Tr(xy). That means that
Tr(αjβk) = δj,k, where δj,j = 1 and δj,k = 0 if k 6= j. If we have an element x ∈ E,

x =
n
∑

j=0

xjαj ,

we can calculate the coordinates xj ∈ Q by

xj = Tr(xβj) =
n
∑

k=0

σk(xβj) . (3.1)

Let OE be the ring of algebraic integers in E. Let D be a positive integer such that Dαj and Dβj
are in OE for each j = 0, ..., n. If x ∈ OE , then the number Dxβj is an algebraic integer for each
j, hence it follows from (3.1) that Dxj ∈ Z. We thus have

DOE ⊂ Z + ...+ Zαn ⊂ 1

D
OE ,

and similarly,

DOE ⊂ Zβ0 + ... + Zβn ⊂ 1

D
OE .

It is well known (see [22] for instance) that the units group of E is the product of {±1} by a
free multiplicative group of rank r = r1 + r2 − 1. Accordingly there exist units ǫ1, ..., ǫr, which
are multiplicatively independent, and replacing if necessary ǫi by ǫ

2
i , we can suppose that for each

i = 1, ..., r, we have σk(ǫi) > 0 for 0 ≤ k < r1. Then NE/Q(ǫi) = 1.
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3.2 Peck’s units.

We shall call a Peck’s system a set U of units η in E satisfying the condition

|σj(η)| ≍U |σk(η)|, 1 ≤ j < k ≤ n, (3.2)

the constants involved in inequalities (3.2) depending upon the set U . Note that condition (3.2) is
also equivalent to

|σk(η)| ≍U |η|−1/n, k = 1, ..., n. (3.3)

First we prove the following Lemma:

Lemma 3.1 There exist a positive real constant C and a Peck’s system U of units in E such that

for every positive real number K, one can find η ∈ U with

1

C
K ≤ η ≤ CK. (3.4)

Proof. We shall find η in the form
η = ǫµ1

1 ...ǫ
µr

r ,

where µi ∈ Z. Note that the set of linear equations:

λ1 log ǫ1 + ...+ λr log ǫr = logK (3.5)

and

λ1 log |σk(ǫ1)|+ ... + λr log |σk(ǫr)| = −1

n
logK, 1 ≤ k ≤ n, (3.6)

has a real solution (λ1, ..., λr). Indeed, considering the equations (3.6), with 1 ≤ k ≤ r, we get a
Cramer system, since the determinant det(log |σk(ǫi)|)1≤i≤r

1≤k≤r

is not zero. Accordingly, these equations

have a real solution (λ1, ..., λr). Now for r + 1 = r1 + r2 ≤ k ≤ n, we have |σk(ǫi)| = |σk−r2(ǫi)|,
hence (λ1, ..., λr) satisfies the equations (3.6) for each 1 ≤ k ≤ n. Since NE/Q(ǫk) = 1, we have

log ǫi = −
n
∑

k=1

log |σk(ǫi)| ,

and thus we obtain (3.5) by adding the equations (3.6), for 1 ≤ k ≤ n. Then choosing integers µk

such that λk − 1/2 ≤ µk < λk + 1/2, we get
µ1 log ǫ1 + ...+ µr log ǫr = logK +O(1)

and

µ1 log |σk(ǫ1)|+ ... + µr log |σk(ǫr)| = −1

n
logK +O(1)

for 1 ≤ k ≤ n, which lead to (3.3) and (3.4).

We shall then describe the solutions of

|x0 + x1α1 + ... + xnαn| ≪ ( max
0≤j≤n

|xj |)−n , (3.7)

where the xj ’s are integers, not all zero.

9



Lemma 3.2 Let γ be a non-zero number in OE and let U be a Peck’s system of units in E with

|η| ≪ 1 (3.8)

for each η ∈ U . Then the (n + 1)-tuples of integers (x0, ..., xn) such that

Dγη = x0 + x1α1 + ... + xnαn,

where η ∈ U , satisfy (3.7). Conversely, let S be a set of (n + 1)-tuples of integers (x0, ..., xn) 6=
(0, ..., 0) satisfying (3.7), and let U be a Peck’s system of units in E satisfying Lemma 3.1. Then

there exists a finite set Γ of non zero elements γ ∈ E such that for each element (x0, ..., xn) ∈ S,
we can write

x0 + ...+ xnαn = γη ,

with γ ∈ Γ and η ∈ U . Further Dγ lies in OE.

