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Linear forms at a basis of an algebraic number field

It was proved by Cassels and Swinnerton-Dyer that Littlewood conjecture in simultaneous Diophantine approximation holds for any pair of numbers in a cubic field. Later this result was generalized by Peck to a basis (1, α 1 , • • • , α n ) of a real algebraic number field of degree at least 3. By transference, this result provides some solutions for the dual form of Littlewood's conjecture. Here we find another solutions, and using Baker's estimates for linear forms in logarithms of algebraic numbers, we discuss whether the result is best possible.

Introduction

The celebrated Littlewood conjecture asserts that for any real numbers α and β, one has: inf q>0 q qα qβ = 0 , (

where q runs among the positive integers, and, for a real number x, x is the distance between x and the nearest integer. It is not known whether this conjecture is true. If n is an integer with n ≥ 2, one may also ask whether

inf q>0 q qα 1 • • • qα n = 0 (1.2)
holds for any real numbers α 1 ,..., α n . This weaker problem is neither solved. Littlewood's conjecture has a dual form: is it true that for any real numbers (α 1 , ..., α n ), one has

inf x 1 ,...,xn max{|x 1 |, 1} • • • max{|x n |, 1} x 1 α 1 + ... + x n α n = 0 , (1.3) 
for (x 1 , ..., x n ) running in Z n \{0}? It is well known (see [START_REF] Cassels | On the product of three homogeneous linear forms and indefinite ternary quadratic forms[END_REF]) that this problem is equivalent to the previous:

Theorem 1.1 ( [START_REF] Cassels | On the product of three homogeneous linear forms and indefinite ternary quadratic forms[END_REF]) For any real numbers α 1 , ..., α n , conditions (1.2) and (1.3) are equivalent.

A famous theorem of Cassels and Swinnerton-Dyer [START_REF] Cassels | On the product of three homogeneous linear forms and indefinite ternary quadratic forms[END_REF] asserts that, in the case n = 2, condition (1.2) is satisfied for any pair α 1 , α 2 , of numbers in a cubic field. This result was generalized by Peck [START_REF] Peck | Simultaneous rational approximations to algebraic numbers[END_REF] who proved that: Theorem 1.2 [START_REF] Peck | Simultaneous rational approximations to algebraic numbers[END_REF] If (1, α 1 , ..., α n ) is a basis of a real algebraic number field, with n ≥ 2, there exist infinitely many integers q > 1 with qα k ≪ q -1/n (log q) -1/(n-1) ,

1 ≤ k ≤ n -1 , (1.4) 
and qα n ≪ q -1/n .

(1.5)

As usual, the Vinogradov symbol A ≪ B, where A and B are positive quantities, means that there exists a positive real constant C such that A ≤ CB. We shall also use the symbol A ≍ B for A ≪≫ B.

The constants involved by the symbol ≪ in (1.4) and (1.5) depend upon the α k 's. We deduce from (1.4) and (1.5) that: lim inf q log q qα 1 • • • qα n < +∞ , (1.2') which implies (1.2). In Theorem 1.2, the logarithmic factor in inequality (1.4) is close to be best possible (see [START_REF] De Mathan | Linear forms in logarithms, and simultaneous diophantine approximation, Analytic Number Theory[END_REF]).

It is easy to see that Theorem 1.2 provides, via the proof of Theorem 1.1 ( [START_REF] Cassels | On the product of three homogeneous linear forms and indefinite ternary quadratic forms[END_REF]), solutions of (1.3) satisfying the following conditions: Corollary 1.3 If (1, α 1 , ..., α n ) is a basis of a real algebraic number field, with n ≥ 2, there exist arbitrarily large real numbers M, for which there are integers x 0 , ..., x n , not all zero, such that:

|x i | ≪ M log M 1/(n 2 (n-1)) , i = 0, ..., n -1 , |x n | ≪ M log M -(n+1)/n 2 ,
and

|x 0 + x 1 α 1 + . . . + x n α n | ≪ M -n .
We thus have lim inf(log max

1≤i≤n |x i |) 1/n max{|x 1 |, 1} • • • max{|x n |, 1} x 1 α 1 + ... + x n α n < +∞ , (1.3') 
which implies (1.3). By the pigeon hole principle, one sees that for any real numbers α 1 , ..., α n , and for each positive integer M, there exist integers x 0 , ..., x n , not all zero, satisfying the conditions:

max 0≤i≤n |x i | ≤ M,
and |x 0 + x 1 α 1 + . . . + x n α n | ≪ M -n ,
where the constant involved is only depending upon the α i 's (this constant can be taken equal to 1 + |α 1 | + . . . + |α n |). Comparing with Theorem 1.2, one may ask whether, for a basis 1, α 1 , ..., α n , of an algebraic number field E of degree n + 1 ≥ 3, there exist infinitely many positive integers M for which there are integers x 0 , ..., x n , not all zero, such that

|x i | ≤ M , 0 ≤ i ≤ n -1 , |x n | = o(M),
and

|x 0 + x 1 α 1 + . . . + x n α n | ≪ M -n .
In this paper, we shall prove that there are also solutions of (1.3) satisfying the previous conditions. By using a direct method, which is an inhomogeneous version of Peck's method, we shall obtain the following result:

Theorem 1.4 Let (1, α 1 , ..., α n ) be a basis of a real algebraic number field E of degree n + 1 ≥ 3 over Q. Then there exist infinitely many positive integers M for which there are integers x 0 , ..., x n , not all zero, such that max

0≤i≤n |x i | = M , (1.6 
)

|x n | = o(M) , (1.7 
)

and |x 0 + x 1 α 1 + . . . + x n α n | ≪ M -n . (1.8) 
Obviously this result also provides solutions of (1.3). One can notice that for any integers x 0 , ..., x n , not all zero, we have

|x 0 + x 1 α 1 + • • • + x n α n | ≫ ( max 0≤i≤n |x i |) -n (1.9)
where the constant involved depends upon the α i 's. Indeed, setting

x 0 + • • • x n α n = x, we have for each isomorphism σ from E to C, |σ(x)| ≪ max 0≤i≤n |x i |, hence |N E/Q (x)| ≪ |x| max 0≤i≤n |x i | n ,
which leads to (1.9) because, denoting by D a positive integer such that Dα i is an algebraic integer for each i, we see that Dx is an algebraic integer, hence we have

D n+1 |N E/Q (x)| ≥ 1.
Accordingly when (1.6) and (1.8) are satisfied, we get

|x 0 + ... + x n α n | ≍ M -n .
In the case n = 2, Theorem 1.4 can be improved:

Theorem 1.5 Let (1, α 1 , α 2
) be a basis of a real cubic field E over Q. There exists a positive real constant κ for which there are arbitrarily large integers M, and non zero integers x 0 , x 1 , x 2 , with

max{|x 0 |, |x 1 |, |x 2 |} = M, (1.6') |x 2 | ≪ M log M -κ , (1.10 
)

and |x 0 + x 1 α 1 + x 2 α 2 | ≪ M -2 . (1.8')
We thus obtain the estimation:

lim inf(log max{|x 1 |, |x 2 |}) κ max{|x 1 |, 1} max{|x 2 |, 1} x 1 α 1 + x 2 α 2 < +∞ , which implies (1.3).
Note for comparison that Corollary 1.3 leads in this case to

|x 0 + x 1 α 1 + x 2 α 2 | ≪ M -2 , with |x 1 | ≪ M log M 1/4 and |x 2 | ≪ M log M -3/4 .
A dual form of Schmidt's Theorem [START_REF] Schmidt | Approximation to algebraic numbers[END_REF] asserts that, if α 1 , ..., α n , are real algebraic numbers such that 1, α 1 , ..., α n , are linearly independent over Q, then for any real number ǫ > 0, and for every (x 1 , ..., x n ) ∈ Z n \{0}, one has

x 1 α 1 + ... + x n α n n i=1 max{1, |x i | 1+ǫ } ≫ ǫ 1 .
Here, we shall prove:

Theorem 1.6 Assume that (1, α 1 , ..., α n ) is a basis of an algebraic number field E, with n ≥ 2.
If S is an infinite set of (n + 1)-tuples (x 0 , ..., x n ) ∈ Z n+1 satisfying (1.8) and (1.6), with M = max 0≤i≤n |x i | ≥ 2, then there exists a positive real constant λ such that we have for each (x 0 , ..., x n ) ∈ S, max

2≤i≤n |x i | ≫ M log M -λ . (1.11) Moreover, if Q(α 1 ) = E, then we get max 2≤i≤n |x i | ≫ M.
(1.12)

The constant λ and the constants involved in (1.11) or (1.12), depend upon the α ′ i s and upon the set S. Schmidt's Theorem provides in this case the lower bound max

2≤i≤n |x i | ≫ M 1-ǫ
for any ǫ > 0. Hence, in this case, our result is more precise, but it is very particular. We are not able to obtain, in Theorem 1.6, a constant λ independent upon S.

Note that, if we take for instance

E = Q( √ 2, √ 3 
), and

α 1 = √ 2, α 2 = √ 3, α 3 = √ 6
, then Theorem 1.6 implies that if we consider any infinite set S of (x 0 , x 1 , x 2 , x 3 ) ∈ Z 4 \{0} for which

|x 0 + x 1 α 1 + x 2 α 2 + x 3 α 3 | ≪ ( max 0≤i≤3 |x i |) -3 ,
then there is at most one index 0 ≤ i ≤ 3 such that

|x i | = o( max 0≤j≤3 |x j |)
for every (x 0 , x 1 , x 2 , x 3 ) ∈ S. Thus Theorem 1.4 cannot be improved by setting condition (1.7) for two indices.

A metrical point of view.

Theorems 1.4, 1.5 and 1.6 can also be examined from a metrical point of view. For any real numbers ω 1 , ..., ω n , and every positive real number ν, we can consider the following diophantine problems: (P 1 ): given positive real constants C and C ′ , does there exist infinitely many (n + 1)-tuples

(x 0 , x 1 , • • • , x n ) ∈ Z n+1 , with max 1≤i≤n-1 |x i | > 1, such that |x 0 + x 1 ω 1 + . . . + x n ω n | ≤ C( max 1≤i≤n-1 |x i |) -n (2.1)
and

|x n | ≤ C ′ ( max 1≤i≤n-1 |x i |)(log( max 1≤i≤n-1 |x i |) -ν ; (2.2) 
(P 2 ): does there exist infinitely many (n + 1)-tuples (

x 0 , x 1 , • • • , x n ) ∈ Z n+1 , with |x 1 | > 1, such that |x 0 + x 1 ω 1 + . . . + x n ω n | ≤ C|x 1 | -n (2.1') and |x i | ≤ C ′ |x 1 |(log |x 1 |) -ν , 2 ≤ i ≤ n . (2.3) 
By comparison with (1.3) or with Schmidt's Theorem, one can also consider the multiplicative problem: (P 3 ) : does there exist infinitely many n-tuples (x 1 , ..., x n ) ∈ Z n such that

x 1 ω 1 + ... + x n ω n n i=1 max{1, |x i |}(log n i=1 max{1, |x i |}) ν ≤ C .
(2.4)

Given integers x 1 , ..., x n , not all zero, and a real number r with 0 < r ≤ 1/2, the set A(x 1 , ..., x n , r) of (ω 1 , ..., ω n ) ∈ IR/Z such that x 1 ω 1 + ... + x n ω n ≤ r, has measure (for the Haar measure):

µ(A(x 1 , ..., x n , r)) = 2r.
Now it is easy to see that the series (x 1 ,...,xn) (max 1≤i≤n-1 |x i |) -n , where (x 1 , ..., x n ) runs among the n-tuples in Z n with max 1≤i≤n-1 |x i | > 1, satisfying (2.2), is convergent for ν > 1, since we are led to the convergent series m≥2 m -1 (log m) -ν . Hence it follows from the usual Borel-Cantelli Lemma that for almost all (ω 1 , ..., ω n ) ∈ IR n (in the sense of the Lebesgue measure), there are only finitely many (x 0 , x 1 , ..., x n ) ∈ Z n+1 satisfying (2.1) and (2.2), with ν > 1.

In [START_REF] Sprindzǔk | Mahler's problem in metric number theory[END_REF] (page 162, Theorem 1), we find the following result: [START_REF] Sprindzǔk | Mahler's problem in metric number theory[END_REF]) Let n be an integer with n ≥ 2. For every primitive vector (x 1 , ..., x n ) ∈ Z n , let A(x 1 , ..., x n ) be a measurable subset of IR/Z. Suppose that

Theorem 2.1 ([
(x 1 ,...,xn)=1 µ(A(x 1 , ..., x n )) = +∞.
Then for almost all (ω 1 , ..., ω n ) ∈ IR n , in the sense of Lebesgue measure, there are infinitely many primitive vectors (x 1 , ..., x n ) ∈ Z n such that

x 1 ω 1 + ... + x n ω n ∈ A(x 1 , ..., x n ) mod 1 .
It is easy to see that the series x -n 1 where (x 1 , ..., x n ) runs among the primitive vectors of Z n with max 1≤i≤n-

1 |x i | = x 1 > 1, satisfying (2.
2), is divergent for ν = 1. Indeed, in order to ensure that (x 1 , ..., x n ) is primitive, it is enough to take x 1 and x n coprime. Thus, using the Euler function ϕ, and recalling that

1≤k≤K ϕ(k) k ∼ 6 π 2 K , (2.5) 
we are led to the sum

x 1 ≥2
x -2

1 1≤xn≤x 1 / log x 1 ϕ(x n )/x n ≫ x 1 ≥2
x -1 1 (log x 1 ) -1 = +∞ .

Accordingly, for almost all (ω 1 , ..., ω n ) ∈ IR n , there are infinitely many vectors (x 1 , ..., x n ) ∈ Z n satisfying (2.1) and (2.2), with ν = 1. One can thus expect the value κ = 1 in Theorem 1.5, and Theorem 1.4 presumably holds true when replacing condition (1.7) by

|x n | ≪ M(log M) -1 .
Similarly the series |x 1 | -n where (x 1 , ..., x n ) runs among the vectors of Z n with |x 1 | > 1, satisfying (2.3), is convergent if ν > 1/(n -1), and divergent for ν = 1/(n -1) (even when we restrict ourselves to primitive vectors). Hence, for ν > 1/(n -1) (respectively ν = 1/(n -1)), for almost all (ω 1 , ..., ω n ) ∈ IR n , there are finitely (respectively infinitely) many (x 1 , ..., x n ) ∈ Z n satisfying (2.1') and (2.3). The expected value of the constant λ in Theorem 1.6 is thus λ = 1/(n-1).

