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 in the context of central limit theorems with infinite variance stable limits. We illustrate the principle for stochastic volatility models, functions of a Markov chain satisfying a polynomial drift condition and solutions of linear and non-linear stochastic recurrence equations.

Introduction

The aim of this paper is to study precise large deviation probabilities for sequences of dependent and heavy-tailed random variables. To make the notion of heavy tails precise, we assume that the stationary sequence (X t ) has regularly varying finite-dimensional distributions in the sense defined in Section 2.1. A particular consequence is that the distribution of a generic variable X of this sequence has regularly varying tails. This means that there exist α > 0, p, q 0 with p + q = 1 and a slowly varying function L such that P(X > x) P(|X| > x)

∼ p L(x) x α and P(X -x)

P(|X| > x) ∼ q L(x) x α , x → ∞. (1.1)
The latter condition is often referred to as a tail balance condition.

In the case of an iid sequence satisfying (1.1) one can derive precise asymptotic bounds for the tails of the random walk (S n ) with step sequence (X t ) given by S 0 = 0 and

S n = X 1 + • • • + X n , n 1 .
We recall a classical result which can be found in the papers of A.V. and S.V. Nagaev [START_REF] Nagaev | Integral limit theorems for large deviations when Cramér's condition is not fulfilled I[END_REF][START_REF] Nagaev | Large deviations of sums of independent random variables[END_REF] and Cline and Hsing [START_REF] Cline | Large deviation probabilities for sums of random variables with heavy or subexponential tails[END_REF].

Theorem 1.1. Assume that (X i ) is an iid sequence with a regularly varying distribution in the sense of (1.1). Then the following relations hold for α > 1 and suitable sequences b n ↑ ∞: If α > 2 one can choose b n = √ an log n, where a > α -2, and for α ∈ [START_REF] Alsmeyer | On the Harris recurrence and iterated random Lipschitz functions and related convergence rate results[END_REF][START_REF]The Handbook of Financial Time Series[END_REF], b n = n δ+1/α for any δ > 0. For α 1, (1.2) and (1.3) remain valid with ES n replaced by 0 and one can choose b n = n δ+1/α for any δ > 0.

We call results of the type (1.2) and (1.3) a precise large deviation principle in contrast to the majority of results in large deviation theory where the logarithmic probabilities n -1 log P(n -1 (Y n -EY n ) ∈ A) are studied for sets A bounded away from zero and suitable sequences (Y n ) of random variables (not necessarily constituting a random walk) or even random elements taking values in some abstract spaces; see e.g. the monograph by Dembo and Zeitouni [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]. As a matter of fact, precise large deviation principles can be derived for iid heavy-tailed sequences more general than regularly varying ones, e.g. for the general class of random walks (S n ) with subexponential steps; see e.g. Cline and Hsing [START_REF] Cline | Large deviation probabilities for sums of random variables with heavy or subexponential tails[END_REF], Denisov et al. [START_REF] Denisov | Large deviations for random walks under subexponentiality: the big-jump domain[END_REF], Mogulskii [START_REF] Mogulskii | Integral and integro-local theorems for sums of random variables with semiexpotonential distribution[END_REF] and the references cited therein. We also mention that Theorem 1.1 can be extended to iid regularly varying random vectors (see Section 2.1 for a definition) and an analog of Donsker's theorem for large deviations in Skorokhod space can be proved as well; see Hult et al. [START_REF] Hult | Functional large deviations for multivariate regularly varying random walks[END_REF].

Theorem 1.1 serves as a benchmark result for the purposes of this paper. In this paper we extend Theorem 1.1 to suitable regularly varying stationary sequences (X t ). Various examples of precise large deviation principles have been derived in the literature. Under rather general dependence conditions on the regularly varying sequence (X t ) with index α < 2, Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF] and Jakubowski [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems[END_REF][START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF] proved the existence of some sequences (b n ) such that b -1 n S n P → 0 and

lim n→∞ P(S n > b n ) n P(|X| > b n ) . (1.4)
They could in general not specify the order of magnitude of the sequences (b n ). The method of proof for these results could not be extended to the case α 2. Moreover, work of Lesigne and Volný [START_REF] Lesigne | Large deviations for martingales[END_REF] indicates that results of the type of Theorem 1.1 may fail for certain stationary ergodic martingale difference sequences. To be more precise, they proved that lim sup n→∞ P(S n > n)/[n P(|X| > n)] = ∞ is possible for such sequences. Gantert [START_REF] Gantert | A not on logarithmic tail asymptotics and mixing[END_REF] proved large deviation results of logarithmic type for stationary ergodic sequences (X t ) satisfying a geometric β-mixing condition. The latter condition ensures that the tail asymptotics do not differ from the iid case.

An analog of Theorem 1.1 for linear processes X t = ∞ j=0 ψ j Z t-j , t ∈ Z, under suitable assumptions on the sequence of real numbers (ψ j ) (ensuring the existence of the infinite series) and assuming regular variation of the iid innovations (Z t ) was proved in Mikosch and Samorodnitsky [START_REF] Mikosch | The supremum of a negative drift random walk with dependent heavy-tailed steps[END_REF]. The limiting constants p and q in (1.2) and (1.3), respectively, had to be replaced by quantities depending on p, q and the sequence (ψ j ). The region (b n , ∞), where the large deviation principle holds, remains the same as for an iid regularly varying sequence.

Similar results were obtained in Konstantinides and Mikosch [START_REF] Konstantinides | Large deviations and ruin probabilities for solutions to stochastic recurrence equations with heavy-tailed innovations[END_REF] for solutions to the stochastic recurrence equation X t = A t X t-1 + B t , t ∈ Z, with iid ((A t , B t )) t∈Z with a generic element (A, B), A, B 0 a.s., B regularly varying with index α > 0 and EA α < 1. They showed that the limits (1.4) exist and are positive for sequences (b n ) comparable to those in Theorem 1.1; uniform results like in (1.2) and (1.3) were not achieved. For the same type of stochastic recurrence equation with B not necessarily positive, Buraczewski et al. [START_REF] Buraczewski | Large deviations for solutions to stochastic recurrence equations under Kesten's condition[END_REF] proved precise large deviation principles. The main difference to [START_REF] Konstantinides | Large deviations and ruin probabilities for solutions to stochastic recurrence equations with heavy-tailed innovations[END_REF] is the assumption that (X t ) is regularly varying with some positive index α while (A t , B t ) has moments of order α + δ for some positive δ. In this case, the celebrated paper of Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF], under appropriate conditions on the distribution of (A, B), yields that (X t ) is indeed regularly varying with index α; see also Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF]. It is shown in [START_REF] Buraczewski | Large deviations for solutions to stochastic recurrence equations under Kesten's condition[END_REF] that the relation lim sup In this paper, we will approach the problem of precise large deviations from a more general point of view. A key idea for this approach can be found in the papers of Jakubowski [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems[END_REF][START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF], where this idea was used to prove central limit theory with infinite variance stable limits for the partial sums (S n ) of a general stationary sequence with regularly varying marginals; see also the recent paper Bartkiewicz et al. [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF], where the same idea was exploited. The following inequality is crucial for proving the results of this paper: for every k 2, some constant b + ,

P(S n > x) n P(|X| > x) -b + P(S n > x) -n (P(S k+1 > x) -P(S k > x)) n P(|X| > x) + P(S k+1 > x) -P(S k > x) P(|X| > x) -b + . (1.5)
Regular variation of (X t ) ensures that the second quantity in (1.5) is negligible, by first letting x → ∞ and then k → ∞. The first expression in (1.5) provides a link between the asymptotics of the tail P(S n > x) for increasing values of n, x b n and the regularly varying tails P(S k > x) and P(S k+1 > x) for every fixed k. Thus the tail asymptotics of P(S n > x) are derived from the known tail asymptotics for finite sums, again by first letting n → ∞ and then k → ∞.

This paper is organized as follows. In Section 2 we introduce some of the basic conditions and notions needed throughout the paper. These include regular variation of a stationary sequence and an anti-clustering condition. In Section 3 we prove the main result of this paper: Theorem 3.1 provides a general precise large deviation principle for regularly varying stationary sequences. Under regular variation and anti-clustering conditions we will show precise large deviation principles of the following type:

lim n→∞ sup x∈Λn P(S n > x) n P(|X| > x) -b + = 0 , (1.6)
for some non-negative constant b + and a sequence of sets Λ n ⊂ (0, ∞) such that b n = inf Λ n → ∞. In Section 4 we will apply the large deviation principle (1.6) to a variety of important regularly varying time series models, including the stochastic volatility model, solutions to stochastic recurrence equations and functions of Markov chains. These are examples of rather different dependence structures, showing that the large deviation principle does not depend on a particular mixing condition or on the Markov property.

However, we give special emphasis to functions of a Markov chain satisfying a polynomial drift condition. Theorems 4.6 and 4.10 are our main results for Markov chains. Theorem 4.6 is obtained by a direct application of Theorem 3.1, exploiting a sophisticated exponential bound for partial sums of Markov chains due to Bertail and Clémencon [START_REF] Bertail | Sharp bounds for the tails of functionals of Harris Markov chains[END_REF]. Theorem 4.6 implies Theorem 4.10. It yields an intuitive interpretation of relation (1.6) in terms of the regeneration property of (X t ) t=1,...,n . Given an atom A of the underlying chain, one can split the chain into a random number N A (n) of iid random cycles. Denoting the block sum of the X t 's over the ith cycle by S A,i , it will be shown that the iid S A,i 's inherit regular variation from X, and then we can apply the classical result of Theorem 1.1 to P

NA(n)-1 i=1

S A,i > x . If b + > 0 the tails P A (S A,1 > x) and P(|X| > x) are equivalent. There is a major difference between an iid sequence and the dependent sequence (X t ): if the first generation time τ A is larger than n, it has significant influence on the region Λ n , where (1.6) holds. It turns out that one has for any x b n ,

P(S n > x) nP(|X| > x) ∼ b + + P(S n > x, τ A > n) nP(|X| > x) ,
and the second term is in general not negligible, leading to the fact that (1.6) may only be valid in a bounded region (b n , c n ). Thus we found an explanation for the same observation we experienced in the case of a Markov chain given by a stochastic recurrence equation; see the discussion above. 

n P(a -1 n (X 1 , . . . , X d ) ∈ •) v → µ d (•) ,
where v → denotes vague convergence (see e.g. [START_REF] Kallenberg | Random Measures[END_REF][START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF]) and (a n ) satisfies n P(|X| > a n ) ∼ 1. The limiting measures have the property µ d (tA) = t -α µ d (A), t > 0, for any Borel set A. We refer to α as the index of regular variation of (X t ) and its finite-dimensional distributions. We refer to Basrak and Segers [START_REF] Basrak | Regularly varying multivariate time series[END_REF] for an insightful description of regular variation for stationary processes.