Proof. If γ ∈ OE , then γη ∈ OE for every unit η of E, hence we can write

Dγη = x0 + x1α1 + ...+ xnαn ,

where xj ∈ Z. If we have a set of units η satisfying (3.3) and (3.8), we get

|σk(Dγηβj)| ≪ |η|−1/n, j = 0, ..., n, k = 1, ..., n,

hence by (3.1) and (3.8),
|xj| ≪ |η|−1/n,

which leads immediately to (3.7).
Conversely, if a set S of (n+ 1)-tuples (x0, ..., xn) ∈ Zn+1\{0} satisfies (3.7), let us consider

x = x0 + x1α1 + ... + xnαn.

As U satisfies (3.4), we can find a unit η ∈ U such that

|x| ≍ η,

and therefore,
|x|−1/n ≍ |σk(η)|, 1 ≤ k ≤ n.

Set then γ = xη−1. We have
|γ| ≪ 1.

Moreover, by (3.7), we have for each k = 1, ..., n,

|σk(x)| ≪ max
0≤j≤n

|xj | ≪S |x|−1/n ≪S |σk(η)| ,

hence
|σk(γ)| ≪S 1 .

Further Dx ∈ OE, hence Dγ is an algebraic integer. Now, there exist only a finite number of
algebraic integers γ′ = Dγ in E such that |σk(γ′)| ≪S 1 for each k = 0, ..., n, thus Lemma 3.2 is
proved.
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3.3 Some lemmas.

Lemma 3.3 Let ηm be a sequence of units in E such that

lim ηm = 0 . (3.9)

Suppose that for each k = 1, 2, ..., n, the sequence σk(ηm)/|σ1(ηm)| has a limit ℓk in C, with ℓk 6= 0.
Let γ 6= 0 be a number in E, and suppose that

n
∑

k=1

σk(γβn)ℓk = 0 . (3.10)

Then, setting

γηm = x0,m + ... + xn,mαn,

we have

|xk,m| ≪ |ηm|−1/n, 0 ≤ k < n,

and

|xn,m| = o(|ηm|−1/n).

Proof. The set of units ηm satisfying condition (3.2), it is a Peck’s system, and by (3.9), condition
(3.8) is also satisfied. Then Lemma 3.2 ensures that |xk,m| ≪ |ηm|−1/n for each 0 ≤ k ≤ n.
Moreover, as we have, by (3.1),

xn,m = Trγηmβn = γηmβn +
n
∑

k=1

σk(γβn)σk(ηm),

we get

|xn,m| ≪ |ηm|−1/n

∣

∣

∣

∣

∣

n
∑

k=1

σk(γβn)
σk(ηm)

|σ1(ηm)|

∣

∣

∣

∣

∣

+ |η|m. (3.11)

Note that in Lemma 3.3 it is enough that σk(ηm)/|σ1(ηm)| has a non-zero limit ℓk for 1 ≤ k ≤
r1 + r2 − 1. Indeed, for r1 + r2 ≤ k ≤ n, σk(ηm) and σk−r2(ηm) being conjugate complex numbers,
we have

ℓk = ℓk−r2 .

Accordingly condition (3.10) may be written:

∑

1≤k<r1

σk(γβn)ℓk + 2
∑

r1≤k≤r1+r2−1

ℜ(σk(γβn)ℓk) = 0 . (3.12)

Then, using the determination of arg z such that arg z ∈ [0, 2π[ for any non zero complex number
z, we define the vectors V j = (vj,1, vj,2, ..., vj,n) ∈ {0}× IRn−1, for 1 ≤ j ≤ n, as follows. Recall that
r = r1 + r2 − 1, and set

vj,k = log |σk(ǫj)| − log |σ1(ǫj)|, 1 ≤ j ≤ r, 1 ≤ k ≤ r, (3.13)

vj,k = arg σk(ǫj), 1 ≤ j ≤ r, r < k ≤ n, (3.14)
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vj,k = 2δj,kπ, r < j ≤ n, 1 ≤ k ≤ n (3.15)

(δj,j = 1 and δj,k = 0 if j 6= k). Note that we have

log |σk(ǫj)| − log |σ1(ǫj)| = vj,k−r2, 1 ≤ j ≤ r, r1 + r2 ≤ k ≤ n,

and
arg σk(ǫj) ≡ −vj,k+r2 mod 2π, 1 ≤ j ≤ r, r1 ≤ k < r1 + r2 .

It will be useful to note that if we have integers λ1, ..., λn, and if we put

ǫ =
r
∏

j=1

ǫ
λj

j ,

then we deduce from formulae (3.13), (3.14) and (3.15), that

log
|σk(ǫ)|
|σ1(ǫ)|

=
∑

0≤j≤r

λjvj,k =
∑

0≤j≤n

λjvj,k , 1 ≤ k ≤ r ,

and
arg σk(ǫ) ≡ −

∑

0≤j≤r

λjvj,k+r2 ≡ −
∑

0≤j≤n

λj,kvj,k+r2 mod 2π, r1 ≤ k ≤ r.