One can also study problem (P 3 ) by the same method. Although the convergence case follows from a much more general result in [START_REF] Bernik | Khintchine-type Theorems on manifolds: the convergence case for standard and multiplicative version[END_REF], let us give a short proof of the following assertion: for ν > n, one has

S = max 1≤i≤n |x i | ≥ 2 ( 1≤i≤n max{1, |x i |}) -1 (log 1≤i≤n max{1, |x i |}) -ν < +∞. Indeed, considering for non-negative integers (m 1 , ..., m n ) with m 1 + ... + m n ≥ 1, the n-tuples (x 1 , ..., x n ) ∈ Z n with 4 m i ≤ max{1, |x i |} < 4 m i+1 , we see that S ≪ m 1 +...+mn≥1 (m 1 + ... + m n ) -ν < ∞ .
Thus, if ν > n, then for almost all (ω 1 , ..., ω n ) ∈ IR n , there are only finitely many (x 1 , ..., x n ) ∈ Z n satisfying (2.4). Now, consider the sum

S ′ = (x 1 ,...,xn)=1 1≤i≤n
x -1 i (log

1≤i≤n x i ) -n ,
where x i ≥ 1 and 1≤i≤n x i > 1. We deduce from (2.5) that

4 m 1 ≤x 1 <4 m 1 +1 4 m 2 ≤x 2 <4 m 2 +1 , (x 1 ,x 2 )=1 1 ≫ 4 m 1 +m 2 .
We thus have

4 m i ≤x i <4 m i +1 , (x 1 ,...,xn)=1 1 ≫ 4 m 1 +...+mn , hence we get S ′ ≫ m 1 +...+mn≥1 (m 1 + ... + m n ) -n = +∞ .
Accordingly, Sprindzǔk's Theorem applies, and we conclude that, for almost all (ω 1 , ..., ω n ) ∈ (IR/Z) n , there are infinitely many n-tuples (x 1 , ..., x n ) ∈ Z n satisfying (2.4) with ν = n. Hence, one can expect that for algebraic real numbers α 1 ,..., α n , such that 1, α 1 ,..., α n , are linearly independent over Z, the inequality (2.4) is satisfied by infinitely many (x 1 , ..., x n ) ∈ Z n for ν = n, and only by finitely many if ν > n. Of course, proving such statements is out of reach, however, in Theorem 1.5, the value κ=1, or maybe any value less than 1, is consistent with the proof that we give (although we are unable to obtain such values). On the other hand, the comparison between metrical results, and results concerning particular numbers, may obviously be wrong. For instance, considering a diophantine inequality in the form

x 1 ω 1 + ... + x n ω n ≤ ψ( max 1≤i≤n |x i |), (2.6) 
where ψ is a non negative monotonic function over IN, Khintchine has proved that for almost all (ω 1 , ..., ω n ) ∈ IR n , there are infinitely many (x 1 , ..., x n ) ∈ Z n \{0} satisfying (2.6) whenever m≥1 m n-1 ψ(m) = +∞ (actually, the monotonicity assumption is unnecessary if n ≥ 2, see for instance [START_REF] Beresnevitch | Classical metric Diophantine approximation revisited: the Khintchine-Groshef theorem[END_REF]; more general results may also be found in [START_REF] Beresnevitch | An inhomogeneous transference principle and Diophantine approximation[END_REF]). Nevertheless, if (1, α 1 , ..., α n ) is a basis of a real algebraic number field, this conclusion is false when ψ(m) = o(m -n ), since in this case (1.9) holds.

The logarithmic exponent n for the dual Littlewood conjecture is the same as for the direct conjecture. It was proved by D.C Spencer [START_REF] Spencer | The lattice points of tetrahedra[END_REF] that for each positive real number ν > n, and for almost all (ω 1 , ..., ω n ) ∈ IR n , one has lim q(log q) ν qω 1 • • • qω n = +∞, and P. Gallagher [START_REF] Gallagher | Metric simultaneous diophantine approximation[END_REF] proved that for almost all (ω 1 , ..., ω n ), one has lim inf q(log q) n qω 1 • • • qω n = 0. We refer to [START_REF] Bugeaud | Badly approximable numbers and Littlewood-type problems[END_REF] for a more precise result. A mixed Littlewood-type problem was also studied, and it was proved in [START_REF] Bugeaud | Metric considerations concerning the mixed Littlewood conjecture[END_REF] that, given n distinct prime numbers p 1 , ..., p n , where n ≥ 1, for almost all ω ∈ IR, one has lim q(log q) ν |q| p 1 • • • |q| pn qω = +∞ when ν > n + 1, and lim inf q(log q

) n+1 |q| p 1 • • • |q| pn qω = 0.
About the mixed Littlewood-type problem, analogues of Theorems 1.5 and 1.6 have already been established for quadratic numbers ( [START_REF] De Mathan | Problèmes diophantiens simultanés[END_REF], [START_REF] De Mathan | On a mixed Littelwood conjecture for quadratic numbers[END_REF]).

3 Proof of Theorems 1.4 and 1.5.

Some notations.

Let σ k (0 ≤ k ≤ n) be the isomorphisms from E into C, where σ 0 = id. Denoting by r 1 ≥ 1 the number of isomorphisms from E into IR, we can suppose that σ k is real for 0 ≤ k < r 1 . The number of non real isomorphisms from E into C is an even number 2r 2 ≥ 0 such that r 1 + 2r 2 = n + 1, and we may also suppose that for r 1 ≤ k < r 1 + r 2 we have

σ k (x) = σ k+r 2 (x) for every x ∈ E.
Recall that we put α 0 = 1. Using the Q-linear form Tr = σ 0 + ... + σ n on E, we consider the dual basis (β 0 , ..., β n ) of (α 0 , ..., α n ) for the bilinear form on E × E, (x, y) -→ Tr(xy). That means that Tr(α j β k ) = δ j,k , where δ j,j = 1 and

δ j,k = 0 if k = j. If we have an element x ∈ E, x = n j=0
x j α j , we can calculate the coordinates x j ∈ Q by

x j = Tr(xβ j ) = n k=0 σ k (xβ j ) . (3.1) 
Let O E be the ring of algebraic integers in E. Let D be a positive integer such that Dα j and Dβ j are in O E for each j = 0, ..., n. If x ∈ O E , then the number Dxβ j is an algebraic integer for each j, hence it follows from (3.1) that Dx j ∈ Z. We thus have

DO E ⊂ Z + ... + Zα n ⊂ 1 D O E ,
and similarly,

DO E ⊂ Zβ 0 + ... + Zβ n ⊂ 1 D O E .
It is well known (see [START_REF] Weiss | Algebraic Number Theory[END_REF] for instance) that the units group of E is the product of {±1} by a free multiplicative group of rank r = r 1 + r 2 -1. Accordingly there exist units ǫ 1 , ..., ǫ r , which are multiplicatively independent, and replacing if necessary ǫ i by ǫ 2 i , we can suppose that for each i = 1, ..., r, we have

σ k (ǫ i ) > 0 for 0 ≤ k < r 1 . Then N E/Q (ǫ i ) = 1.