In what follows, we refer to condition RV α if (X t ) satisfies the conditions above for some α > 0 and a sequence of limiting measures (µ d ).

In Section 4 we will consider some prominent examples of regularly varying time series. The regular variation property of (X t ) implies that the limits

b + (k) = lim x→∞ P(S k > x) P(|X| > x) = lim n→∞ n P(S k > a n ), k 1, (2.1) 
exist. These quantities play a crucial role in our investigations on large deviations; see for example = lim

n→∞ n P(S k -a n ), k 1, (2.2)
also exist by virtue of regular variation of (X t ).

In our main result Theorem 3.1 we require that the limit

b + = lim k→∞ (b + (k + 1) -b + (k))
exists; the existence of b + does not directly follow from regular variation of (X t ). In the examples of Section 4 we show that b + is easily calculated for some major time series models. If b + exists it is non-negative since it is the limit of a Cèsaro mean:

b + = lim k→∞ k -1 b + (k).
The constants b + and b -(the latter constant is defined in the straightforward way) figure prominently in asymptotic results for the partial sums (S n ) with infinite variance stable limits. Indeed, the Lévy measure ν of the stable limit has representation ν(x,

∞) = b + x -α and ν(-∞, -x) = b -x -α , x > 0; see Bartkiewicz et al. [3].
2.2. Anti-clustering condition. Assume that (X t ) satisfies the regular variation condition RV α . For studying the limit theory for the extremes of dependent sequences it is common to assume anticlustering conditions; see e.g. Leadbetter et al. [START_REF] Leadbetter | Extremes and Related Properties of Random Sequences and Processes[END_REF], Leadbetter and Rootzén [START_REF] Leadbetter | Extremal theory for stochastic processes[END_REF] and Embrechts et al. [START_REF] Embrechts | Modelling Extremal Events for Insurance and Finance[END_REF], Chapter 5. These conditions ensure that possible clusters of exceedances of high thresholds by the sequence (X t ) cannot be too large. In other words, "long-range dependencies of extremes" are avoided. Anti-clustering conditions are also needed for proving asymptotic theory for partial sums with infinite variance stable limits; see Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF], Jakubowski [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems[END_REF][START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF], Basrak and Segers [START_REF] Basrak | A functional limit theorem for dependent sequences with infinite variance stable limits[END_REF], and Bartkiewicz et al. [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF]. In the latter reference, the different conditions are discussed and compared. Davis and Hsing [START_REF] Davis | Point process and partial sum convergence for weakly dependent random variables with infinite variance[END_REF] and Jakubowski [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems[END_REF][START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF] also proved large deviation results in the case α < 2 under anti-clustering conditions.

We introduce the following anti-clustering condition which is close to those in the literature mentioned above.

Condition AC α : There exist δ k ↓ 0 as k → ∞ and a sequence of sets Λ n ⊂ (0, ∞), n = 1, 2, . . .,

with b n = inf Λ n such that n P(|X| > b n ) → 0 as n → ∞ and lim k→∞ lim sup n→∞ sup x∈Λn δ -α k n j=k P(|X j | > xδ k | |X 0 | > xδ k ) = 0 .
This condition is tailored for the purposes of our paper: the sets (Λ n ) with lim n→∞ b n = ∞ are those which appear in the precise large deviation results (1.6).

Condition AC α is easily verified for the examples of time series models in Section 4.

Main result

In this section we formulate and prove the main result on precise large deviation principles for regularly varying stationary sequences. Theorem 3.1. Assume that the stationary sequence (X t ) of real-valued random variables satisfies the following conditions.

(1) The regular variation condition RV α for some α > 0.

(2) The anti-clustering condition AC α for a sequence Then the large deviation principle (1.6) holds.

δ k = o(k -2 ), k → ∞, and sets (Λ n ) such that b n = inf Λ n → ∞ as n → ∞. (3 
The corresponding result for the left tails P(S n -x), x > 0, is obtained by replacing the variables X t by -X t , t ∈ Z. Then one also needs to assume that the limit b -exists which is defined correspondingly.

Remark 3.2. In the case α < 1, (3.1) is satisfied for suitable choices of (δ k ) and (ε k ). Indeed, an application of Markov's inequality and Karamata's theorem (see Bingham at al. [START_REF] Bingham | Regular Variation[END_REF]) yields uniformly for x > b n ,

P n i=1 X i 1 1 {|Xi| δ k x} > ε k x (xε k ) -1 n E|X|1 1 {|X| δ k x} ∼ δ 1-α k ε -1 k n P(|X| > x) . Thus (3.1) is satisfied for Λ n = (b n , ∞) if we choose e.g. δ k = e -k and ε k = k -2 .
Remark 3.3. Assume α ∈ (0, 2) and (X t ) conditionally independent and symmetric given some σ-field F . This condition is often satisfied in models of the type X t = σ t Z t with iid symmetric (Z t ), for example if (Z t ) and (σ t ) are independent; see the stochastic volatility model of Section 4.2.

Alternatively, if (σ t ) is predictable with respect to the filtration generated by the sequence (Z t ) then (X t ) is conditionally independent and symmetric. Prominent examples of this type are GARCHtype models, where (Z t ) is often assumed iid standard normal or student distributed. Indeed, first applying the Chebyshev inequality conditional on F and then taking expectations, we obtain by Karamata's theorem (see Bingham at al. [START_REF] Bingham | Regular Variation[END_REF]) uniformly for x ∈ Λ n = (b n , ∞),

P n i=1 X i 1 1 {|Xi| δ k x} > ε k x (ε k x) -2 n EX 2 1 1 {|X| δ k x} ∼ δ 2-α k ε -2 k n P(|X| > x) . Thus (3.1) holds e.g. for δ k = e -k and ε k = k -2 . Remark 3.4. Recall that (b n ) is chosen such that n P(|X| > b n ) → 0.
For an iid (X t ), this condition is necessary for the weak law of large numbers b -1 n S n P → 0. Under this and some other mild conditions, we may assume without loss of generality that the random variables (X i 1 1 {|Xi| δ k x} ) in (3.1) are mean corrected. Indeed, we will prove that

n sup x∈Λn x -1 |EX1 1 {|X| x} | = o(1) , n → ∞ . (3.2)
This condition is trivial if X is symmetric. The case α < 1. By Karamata's theorem and the choice of (b n ),

n |EX1 1 {|X| x} | n E|X|1 1 {|X| x} ∼ c n x P(|X| > x) c x nP(|X| > b n ) = o(x) .
Here and in what follows, we write c for any positive constants whose value is not of interest, for example, the same c may denote different constants in the same formula.

The case α = 1. If EX = 0 and n = O(b n ) then n |EX1 1 {|X| x} | = o(n) = o(x). If E|X| = ∞, E|X|1 1 {|X| x}
is a slowly varying function, and therefore for large n and any small ǫ > 0,

n |EX1 1 {|X| x} | n x ǫ . If b n = n 1+δ
for some δ > 0, choosing ǫ sufficiently small, we obtain

n |EX1 1 {|X| x} | = o(x).
The case α > 1. By Karamata's theorem, since EX = 0 and by the choice of (b n ), as n → ∞,

n |EX1 1 {|X| x} | = n |EX1 1 {|X|>x} | n E|X|1 1 {|X|>x} ∼ c n x P(|X| > x) c x [nP(|X| > b n )] = o(x) .
Proof. We have for fixed k 2,

sup x∈Λn P(S n > x) n P (|X| > x) -b + sup x∈Λn P(S n > x) -n (P(S k+1 > x) -P(S k > x)) n P(|X| > x) + sup x∈Λn P(S k+1 > x) -P(S k > x) P(|X| > x) -b + = I 1,k + I 2,k .
By regular variation of (X t ), the limit

lim n→∞ I 2,k = |(b + (k + 1) -b + (k)) -b + | exists for every k 2 and any sequence (Λ n ) such that inf Λ n → ∞. By assumption, lim k→∞ |(b + (k+ 1) -b + (k) -b + | = 0.
Therefore it suffices to study the asymptotic behavior of I 1,k .

For any δ > 0 and x > 0, consider

X i = X i 1 1 {|Xi| xδ} and X i = X i 1 1 {|Xi|>xδ} , i = 1, 2, . . . . and for n 1, S n = n i=1 X i and S n = n i=1 X i .
Then, for any ε ∈ (0, 1) and j 1,

P(S j > (1 + ε) x) -P(-S j > ε x) P(S j > x) P(S j > (1 -ε) x) + P(S j > ε x).

Multiple application of these inequalities yields

A 1 + A 2 + A 3 P(S n > x) -n (P(S k+1 > x) -P(S k > x)) n P(|X| > x) B 1 + B 2 + B 3 ,
where

A 1 = P(S n > (1 + ε)x) -n (P(S k+1 > (1 + ε)x) -P(S k > (1 + ε)x)) n P(|X| > x) , A 2 = -P(-S n > εx) -n (P(S k+1 > εx) -P(-S k > εx)) n P(|X| > x) , A 3 = P(S k+1 > (1 + ε)x) -P(S k+1 > (1 -ε)x) P(|X| > x) , B 1 = P(S n > (1 -ε)x) -n (P(S k+1 > (1 -ε)x) -P(S k > (1 -ε)x)) n P(|X| > x) , B 2 = P(S n > εx) + n (P(-S k+1 > εx) + P(S k > εx)) n P(|X| > x) , B 3 = P(S k+1 > (1 -ε)x) -P(S k+1 > (1 + ε)x) P(|X| > x) .
We will derive upper bounds for the B i 's. Lower bounds for the A i 's can be derived in the same way and are therefore omitted. An application of Jakubowski [START_REF] Jakubowski | Minimal conditions in p-stable limit theorems -II[END_REF], Lemma 3.2, to the stationary sequence (X t ) yields for fixed k 2, x, δ, ε > 0,

|B 1 | 3 k P(|X| > δ x) n P(|X| > x) + 2 n j=k P(|X j | > δ x, |X 0 | > δ x) P(|X| > x) = B 11 + B 12 .
In view of regular variation of X, P(|X| > δ x)/P(|X| > x) → δ -α . Hence Next consider B 2 . In addition to the condition ε = ε k = o(k -1 ) assume that (k + 1)δ k ε k . This choice is always possible since we also assume δ = δ k = o(k -2 ). Then |S k+1 | ε x, P(-S k+1 > εx) = P(S k > εx) = 0 and B 2 degenerates to the expression P(S n > εx)/(n P(|X| > x)). By assumption (3.1), this condition is asymptotically negligible.

