Lingmin Liao 
email: lingmin.liao@u-pec.fr
  
Micha L Rams 
email: rams@impan.gov.pl
  
  
  
  
Multifractal analysis of some multiple ergodic averages for the systems with non-constant Lyapunov exponents

Keywords: Subject Classification: Primary 28A80, Secondary 37C45, 28A78

published or not. The documents may come    

Multifractal analysis of some multiple ergodic averages for the systems with non-constant Lyapunov exponents

Lingmin Liao, Michal Rams

Introduction and statement of results

Initiated by the paper of Fan Liao and Ma [FLM], the study of the multiple ergodic average from a point view of multifractal analysis have attracted much attention. The major achievements have been made by Fan, Kenyon, Peres, Schmeling, Seuret, Solomyak, Wu and et al. ([KPS11, FSW11, KPS12, 1 PS12a, PS12b, FSW12a, FSW12b, PSSS12]). For a short history, we refer the readers to the paper of Peres and Solomyak [START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF].

Considered the symbolic space Σ = {0, 1} N with the metric d(x, y) = 2 -min{n: xn =yn} . In [FLM], the authors proposed to calculate the Hausdorff dimension spectrum of level sets of multiple ergodic averages. Among others, they asked the Hausdorff dimension of

A α := (ω k ) ∞ 1 ∈ Σ : lim n→∞ 1 n n k=1 ω k ω 2k = α (α ∈ [0, 1]). (1.1)
As a first step to solve the question, they also suggested to study a subset of A 0 :

A := (ω k ) ∞ 1 ∈ Σ : ω k ω 2k = 0 for all k ≥ 1 . (1.2)
The Hausdorff dimension of A was later given by Kenyon, Peres and Solomyak [START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF].

Theorem 1.1 (Kenyon-Peres-Solomyak). We have

dim H A = -log(1 -p),
where p ∈ [0, 1] is the unique solution of the equation

p 2 = (1 -p) 3 .
Enlightened by the idea of [START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF], the question about A α was finally answered by Peres and Solomyak [START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF], and independently by Fan, Schmeling and Wu [START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF].

Theorem 1.2 (Peres-Solomyak, Fan-Schmeling-Wu). For any α ∈ [0, 1], we have dim H A α = -log(1 -p) - α 2 log q(1 -p) p(1 -q) ,
where (p, q) ∈ [0, 1] 2 is the unique solution of the system

p 2 (1 -q) = (1 -p) 3 , 2pq = α(2 + p -q).
We remark that a more general result on the Hausdorff dimension spectrum of level sets of multiple ergodic averages for a function depending only on one coordinate in Σ has been obtained in [START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF].

However, since the Lyapunov exponent is constant for the shift transformation on the symbolic space, what is obtained is in fact the entropy spectrum, i.e., the entropy (Bowen's definition see [START_REF] Bowen | Topological entropy for noncompact sets[END_REF]) of level sets of the multiple ergodic averages.

Consider a piecewise linear map T on the unit interval with two branches. Let I 0 , I 1 ⊂ [0, 1] be two closed intervals intersecting at most on one point. Let us also assume that 0 ∈ I 0 and 1 ∈ I 1 . Suppose that on I 0 , I 1 , the map T is bijective and linear onto [0, 1] with slops e -λ 0 = 1/|I 0 | and e -λ 1 = 1/|I 1 | (λ 0 , λ 1 > 0) correspondingly. Let

J T := ∩ ∞ n=1 T -n [0, 1].
Then (J T , T ) becomes a dynamical system. Similarly to [START_REF] Fan | Level sets of multiple ergodic averages[END_REF][START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF][START_REF] Fan | Multifractal analysis of multiple ergodic averages[END_REF], We would like to study the following sets

L := x ∈ [0, 1] : 1 I 1 (T k x)1 I 1 (T 2k x) = 0, for all k , and 
L α := x ∈ [0, 1] : lim n→∞ 1 n n k=1 1 I 1 (T k x)1 I 1 (T 2k x) = α (α ∈ [0, 1]).
For convenience, we will study a corresponding iterated function system and its natural coding. Let {f 0 , f 1 } be an iterated function system on [0, 1] given by

f 0 (x) = e -λ 0 x, f 1 (x) = e -λ 1 x + 1 -e -λ 1 , (λ 0 , λ 1 > 0)
satisfying the open set condition, i.e., e -λ 0 + e -λ 1 ≤ 1. It has the usual symbolic description by Σ = {0, 1} N with a natural projection