Hence we have
σk(ǫ)

|σ1(ǫ)|
= e

∑

0≤j≤n
λjvj,k , 1 ≤ k < r1 , (3.16)

σk(ǫ)

|σ1(ǫ)|
= e

∑

0≤j≤n
λj(vj,k−ivj,k+r2

), r1 ≤ k < r1 + r2 , (3.17)

and
σk(ǫ)

|σ1(ǫ)|
= e

∑

0≤j≤n
λj(vj,k−r2

+ivj,k), r1 + r2 ≤ k ≤ n , (3.18)

Let us first prove:

Lemma 3.4 The vectors V j, for 1 ≤ j ≤ n, are Z-linearly independent.

Proof. Suppose that
λ1V 1 + ...+ λnV n = 0 ,

where the λj’s are rational integers. Set

ǫ =
r
∏

j=1

ǫ
λj

j .

It follows from (3.16), (3.17) and (3.18), that we have for each k = 1, ..., n,

σk(ǫ) = σ1(ǫ) .

Indeed, if r1 > 1, then σ1(ǫ) > 0, and if r1 = 1, then (3.17) implies that |σ1(ǫ)| = σ1(ǫ). We
conclude that ǫ is a rational number, and since it is a positive unit, we have ǫ = 1. As ǫ1, ..., ǫr,
are multiplicatively independent, that proves that

λ1 = ... = λr = 0.
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Then we have
λr+1V r+1 + ...+ λnV n = 0,

and in particular,
λr+1vr+1,k + ...+ λnvn,k = 0 ,

for k = r + 1, ..., n. Hence we get
λr+1 = ... = λn = 0 .

It is well known that:

Lemma 3.5 If n vectors V j ∈ {0} × IRn−1 are linearly independent over Z, then the subgroup

ZV 1 + · · ·+ ZV n of {0} × IRn−1 is not discrete.

Lemma 3.6 There exists a sequence um of units in E satisfying the conditions

lim
m
um = 0 (3.9)

and

lim
m

σk(um)

|σ1(um)|
= 1, k = 1, ..., n. (3.19)

Proof. It follows from Lemmas 3.4 and 3.5 that there exists a sequence µ1,mV 1 + ... + µn,mV n of
all distinct vectors in ZV 1 + ...+ ZV n which tends to 0. Set:

um = ǫ
µ1,m

1 ...ǫµr,m

r .

By formulae (3.16) and (3.17), we have

σk(um)

|σ1(um)|
= e

∑

1≤j≤n
µj,mvj,k , 1 ≤ k < r1 ,

and
σk(um)

|σ1(um)|
= e

∑

1≤j≤n
µj,m(vj,k−ivj,k+r2

)
, r1 ≤ k ≤ r ,

hence condition (3.19) is satisfied. Moreover, observe that the group ZV r+1 + ...+ZV n is discrete,
since it follows from (3.15) that

‖νr+1V r+1 + ...+ νnV n‖∞ = 2π max
r+1≤k≤n

|νj|.

Hence the r-tuples (µ1,m, · · · , µr,m) are all distinct for large m, since if we have µj,m = µj,p for each
j = 1, ..., r, and µj,m 6= µj,p for at least one index j with r < j ≤ n, then we get

‖(µ1,m − µ1,p)V 1 + ...+ (µn,m − µn,p)V n‖ ≥ 2π .

Thus max1≤j≤r |µj,m| tends toward infinity. As the matrix (log |σk(ǫj)|)1≤k≤r
1≤j≤r

is invertible, we have

lim
m

max
1≤k≤r

|log |σk(um)|| = +∞,
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and in view of (3.19), we get
lim
m

|log |σ1(um)|| = +∞ .

Replacing, if necessary, for some m, (µ1,m, ..., µn,m) by −(µ1,m, ..., µn,m), that is to say um by u−1
m ,

we may suppose that
lim
m

|σ1(um)| = +∞ .

Now condition (3.19) implies that
lim
m

|σk(um)| = +∞ , (3.20)

for each k = 1, ..., n. As
um

∏

1≤k≤n

σk(um) = 1 ,

condition (3.9) follows then from (3.20).

We shall also use the well-known fact:

Lemma 3.7 For each z ∈ E, set

σ̃k(z) = σk(z) , 0 ≤ k < r1 ,

σ̃k(z) = ℜ(σk(z)) , r1 ≤ k < r1 + r2 ,

and

σ̃k(z) = ℑ(σk(z)) , r1 + r2 ≤ k ≤ n .