Finally, consider B 3 . Fix k 2. In what follows, the constants ε, δ ∈ (0, 1) will also depend on k. Consider the sets

A γ,δ (k) = y ∈ R k : k i=1 y i 1 1 {|yi|>δ} > γ , γ , δ > 0 .
Observe that

{S k+1 > γx} = {x -1 (X 1 , . . . , X k+1 ) ∈ A γ,δ (k + 1)} ,
the sets A γ,δ (k) are bounded away from 0 and A γ,δ (k) = γA 1,δ/γ (k). Condition RV α ensures the existence of the limit

lim x→∞ B 3 = µ k+1 (A 1-ε,δ ) -µ k+1 (A 1+ε,δ ) = (1 -ε) -α µ k+1 (A 1,δ/(1-ε) ) -(1 + ε) -α µ k+1 (A 1,δ/(1+ε) ) = ((1 -ε) -α -(1 + ε) -α )µ k+1 (A 1,δ/(1-ε) ) -(1 + ε) -α (µ k+1 (A 1,δ/(1+ε) ) -µ k+1 (A 1,δ/(1-ε) )) = B 31 + B 32 .
By a Taylor expansion, B 31 c ε µ k+1 (A 1,δ/(1+ε) ). We observe that

y ∈ R k+1 : k i=1 y i > 1 + kδ/(1 + ε) ⊂ A 1,δ/(1+ε) = y ∈ R k+1 : k i=1 y i > 1 + k i=1 y i 1 1 {|yi| δ/(1+ε)} (3.3) ⊂ y ∈ R k+1 : k i=1 y i > 1 -kδ/(1 + ε) . Assume that δ = δ k = o(k -1 ) as k → ∞.
Then for k sufficiently large,

B 31 c ε (1 -kδ/(1 + ε)) -α µ k+1 y ∈ R k+1 : k+1 i=1 y i > 1 c ε b + (k + 1) .
Since we assume that b + exists a Cèsaro limit argument yields that lim k→∞ k

-1 b + (k + 1) = b + . Now choose ε = ε k = o(k -1
). Then lim k→∞ B 31 = 0. Similar arguments, using (3.3), yield

B 32 c b + (k + 1) (1 -kδ/(1 -ε)) -α -(1 + kδ/(1 + ε)) -α ck δ b + (k + 1) = o(1) , k → ∞ , provided δ = δ k = o(k -2 ). Thus we proved that lim k→∞ lim sup n→∞ sup x∈Λn B 3 = 0 .
This concludes the proof.

Examples

In this section we want to apply Theorem 3.1 to a variety of time series models. Since there exists a calculus for multivariate regular variation (e.g. Resnick [START_REF] Resnick | Extreme Values, Regular Variation, and Point Processes[END_REF][START_REF] Resnick | Heavy-Tail Phenomena: Probabilistic and Statistical Modeling[END_REF], Hult and Lindskog [START_REF] Hult | Extremal behavior of regularly varying stochastic processes[END_REF][START_REF] Hult | Regular variation for measures on metric spaces[END_REF], Basrak and Segers [START_REF] Basrak | Regularly varying multivariate time series[END_REF]) it is not difficult to show the regular variation condition RV α , the anticlustering condition AC α and the existence of the limit b + = lim k→∞ (b

+ (k + 1) -b + (k))
for the examples below. However, it can take some efforts to prove condition (3.1). In the iid case, one would use exponential inequalities of Nagaev-Fuk or Prokhorov type; see e.g. the monograph Petrov [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF] for an overview of such inequalities. In the case of dependent sequences (X t ) analogs of these inequalities exist, but their application is not always straightforward; see e.g. the case of Markov chains in Section 4.3 below. 4.1. m 0 -dependent sequences. In this section we consider an m 0 -dependent regularly varying sequence. A typical example of such a process is a moving average process of order m 0 1 (MA(m 0 )) given by

X t = Z t + θ 1 Z t-1 + • • • + θ m0 Z t-m0 , t ∈ Z ,
where (Z t ) is an iid regularly varying sequence with index α > 0. Condition RV α is straightforward since (Z t ) is regularly varying with limiting measures concentrated on the axes. The regular variation of the finite-dimensional distributions of (X t ) is then an application of the continuous mapping theorem for regular variation; see Hult and Lindskog [START_REF] Hult | Extremal behavior of regularly varying stochastic processes[END_REF][START_REF] Hult | Regular variation for measures on metric spaces[END_REF]; cf. Hult et al. [START_REF] Hult | Functional large deviations for multivariate regularly varying random walks[END_REF], Jessen and Mikosch [START_REF] Jessen | Regularly varying functions[END_REF].

A related example is given by a stochastic volatility model X t = σ t η t , t ∈ Z, where (log σ t ) constitutes an MA(m 0 ) process independent of the iid regularly varying sequence (η t ) with index α. If Eσ α+ǫ < ∞ for some ǫ > 0 then (X t ) is regularly varying with index α; see e.g. Davis and Mikosch [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF][START_REF] Davis | Extremes of stochastic volatility models[END_REF]. By construction, (X t ) is m 0 -dependent.

For m 0 -dependent sequences the verification of the conditions of Theorem 3.1 is simple.

Proposition 4.1. Consider an m 0 -dependent stationary sequence (X t ) for some m 0 1. Assume that (X t ) satisfies RV α for some α > 0 and

EX = 0 if E|X| < ∞. Choose b n = n (1/α)∨0.5+δ for any δ > 0. Then Theorem 3.1 holds with b + = b + (m 0 + 1) -b + (m 0 ) in the regions Λ n = (b n , ∞).
Proof. Condition AC α is trivially satisfied for any choice of constants δ k ↓ 0 as k → ∞ and any sets

Λ n ⊂ (0, ∞) such that nP(|X| > b n ) → 0 as n → ∞. Moreover, b + = b + (m 0 + 1) -b + (m 0
) follows from Bartkiewicz et al. [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF]. It remains to prove that (3.1) holds. In view of the m 0 -dependence of the sequence (X t ) it is possible to split the sum in (3.1) into two sums of independent subsums consisting of at most m 0 summands. More precisely, with the convention that X j = 0 if j > n we write

S n = n i=1 X i 1 1 {|Xi| δ k x} = [n/m0] j=1,j even m0(j+1) i=m0j+1 X i 1 1 {|Xi| δ k x} + [n/m0] j=1,j odd m0(j+1) i=m0j+1 X i 1 1 {|Xi| δ k x} = S ′ n + S ′′ n . Since P(S n ε k x) P(S ′ n ε k x/2) + P(S ′′ n ε k x/2)
we obtain an upper bound similar to (3.1) but with sums of at most [n/2m 0 ] iid subsums. Therefore we may assume without loss of generality that the (X t ) in (3.1) are iid. In view of Remark 3.4 and the conditions above we may assume without loss of generality that the summands in (3.1) are mean corrected.

For α ∈ (0, 2), an application of Chebyshev's inequality and Karamata's theorem yield the estimate

P n i=1 (X i 1 1 {|Xi| δ k x} -EX1 1 {|X| δ k x} ) > ε k x n (ε k x) -2 EX 2 1 1 {|X| δ k x} ∼ ε -2 k δ 2-α k [n P(|X| > x)] .
Now choose e.g. δ k = e -k and ε k = k -2 . Then all assumptions on (ε k ) and (δ k ) in Theorem 3.1 are satisfied and lim k→∞ ε -2 k δ 2-α k = 0. Hence (3.1) is satisfied. In the case α > 2, we use the Nagaev-Fuk inequality (cf. Petrov [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF], p. 78, 2.6.5) for p > α and Karamata's theorem as n → ∞, for x ∈ Λ n :

P n i=1 (X i 1 1 {|Xi| δ k x} -EX1 1 {|X| δ k x} ) > ε k x c (ε k x) -p n E|X| p 1 1 {|X| xδ k } + e -c(ε k x) 2 /n c δ p-α k ε -p k + e -c(ε k x) 2 /n /[n P(|X| > x)] [n P(|X| > x)] .
Choosing The boundary case α = 2 can be treated in a similar way by using another version of the Nagaev-Fuk inequality; see Petrov [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF], p. 78, 2.6.4. We omit details. 4.2. Stochastic volatility model. Consider a stationary sequence (σ t ) of non-negative random variables and assume that (Z t ) is an iid sequence which is independent of (σ t ). The stationary sequence

δ k = e -k and ε k = k -2 ,
X t = σ t Z t , t ∈ Z, (4.1)
is then called a stochastic volatility model. It is a standard model in financial time series analysis; see e.g. Andersen et al. [START_REF]The Handbook of Financial Time Series[END_REF].

The main result of this section is a large deviation principle for such models under various assumptions.

Theorem 4.2. Consider a stochastic volatility model (4.1) such that Z is regularly varying with index α > 0, EZ = 0 for α > 1 and Eσ 2α 0 < ∞. Moreover, consider the following additional conditions:

(1) Z is symmetric.

(2) Eσ p 0 < ∞ for some p > 2α and (σ t ) is strongly mixing with rate (α j ) such that α j cj -a for some a > 1.

The large deviation principle (1.6) holds with b + = lim x→∞ P(Z > x)/P(|Z| > x) in the regions Λ n = (b n , ∞) under the following conditions:

• 0 < α < 1: b n = n ε+1/α for any ε > 0 . • 1 < α < 2: Assume (1) or (2), b n = n ε+1/α for any ε > 0. • α > 2: Assume (2) for some a > max(1, (α -2)p/(2p -α)), b n = √ n log ns n for any sequence (s n ) such that s n → ∞.
Remark 4.3. A Gaussian stationary process (Y t ) is strongly mixing under mild conditions; see Kolmogorov and Rozanov [START_REF] Kolmogorov | On the strong mixing conditons for stationary Gaussian sequences[END_REF]. Ibragimov [START_REF] Ibragimov | On the spectrum of stationary Gaussian sequences which satisfy the strong mixing condition II. Sufficient condtitions. The rate of mixing[END_REF], Theorem 5, gave necessary and sufficient conditions for the relation α n = O(n -a ) for any choice of a > 0. The conditions are in terms of the spectral density of (Y t ). It is also known that a linear Gaussian process Y t = ∞ j=0 ψ j η t-j , t ∈ Z, with (η t ) iid standard normal and exponentially decaying coefficients (ψ j ) has an exponentially decaying mixing rate (α j ); see Pham and Tran [START_REF] Pham | Some mixing properties of time series models[END_REF]; cf. Doukhan [START_REF] Doukhan | Mixing. Properties and Examples[END_REF]. For example, if (Y t ) is a causal Gaussian ARMA process the latter condition is satisfied. Now assume log σ t = Y t , t ∈ Z, for a Gaussian stationary sequence (Y t ). This Gaussian model is chosen in the majority of the literature on stochastic volatility models; see e.g. Andersen et al. [START_REF]The Handbook of Financial Time Series[END_REF]. Then (σ t ) inherits strong mixing from (Y t ) with the same rate. Of course, Eσ p < ∞ for all p > 0 and the large deviation principle holds for α n = O(n -a ) for any a > 1.