π(ω) = lim n→∞ f ω 1 • f ω 2 • . . . • f ωn (0).
Let us define in Σ the subsets A and A α by (1.1), (1.2). Up to a countable set, the sets L, L α can be written as

L = π(A), L α = π(A α ).
We remark that if

λ 0 = λ 1 = λ, i.e., the Lyapunov exponent is constant, then dim H L = dim H A λ/ log 2 , dim H L α = dim H A α λ/ log 2 . Furthermore, if λ 0 = λ 1 = log 2, then π(Σ) = [0, 1],
and the Hausdorff dimensions of L, L α are the same as those of A, A α . Our goal is to calculate the Hausdorff dimension of sets L and L α for λ 0 = λ 1 .

Our results are as follows:

Theorem 1.3. We have

dim H L = dim H L 0 = - log(1 -p) λ 0 ,
where p ∈ [0, 1] is the unique solution of the equation

p 2λ 0 = (1 -p) 2λ 1 +λ 0 .
For any α ∈ (0, 1], we have

dim H L α = α log p(1-q) (1-p)q -2 log(1 -p) 2λ 0 ,
where (p, q) ∈ [0, 1] 2 is the unique solution of the system

   α(λ 1 -λ 0 ) log p(1 -q) (1 -p)q + λ 0 log p 2 (1 -q) 1 -p -2λ 1 log(1 -p) = 0, 2pq = α(2 + p -q).
The paper is strongly related to [START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF], we mostly repeat the calculations there in a more complicated situation. For the lacking details, in particular for [PS12b, Lemma 2] we refer the reader there. In the following two sections we calculate the lower bound: in Section 2 we introduce a family of measures and then we find the measure in this family that is supported on the set L α and has maximal Hausdorff dimension, in Section 3 we find a formula for this dimension. In Section 4 we check that this formula is also the upper bound for the dimension of L α .

Telescopic product measures

The same measures that were used to calculate the entropy spectrum (see [START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF]) will be useful for the Hausdorff spectrum as well.

Let us start from the multiplicative golden shift case. Given p ∈ [0, 1], let µ p be a probability measure on S given by -if k is odd then ω k = 1 with probability p, -if k is even and ω k/2 = 0 then ω k = 1 with probability p,

-if k is even and ω k/2 = 1 then ω k = 0.
Precisely, let (p 0 , p 1 ) := (1 -p, p) and let p 00 p 01 p 10 p 11 := 1 -p p 1 0 .

Then the measure µ p of a cylinder is given by

µ p ([ω 1 • • • ω n ]) = ⌈n/2⌉ k=1 p ω 2k-1 • ⌊n/2⌋ k=1 p ω k ω 2k ,
where ⌈•⌉, ⌊•⌋ denote the ceiling function and the integer part function correspondingly.

Let ν p = π * µ p . The Hausdorff dimension of L will turn out to be the supremum of Hausdorff dimensions of ν p .

Similarly, to deal with the spectrum of the sets L α we will define a family of probabilistic measures of two parameters. Given p, q ∈ [0, 1] we define a measure µ p,q on Σ as -if k is odd then ω k = 1 with probability p, -if k is even and ω k/2 = 0 then ω k = 1 with probability p, -if k is even and ω k/2 = 1 then ω k = 1 with probability q.

Similarly, if we let (p 0 , p 1 ) := (1 -p, p) and let p 00 p 01 p 10 p 11 := 1 -p p 1 -q q , then we have

µ p,q ([ω 1 • • • ω n ]) = ⌈n/2⌉ k=1 p ω 2k-1 • ⌊n/2⌋ k=1 p ω k ω 2k .
Once again, let ν p,q = π * µ p,q . Please note that this notation is a little bit different from that in [START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF]. Note also that µ p = µ p,0 .

Lemma 2.1. We have µ p,q (S α ) = 1

for α = 2pq 2 + p -q .
Proof. This lemma is proven in [PS12b, Lemma 3]. However, we will need this proof as a starting point for the proof of Lemma 2.2. Denote

x n (ω) = 2 n n k=n/2+1 ω k .
For a µ p,q -typical ω the Law of Large Numbers implies

x 2n (ω) = 1 2 p + x n (ω) 2 q + 1 -x n (ω) 2 p + o(1).
Hence, as k → ∞,

x 2 k n (ω) → 2p 2 + p -q .
By [PS12b, Lemma 5], it implies that µ p,q -almost surely lim n→∞

x n (ω) = 2p 2 + p -q .