Define a map σ from E to IRn+1 by

σ(z) = (σ̃0(z), ..., σ̃n(z)).

Then σ(E) is everywhere dense in IRn+1.

Proof. Consider the linear forms fk on IRn+1 such that

fk(y0, ..., yn) = y0σ̃k(α0) + ...+ ynσ̃k(αn), 0 ≤ k ≤ n,

and define the linear application of IRn+1 into itself, f = (f0, ..., fn). This is an automorphism of
IRn+1 since the matrix (σk(αj))0≤k≤n

0≤j≤n

is invertible, its inverse matrix being the matrix (σk(βj))0≤j≤n
0≤k≤n

.

Hence σ(E) = f(Qn+1) is everywhere dense in IRn+1.

Then we prove that:

Lemma 3.8 There exist a number δ 6= 0 in E, and a point w = (w1, w2, ..., wn), with w1 = 0, in
the closure of ZV 1 + ...+ ZV n in IRn such that

∑

1≤k<r1

σk(δ)e
wk + 2

∑

r1≤k≤r1+r2−1

ℜ(σk(δ)ewk−iwk+r2 ) = 0. (3.21)
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Proof. By Lemmas 3.4 and 3.5, the closure of ZV 1+...+ZV n in IRn is a non-discrete closed subgroup,
included in the closed subspace {0} × IRn−1. Accordingly this subgroup contains a subspace IRV ,
where V = (v1, v2, ..., vn) = (0, v2, ..., vn) is a non zero vector of {0}× IRn−1 ([11], [5]). For each real
number t, consider the IR-linear form over IRn

Φt(X1, ..., Xn) =
∑

1≤k<r1

Xke
tvk + 2

∑

r1≤k≤r1+r2−1

ℜ((Xk + iXk+r2)e
t(vk−ivk+r2

)).

It is easy to see that there are real values t0 and t1 such that the linear forms Φt0 and Φt1 are not
proportional. Indeed, as v1 = 0, if these linear forms were proportional each to the others, they
would be all equal, which is impossible since one at least of the vk’s is not zero. We may thus find real
numbers t0 and t1, and (δ1, ..., δn) ∈ IRn such that Φt0(δ1, ..., δn) < 0 and Φt1(δ1, ..., δn) > 0. Now,
by Lemma 3.7, there exists δ ∈ E such that Φt0(σ̃1(δ), ..., σ̃n(δ)) < 0 and Φt1(σ̃1(δ), ..., σ̃n(δ)) > 0.
Accordingly, we have δ 6= 0, and there exists t ∈ IR such that ¶hit(σ̃1(δ), ..., σ̃n(δ)) = 0. That
means that

∑

1≤k<r1

σk(δ)e
tvk + 2

∑

r1≤k≤r1+r2−1

ℜ
(

σk(δ)e
t(vk−ivk+r2

)
)

= 0.

As tv lies in the closure of ZV1 + ...+ ZVn, Lemma 3.8 is proved.

3.4 Proof of Theorem 1.4.

By Lemma 3.8, we can find a point W = (w1, ..., wn) in the closure of ZV1 + ...+ZVn in IRn, and
δ ∈ E with δ 6= 0, such that (3.21) is satisfied. Setting γ = δ/βn, we thus have

∑

1≤k<r1

σk(γβn)e
wk + 2

∑

r1≤k≤r1+r2−1

ℜ(σk(γβn)ewk−iwk+r2 ) = 0. (3.22)

Moreover, as we can replace γ by ∆γ, where ∆ is a non-zero integer, we can suppose that γ lies in
DOE . There exists a sequence of integer n-tuples (λ1,m, ..., λn,m)m∈IN such that

W = lim
m→+∞

λ1,mV 1 + ... + λn,mV n.

If we set
ηm =

∏

1≤j≤r

ǫ
λj,m

j ,

it follows from formulae (3.16) and (3.17) that

lim
m−→+∞

σk(ηm)

|σ1(ηm)|
= ewk , 1 ≤ k < r1, (3.23)

and

lim
m−→+∞

σk(ηm)

|σ1(ηm)|
= ewk−iwk+r2 , r1 ≤ k ≤ r1 + r2 − 1 . (3.24)

These conditions are unchanged if we replace ηm by ηmuh(m), where um is a sequence of units
satisfying conditions (3.9) and (3.19) of Lemma 3.6, and h is a strictly increasing map of the set IN of
natural integers into itself. Choosing h(m) sufficiently large, we can suppose that limm ηmuh(m) = 0,
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and thus, replacing if necessary ηm by ηmuh(m), we have constructed a sequence of units ηm satisfying
conditions (3.23), (3.24) and (3.9). Then, by (3.22), Lemma 3.3 applies. Setting

γηm = x0,m + x1,mα1 + ...+ xn,mαn,

with integers x0, ..., xn, we get

|xk,m| ≪ |ηm|−1/n, 0 ≤ k < n,

and
|xn,m| = o(|ηm|−1/n) .