Remark 4.4. If (σ t ) is strongly mixing with rate (α j ), the corresponding stochastic volatility model (X t ) is strongly mixing with rate (4α j ); see e.g. Davis and Mikosch [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF].

Proof. Condition RV α was verified for stochastic volatility models under the condition Eσ α+ǫ < ∞ for some ǫ > 0 in Davis and Mikosch [START_REF] Davis | Point process convergence of stochastic volatility processes with application to sample autocorrelation[END_REF]; see also [START_REF] Davis | Extremes of stochastic volatility models[END_REF]. The limit measures of the regularly varying finite-dimensional distributions are concentrated on the axes and therefore b + = lim x→∞ P(Z > x)/P(|Z| > x); see also Bartkiewicz et al. [3].

Next we verify condition AC α . Fix any δ > 0. We have

p j (δ) = P(|X j | > xδ, |X 0 | > δx) P(|Z j Z 0 |σ j σ 0 ) > (δx) 2 ) .
The random variable |Z j Z 0 | is regularly varying with index α; see Embrechts and Veraverbeke [START_REF] Embrechts | Estimates for the probability of ruin with special emphasis on the possibility of large claims[END_REF].

An application of Markov's and Hölder's inequalities yields for ǫ < 2α,

p j (δ) (δx) -2α+ǫ (E|Z| α-ǫ/2 ) 2 E|σ j σ 0 | α-ǫ/2 (δx) -2α+ǫ (E|Z| α-ǫ/2 ) 2 E|σ| 2α-ǫ .
We also have for any small ǫ > 0 and large x, P (|X| > δx) (δx) -α-ǫ in view of the regular variation of X. Therefore The following decomposition will be useful in the case α > 1:

P n i=1 σ i Z i 1 1 {|σiZi| δ k x} > ε k x P n i=1 [σ i Z i 1 1 {|σiZi| δ k x} -σ i E(Z1 1 {|σiZ| δ k x} | σ i )] > (ε k /2)x +P n i=1 σ i E(Z1 1 {|σiZ| δ k x} | σ i ) > (ε k /2)x = I 1 + I 2 .
Lemma 4.5. Assume α > 1, and either Z is symmetric or (σ t ) is strongly mixing with rate function (α j ) satisfying α j cj -a for some c > 0, a > 1 and Eσ p < ∞ for some p > 2α. Then

lim n→∞ sup x>bn I 2 n P(|X| > x) = 0 .
Proof. In the case of symmetric Z, I 2 = 0. Thus we deal with the case of mixing (σ t ). First observe that for any y > 0,

I 2 P n i=1 σ i 1 1 {σi y} E(Z1 1 {|σiZ| δ k x} | σ i ) > (ε k /2)x + n P(σ > y) = I 21 + I 22 .
Clearly, since Eσ p < ∞ for some p > 2α, we can find y = y(x) = o(x), y → ∞ as x → ∞ such that sup x>bn

I 22 n P(|X| > x) = sup x>bn P(σ > y) P(|X| > x) = o(1)
.

Indeed, we can choose y = x 0.5-γ for any γ > 0 close to zero. Write

σ i = σ i 1 1 {σi y} E(Z1 1 {|σiZ| δ k x} | σ i ) , i = 1, 2, . . . ,
and S n = n i=1 σ i . The Markov inequality yields

P(S n > ε k x) (ε k x) -2 ES 2 n = (ε k x) -2 nEσ 2 + 2 n-1 j=1 (n -j)E(σ 0 σ j ) = I 3 + I 4 .
Then, since EZ = 0, by Karamata's theorem

I 3 n P(|X| > x) c x -2 [E|Z|1 1 {|Z|>δ k x/y} ] 2 P(|X| > x) c y -2 [P(|X > x/y)] 2 P(|X| > x) .
The right-hand side is negligible uniformly for x > b n . We also have

(n/x) 2 (Eσ) 2 nP(|X| > x) = n(E(X 1 1 1 {|X1|>δ k x ,σ1 y} )) 2 x 2 P(|X| > x) n(E|X|1 1 {|X|>δ k x} ) 2 x 2 P(|X| > x) c n P (|X| > x) n P (|X| > b n ) → 0 .
Therefore we may assume without loss of generality that the random variables σ j in I 4 are centered. Using a classical bound for the covariance of a strongly mixing sequence, the fact that EZ = 0 and Karamata's theorem, for r, q > 0 such that r -1 + 2q

-1 = 1, 1 < r < a, |cov(σ 0 , σ j )| c α 1/r j (Eσ q ) 2/q c α 1/r j y 2 [E(|Z|1 1 {|Z|>δ k x/y} )] 2 c α 1/r j x 2 [P(|Z| > x/y)] 2 .
Finally, we get the following bound

sup x>bn I 4 n P(|X| > x) c ∞ j=1 α 1/r j sup x>bn [P(|Z| > x/y)] 2 P(|X| > x) .
The right-hand side converges to zero. This proves the lemma.

The case α ∈ (1, 2). In view of Lemma 4.5 it remains to bound I 1 . Applying Chebyshev's inequality conditionally on (σ i ) we obtain

I 1 (ε k x) -2 E n i=1 σ 2 i var(Z1 1 {|σiZ| δ k x} | σ i ) (ε k x) -2 n E(X 2 1 1 {|X| δ k x} ) .
Now an application of Karamata's theorem and regular variation of X yield

sup x>bn I 1 n P(|X| > x) c sup x>bn δ 2 k ε 2 k P(|X| > xδ k ) P(|X| > x) ∼ c δ 2-α k ε 2 k . Now choose (δ k ) and (ε k ) as in the case α < 1 to conclude that lim k→∞ sup x>bn I 1 n P(|X| > x) = 0 .
The finishes the proof of (3.1) in the case α ∈ (1, 2).

The case α > 2. We again have to study I 1 . Using the Nagaev-Fuk inequality (cf. Petrov [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF], p. 78, 2.6.5) conditionally on (σ t ), we obtain for p > α,

P n i=1 [σ i Z i 1 1 {|σiZi| δ k x} -σ i E(Z i 1 1 {|σiZi| δ k x} | σ i )] > (ε k /2)x | (σ i ) c (ε k x) -p n i=1 σ p i E(|Z i | p 1 1 {|σiZi| δ k x} | σ i ) + e -c(ε k x) 2 / n i=1 σ 2 i .
The expectation of the first term is of the asymptotic order cδ p-α k /ε p k . The latter relation converges to zero for δ k = e -k and ε k = k -2 . Consider the expectation of the second term on the sets { n i=1 σ 2 i > c(ε k x) 2 /(2α log x)} and its complement to obtain the bound

E(e -c(ε k x) 2 / n i=1 σ 2 i ) x -2α + P n i=1 σ 2 i > c(ε k x) 2 /(2α log x) .
The first term is negligible with respect to nP(|X| > x). For the second one, note that x 2 /(n log x) c b 2 n /(n log b n ) → ∞. Therefore we may assume without loss of generality that the σ 2 i 's are mean corrected. Now use Rio [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF], p. 87, (6.19a), under the mixing condition α j cj -a to obtain for any r 1:

P n i=1 (σ 2 i -Eσ 2 ) > c(ε k x) 2 /(2α log x) c n r/2 (log x) r x -2r + c n(log(x)/x 2 ) (a+1)p/(a+p) .
The first term is negligible with respect to n P (|X > x) for r sufficiently large. The second term is negligible as well if 2(a + 1)p/(a + p) > α. The latter condition is satisfied by assumption.

Regularly varying functions of Markov chains.

In this section we assume that X t = h(Φ t ), t ∈ Z, is a measurable real-valued function of a stationary Markov chain (Φ t ) which possesses an atom A in some general space: The context is classical; see Nummelin [START_REF] Nummelin | General Irreducible Markov Chains and Non-Negative Operators[END_REF] and Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF] which will serve as our main references, and (Φ t ) can be seen as the enlargement of a Harris recurrent Markov chain. In Section 4.4 we will look at the example of a solution to a stochastic recurrence equation which constitutes such a Markov chain. We assume that the function h is such that (X t ) is regularly varying with index α > 0. Notice in particular that h is not the null function.

Throughout we will also assume the following polynomial drift condition for p > 0 which is inspired by Samur [START_REF] Samur | A regularity condition and a limit theorem for Harris ergodic Markov chains[END_REF] who used a more general condition.

• DC p : There exist constants β ∈ (0, 1), b > 0 such that for any y,

E(|h(Φ 1 )| p | Φ 0 = y) β |h(y)| p + b 1 1 A (y).
In this condition, we suppress the dependence of β, b, A on the value p. Note that DC p implies geometric ergodicity of (Φ t ); see Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF], p. 371. In what follows, we write τ A for the first time the chain visits the set A, P A denotes the probability measure of the Markov chain conditional on {Φ 0 ∈ A} and E A is the corresponding expectation. We will also write P x and

E x if {Φ 0 = x}.
Here is the main result of this section.

Theorem 4.6. Assume that (Φ t ) is a stationary Markov chain possessing an atom A and that h is a function such that X t = h(Φ t ), t ∈ Z, satisfies the conditions (1) -(3) of Theorem 3.1 for the regions Λ n = (b n , c n ) specified below. Also assume EX = 0 if E|X| < ∞ and DC p for all p < α.