Peck's units.

We shall call a Peck's system a set U of units η in E satisfying the condition

|σ j (η)| ≍ U |σ k (η)|, 1 ≤ j < k ≤ n, (3.2) 
the constants involved in inequalities (3.2) depending upon the set U. Note that condition (3.2) is also equivalent to

|σ k (η)| ≍ U |η| -1/n , k = 1, ..., n. (3.3) 
First we prove the following Lemma:

Lemma 3.1 There exist a positive real constant C and a Peck's system U of units in E such that for every positive real number K, one can find η ∈ U with

1 C K ≤ η ≤ CK. (3.4)
Proof. We shall find η in the form η = ǫ µ 1 1 ...ǫ µr r , where µ i ∈ Z. Note that the set of linear equations: 

λ 1 log ǫ 1 + ... + λ r log ǫ r = log K (3.5) and λ 1 log |σ k (ǫ 1 )| + ... + λ r log |σ k (ǫ r )| = - 1 n log K, 1 ≤ k ≤ n, (3.6) 
such that λ k -1/2 ≤ µ k < λ k + 1/2, we get µ 1 log ǫ 1 + ... + µ r log ǫ r = log K + O(1) and µ 1 log |σ k (ǫ 1 )| + ... + µ r log |σ k (ǫ r )| = - 1 n log K + O(1)
for 1 ≤ k ≤ n, which lead to (3.3) and (3.4).

We shall then describe the solutions of

|x 0 + x 1 α 1 + ... + x n α n | ≪ ( max 0≤j≤n |x j |) -n , (3.7) 
where the x j 's are integers, not all zero.

Lemma 3.2 Let γ be a non-zero number in O E and let U be a Peck's system of units in E with

|η| ≪ 1 (3.8)
for each η ∈ U. Then the (n + 1)-tuples of integers (x 0 , ..., x n ) such that

Dγη = x 0 + x 1 α 1 + ... + x n α n ,
where η ∈ U, satisfy (3.7). Conversely, let S be a set of (n + 1)-tuples of integers (x 0 , ..., x n ) = (0, ..., 0) satisfying (3.7), and let U be a Peck's system of units in E satisfying Lemma 3. 

x = x 0 + x 1 α 1 + ... + x n α n .
As U satisfies (3.4), we can find a unit η ∈ U such that |x| ≍ η, and therefore,

|x| -1/n ≍ |σ k (η)|, 1 ≤ k ≤ n. Set then γ = xη -1 . We have |γ| ≪ 1.
Moreover, by (3.7), we have for each k = 1, ..., n,

|σ k (x)| ≪ max 0≤j≤n |x j | ≪ S |x| -1/n ≪ S |σ k (η)| , hence |σ k (γ)| ≪ S 1 .
Further Dx ∈ O E , hence Dγ is an algebraic integer. Now, there exist only a finite number of algebraic integers γ ′ = Dγ in E such that |σ k (γ ′ )| ≪ S 1 for each k = 0, ..., n, thus Lemma 3.2 is proved.

3.3 Some lemmas. Then, setting

γη m = x 0,m + ... + x n,m α n , we have |x k,m | ≪ |η m | -1/n , 0 ≤ k < n,
and |x n,m | = o(|η m | -1/n ).
Proof. The set of units η m satisfying condition (3.2), it is a Peck's system, and by (3.9), condition (3.8) is also satisfied. Then Lemma 3.

2 ensures that |x k,m | ≪ |η m | -1/n for each 0 ≤ k ≤ n.
Moreover, as we have, by (3.1),

x n,m = Trγη m β n = γη m β n + n k=1 σ k (γβ n )σ k (η m ),
we get

|x n,m | ≪ |η m | -1/n n k=1 σ k (γβ n ) σ k (η m ) |σ 1 (η m )| + |η| m . (3.11)
Note that in Lemma 3.3 it is enough that σ k (η m )/|σ 1 (η m )| has a non-zero limit ℓ k for 1 ≤ k ≤ r 1 + r 2 -1. Indeed, for r 1 + r 2 ≤ k ≤ n, σ k (η m ) and σ k-r 2 (η m ) being conjugate complex numbers, we have

ℓ k = ℓ k-r 2 .
Accordingly condition (3.10) may be written:

1≤k<r 1 σ k (γβ n )ℓ k + 2 r 1 ≤k≤r 1 +r 2 -1 ℜ(σ k (γβ n )ℓ k ) = 0 . (3.12)
Then, using the determination of arg z such that arg z ∈ [0, 2π[ for any non zero complex number z, we define the vectors V j = (v j,1 , v j,2 , ..., v j,n ) ∈ {0} × IR n-1 , for 1 ≤ j ≤ n, as follows. Recall that r = r 1 + r 2 -1, and set

v j,k = log |σ k (ǫ j )| -log |σ 1 (ǫ j )|, 1 ≤ j ≤ r, 1 ≤ k ≤ r, (3.13) 
v j,k = arg σ k (ǫ j ), 1 ≤ j ≤ r, r < k ≤ n, (3.14) 
v j,k = 2δ j,k π, r < j ≤ n, 1 ≤ k ≤ n (3.15)
(δ j,j = 1 and δ j,k = 0 if j = k). Note that we have

log |σ k (ǫ j )| -log |σ 1 (ǫ j )| = v j,k-r 2 , 1 ≤ j ≤ r, r 1 + r 2 ≤ k ≤ n,
and arg σ k (ǫ j ) ≡ -v j,k+r 2 mod 2π, 1 ≤ j ≤ r, r 1 ≤ k < r 1 + r 2 .
It will be useful to note that if we have integers λ 1 , ..., λ n , and if we put

ǫ = r j=1 ǫ λ j j ,
then we deduce from formulae (3.13), (3.14) and (3.15), that

log |σ k (ǫ)| |σ 1 (ǫ)| = 0≤j≤r λ j v j,k = 0≤j≤n λ j v j,k , 1 ≤ k ≤ r ,
and arg σ k (ǫ) ≡ - 0≤j≤r λ j v j,k+r 2 ≡ - 0≤j≤n λ j,k v j,k+r 2 mod 2π, r 1 ≤ k ≤ r.
Hence we have

σ k (ǫ) |σ 1 (ǫ)| = e 0≤j≤n λ j v j,k , 1 ≤ k < r 1 , (3.16 
)

σ k (ǫ) |σ 1 (ǫ)| = e 0≤j≤n λ j (v j,k -iv j,k+r 2 ) , r 1 ≤ k < r 1 + r 2 , (3.17) 
and

σ k (ǫ) |σ 1 (ǫ)| = e 0≤j≤n λ j (v j,k-r 2 +iv j,k ) , r 1 + r 2 ≤ k ≤ n , (3.18) 
Let us first prove:

Lemma 3.4 The vectors V j , for 1 ≤ j ≤ n, are Z-linearly independent.