Thus Theorem 1.4 is proved.

3.5 Proof of Theorem 1.5

First consider the case of a totally real cubic field E. We keep the notations as above, with n = 2.
Let γ be a non zero number in DOE. Consider a sequence of Peck’s units ηm > 0 satisfying (3.9).
If we write

γηm = x0,m + x1,mα1 + x2,mα2

then, by Lemma 3.2, we have
|x1,m| ≪ η−1/2

m

and (3.11) can then be rewritten:

|x2,m| ≪ η−1/2
m

∣

∣

∣

∣

∣

σ2(ηm)

σ1(ηm)
+
σ1(γ)σ1(β2)

σ2(γ)σ2(β2)

∣

∣

∣

∣

∣

+ ηm. (3.11)’

First, we choose γ > 0 in such a way that

σ1(γ)σ1(β2)

σ2(γ)σ2(β2)
< 0 ,

which is possible by Lemma 3.7. We shall find a sequence of units ηm = ǫ
µ1,m

1 ǫ
µ2,m

2 satisfying the
conditions

lim ηm = 0 (3.9)

and
∣

∣

∣

∣

∣

σ2(ηm)

σ1(ηm)
+
σ1(γ)σ1(β2)

σ2(γ)σ2(β2)

∣

∣

∣

∣

∣

≪ | log ηm|−κ . (3.25)

Condition (3.25) will be satisfied if
∣

∣

∣

∣

∣

log
σ2(ηm)

σ1(ηm)
− log

−σ1(γ)σ1(βk)
σ2(γ)σ2(βk)

∣

∣

∣

∣

∣

≪ | log ηm|−κ.

Conditions (3.9) and (3.25) may thus be written
∣

∣

∣

∣

∣

µ1,m log
σ2(ǫ1)

σ1(ǫ1)
+ µ2,m log

σ2(ǫ2)

σ1(ǫ2)
− log

−σ1(γ)σ1(βk)
σ2(γ)σ2(βk)

∣

∣

∣

∣

∣

≪ | log ηm|−κ , (3.26)
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with
log ηm = µ1,m log ǫ1 + µ2,m log ǫ2 → −∞ . (3.27)

In order to find such sequences of integers µ1,m, µ2,m, we shall use the following “transference”
result:

Lemma 3.9 Let θ be a real number. Suppose that there exists a real constant ν ≥ 1 such that

‖qθ‖ ≥ Cq−ν (3.28)

holds for every positive integer q. Let ν ′ be a real number with 0 < ν ′ < 1/ν. Then for every real

number t and for each large real number X, there exists a positive integer q with q ≍ X and

‖qθ − t‖ ≪ X−ν′.

This lemma is actually true with ν ′ = 1/ν. It is classical when ν = 1 (see [9] for instance).
Also a proof of this lemma is given in the book of Y. Meyer [16] in the case ν = 1 (then ν ′ = 1,
Theorem V, page 10), and it is easy to adapt this proof for any ν ≥ 1 (with ν ′ = 1/ν). Nevertheless
Lemma 3.9 follows directly from a more general result of [7] (take m = n = 1 in [7], Theorem
page 2). This result implies that for 0 < ν ′ < 1/ν, for every real number t and each large real
number X , there exists x ∈ Z, with |x| ≤ X and ‖xθ − t‖ ≤ X−ν′. Since in Lemma 3.9, we
need q > 0, and q ≍ X , let us consider the largest denominator of convergent of θ, Q, such that
Q ≤ X . If Q′ is the denominator of the next convergent, then we have CQ−ν ≤ ‖Qθ‖ < 1/Q′,
hence Q ≤ X < Q′ ≤ C−1Qν . Let k be the smallest positive integer such that kQ > X , hence
k ≥ 2 and (k − 1)Q ≤ X < kQ ≤ 2X . If we consider q = x+ 2kQ, then we have

X ≤ q ≤ 5X .

As
‖2kQθ‖ ≤ 2k/Q′ ≤ 4X/(QQ′) ≤ 4/Q ≤ 4C−1/νX−1/ν ,

we get
‖qθ − t‖ ≤ (4C−1/ν + 1)X−ν′.