(2.1)

Then, for µ p,q -a.e. ω,

2 n n k=n/2+1 ω k ω 2k = x n (ω)(q + o(1)) → 2pq 2 + p -q .
Thus the assertion follows.

Let us denote

H(p) = -p log p -(1 -p) log(1 -p)
with convention H(0) = H(1) = 0.

Lemma 2.2. We have

dim H ν p = 2H(p) 2pλ 1 + (2 -p)λ 0 ,
and dim H ν p,q = (2 -q)H(p) + pH(q) 2pλ 1 + (2 -p -q)λ 0 .

Proof. As ν p = ν p,0 , it is enough to prove the second part of the assertion.

For ω ∈ Σ denote

C n (ω) = {τ ∈ Σ; τ k = ω k ∀k ≤ n}. Let h n (ω) := log µ p,q (C 2n (ω)) -log µ p,q (C n (ω)) and λ n (ω) := log diam π(C 2n (ω)) -log diam π(C n (ω)).
By the Law of Large Numbers, for µ p,q -typical ω and for big enough n we have

2 n h n (ω) = (2-x n (ω))(p log p+(1-p) log p)+x n (ω)(q log q+(1-q) log(1-q))+o(1)
and

2 n λ n (ω) = (2 -x n (ω))(-pλ 1 -(1 -p)λ 0 ) + x n (ω)(-qλ 1 -(1 -q)λ 0 ) + o(1).
Thus, by (2.1)

h n (ω) λ n (ω) → (2 -q)H(p) + pH(q) 2pλ 1 + (2 -p -q)λ 0 µ p,q -a.e.
Hence, for µ p,q -a.e. ω we have

lim n→∞ log ν p,q (π(C n (ω))) log diam π(C n (ω)) = (2 -q)H(p) + pH(q) 2pλ 1 + (2 -p -q)λ 0 .
We will denote

γ α = (p, q) ∈ [0, 1] 2 : α = 2pq 2 + p -q .
Lemma 2.3. The maximal Hausdorff dimension among measures ν p is achieved for p satisfying

p 2λ 0 = (1 -p) 2λ 1 +λ 0 . (2.2)
For α ∈ (0, 1), the maximal Hausdorff dimension among measures {ν p,q : (p, q) ∈ γ α } is achieved for (p, q) satisfying

α(λ 1 -λ 0 ) log p(1 -q) (1 -p)q + λ 0 log p 2 (1 -q) 1 -p -2λ 1 log(1 -p) = 0. (2.3)
Such (p, q) is unique in γ α and is always in (0, 1) 2 .

Proof. Let us start from the second part of assertion. We need to find the maximum of the function

D(p, q) = (2 -q)H(p) + pH(q) 2pλ 1 + (2 -p -q)λ 0
over the curve γ α . For α > 0 this curve's endpoints are (1, 3α/(2 + α)) and (α/(2 + α), 1). Moreover, we have

dα = 2 (2 + p -q) 2 (q(2 -q)dp + p(2 + p)dq).
Hence, we need to solve the equation

p(2 + p) ∂D ∂p -q(2 -q) ∂D ∂q = 0.
After expanding the left hand side and collecting the terms, it turns out that it is divisible by p(2 -q). We get

(2pqλ 1 + (4 + 2p -2q -2pq)λ 0 ) • log p +((-4 -2p + 2q -2pq)λ 1 + (-2 -p + q + 2pq)λ 0 ) • log(1 -p) +(-2pqλ 1 + 2pqλ 0 ) • log q +(2pqλ 1 + (2 + p -q -2pq)λ 0 ) • log(1 -q) = 0.
(2.4) It will be convenient to use β = 2/α. As (p, q) ∈ γ α , we have 2 + p -q = βpq. Substituting this into (2.4), we get

(2λ 1 + (2β -2)λ 0 ) log p + ((-2β -2)λ 1 + (-β + 2)λ 0 ) log(1 -p) +(-2λ 1 + 2λ 0 ) log q + (2λ 1 + (β -2)λ 0 ) log(1 -q) = 0 (2.5)
and (2.3) follows.

To get the first part of assertion it is enough to remove all terms with q and substitute α = 0 into (2.3).