Then the precise large deviation principle (1.6) holds under the following conditions:

• 0 < α < 1: Λ n = (b n , ∞) for any sequence (b n ) satisfying nP(|X| > b n ) → 0. • 1 < α and α = 2: Λ = (b n , c n ) for any sequence (b n ) satisfying b n = n 1/α∨0.5+δ
for any δ > 0, and (c n ) such that c n > b n and

P(τ A > n) = o(n P(|X| > c n )) . (4.2)
Proof. We will apply Theorem 3.1. Since we assumed conditions (1)-( 3) of this result it remains to verify (3.1).

The case 0 < α < 1. The proof follows from Remark 3.2. The case α > 1 and α / ∈ N. This case is more involved. We will prove it in a similar way as in the iid or m 0 -dependent cases, by using moment and exponential inequalities tailored for regenerative split Markov chains. Without loss of generality we will only consider the strongly aperiodic case.

Notice that DC p is satisfied for p = [α]. For all integers p < [α], applying Jensen's inequality, we obtain

E(|X 1 | p | Φ 0 = y) E(|X 1 | [α] | Φ 0 = y) p/[α] β |h(y)| [α] + b 1 1 A (y) p/[α] β p/[α] |h(y)| p + b p/[α] 1 1 A (y). (4.3)
Thus b > 0, β ∈ (0, 1) and A in DC p can be chosen the same as in DC [α] .

Let (τ A (j)) j 1 be the sequence of visiting times of the Markov chain to the set A, i.e. τ A (1) = τ A and τ A (j + 1) = min{k > τ A (j) : Φ k ∈ A}. Notice that the sequence (τ A (j + 1) -τ A (j)) j 1 constitutes an iid sequence and N A (t) = #{j 1 : τ A (j) t}, t 0, is a renewal process. The following inequality holds for any integrable function f on R:

P n i=1 f (X i ) > ε k x = P n i=1 f (X i ) > ε k x , N A (n) = 0 + P n i=1 f (X i ) > ε k x , N A (n) = 1 +P n i=1 f (X i ) > ε k x , N A (n) 2 P(τ A > n) + 2P τA j=1 f (X j ) > ε k x/3, τ A n +P NA(n)-1 j=1 τA(j+1) t=τA(j)+1 f (X j ) > ε k x/3 + 2P n i=τA(NA(n))+1 f (X i ) > ε k x/3 = I 1 + I 2 + I 3 + I 4 .
We mentioned in Remark 3.4 that we may assume without loss of generality that the random variables X i , i = 1, 2, . . . , are mean corrected. Now we choose f (X i ) = X i -EX i where

X i = X i 1 1 {|Xi| δ k x} , i = 1, 2, . . . , x > 0 .
Bounds for I 1 , I 2 , I 4 . For I 4 , we use the Markov inequality of order k 0 = [α] + 1 and the stationarity of (X i )

I 4 c (xε k ) -k0 E n i=τA(NA(n))+1 X i k0 + Eτ k0 A [E|X|1 1 {|X|>δ k x} ] k0 c x -k0 E n i=τA(NA(n))+1 |X i | k0 + [x P(|X| > x)] k0 c x -k0 E A τA i=1 |X i | k0 + [x P(|X| > x)] k0 .
Since for α > 1, k 0 2, we use Proposition 4.7 given below to show that I 4 is negligible with respect to nP(|X| > x). As to I 2 , we again use the Markov inequality:

I 2 c (xε k ) -k0 E 1 {τA n} τA i=1 X i k0 + Eτ k0 A [E|X|1 1 {|X|>δ k x} ] k0 c x -k0 E 1 {τA n} τA i=1 |X i | k0 + [x P(|X| > x)] k0 .
We iteratively apply Lemma 4.8 given below to the first term in the right-hand side to obtain an estimate of I 2 proportional to (4.4)

x -k0 E 1 {τA n} τA i=1 |X i | k0 = x -k0 E n i=1 |X i | k0 1 1 {τA i} .
An application of Pitman's identity [START_REF] Pitman | Occupation measures for Markov chains[END_REF] yields

E n i=1 |X i | k0 1 1 {τA i} = P(Φ 0 ∈ A) E A τA-1 k=0 n i=1 |X k+i | k0 1 1 {τA k+i} nP(Φ 0 ∈ A) E A τA i=1 |X i | k0 .
From a Wald-type identity, I 2 cn(xε k ) -k0 E|X| k0 . Hence I 2 is negligible with respect to nP(|X| > x) by an application of Karamata's theorem. Finally, I 1 is negligible with respect to nP(|X| > x) because we assume that P(τ

A > n) = o(nP(|X| > c n )).
Bounds for I 3 . The following moment inequality is the key to the bound of I 3 : Proposition 4.7. Assume that (X t ) = (h(Φ t )) for a real-valued measurable function h and a Markov chain (Φ t ) satisfying the drift condition DC k0-1 for some integer k 0 2. Then for x > 0 and some constant c > 0,

E A τA j=1 |X j | k0 c E|X| k0 . (4.5)
Proof. We can expand the left-hand side of (4.5) as follows

E A τA j=1 |X j | k0 = k0 k=1 k i=1 si=k0,si 1,i=1,...,k E A τA j1=1 τA j2=j1+1 • • • τA j k =j k-1 +1 |X ji | si . (4.6)
We will estimate the moments on the right-hand side by employing Lemma 4.8 below. For the cases k 0 = 2, 3 such a result was proved by Samur [START_REF] Samur | A regularity condition and a limit theorem for Harris ergodic Markov chains[END_REF] and we use the idea of the proof in [START_REF] Samur | A regularity condition and a limit theorem for Harris ergodic Markov chains[END_REF] for our generalization. Before we formulate the basic moment estimate we need some notation: According to the proof of Theorem 14.2.3 of Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF], there exists a constant c(A) > 0 such that

E Φ0 τA k=1 1 A (X k ) c(A) a.s.
Lemma 4.8. Assume DC p and let f, g be non-negative measurable functions on R such that f (x) |y| p and g(y) = 0 for |y| > δ k x. Then for any ℓ 1, n ∈ N ∪ {∞}

(4.7) E 1 {τA n} τA j=ℓ g(X j ) τA i=j+1 f (X i ) | F ℓ E 1 {τA n} τA j=ℓ g(X j )[C |X j | p + b c(A)] | F ℓ ,
where

F ℓ = σ((Φ t ) t ℓ ).
Proof. As mentioned in Samur [START_REF] Samur | A regularity condition and a limit theorem for Harris ergodic Markov chains[END_REF], {τ A j} ∈ F j for all j. Therefore

E 1 {τA n} τA j=ℓ g(X j ) τA i=j+1 f (X i ) | F ℓ = n j=ℓ E 1 1 {τA j} g(X j ) τA i=j+1 f (X i ) | F ℓ = n j=ℓ E 1 1 {τA j} g(X j )E τA i=j+1 f (X i ) | F j | F ℓ n j=ℓ E 1 1 {τA j} g(X j ) E Φj τA i=1 f (X i ) | F ℓ .
In the last inequality we used the stationarity of (Φ t ) and the strong Markov property. From Theorem 14.2.3 of Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF] we obtain

E Φj τA i=1 f (X i ) C |X j | p + b c(A).
Since g vanishes for |y| x the result for the truncated random variables X j follows. This finishes the proof of Lemma 4.8.

By (4.3) for 1 p k 0 -1, DC p is satisfied for the same choice of (b, A). We can iteratively apply Lemma 4.8 to the expectations of the tetrahedral sums on the right-hand side of (4.6), starting with the tetrahedron with the largest index. In the last step of the iteration we are left with a sum of the type

E A τA i=1 |X i | k0 ) = E|X| k0 E A (τ A ) ,
where we used Wald's identity for any bounded f on the right-hand side. Thus, each of the summands on the right-hand side of (4.6) can be bounded by the expression

E A (τ A ) E|X| k0 k j=0 C k-j (b c(A)) j
and so the desired result follows.

Bounds for I 3 in the case 1 < α < 2. By Markov's inequality of order 2,

P NA(n)-1 j=1 τA(j+1) t=τA(j)+1 f (X j ) > ε k x/3 c(εx) -2 E NA(n)-1 j=1 τA(j+1) t=τA(j)+1 f (X j ) 2 .
From the regeneration scheme, we know that the cycles ( τA(j+1) t=τA(j)+1 f (X j )) are independent. Thus we can expand the expectation term and bound it by nE A [S A (f ) 2 ]. The desired result follows by an application of Proposition 4.7 with k 0 = 2 and Karamata's Theorem.

Bounds for I 3 in the case α > 2 and α / ∈ N. The following inequality of Bertail and Clémencon [START_REF] Bertail | Sharp bounds for the tails of functionals of Harris Markov chains[END_REF] is the key to the bound of I 3 for α > 2. It will be convenient to write

S A (f ) = τA i=1 f (X i ). Lemma 4.9. Assume that σ 2 A = E A τ 2 A < ∞ and σ 2 f = E A [(S A (f )) 2 ] < ∞. Then for any x, sufficiently large n, M = (M 1 , M 2 ) ∈ (0, ∞) 2 with Euclidean norm M , I 3 c 0 M 2 exp - n(1 + |ρ|)σ 2 2 M 2 H √ 2 M ε k x n(1 + |ρ|σσ f (4.8) +(n -1)P A (|S A (f )| > M 1 ) + (n -1)P A (τ A > M 2 ) , (4.9)
where H is the Bennett function

H(x) = (1 + x) ln(1 + x)-x, σ2 f = var A (S A (f )1 1 {|SA(f )| M1} ), σ2 A = var A (τ A 1 1 {|τA| M2} ), ρ = (σ A σf ) -1 cov A (S A (f )1 1 {|SA(f )| M1} , τ A 1 1 {|τA| M2} ), σ2 = σ2 f σ2 A /(σ 2 f + σ2 A )
, and some c 0 > 0.