Proof. Suppose that

λ 1 V 1 + ... + λ n V n = 0 ,
where the λ j 's are rational integers. Set

ǫ = r j=1 ǫ λ j j .
It follows from (3.16), (3.17) and (3.18), that we have for each k = 1, ..., n,

σ k (ǫ) = σ 1 (ǫ) .
Indeed, if r 1 > 1, then σ 1 (ǫ) > 0, and if r 1 = 1, then (3.17) implies that |σ 1 (ǫ)| = σ 1 (ǫ). We conclude that ǫ is a rational number, and since it is a positive unit, we have ǫ = 1. As ǫ 1 , ..., ǫ r , are multiplicatively independent, that proves that λ 1 = ... = λ r = 0.

Then we have

λ r+1 V r+1 + ... + λ n V n = 0,
and in particular, λ r+1 v r+1,k + ... + λ n v n,k = 0 , for k = r + 1, ..., n. Hence we get λ r+1 = ... = λ n = 0 .

It is well known that: Proof. It follows from Lemmas 3.4 and 3.5 that there exists a sequence µ 1,m V 1 + ... + µ n,m V n of all distinct vectors in ZV 1 + ... + ZV n which tends to 0. Set:

Lemma 3.5 If n vectors V j ∈ {0} × IR n-1 are linearly independent over Z, then the subgroup ZV 1 + • • • + ZV n of {0} × IR n-1 is not discrete.
u m = ǫ µ 1,m 1 
...ǫ µr,m r .

By formulae (3.16) and (3.17), we have 

σ k (u m ) |σ 1 (u m )| = e 1≤j≤n µ j,m v j,k , 1 ≤ k < r 1 , and 
σ k (u m ) |σ 1 (u m )| = e 1≤j≤n µ j,m (v j,k -iv j,k+r 2 ) , r 1 ≤ k ≤ r
ν r+1 V r+1 + ... + ν n V n ∞ = 2π max r+1≤k≤n |ν j |.
Hence the r-tuples (µ 1,m , • • • , µ r,m ) are all distinct for large m, since if we have µ j,m = µ j,p for each j = 1, ..., r, and µ j,m = µ j,p for at least one index j with r < j ≤ n, then we get We shall also use the well-known fact:

(µ 1,m -µ 1,p )V 1 + ... + (µ n,m -µ n,p )V n ≥ 2π .
Lemma 3.7 For each z ∈ E, set σk (z) = σ k (z) , 0 ≤ k < r 1 , σk (z) = ℜ(σ k (z)) , r 1 ≤ k < r 1 + r 2 ,
and

σk (z) = ℑ(σ k (z)) , r 1 + r 2 ≤ k ≤ n .
Define a map σ from E to IR n+1 by σ(z) = (σ 0 (z), ..., σn (z)).

Then σ(E) is everywhere dense in IR n+1 .

Proof. Consider the linear forms f k on IR n+1 such that

f k (y 0 , ..., y n ) = y 0 σk (α 0 ) + ... + y n σk (α n ), 0 ≤ k ≤ n,
and define the linear application of IR n+1 into itself, f = (f 0 , ..., f n ). This is an automorphism of IR n+1 since the matrix (σ k (α j )) 0≤k≤n 0≤j≤n is invertible, its inverse matrix being the matrix (σ k (β j )) 0≤j≤n 0≤k≤n .

Hence

σ(E) = f (Q n+1 ) is everywhere dense in IR n+1 .
Then we prove that: Lemma 3.8 There exist a number δ = 0 in E, and a point w = (w 1 , w 2 , ..., w n ), with w 1 = 0, in the closure of ZV 1 + ... + ZV n in IR n such that

1≤k<r 1 σ k (δ)e w k + 2 r 1 ≤k≤r 1 +r 2 -1 ℜ(σ k (δ)e w k -iw k+r 2 ) = 0. (3.21)
Proof. By Lemmas 3.4 and 3.5, the closure of ZV 1 +...+ZV n in IR n is a non-discrete closed subgroup, included in the closed subspace {0} × IR n-1 . Accordingly this subgroup contains a subspace IRV , where [START_REF] Fresnel | Espaces quadratiques, euclidiens, hermitiens[END_REF], [START_REF] Bourbaki | Éléments de Mathématiques, Topologie générale[END_REF]). For each real number t, consider the IR-linear form over IR n

V = (v 1 , v 2 , ..., v n ) = (0, v 2 , ..., v n ) is a non zero vector of {0} × IR n-1 ([
Φ t (X 1 , ..., X n ) = 1≤k<r 1 X k e tv k + 2 r 1 ≤k≤r 1 +r 2 -1 ℜ((X k + iX k+r 2 )e t(v k -iv k+r 2 ) ).
It is easy to see that there are real values t 0 and t 1 such that the linear forms Φ t 0 and Φ t 1 are not proportional. Indeed, as v 1 = 0, if these linear forms were proportional each to the others, they would be all equal, which is impossible since one at least of the v k 's is not zero. We may thus find real numbers t 0 and t 1 , and (δ 1 , ..., δ n ) ∈ IR n such that Φ t 0 (δ 1 , ..., δ n ) < 0 and Φ t 1 (δ 1 , ..., δ n ) > 0. Now, by Lemma 3.7, there exists δ ∈ E such that Φ t 0 (σ 1 (δ), ..., σn (δ)) < 0 and Φ t 1 (σ 1 (δ), ..., σn (δ)) > 0.

Accordingly, we have δ = 0, and there exists t ∈ IR such that ¶hi t (σ 1 (δ), ..., σn (δ)) = 0. That means that

1≤k<r 1 σ k (δ)e tv k + 2 r 1 ≤k≤r 1 +r 2 -1 ℜ σ k (δ)e t(v k -iv k+r 2 ) = 0.
As tv lies in the closure of ZV 1 + ... + ZV n , Lemma 3.8 is proved.

3.4 Proof of Theorem 1.4.

By Lemma 3.8, we can find a point W = (w 1 , ..., w n ) in the closure of ZV 1 + ... + ZV n in IR n , and δ ∈ E with δ = 0, such that (3.21) is satisfied. Setting γ = δ/β n , we thus have

1≤k<r 1 σ k (γβ n )e w k + 2 r 1 ≤k≤r 1 +r 2 -1 ℜ(σ k (γβ n )e w k -iw k+r 2 ) = 0. ( 3.22) 
Moreover, as we can replace γ by ∆γ, where ∆ is a non-zero integer, we can suppose that γ lies in DO E . There exists a sequence of integer n-tuples (λ 1,m , ..., λ n,m ) m∈I N such that

W = lim m→+∞ λ 1,m V 1 + ... + λ n,m V n . If we set η m = 1≤j≤r ǫ λ j,m j
, it follows from formulae (3.16) and (3.17) that lim

m-→+∞ σ k (η m ) |σ 1 (η m )| = e w k , 1 ≤ k < r 1 , (3.23) 
and lim

m-→+∞ σ k (η m ) |σ 1 (η m )| = e w k -iw k+r 2 , r 1 ≤ k ≤ r 1 + r 2 -1 . (3.24) 
These conditions are unchanged if we replace η m by η m u h(m) , where u m is a sequence of units satisfying conditions (3.9) and (3.19) of Lemma 3.6, and h is a strictly increasing map of the set IN of natural integers into itself. Choosing h(m) sufficiently large, we can suppose that lim m η m u h(m) = 0, and thus, replacing if necessary η m by η m u h(m) , we have constructed a sequence of units η m satisfying conditions (3.23), (3.24) and (3.9). Then, by (3.22), Lemma 3.3 applies. Setting

γη m = x 0,m + x 1,m α 1 + ... + x n,m α n ,
with integers x 0 , ..., x n , we get

|x k,m | ≪ |η m | -1/n , 0 ≤ k < n,
and |x n,m | = o(|η m | -1/n ) .
Thus Theorem 1.4 is proved.