What remains is the third part of the assertion. Denoting by F (p, q) the left hand side of (2.5), we have

F (1, 3α/(2 + α)) = ∞ and F (α/(2 + α), 1) = -∞.
We will check that F restricted to γ α is strictly monotone. We have

p(p + 2) ∂F ∂p -q(2 -q) ∂F ∂q = λ 0 ((2β -2)(p + 2) -2(2 -q)) + spt,
where spt stands for some positive terms (in particular, all the terms with λ 1 are positive). However, as

(2β -2)(p + 2) -2(2 -q) = 2p + 2q + 2(β -2)(p + 2) > 0,
the coefficient for λ 0 is also positive. Hence, F restricted to γ α indeed has no extrema, so it must have only one zero.

Remark. When α = 0, the curve γ 0 degenerates into two segments : p = 0 and q = 0. On the first segment, the dimension of dim H ν 0,q is zero. On the second segment, we have the assertion on ν p,0 = ν p in Lemma 2.3. When α = 1, the curve γ 1 degenerates into one point (1, 1), and we have dim H ν 1,1 = 0.

Remark. The curves γ α cover whole (0, 1) 2 . However, not all pairs (p, q) ∈ (0, 1) 2 are solutions of (2.5) for any λ 1 , λ 0 . Indeed, we can write (2.5) in the form

λ 1 λ 0 a 1 + a 2 = 0 with a 1 = α log p + (-2 -α) log(1 -p) -α log q + α log(1 -q) and a 2 = (2 -α) log p + (α -1) log(1 -p) + α log q + (1 -α) log(1 -q).
Both a 1 and a 2 converge to ∞ as p → 1 and to -∞ as q → 1. They are also both strictly monotone on γ α , which can be checked like in the third part of the proof of Lemma 2.3 (using (2 -α)(p + 2) > α(2 -q) in case of a 2 ), so they both have unique zeros. As the equation ra 1 + a 2 = 0 can have positive solution only if a 1 and a 2 have different signs, only those (p, q) ∈ γ α between zeros of a 1 and a 2 , or equivalently satisfying

α log p(1 -q) (1 -p)q > max 2 log(1 -p), log p 2 (1 -q) 1 -p ,
are solutions of (2.5) for some choice of λ 1 , λ 0 .

Remark. The measures µ p,q for p = q are Bernoulli. Each γ α intersects the diagonal {p = q} in exactly one point (α 1/2 , α 1/2 ) and at this point a 1 > 0, a 2 < 0. So, (2.5) has a Bernoulli measure as a solution for each α ∈ (0, 1). It happens when

λ 0 log p = λ 1 log(1 -p),
that is, when ν α 1/2 ,α 1/2 is the Hausdorff measure (in dimension dim H π(Σ)) on π(Σ).

Exact formulas

To be able to provide the upper bounds in the following section, we need to substitute the results of Lemma 2.3 to Lemma 2.2 and obtain simpler formulas for our lower bound. We start with the golden shift case. Given λ 1 , λ 0 let p be given by (2.2).

Lemma 3.1. We have

dim H ν p = - log(1 -p) λ 0 .
Proof. By Lemma 2.2, dim H ν p = 2H(p) 2pλ 1 + (2 -p)λ 0 .

Applying (2.2) it is easy to check that (2pλ 1 + (2 -p)λ 0 ) log(1 -p) = -2H(p)λ 0 and the assertion follows.

The calculations for the multifractal case are a little bit more complicated. Given λ 1 , λ 0 , and α, let p, q be given by (2.3). Lemma 3.2. We have dim H ν p,q = α log p(1-q) (1-p)q -2 log(1 -p) 2λ 0 .

(3.1)

If λ 1 = λ 0 then we have another formula: dim H ν p,q = log p 2 (1-q)

(1-p) 3 2(λ 0 -λ 1 ) .

(3.2)
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Proof. By Lemma 2.2, dim H ν p,q =

(2 -q)H(p) + pH(q) 2pλ 1 + (2 -p -q)λ 0 .

Using (2.3) one can check that

This gives (3.1). Applying (2.3) once again we get

Together with (3.1) this gives (3.2).

Upper bounds

The last part of the proof is the upper bound.

Lemma 4.1. We have

and for all α ∈ [0, 1],

Proof. As L ⊂ L 0 , it is enough to prove the second part of the assertion. Fix α and let ω ∈ S α . Let p, q be as in (2.3). We denote for all n ∈ N

We also denote hn = -log µ p,q (C n (ω)) and ln = -log diam π(C n (ω)).

For any even n we have (see [START_REF] Peres | Dimension spectrum for a nonconventional ergodic average[END_REF]Section 4])

We also have

Hence,

As the first summand converges to 0 and the second telescopes, lim inf n→∞ 1 n ( ln dim H ν p,q -hn ) ≤ 0 and we are done.