Bertail and Clémencon [START_REF] Bertail | Sharp bounds for the tails of functionals of Harris Markov chains[END_REF] also assume that E A S A (f ) = 0. This condition is always satisfied in our situation since Ef (X) = 0; see Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF], (17.23) in Theorem 17.3.1. Under our conditions, σ 2

A is finite for any α and σ 2 f is finite for α > 2; see Proposition 4.7. One even has the stronger property: there exists a constant κ > 0 such that sup x∈A E x e κτA < ∞ , (4.10) see Meyn and Tweedie [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF], (15.2) in Theorem 15.0.1. We will choose M 1 = M 2 = γ k x for some constants γ k > 0. A careful study of the proof in [START_REF] Bertail | Sharp bounds for the tails of functionals of Harris Markov chains[END_REF] shows that ρ, σ, σf are bounded for α > 2. Then the exponential inequality (4.8) turns into

I 3 c (xγ k ) 2 e -cn/(xγ k ) 2 H(cx 2 γ k ε k /n) + n P A (τ A > xγ k ) + n P A (|S A (f )| > xγ k ) = I 31 + I 32 + I 33 ,
for suitable constants c > 0. Choose γ k = o(ε k ). Then for k large, uniformly for x b n such that b n /n δ+0.5 → ∞ for some δ > 0,

I 31 n P(|X| > x) c x 2(1-cε k /γ k ) n cε k /γ k n P(|X| > x) = o(1) , n → ∞ .
As for I 32 , it follows from (4.10) and Markov's inequality that

I 32 n P(|X| > x) c e -κxγ k P(|X| > x) = o(1) ,
uniformly for x b n . Finally, Markov's inequality, an application of Proposition 4.7 to I 33 with k 0 = [α] + 1 and Karamata's theorem yield 

P A (|S A (f )| > xγ k ) (xγ) -k0 E|S A (f )| k0 c (xγ k ) -k0 E|X| k0 ∼ c δ k0-α k γ -k0 k P(|X| > x) . Choose δ k = o(γ k0/(k0-α) k ) as k → ∞. This is always possible because we may choose ε k = k -2 , δ k = e -
I 3 n P(|X| > x) = 0 .
The case α > 2 and α ∈ N. In this case, let us fix α/(α + 1) < β < 1 and consider the process

(|X t | β = |h(Φ t )| β ). It satisfies DC α and concavity of x → x β as β < 1 implies that E A τA i=1 |X i | βk0 E A τA i=1 |X i | β k0
.

We apply Proposition 4.7 to (|X t | β ) with k 0 = α + 1 and we obtain

E A |S A | βk0 E|X 1 | βk0 .
Noticing that βk 0 > α, the use of Karamata's theorem as above yields that E|X 1 | βk0 is negligible with respect to nP(|X| > x). Now we can follow the lines of the proof in the case of non-integer α.

In what follows, we will use the notation of Theorem 4.6 and its proof. Our next goal is to give an intuitive interpretation of the large deviation principle of Theorem 4.6: we want to show that the large deviation probability P(S n > x) is essentially determined by P(max i=1,...,NA(n) S A,i > x), where

S A,i = τA(i+1) t=τA(i)+1 X t , i ∈ Z ,
and (N A (t)) t 0 is the renewal process generated from the iid sequence (τ A (j + 1)) -τ A (j)). The sequence (S A,i ) constitutes an iid sequence. We write τ A = τ A (1), S A = τA i=1 X i and λ = (Eτ A ) -1 . Theorem 4.10. Assume that the conditions of Theorem 4.6 hold, α > 1, α = 2 and b + > 0. Then P A (S A > x) ∼ E(τ A )b + P(|X| > x) and the precise large deviation principle for the function of Markov chain (X t ) can be written in the form

sup x∈Λn P(S n > x) n P A (S A > x) -(Eτ A ) -1 → 0 ,
where Λ n = (b n , c n ) is chosen as in Theorem 4.6.

Proof. Using the disjoint partition {N

A (n) = 0}, {N A (n) = 1}, {N A (n) 2}, we obtain P(S n > x) = P n i=1 X i > x, τ A > n + P τA (1) 
i=1

X i + n i=τA(1)+1 X i > x, τ A (2) > n τ A (1) +P(S n > x, N A (n) 2).
Using the definitions of (τ A (i)) and N A (n), we obtain for small ε ∈ (0, 1)

P(S n > x) P(τ A > n) + 2P(S A > xε/2, τ A n) + P NA(n)-1 i=1 S A,i > x(1 -ε) +2P n i=τA(NA(n))+1 X i > xε/2 = J 1 + J 2 + J 3 + J 4 .
and

P(S n > x) P S A + NA(n)-1 i=1 S A,i + n t=τA(NA(n))+1 X t > x , N A (n) 2 P NA(n)-1 i=1 S A,i (1 + ε)x, |S A | εx/2, n t=τA(NA(n))+1 X t εx/2 , N A (n) 2 P NA(n)-1 i=1 S A,i (1 + ε)x -P(|S A | > εx/2) -P n t=τA(NA(n))+1 X t > εx/2 -P(N A (n) 2) = J 5 -J 6 -J 7 -J 8 .
Lemma 4.11. Under the conditions of the theorem, for any small ε > 0, uniformly for x ∈ Λ n ,

P NA(n)-1 i=1 S A,i > x(1 + ε) nP(|X| > x) + o(1) P(S n > x) nP(|X| > x) P NA(n)-1 i=1 S A,i > x(1 -ε) nP(|X| > x) + o(1) .
Proof. By assumption, the probability

J 1 P(τ A > n) is negligible with respect to nP(|X| > x) on Λ n .
By standard computations and using the same notation as in the proof of Theorem 4.6 we have

J 4 /2 P n i=τA(NA(n))+1 X i > xε/2 + P ∪ n i=τA(NA(n))+1 {|X i | > xδ} .
The second term is estimated by

E( n i=τA(NA(n))+1 1 {|Xi|>xδ} ) E A ( τA i=1 1 {|Xi|>xδ} ) = E(τ A ) P(|X| > xδ).
The first term can be shown to be negligible with respect to nP(|X| > x) as in the proof of Theorem 4.6. So J 4 = o(nP(|X| > x)). The term J 2 can be treated in the same way as I 2 in the proof of Theorem 3.1. An application of Markov's inequality yields an estimate of the form cx -k0 E 1 {τA n} τA i=1 |X i | k0 + [n P(|X| > x)] k0 . Using (4.4), Pitman's and Wald-type identities we obtain J 2 cn(xε) -k0 E|X| k0 . Hence J 2 is negligible with respect to nP(|X| > x) by an application of Karamata's theorem.

Collecting the bounds above, the upper bound in the lemma is proved.

As regards the lower bound, J 6 and J 7 are of the order o(nP(|X| > x)) in view of the bounds for J 2 and J 4 in the proof above, respectively. Moreover,

J 8 = P(N A (n) 2) P(τ A > n) + P(τ A (2) > n) 3 P(τ A > n/2) ,
and the latter probability is negligible with respect to nP(|X| > x) as for J 1 above.

Denote Λn = (b n , e sn ) ∩ Λ n for some (s n ) such that s n /n → 0.

Lemma 4.12. Under the conditions of the theorem, for any small ξ, ε > 0, uniformly for x ∈ Λn ,

λ(1 -ε)P(S A > x(1 + ξ)(1 + ε)) P(|X| > x) + o P A (S A > x) P(|X| > x) + o(1) (4.11) 
P NA(n)-1 i=1 S A,i > x nP(|X| > x) λP A (S A > x(1 -ξ)) P(|X| > x) + o P A (S A > x) P(|X| > x) + o(1) . (4.12)
Proof. We have for δ > 0,

P NA(n)-1 i=1 S A,i > x = P NA(n)-1 i=1 S A,i > x , |N A (n) -1 -n λ| > δn +P NA(n)-1 i=1 S A,i > x , |N A (n) -1 -n λ| δn = K 1 + K 2 .
In view of (4.10), τ A has exponential moment and therefore one can apply standard large deviation theory (e.g. Cramér's theorem; see Dembo and Zeitouni [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]) to obtain

K 1 P(|N A (n) -1 -n λ| > δn) e -γn ,
for some γ = γ(δ) > 0. In view of the definition of Λn , K 1 = o(n P(|X| > x)) on Λn . We also have

P nλ i=1 S A,i -max |m-nλ| δn nλ i=m S A,i > x K 2 P nλ i=1 S A,i + max |m-nλ| δn nλ i=m S A,i > x .
Here we define b i=m for any real value b m, m ∈ N, as [b] i=m and the sums m i=b are defined accordingly. Notice that b -1

n nλ i=1 S A,i P → 0 from the fact that n -1 N A (n) a.s.
→ λ. Then, for any ξ ∈ (0, 1), a maximal inequality of Lévy-Ottaviani-Skorokhod type for sums of iid random variables (e.g. Petrov [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF], Theorem 2.3 on p. 51) yields

K 2 P nλ i=1 S A,i > x (1 -ξ) + P max |m-nλ| δn nλ i=m S A,i > xξ P nλ i=1 S A,i > x (1 -ξ) + c P δn i=1 S A,i > 0.5ξx . (4.13)
Similarly, using the independence of the random variables (S A,i ) and a maximal inequality,

K 2 P λn i=1 S A,i > x(1 + ξ) -c P δn i=1 S A,i > 0.5ξx , (4.14)
where δ, ξ can be made arbitrarily small provided n is sufficiently large. Next we give bounds for the probabilities in (4.13) and (4.14). We have for any real s > 0 and y > 0, Hence, because of the regular variation of X, uniformly for x ∈ Λn ,

P(

P NA(n)-1 i=1 S A,i > x nP(|X| > x) λP A (S A > x(1 -ξ)) + cδP A (|S A | > 0.5ξx) P(|X| > x) + o P A (S A > x) P(|X| > x) λP A (S A > x(1 -ξ)) P(|X| > x) + o P A (S A > x) P(|X| > x) .
We obtain the last inequality, taking into account that the argument above can be applied to the left tail of S A as well. This proves the upper bound (4.12). On the other hand, for s > 0, sufficiently large n, small ε > 0 and y ∈ Λn ,

P( sn i=1 S A,i > y) P ∪ sn i=1 k =i S A,k εy, S A,i > y(1 + ε), S A,j y(1 + ε), j = i snP sn k=2 S A,k εy, S A,1 > y(1 + ε), S A,j y(1 + ε), j = 1 (1 -ε)snP A (S A > y(1 + ε)) .
We conclude from (4.14) that, uniformly for x ∈ Λn ,

P NA(n)-1 i=1 S A,i > x nP(|X| > x) (1 -ε) λP(S A > x(1 + ξ)(1 + ε)) -cδP A (|S A | > 0.5ξx(1 + ε)) P(|X| > x) .
Now, the lower bound (4.11) is proved in a similar fashion as above.

In view of Lemmas 4.11 and 4.12, letting first x → ∞ and then ε → 0 and ξ → 0 and using regular variation of X we obtain

b + λ = lim x→∞ P A (S A > x) P(|X| > x)
uniformly on Λn .

In particular this relation holds along the sequences x n = cb n ∈ Λn satisfying x n+1 /x n → 1.

A sequential version of regular variation then implies that P A (S A > x) is regularly varying; see Bingham et al. [START_REF] Bingham | Regular Variation[END_REF], Theorem 1.9.2. An application of Theorem 1.1 and Theorem 4.6 finishes the proof of the theorem.