Obviously, replacing t by −t, we may also obtain −5X ≤ q ≤ −X in Lemma 3.9.

Now it follows from Lemma 3.4 that log(σ2(ǫ1)/σ1(ǫ1)) and log(σ2(ǫ2)/σ1(ǫ2)) are linearly inde-
pendent over Z. Then by classical results about linear forms in logarithms of algebraic numbers
[1], [21], there exists a constant ν ≥ 1 such that for each pair (µ1, µ2) of integers not both zero, we
have

∣

∣

∣

∣

∣

µ1 log
σ2(ǫ1)

σ1(ǫ1)
+ µ2 log

σ2(ǫ2)

σ1(ǫ2)

∣

∣

∣

∣

∣

≫ max{|µ1|, |µ2|}−ν ,

hence
∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

q

log
σ2(ǫ1)

σ1(ǫ1)

log
σ2(ǫ2)

σ1(ǫ2)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

≫ q−ν ,
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for every positive integer q. Accordingly Lemma 3.9 applies. Let κ be real constant with 0 < κ <
1/ν. If m is a sufficiently large positive integer, then we see that there exists a positive (respectively
negative) integer µ1,m with |µ1,m| ≍ m such that

∣

∣

∣

∣

∣

µ1,m log
σ2(ǫ1)

σ1(ǫ1)
+ µ2,m log

σ2(ǫ2)

σ1(ǫ2)
− log

−σ1(γ)σ1(βk)
σ2(γ)σ2(βk)

∣

∣

∣

∣

∣

≪ m−κ. (3.29)

Recall that
∣

∣

∣

∣

log σ1(ǫ1) log σ2(ǫ1)
log σ1(ǫ2) log σ2(ǫ2)

∣

∣

∣

∣

6= 0 .

As
log ǫi = − log σ1(ǫi)− log σ2(ǫi), i = 1, 2,

we get thus

log ǫ1 log
σ2(ǫ2)

σ1(ǫ2)
− log ǫ2 log

σ2(ǫ1)

σ1(ǫ1)
6= 0 .

As (3.29) implies that
∣

∣

∣

∣

∣

µ1,m log
σ2(ǫ1)

σ1(ǫ1)
+ µ2,m log

σ2(ǫ2)

σ1(ǫ2)

∣

∣

∣

∣

∣

≪ 1 ,

writing

(µ1,m log ǫ1 + µ2,m log ǫ2) log
σ2(ǫ2)

σ1(ǫ2)
−
(

µ1,m log
σ2(ǫ1)

σ1(ǫ1)
+ µ2,m log

σ2(ǫ2)

σ1(ǫ2)

)

log ǫ2 =

µ1,m(log ǫ1 log
σ2(ǫ2)

σ1(ǫ2)
− log ǫ2 log

σ2(ǫ1)

σ1(ǫ1)
) ,

we see that for m large, we can choose the sign of µ1,m in (3.29) in a such way that

µ1,m log ǫ1 + µ2,m log ǫ2 < 0

and
−(µ1,m log ǫ1 + µ2,m log ǫ2) ≍ m.

Hence, setting ηm = ǫµ1

1,mǫ
µ2,m

2 , we obtain a sequence of units ηm satisfiying (3.9) and (3.25). Thus
the integers x0,m, x1,m, and x2,m, such that

γηm = x0,m + x1α1,m + x2,mα2 ,

satisfy
|x0,m + x1,mα1 + x2,mα2| ≍ ηm,

with
|x1,m| ≪ η−1/2

m ,

|x2,m| ≪ η−1/2
m | log ηm|−κ ,

and
− log ηm ≍ m.
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Theorem 1.5 is thus proved in this case.
The case where the cubic field E can be embedded in a unique way in the real numbers field

can be treated in a similar way. As the units group of E has rank 1, we set then ηm = ǫ
µ1,m

1 . We
assume that 0 < ǫ1 < 1, and we take an integer µ1,m > 0. The set of units ǫµ, with µ ∈ Z, being a
Peck’s system, considering as above γηm = x0,m + x1,mα1 + x2,mα2, where γ is a non zero number
in DOE, we have

|x1,m| ≪ η−1/2
m ,

and

|x2| ≪ η−1/2
m

∣

∣

∣

∣

∣

σ1(ηm)

σ1(ηm)
+
σ1(γ)σ1(β2)

σ1(γ)σ1(β2)

∣

∣

∣

∣

∣

+ ηm ≪ η−1/2
m

∥

∥

∥

∥

1

π
(arg σ1(ηm) + arg σ1(γβ2)) +

1

2

∥

∥

∥

∥

+ ηm ,

i.e.,

|x2| ≪ η−1/2
m

∥

∥

∥

∥

∥

µ1
arg σ1(ǫ1)

π
+

arg σ1(γβ2)

π
+

1

2

∥

∥

∥

∥

∥

+ ηm .