Proof of Theorem 1.5

First consider the case of a totally real cubic field E. We keep the notations as above, with n = 2. Let γ be a non zero number in DO E . Consider a sequence of Peck's units η m > 0 satisfying (3.9). If we write

γη m = x 0,m + x 1,m α 1 + x 2,m α 2 then, by Lemma 3.2, we have |x 1,m | ≪ η -1/2
m and (3.11) can then be rewritten:

|x 2,m | ≪ η -1/2 m σ 2 (η m ) σ 1 (η m ) + σ 1 (γ)σ 1 (β 2 ) σ 2 (γ)σ 2 (β 2 ) + η m . (3.11)' 
First, we choose γ > 0 in such a way that

σ 1 (γ)σ 1 (β 2 ) σ 2 (γ)σ 2 (β 2 ) < 0 ,
which is possible by Lemma 3.7. We shall find a sequence of units η m = ǫ

µ 1,m 1 ǫ µ 2,m 2 
satisfying the conditions lim η m = 0 (3.9)

and σ 2 (η m ) σ 1 (η m ) + σ 1 (γ)σ 1 (β 2 ) σ 2 (γ)σ 2 (β 2 ) ≪ | log η m | -κ . (3.25) Condition (3.25) will be satisfied if log σ 2 (η m ) σ 1 (η m ) -log -σ 1 (γ)σ 1 (β k ) σ 2 (γ)σ 2 (β k ) ≪ | log η m | -κ .
Conditions (3.9) and (3.25) may thus be written

µ 1,m log σ 2 (ǫ 1 ) σ 1 (ǫ 1 ) + µ 2,m log σ 2 (ǫ 2 ) σ 1 (ǫ 2 ) -log -σ 1 (γ)σ 1 (β k ) σ 2 (γ)σ 2 (β k ) ≪ | log η m | -κ , (3.26) 
with

log η m = µ 1,m log ǫ 1 + µ 2,m log ǫ 2 → -∞ . (3.27) 
In order to find such sequences of integers µ 1,m , µ 2,m , we shall use the following "transference" result:

Lemma 3.9 Let θ be a real number. Suppose that there exists a real constant ν ≥ 1 such that qθ ≥ Cq -ν (3.28) holds for every positive integer q. Let ν ′ be a real number with 0 < ν ′ < 1/ν. Then for every real number t and for each large real number X, there exists a positive integer q with q ≍ X and

qθ -t ≪ X -ν ′ .
This lemma is actually true with ν ′ = 1/ν. It is classical when ν = 1 (see [START_REF] Cassels | An introduction to Diophantine Approximation[END_REF] for instance). Also a proof of this lemma is given in the book of Y. Meyer [START_REF] Meyer | Algebraic Numbers and Harmonic Analysis[END_REF] in the case ν = 1 (then ν ′ = 1, Theorem V, page 10), and it is easy to adapt this proof for any ν ≥ 1 (with ν ′ = 1/ν). Nevertheless Lemma 3.9 follows directly from a more general result of [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine Approximation[END_REF] (take m = n = 1 in [START_REF] Bugeaud | On exponents of homogeneous and inhomogeneous Diophantine Approximation[END_REF], Theorem page 2). This result implies that for 0 < ν ′ < 1/ν, for every real number t and each large real number X, there exists x ∈ Z, with |x| ≤ X and xθ -t ≤ X -ν ′ . Since in Lemma 3.9, we need q > 0, and q ≍ X, let us consider the largest denominator of convergent of θ, Q, such that Q ≤ X. If Q ′ is the denominator of the next convergent, then we have

CQ -ν ≤ Qθ < 1/Q ′ , hence Q ≤ X < Q ′ ≤ C -1 Q ν .
Let k be the smallest positive integer such that kQ > X, hence k ≥ 2 and (k -1)Q ≤ X < kQ ≤ 2X. If we consider q = x + 2kQ, then we have

X ≤ q ≤ 5X . As 2kQθ ≤ 2k/Q ′ ≤ 4X/(QQ ′ ) ≤ 4/Q ≤ 4C -1/ν X -1/ν , we get qθ -t ≤ (4C -1/ν + 1)X -ν ′ .
Obviously, replacing t by -t, we may also obtain -5X ≤ q ≤ -X in Lemma 3.9.

Now it follows from Lemma 3.4 that log(σ 2 (ǫ 1 )/σ 1 (ǫ 1 )) and log(σ 2 (ǫ 2 )/σ 1 (ǫ 2 )) are linearly independent over Z. Then by classical results about linear forms in logarithms of algebraic numbers [START_REF] Baker | A sharpening of the bounds for linear forms in logarithms[END_REF], [START_REF] Waldschmidt | Minorations de combinaisons linéaires de logarithmes de nombres algébriques[END_REF], there exists a constant ν ≥ 1 such that for each pair (µ 1 , µ 2 ) of integers not both zero, we have

µ 1 log σ 2 (ǫ 1 ) σ 1 (ǫ 1 ) + µ 2 log σ 2 (ǫ 2 ) σ 1 (ǫ 2 ) ≫ max{|µ 1 |, |µ 2 |} -ν , hence q log σ 2 (ǫ 1 ) σ 1 (ǫ 1 ) log σ 2 (ǫ 2 ) σ 1 (ǫ 2 ) ≫ q -ν ,
for every positive integer q. Accordingly Lemma 3.9 applies. Let κ be real constant with 0 < κ < 1/ν. If m is a sufficiently large positive integer, then we see that there exists a positive (respectively negative) integer µ 1,m with |µ 1,m | ≍ m such that

µ 1,m log σ 2 (ǫ 1 ) σ 1 (ǫ 1 ) + µ 2,m log σ 2 (ǫ 2 ) σ 1 (ǫ 2 ) -log -σ 1 (γ)σ 1 (β k ) σ 2 (γ)σ 2 (β k ) ≪ m -κ . (3.29) Recall that log σ 1 (ǫ 1 ) log σ 2 (ǫ 1 ) log σ 1 (ǫ 2 ) log σ 2 (ǫ 2 ) = 0 . As log ǫ i = -log σ 1 (ǫ i ) -log σ 2 (ǫ i ), i = 1, 2,
we get thus

log ǫ 1 log σ 2 (ǫ 2 ) σ 1 (ǫ 2 ) -log ǫ 2 log σ 2 (ǫ 1 ) σ 1 (ǫ 1 ) = 0 .
As (3.29) implies that