Remark 4.13. Regular variation of P A (S A > x) also implies the following:

sup x>bn P NA(n)-1 i=1 S A,i > x n P(|X| > x) -b + → 0 .
For the region x ∈ Λn this fact was proved above. Now assume that x e sn . We have by Theorem 1.1 for α > 1, since x k for k n, uniformly for x e sn , P

NA(n)-1 i=1 S A,i > x ∼ n k=2 P(N A (n) = k) k P A (S A > x) ∼ P A (S A > x) EN A (n) ∼ n (Eτ A ) -1 P A (S A > x) .
An inspection of the proof of Theorem 4.10 now shows why the precise large deviation principle for (X n ) might in general not hold in the region (c n , ∞): the first and the last blocks in S n are always negligible if τ A n. Thus for any x b n one has

P(S n > x) nP(|X| > x) ∼ b + + P(S n > x, τ A > n) nP(|X| > x) = b + + r(x). (4.15)
In the region Λ n , r(x) is uniformly negligible because it is smaller than P(τ A > n)/(nP(|X| > x)). Therefore the precise large deviation result of Theorem 4.6 holds. However, r(x) cannot be neglected in general. It may influence the very large deviations for x > c n in a complicated way: the Nummelin regeneration scheme cannot be used on {τ A > n}. Below two special examples of functions of Markov chains are given, where the specific dynamics of the models give some clue on the behavior of the second term.

Example 4.14. Consider the autoregressive process of order 1, X t = ϕX t-1 + B t for some constant ϕ ∈ (-1, 1) and an iid sequence (B t ) such that B is regularly varying with index α and EB = 0 if E|B| < ∞. It is known from Mikosch and Samorodnitsky [START_REF] Mikosch | The supremum of a negative drift random walk with dependent heavy-tailed steps[END_REF] that one can choose Λ n = (b n , ∞) with (b n ) from Theorem 1.1 and

b + = (1 -|ϕ| α ) p (1 -ϕ) α + + q (1 -ϕ) α - ,
where p = 1 -q = lim x→∞ P(B > x)/P(|B| > x). This result was derived without any further conditions on B. The same result follows from Theorem 4.6 under more restrictive conditions, e.g. if B has a non-singular distribution with respect to Lebesgue measure (see Alsmeyer [START_REF] Alsmeyer | On the Harris recurrence and iterated random Lipschitz functions and related convergence rate results[END_REF]). Thus the remainder term r(x) in (4.15) is uniformly negligible over (b n , ∞).

4.4. Solution to stochastic recurrence equations. In this section, we consider a special class of stationary Markov chains (X t ) for which we can apply Theorem 4.6 by considering it as a function of its enlargement (Φ t ) possessing an atom. Let ((A t , B t )) t∈Z be an iid sequence such that for a generic element (A, B) the following set of conditions SRE α holds:

• A 0, A = 0 a.s., B = 0 a.s., and the distribution of (A, B) is non-singular with respect to the Lebesgue measure on R 2 . • The Markov chain X t = Ψ t (X t-1 ) is the unique solution to a stochastic recurrence equation with iid iterated functions Ψ t satisfying the following additional conditions:

-The Lipschitz coefficients L t of the mapping Ψ t satisfy E log + L t < ∞.

-The top Lyapunov exponent of (Ψ t ) is strictly negative.

-For any t,

A t X t-1 -|B t | X t A t X t-1 + |B t | . ( 4 

.16)

• There exists an α > 0 such that EA α = 1, EA α+δ < ∞ and E|B| α+δ < ∞ for some δ > 0.

• The conditional law of log A, given A = 0, is non-arithmetic.

• The distribution of X is regularly varying with index α > 0 in the following sense: There

exist constants c + ∞ , c - ∞ 0 such that c + ∞ + c - ∞ > 0 and P(X > x) ∼ c + ∞ x -α , and P(X -x) ∼ c - ∞ x -α as x → ∞ . (4.17)
These conditions are motivated by the well studied affine case:

X t = A t X t-1 + B t , t ∈ Z . (4.18)
The stochastic recurrence equation (4.18) has attracted a lot of attention, starting with pioneering work of Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] who proved that (4.18) has a stationary solution (X t ) under mild conditions on the distribution of (A, B). This solution has a regularly varying marginal distribution with index α > 0 solving the equation EA κ = 1, κ > 0. Kesten's theory was formulated for multivariate X t 's. In the one-dimensional case, Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] gave an alternative proof of the regular variation of X and he also determined the constants c - ∞ and c + ∞ . In particular, for B 0 a.s. he showed that

c + ∞ = E[(B 1 + A 1 X 0 ) α -(A 1 X 0 ) α ] αEA α log A .
Buraczewski et al. [START_REF] Buraczewski | Large deviations for solutions to stochastic recurrence equations under Kesten's condition[END_REF] proved a precise large deviation principle (1.6) in the affine case (4.18) in the region Λ n = (b n , c n ), where (b n ) is chosen as in Theorem 4.6 and c n = e sn for any sequence (s n ) such that s n → ∞ and s n = o(n). The proof in [START_REF] Buraczewski | Large deviations for solutions to stochastic recurrence equations under Kesten's condition[END_REF] is rather technical and uses some deep analysis of the structure of the random walk (S n ) determined by the equation (4.18). In what follows, we will show that Theorem 3.1 can be used to establish the same results by using the Markov structure of the sequence (X t ). The proofs of this section will need less technical efforts than in [START_REF] Buraczewski | Large deviations for solutions to stochastic recurrence equations under Kesten's condition[END_REF] and give some insight into precise large deviation principles for classes of Markov chains larger than the affine case (4.18). Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] already considered stochastic recurrence equations beyond affine structures. Some of his examples satisfy inequality (4.16):

Example 4.15. Consider the solution to the stochastic recurrence equation

X t = max(A t X t-1 , B t ) , t ∈ Z. (4.19)
It exists under the conditions E log A < 0, E log + B < ∞ and satisfies (4.16). Moreover, if EA α = 1, EA α log A < ∞, the conditional law of log A, given A = 0, is non-arithmetic and E(B + ) α < ∞, then the unique solution to (4.19) satisfies relation (4.17); see Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF], Theorem 5.2.

Example 4.16. Consider an iid sequence ((A t , C t , D t )) t∈Z with a generic element (A, C, D) such that A 0 a.s. and C, D are real-valued. The solution to the equation

X t = A t max(C t , X t-1 ) + D t , t ∈ R ,
was considered by Letac [START_REF] Letac | A contraction principle for certain Markov chains and its applications[END_REF]. It exists under the conditions E log A < 0, E log + C < ∞, E log + D < ∞ and satisfies (4.16) if D 0 a.s. Indeed, if we write

B t = A t C + t + D t then |X t -A t X t-1 | A t (C t -X t-1 ) + + D t A t C + t + D t = B t .
This example is also known to satisfy (4.17) (see Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF], Theorem 6.2): if A 0, E(AC + ) α < ∞, E|B| α < ∞ and A satisfies all conditions of the previous example then (4.17) holds.

Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] gave various other examples of stochastic recurrence equations satisfying (4.17). Recently, Mirek [START_REF] Mirek | Heavy tail phenomenon and convergence to stable laws for iterated Lipschitz maps[END_REF] considered multivariate analogs of not necessarily affine stochastic recurrence equations satisfying a condition of type (4.16) (adjusted to the multivariate case). He proved the regular variation of the marginal distribution and also gave examples supplementary to those in [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF]. The use of (4.16) in his paper was also the motivation for us to include in this paper stochastic recurrence equations which do not necessarily satisfy (4.18).

In what follows, it will be convenient to write

Π 0 = 1 and Π j = j i=1 A 1 • • • A j , j 1 .
Theorem 4.17. Assume that the stationary Markov chain (X t ) satisfies the condition SRE α for some α > 0 and EX = 0 if E|X| < ∞. Then the precise large deviation principle (1.6) holds with Proof. The condition RV α follows from regular variation of the marginals. Indeed, iteration of (4.18) yields for fixed d 1,

b + = E 1 + ∞ i=1 Π i α - ∞ i=1 Π i α (4.
X 0 Π n + R n,1 X t X 0 Π n + R n,2 , n = 1, . . . , d,
where (R n,i ) n=1,...,d , i = 1, 2, is independent of X 0 . Moreover, by the assumptions on (A, B),

E|R n,i | α+δ < ∞. Therefore X d = (X 1 , . . . , X d ) = X 0 (Π 1 , . . . , Π d ) + R d .
Since X 0 is assumed regularly varying with index α an application of a multivariate version of a result of Breiman [START_REF] Breiman | On some limit theorems similar to the arc-sin law[END_REF] (see Basrak et. al [START_REF] Basrak | A characterization of multivariate regular variation[END_REF]) shows that X 0 (Π 1 , . . . , Π d ) is regularly varying, and it follows from Lemma 3.12 in Jessen and Mikosch [START_REF] Jessen | Regularly varying functions[END_REF] and from E|R d | α+δ < ∞ for some δ > 0 that X d is regularly varying with index α. This also means that one can use the same calculations for b + (d) given in Bartkiewicz et al. [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF] and hence the limit b + exists and is given by the expression (4.20). Notice that [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF] derive the constant b + only for α ∈ (0, 2). However, the proofs in the cases α ∈ (1, 2) and α > 1 are identical.

Next we verify condition AC α for the region (b n , ∞) for any sequence (

b n ) satisfying b n /n 1/α → ∞ or, equivalently, n P(|X| > b n ) → 0. Write Π ij = A i • • • A j for any i, j ∈ Z with the convention that Π ij = 1 if j, i. Iterating (4.16), we obtain X j Π j X 0 + j i=1 Π i+1,j |B i | , j 0 . (4.21)
The second term in the right-hand side of (4.21) is independent of X 0 . Hence for δ k > 0,

P(|X j | > xδ k | |X 0 | > xδ k ) P(Π j |X 0 | > xδ k /2 | |X 0 | > xδ k ) + P j i=1 Π i+1,j |B i | > xδ k /2 = I 1 (x) + I 2 (x) .
Under condition SRE α it follows from Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] and Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF] that

Q j = j i=-∞ Π i+1,j |B i | < ∞ ,
and (Q j ) is the causal solution to the stochastic recurrence equation Q j = A j Q j-1 + |B j |, t ∈ Z, which according to the Kesten-Goldie theory is regularly varying with index α. Therefore In view of (4.17) there exists a constant c > 0 such that P(X 0 > x) c x -α , x > 0. Using this inequality conditionally on (A i ) 1 i j , we obtain Since min(y α , 1) y α-ǫ for y 0, ǫ ∈ (0, α), fixed δ k > 0, and large n, Since EA α-ε < 1, the right-hand side is bounded by c(EA α-ε ) k /δ 2α k . Thus AC α is satisfied for any choice of (b n ) with b n /n 1/α → ∞ and (δ k ) such that (EA α-ε ) k = o(δ 2α k ) as k → ∞. In particular, one can choose (δ k ) decaying to zero exponentially fast.