We then proceed as above.

4 Proof of Theorem 1.6

Consider an infinite sequence (x0,m, · · · , xn,m) of distinct integer (n + 1)-tuples such that

|x0,m + ...+ xn,mαn| max
0≤i≤n

|xi,m|n ≍ 1

and

|xj,m| = o(max
0≤i≤n

|xi,m|), 2 ≤ j ≤ n. (4.1)

By Lemma 3.2, we can suppose that there exist γ ∈ OE , with γ 6= 0, and a sequence ηm of Peck’s
units in E, in the form

ηm = ǫ
µ1,m

1 ...ǫµr,m

r ,

where µj,m ∈ Z, with
x0,m + x1,mα1 + ...+ xn,mαn = γηm.

By (3.1), we have

xj,m = Tr γηmβj = γηmβj +
n
∑

k=1

σk(γηmβj) .

As
|σk(ηm)| ≍ |σ1(ηm)| ≍ η−1/n

m ≍ max
0≤i≤n

|xi,m| ,

it follows from (4.1) that

lim
m→∞

n
∑

k=1

σk(γηmβj)

σ1(γηmβj)
= 0 , j = 2, ..., n. (4.2)
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We can choose the indices m in an infinite subset of IN, in order to make convergent, for each
k = 1, ..., n, the bounded sequence σk(ηm)/σ1(ηm), with a limit τk ∈ C (τ1 = 1). As

∣

∣

∣

∣

∣

σk(ηm)

σ1(ηm)

∣

∣

∣

∣

∣

≫ 1 ,

we have τk 6= 0 for each k. Moreover, by (4.2), these limits satisfy

n
∑

k=1

σk(γβj)τk = 0 , j = 2, ..., n. (4.3)

Now observe that the matrix (σk(βj))1≤j≤n
1≤k≤n

is invertible. Indeed, the matrix (σk(βj))0≤j≤n
0≤k≤n

being

invertible, there is at least one index ℓ, with 0 ≤ ℓ ≤ n, such that the we have a minor

det(σk(βj))1≤j≤n
k 6=ℓ

6= 0.

The σℓ ◦ σk’s, where 1 ≤ k ≤ n, being the σk’s with 0 ≤ k ≤ n and k 6= ℓ, we have

det(σk(βj))1≤j≤n
k 6=ℓ

= ±σℓ(det(σk(βj))1≤j≤n
1≤k≤n

),

hence we get
det(σk(βj))1≤j≤n

1≤k≤n

6= 0 .

Thus the system of linear equations

n
∑

k=1

σk(βj)Xk = 0 , 2 ≤ j ≤ n, (4.4)

has a space of solutions (Xk)1≤k≤n ∈ Cn of dimension 1. By (4.3), (σk(γ)τk)1≤k≤n is a solution of
(4.4). Therefore the system (4.4) has a unique solution (tk)1≤k≤n with t1 = σ1(γ). Thus all the
convergent subsequences of the initial sequence ((σk(ηm)/σ1(ηm))1≤k≤n in Cn have the same limit
(tk/σk(γ))1≤k≤n. As this sequence is bounded, finally the initial sequence is convergent for m ∈ IN,
toward the limit (τk)1≤k≤n, where τk = tk/σk(γ).
It is easy to make explicit the solutions of (4.4). We have

n
∑

k=0

σk(βj)σk(αi) = Trαiβj = 0, i = 0, 1, 2 ≤ j ≤ n,

hence
n
∑

k=1

σk(βj)(σk(α1)− α1) = 0, 2 ≤ j ≤ n.

Since α1 /∈ Q, there is at least one index k, with 1 ≤ k ≤ n, such that σk(α1) 6= α1, hence the
solutions of (4.4) are

tk = c(σk(α1)− α1)) ,
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where c is any complex constant. We thus get

τk = c
σk(α1)− α1

σk(γ)
·

That is impossible if there exists 1 ≤ k ≤ n such that σk(α1) = α1, that is to say, if Q(α1) 6= E, since
we must have τk 6= 0 for each k. The second part of Theorem 1.6. is thus proved. If Q(α1) = E,
then σk(α1) 6= α1 for each k = 1, · · · , n, and we get

τk =
(σk(α1)− α1)σ1(γ)

(σ1(α1)− α1)σk(γ)
· (4.5)