µ 1,m log σ 2 (ǫ 1 ) σ 1 (ǫ 1 ) + µ 2,m log σ 2 (ǫ 2 ) σ 1 (ǫ 2 ) ≪ 1 , writing (µ 1,m log ǫ 1 + µ 2,m log ǫ 2 ) log σ 2 (ǫ 2 ) σ 1 (ǫ 2 ) -µ 1,m log σ 2 (ǫ 1 ) σ 1 (ǫ 1 ) + µ 2,m log σ 2 (ǫ 2 ) σ 1 (ǫ 2 ) log ǫ 2 = µ 1,m (log ǫ 1 log σ 2 (ǫ 2 ) σ 1 (ǫ 2 ) -log ǫ 2 log σ 2 (ǫ 1 ) σ 1 (ǫ 1 ) ) ,
we see that for m large, we can choose the sign of µ 1,m in (3.29) in a such way that

µ 1,m log ǫ 1 + µ 2,m log ǫ 2 < 0 and -(µ 1,m log ǫ 1 + µ 2,m log ǫ 2 ) ≍ m.
Hence, setting

η m = ǫ µ 1 1,m ǫ µ 2,m 2 
, we obtain a sequence of units η m satisfiying (3.9) and (3.25). Thus the integers x 0,m , x 1,m , and x 2,m , such that

γη m = x 0,m + x 1 α 1,m + x 2,m α 2 , satisfy |x 0,m + x 1,m α 1 + x 2,m α 2 | ≍ η m , with |x 1,m | ≪ η -1/2 m , |x 2,m | ≪ η -1/2 m | log η m | -κ ,

and

-log η m ≍ m.

Theorem 1.5 is thus proved in this case.

The case where the cubic field E can be embedded in a unique way in the real numbers field can be treated in a similar way. As the units group of E has rank 1, we set then η m = ǫ µ 1,m 1

. We assume that 0 < ǫ 1 < 1, and we take an integer µ 1,m > 0. The set of units ǫ µ , with µ ∈ Z, being a Peck's system, considering as above γη m = x 0,m + x 1,m α 1 + x 2,m α 2 , where γ is a non zero number in DO E , we have

|x 1,m | ≪ η -1/2 m , and 
|x 2 | ≪ η -1/2 m σ 1 (η m ) σ 1 (η m ) + σ 1 (γ)σ 1 (β 2 ) σ 1 (γ)σ 1 (β 2 ) + η m ≪ η -1/2 m 1 π (arg σ 1 (η m ) + arg σ 1 (γβ 2 )) + 1 2 + η m , i.e., |x 2 | ≪ η -1/2 m µ 1 arg σ 1 (ǫ 1 ) π + arg σ 1 (γβ 2 ) π + 1 2 + η m .
We then proceed as above. By (3.1), we have

x j,m = Tr γη m β j = γη m β j + n k=1 σ k (γη m β j ) . As |σ k (η m )| ≍ |σ 1 (η m )| ≍ η -1/n m ≍ max 0≤i≤n |x i,m | , it follows from (4.1) that lim m→∞ n k=1 σ k (γη m β j ) σ 1 (γη m β j ) = 0 , j = 2, ..., n. (4.2) 
We can choose the indices m in an infinite subset of IN, in order to make convergent, for each k = 1, ..., n, the bounded sequence σ k (η m )/σ 1 (η m ), with a limit τ k ∈ C (τ 1 = 1). As

σ k (η m ) σ 1 (η m ) ≫ 1 ,
we have τ k = 0 for each k. Moreover, by (4.2), these limits satisfy

n k=1 σ k (γβ j )τ k = 0 , j = 2, ..., n. (4.3) 
Now observe that the matrix (σ k (β j )) 1≤j≤n 1≤k≤n is invertible. Indeed, the matrix (σ k (β j )) 0≤j≤n 0≤k≤n being invertible, there is at least one index ℓ, with 0 ≤ ℓ ≤ n, such that the we have a minor

det(σ k (β j )) 1≤j≤n k =ℓ = 0. The σ ℓ • σ k 's, where 1 ≤ k ≤ n, being the σ k 's with 0 ≤ k ≤ n and k = ℓ, we have det(σ k (β j )) 1≤j≤n k =ℓ = ±σ ℓ (det(σ k (β j )) 1≤j≤n 1≤k≤n 
), hence we get det(σ k (β j )) 1≤j≤n 1≤k≤n = 0 .

Thus the system of linear equations

n k=1 σ k (β j )X k = 0 , 2 ≤ j ≤ n, (4.4) 
has a space of solutions (X k ) 1≤k≤n ∈ C n of dimension 1. By (4.3), (σ k (γ)τ k ) 1≤k≤n is a solution of (4.4). Therefore the system (4.4) has a unique solution (t k ) 1≤k≤n with t 1 = σ 1 (γ). Thus all the convergent subsequences of the initial sequence ((σ k (η m )/σ 1 (η m )) 1≤k≤n in C n have the same limit (t k /σ k (γ)) 1≤k≤n . As this sequence is bounded, finally the initial sequence is convergent for m ∈ IN, toward the limit (τ k ) 1≤k≤n , where

τ k = t k /σ k (γ).
It is easy to make explicit the solutions of (4.4). We have

n k=0 σ k (β j )σ k (α i ) = Trα i β j = 0, i = 0, 1, 2 ≤ j ≤ n, hence n k=1 σ k (β j )(σ k (α 1 ) -α 1 ) = 0, 2 ≤ j ≤ n. Since α 1 / ∈ Q, there is at least one index k, with 1 ≤ k ≤ n, such that σ k (α 1 ) = α 1 , hence the solutions of (4.4) are t k = c(σ k (α 1 ) -α 1 )) ,
where c is any complex constant. We thus get The τ k 's being, by (4.5), algebraic numbers, and one at least among the numbers µ 1,m Log σ k (ǫ 1 ) σ 1 (ǫ 1 ) + ... + µ r,m Log σ k (ǫr) σ 1 (ǫr) -Logτ k 2iπZ (2 ≤ k ≤ n) non vanishing, the usual estimations of linear forms in logarithms of algebraic numbers [START_REF] Baker | A sharpening of the bounds for linear forms in logarithms[END_REF], [START_REF] Waldschmidt | Minorations de combinaisons linéaires de logarithmes de nombres algébriques[END_REF], prove that there exists a positive constant λ such that max 5 Open problems.