Our next goal is to verify (3.1). The case 0 < α < 1. Condition (3.1) is immediate from Remark 3.2. We can choose (δ k ) decaying exponentially fast, as discussed above, and ε k = k -2 .

The case α > 1 and α = 2. In this case the verification of (3.1) is much more involved. We will employ Theorem 4.6. According to this result, we need to verify that (X t ) is irreducible strongly aperiodic and that the Markov chain satisfies DC p for p < α. However, since EA α = 1, by convexity of the function f (x) = EA x , x > 0, we have f (p) < 1 as p < α. Writing p = βk where 0 < β < 1 and k is an integer then

E(|X 1 | p -A p |x| p | X 0 = x) E((A β |x| β + |B| β ) k -(A β |x| β ) k | X 0 = x) = k-1 j=0 k j (|x| β ) j E[(A β ) j (|B| β ) k-j ] c(1 + |x| p-β ) .
Hence DC p is satisfied for any p < α.

An application of a result of Alsmeyer [START_REF] Alsmeyer | On the Harris recurrence and iterated random Lipschitz functions and related convergence rate results[END_REF] yields that the Markov chain (X t ) is aperiodic and irreducible. The aperiodicity and P-irreducibility follow from Theorem 2.1 and Corollary 2.3 in [START_REF] Alsmeyer | On the Harris recurrence and iterated random Lipschitz functions and related convergence rate results[END_REF] if and only if the transition kernel of the Markov chain has a component which is absolutely continuous with respect to Lebesgue measure. The latter condition is satisfied in view of the non-singularity of the distribution of (A, B) assumed in SRE α and since P x (X > ε) P(A x -B > ε) and P x (X -ε) P(A x + B -ε) for any ε > 0. Thus all assumptions of Theorem 4.6 are satisfied and therefore its conclusion applies. 4.5. The GARCH(1, 1) model. Consider the model (4.1) with the specification that (Z t ) is an iid symmetric sequence and

σ 2 t = α 0 + σ 2 t-1 (α 1 Z 2 t-1 + β 1 ) = α 0 + σ 2 t-1 A t , (4.22) 
where α 0 , α 1 > 0 and β 1 0. This stochastic recurrence equation defines a GARCH(1, 1) process. The GARCH(1, 1) process has been used most frequently for applications in financial time series analysis; see Andersen et al. [START_REF]The Handbook of Financial Time Series[END_REF]. The theory of Section 4.4 can be applied to the affine stochastic recurrence equation (4.22). There exists a unique stationary solution to (4.22) under the assumption E log A < 0 and σ is regularly varying under mild conditions on the distribution of Z. We will now show a precise large deviation principle for the process (X t ) Theorem 4.18. Consider a GARCH(1, 1) process (X t ) given by (4.1) and (4.22) with α 0 , α 1 > 0, β 1 ∈ [0, 1). We assume that there exists an α > 0, α = 2 such that:

• Z is symmetric with var(Z) = 1, E|Z| α+δ < ∞ for some δ > 0 and the distribution of Z 2 is non-singular with respect to Lebesgue measure. • There exists an α > 0 such that EA α/2 = 1.

Then the precise large deviation result (1.6) holds in the region Λ n = (n 1/α+δ , ∞) if α < 2 and Λ n = (n 1/2+δ , e γn ) for sufficiently small γ > 0 if α > 2 with

b + = E[|Z 0 + A 0.5 1 T ∞ | α -|A 0.5 1 T ∞ | α ] 2E|Z| α ,
and T ∞ = ∞ t=1 Z t t-1 i=1 A 0.5 i+1 . Proof. We verify the conditions of Theorem 3.1. Since (σ 2 t ) satisfies the affine stochastic recurrence equation (4.22) the assumptions on the distribution of A imply that the conditions of Goldie [START_REF] Goldie | Implicit renewal theory and tails of solutions of random equations[END_REF], Theorem 5.2, are satisfied and therefore σ satisfies the relation P(σ > x) ∼ c ∞ x -α for some positive c ∞ as x → ∞. Following the argument of the proof on top of p. 366 in Bartkiewicz et al. [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF], we can show that for d 1, P (X 1 , . . . , X d ) -σ 0 (Z 1 A 0.5 1 , . . . , Z d Π 0.5 d ) > x P(|σ| > x) → 0 .

Observing that E|Z 1 A 0.5 1 | α+δ < ∞, it follows from Lemma 3.12 in Jessen and Mikosch [START_REF] Jessen | Regularly varying functions[END_REF] and from a generalization of Breiman's result in Basrak et al. [START_REF] Basrak | A characterization of multivariate regular variation[END_REF] that RV α holds.

The constant b + was derived in [START_REF] Bartkiewicz | Stable limits for sums of dependent infinite variance random variables[END_REF] for α ∈ (0, 2) but the proof generalizes to arbitrary α > 0.

As to AC α , it follows by the argument leading to (4.21) that σ 2 j = Π j σ 2 0 + α 0 j i=1 Π i+1,j , j 0 .

Then

P(|X j | > δ k x | |X 0 | > δ k x) P Π j Z 2 j σ 2 0 > (δ k x) 2 /2 | |X 0 | > δ k x + P Z 2 j α 0 j i=1 Π i+1,j > (δ k x) 2 /2 ,
and now one can follow the proof of AC α in Theorem 4.17. No conditions on (δ k ) are required so far and (b n ) is chosen such that b n /n 1/α → ∞.

Next we verify (3.1). The case 0 < α < 2. Here one can use Remark 3.3. The case α > 2. We apply Theorem 4.6 to X t = h(Φ t ), t ∈ Z, where the Markov chain (Φ t ) is an enlargement of the irreducible Markov chain (X t , σ 2 t ) possessing an atom A.

  n -ES n > x) n P(|X| > x) n -ES n -x) n P(|X| > x) -q = 0 . (1.3)Thomas Mikosch's research is partly supported by the Danish Research Council (FNU) Grants 272-06-0442 and 09-072331. The research of Thomas Mikosch and Olivier Wintenberger is partly supported by a Danish-French Scientific Collaboration Grant of the French Embassy in Denmark. Both authors would like to thank their home institutions for hospitality when visiting each other.

  n > x) n P(|X| > x) < ∞ holds for suitable sequences b n → ∞ such that b -1 n S n P → 0. Again, the sequences (b n ) are close to those in Theorem 1.1. However, uniform relations of type (1.2) and (1.3) are not true in the unbounded regions (b n , ∞) but in bounded regions (b n , c n ) such that b n → ∞ and c n = e sn for s n → ∞ and s n = o(n).

Theorem 3 . 1 .

 31 The limiting constants b -(k) = lim x→∞ P(S k -x) P(|X| > x)

) 4 )X i 1 1

 41 The limit b + = lim k→∞ (b + (k + 1) -b + (k)) exists, where the constants (b + (k)) are defined in (2.1). (For the sequences (Λ n ), (δ k ) from AC α and a sequence (ε k ) satisfying ε k = o(k -1 ) and (k + 1)δ k ε k , {|Xi| δ k x} > ε k x n P(|X| > x)

lim sup n→∞ sup x∈Λn B 11 = 0 , k 2 ,

 112 An application of AC α with δ = δ k yields that lim k→∞ lim sup n→∞ sup x∈Λn B 12 = 0

  the requirements of Theorem 3.1 are satisfied and δ p-α k ε -p k becomes arbitrarily small for large k. Moreover, sup x∈Λn e -c(ε k x) 2 /n /[n P(|X| > x)] → 0 by the choice of (b n ). This proves (3.1) for α > 2.

.

  j | > xδ | |X 0 | > xδ) c n δ -α+2ǫ b -α+2ǫ n The right-hand side converges to zero if we choose α 2, b n = n ε+1/α for any ε > 0 or α > 2, b n = √ n log ns n , s n → ∞ and ǫ sufficiently small. The choice of δ = δ k → 0 is arbitrary. Next we prove condition (3.1). The case α < 1. Condition (3.1) is immediate from Remark 3.2 for δ k = e -k and ε k = k -2 .

  k and γ k = k -3 throughout the proof. Then we obtain lim

S

  A,k > y, S A,i > y, S A,j y, j = i+P(∪ sn k=1,j =k {S A,k > y, S A,j > y}) snP( sn k=1 S A,k > y, S A,1 > y, S A,j y, j = 1) + [nP A (S A > y)] 2 s nP A (S A > y) + [s n(P A (S A > y)] 2 .

20 )

 20 in the regions Λ n = (b n , c n ) given by• 0 < α < 1: Λ n = (b n , ∞) for any (b n ) satisfying of b n /n 1/α → ∞.• 1 < α and α = 2: Λ = (b n , c n ) for any sequence (b n ) satisfying b n /n 1/α∨0.5+δ → ∞ for any δ > 0, and c n = e γn for sufficiently small γ > 0.

sup x bn n I 2

 2 (x) = n I 2 (b n ) → 0 , n → ∞ ,for every δ k > 0 and any sequence (b n ) such that b n /n 1/α → ∞. We also haveI 1 (x) P(min(Π j , 1) |X 0 | > xδ k /2) P(|X 0 | > xδ k ) .

P(min(Π j , 1 )

 1 |X 0 | > xδ k /2 | (A i ) 1 i j ) c (2 min(Π j , 1)) α (xδ k ) -α ,and taking expectations,I 1 (x) c E(min(Π j , 1)) α (xδ k ) -α .

  j | > xδ k | |X 0 | > xδ k ) c δ -2α k n j=k (EA α-ǫ ) j .

  Regular variation. Throughout this paper we assume that (X t ) is stationary. Such a sequence is regularly varying with index α > 0 if the finite-dimensional distributions of (X t ) have a jointly regularly varying distribution in the following sense: for every d 1, there exists a non-null Radon measure µ d on the Borel σ-field of R
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d \{0}, where R = R ∪ {±∞}, (this means that µ d is finite on sets bounded away from zero) such that