Moreover, the unique solution (X1, · · · , Xn) of the system (4.4) with X1 = 0 being (0, · · · , 0), the
matrix (σk(βj))2≤j≤n

2≤k≤n

is invertible. As, by (4.3), we can write

n
∑

k=1

σk(γβj)σk(ηm)

σ1(γβj)σ1(ηm)
=

1

σ1(γβj)

n
∑

k=2

σk(γβj)(
σk(ηm)

σ1(ηm)
− τk),

then we conclude that

max
2≤j≤n

∣

∣

∣

∣

∣

n
∑

k=1

σk(γβj)σk(ηm)

σ1(γβj)σ1(ηm)

∣

∣

∣

∣

∣

≍ max
2≤k≤n

∣

∣

∣

∣

∣

σk(ηm)

σ1(ηm)
− τk

∣

∣

∣

∣

∣

. (4.6)

Further, it is impossible that there exist large m such that

σk(ηm)

σ1(ηm)
− τk = 0, k = 2, ..., n.

Indeed for such m, we should have, by (3.1), xj,m = γηmβj for each j = 2, ..., k, hence 0 < |xj,m| < 1
when m is large, which is impossible since xj,m must be an integer. Choosing any determination of
the complex logarithm, we can write

max
2≤k≤n

∣

∣

∣

∣

∣

σk(ηm)

σ1(ηm)
− τk

∣

∣

∣

∣

∣

≍ max
2≤k≤n

∥

∥

∥

∥

∥

Log
σk(ηm)

σ1(ηm)
− Logτ k

∥

∥

∥

∥

∥

2iπZ

,

where we denote, for Z ∈ C,
‖Z‖2iπZ = min

q∈Z
|Z − 2iπq|.

Now, recalling that
ηm = ǫ

µ1,m

1 ...ǫµr,m

r ,

where the µj’s are integers, we see that

max
2≤k≤n

∣

∣

∣

∣

∣

σk(ηm)

σ1(ηm)
− τk

∣

∣

∣

∣

∣

≍ max
2≤k≤n

∥

∥

∥

∥

∥

µ1,mLog
σk(ǫ1)

σ1(ǫ1)
+ ... + µr,mLog

σk(ǫr)

σ1(ǫr)
− Logτk

∥

∥

∥

∥

∥

2iπZ

·

The τk’s being, by (4.5), algebraic numbers, and one at least among the numbers ‖µ1,mLog
σk(ǫ1)
σ1(ǫ1)

+

...+ µr,mLog
σk(ǫr)
σ1(ǫr)

− Logτk‖2iπZ (2 ≤ k ≤ n) non vanishing, the usual estimations of linear forms in

logarithms of algebraic numbers [1], [21], prove that there exists a positive constant λ such that

max
2≤k≤n

|σk(ηm)
σ1(ηm)

− τk| ≫ (max
1≤j≤r

|µj,m|)−λ.
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As the matrix (log |σk(ǫj)|)1≤k≤r
1≤j≤r

is invertible, we have

max
1≤j≤r

|µj,m| ≍ max
1≤k≤r

| log |σk(ηm)|| ≍ | log ηm| ,

hence we get

max
2≤k≤n

|σk(ηm)
σ1(ηm)

− τk| ≫ | log ηm|−λ,

and by (4.6),

max
2≤j≤n

|
n
∑

k=1

σk(γβj)σk(ηm)

σ1(γβj)σ1(ηm)
| ≫ | log ηm|−λ. (4.7)

Then we deduce from (4.7) and (3.1) that

max
2≤j≤n

|xj,m| ≫ η−1/n
m | log ηm|−λ.

As
η−1/n
m ≍ max

0≤j≤n
|xj,m|,

we thus get
max
2≤j≤n

|xj,m| ≫ ( max
0≤j≤n

|xj,m|)(log max
0≤j≤n

|xj,m|)−λ,

which is the first part of Theorem 1.6.

5 Open problems.

It would be interesting to obtain other solutions of (1.2) or (1.3). It seems difficult to find
solutions (x1, . . . , xn) of (1.2) or (1.3) under the hypothesis of Theorem 1.2, with a large difference
between log |xi| and log |xj | for some indices i 6= j. In the case where Q(α1) = E and n ≥ 3, we
do not know whether it is possible to improve Theorem 1.4 by setting the condition (1.7) for more
than one index 2 ≤ i ≤ n. Except for the case n = 2, we do not either know whether condition
(1.7) can be replaced by a more precise condition, for instance, |xn| ≪ M logM−κ with a positive
constant κ. Also it would be interesting to examine whether it is possible to obtain an analogue of
Theorem 1.6 for the solutions of (1.3) given by Corollary 1.3.
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