τ k = c σ k (α 1 ) -α 1 σ k (γ) • That is impossible if there exists 1 ≤ k ≤ n such that σ k (α 1 ) = α 1 , that is to say, if Q(α 1 ) = E,
It would be interesting to obtain other solutions of (1.2) or (1.3). It seems difficult to find solutions (x 1 , . . . , x n ) of (1.2) or (1.3) under the hypothesis of Theorem 1.2, with a large difference between log |x i | and log |x j | for some indices i = j. In the case where Q(α 1 ) = E and n ≥ 3, we do not know whether it is possible to improve Theorem 1.4 by setting the condition (1.7) for more than one index 2 ≤ i ≤ n. Except for the case n = 2, we do not either know whether condition (1.7) can be replaced by a more precise condition, for instance, |x n | ≪ M log M -κ with a positive constant κ. Also it would be interesting to examine whether it is possible to obtain an analogue of Theorem 1.6 for the solutions of (1.3) given by Corollary 1.3.

  has a real solution (λ 1 , ..., λ r ). Indeed, considering the equations (3.6), with 1 ≤ k ≤ r, we get a Cramer system, since the determinant det(log |σ k (ǫ i )|) 1≤i≤r 1≤k≤r is not zero. Accordingly, these equations have a real solution (λ 1 , ..., λ r ). Now for r + 1 = r 1 + r 2 ≤ k ≤ n, we have |σ k (ǫ i )| = |σ k-r 2 (ǫ i )|, hence (λ 1 , ..., λ r ) satisfies the equations (3.6) for each 1 ≤ k ≤ n. Since N E/Q (ǫ k ) = 1, we have log ǫ i = -n k=1 log |σ k (ǫ i )| , and thus we obtain (3.5) by adding the equations (3.6), for 1 ≤ k ≤ n. Then choosing integers µ k

Lemma 3 . 3 . 9 )

 339 Let η m be a sequence of units in E such that lim η m = 0 . (3Suppose that for each k = 1, 2, ..., n, the sequence σ k (η m )/|σ 1 (η m )| has a limit ℓ k in C, with ℓ k = 0. Let γ = 0 be a number in E, and suppose that n k=1 σ k (γβ n )ℓ k = 0 . (3.10)

Lemma 3 . 6

 36 There exists a sequence u m of units in E satisfying the conditions lim m u m = 0 (3.9) and lim m σ k (u m ) |σ 1 (u m )| = 1, k = 1, ..., n. (3.19)

  Thus max 1≤j≤r |µ j,m | tends toward infinity. As the matrix (log |σ k (ǫ j )|) 1≤k≤r 1≤j≤r is invertible, we have lim m max 1≤k≤r |log |σ k (u m )|| = +∞, and in view of (3.19), we get lim m |log |σ 1 (u m )|| = +∞ . Replacing, if necessary, for some m, (µ 1,m , ..., µ n,m ) by -(µ 1,m , ..., µ n,m ), that is to say u m by u -1 m , we may suppose that lim m |σ 1 (u m )| = +∞ . Now condition (3.19) implies that lim m |σ k (u m )| = +∞ , (3.20) for each k = 1, ..., n. As u m 1≤k≤n σ k (u m ) = 1 , condition (3.9) follows then from (3.20).

4

  Proof of Theorem 1.6 Consider an infinite sequence (x 0,m , • • • , x n,m ) of distinct integer (n + 1)-tuples such that |x 0,m + ... + x n,m α n | max 0≤i≤n |x i,m | n ≍ 1 and |x j,m | = o( max 0≤i≤n |x i,m |), 2 ≤ j ≤ n. (4.1) By Lemma 3.2, we can suppose that there exist γ ∈ O E , with γ = 0, and a sequence η m of Peck's units in E, in the form η m = ǫ µ 1,m 1 ...ǫ µr,m r , where µ j,m ∈ Z, with x 0,m + x 1,m α 1 + ... + x n,m α n = γη m .

  since we must have τ k = 0 for each k. The second part of Theorem 1.6. is thus proved. If Q(α 1 ) = E, then σ k (α 1 ) = α 1 for each k = 1, • • • , n, and we getτ k = (σ k (α 1 ) -α 1 )σ 1 (γ) (σ 1 (α 1 ) -α 1 )σ k (γ) • (4.5)Moreover, the unique solution (X 1 , • • • , X n ) of the system (4.4) with X 1 = 0 being (0, • • • , 0), the matrix (σ k (β j )) 2≤j≤n 2≤k≤n is invertible. As, by (4.3), we can writen k=1 σ k (γβ j )σ k (η m ) σ 1 (γβ j )σ 1 (η m ) = 1 σ 1 (γβ j ) n k=2 σ k (γβ j )( σ k (η m ) σ 1 (η m ) -τ k ),then we conclude that max2≤j≤n n k=1 σ k (γβ j )σ k (η m ) σ 1 (γβ j )σ 1 (η m ) ≍ max 2≤k≤n σ k (η m ) σ 1 (η m ) -τ k . (4.6)Further, it is impossible that there exist large m such thatσ k (η m ) σ 1 (η m ) -τ k = 0, k = 2, ..., n.Indeed for such m, we should have, by (3.1), x j,m = γη m β j for each j = 2, ..., k, hence 0 < |x j,m | < 1 when m is large, which is impossible since x j,m must be an integer. Choosing any determination of the complex logarithm, we can writemax 2≤k≤n σ k (η m ) σ 1 (η m ) -τ k ≍ max 2≤k≤n Log σ k (η m ) σ 1 (η m ) -Logτ k 2iπZ ,where we denote, for Z ∈ C,Z 2iπZ = min q∈Z |Z -2iπq|. Now, recalling that η m = ǫ µ 1,m 1 ...ǫ µr,m r ,where the µ j 's are integers, we see thatmax 2≤k≤n σ k (η m ) σ 1 (η m ) -τ k ≍ max 2≤k≤n µ 1,m Log σ k (ǫ 1 ) σ 1 (ǫ 1 ) + ... + µ r,m Log σ k (ǫ r ) σ 1 (ǫ r ) -Logτ k 2iπZ •

  2≤k≤n | σ k (η m ) σ 1 (η m ) -τ k | ≫ ( max 1≤j≤r |µ j,m |) -λ .As the matrix (log|σ k (ǫ j )|) 1≤k≤r 1≤j≤r is invertible, we have max 1≤j≤r |µ j,m | ≍ max 1≤k≤r | log |σ k (η m )|| ≍ | log η m | , hence we get max 2≤k≤n | σ k (η m ) σ 1 (η m ) -τ k | ≫ | log η m | -λ , γβ j )σ k (η m ) σ 1 (γβ j )σ 1 (η m ) | ≫ | log η m | -λ . (4.7) Then we deduce from (4.7) and (3.1) that max 2≤j≤n |x j,m | ≫ η -1/n m | log η m | -λ . As η -1/n m ≍ max 0≤j≤n |x j,m |, we thus get max 2≤j≤n |x j,m | ≫ ( max 0≤j≤n |x j,m |)(log max 0≤j≤n |x j,m |) -λ , which is the first part of Theorem 1.6.

  1. Then there exists a finite set Γ of non zero elements γ ∈ E such that for each element (x 0 , ..., x n ) ∈ S, we can write x 0 + ... + x n α n = γη , with γ ∈ Γ and η ∈ U. Further Dγ lies in O E . Proof. If γ ∈ O E , then γη ∈ O E for every unit η of E, hence we can write Dγη = x 0 + x 1 α 1 + ... + x n α

n , where x j ∈ Z. If we have a set of units η satisfying (3.3) and (3.8), we get

|σ k (Dγηβ j )| ≪ |η| -1/n , j = 0, ..., n, k = 1, ...,

n, hence by (3.1) and (3.8), |x j | ≪ |η| -1/n , which leads immediately to (3.7). Conversely, if a set S of (n + 1)-tuples (x 0 , ..., x n ) ∈ Z n+1 \{0} satisfies (3.7), let us consider
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