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Abstract

In this paper, we establish several local and global gradient estimates
for the positive solution of Porous Medium Equations (PMEs) and Fast
Diffusion Equations (FDEs). Our proof is probabilistic and uses martin-
gale techniques.

1 Introduction

The present paper is devoted to a study of gradient estimates for solutions of
partial differential equations (PDEs) of the form

∂u

∂t
= ∆um (1)
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where m ∈ (0,∞) is a given exponent. The problem is posed on (0,∞) × Rn,
and ∆ is the Laplace operator with respect to space variables. When m = 1,
it is the celebrated heat equation, which is linear and parabolic, hence enjoying
many nice properties. When m 6= 1, the story becomes quite different. Let us
focus on non-negative solutions to the equation (1) with initial condition

u (0, x) = u0 (x) ,

the so-called Cauchy problem related to (1), and collect some results and discuss
some phenomena that do not appear in the case of the heat equation.

There are two critical values of the exponent m, namely m = 1 and m = n−2
n

.
By rewriting (1) as

∂u

∂t
= mum−1∆u+m (m− 1)um−2 |∇u|2 (2)

one can see that the coefficient matrix of the second order derivative is mum−1In×n.
If m < 1, this matrix takes the value of infinity where u = 0, which means the
parabolicity is singular. While if m > 1, the matrix vanishes when u = 0, which
means the parabolicity is degenerate. If we interpret (1) as a differential equa-
tion describing a diffusion, this means when m < 1, the diffusion is very fast
at places where u is small. Therefore in this case we call (1) the fast diffusion
equation (FDE). If m > 1, the diffusion slows down wherever u is small, and
in this case we call it the porous medium equation (PME). Notice that since
we only consider non-negative solution u, from (2) it is clear that (1) is always
formally parabolic.

Due to the different behaviors of PME and FDE at u = 0, theories about
existence and uniqueness of Cauchy problems for these two types of equations
have been studied separately. The commonly used framework for PME is the
L1 (Rn) space. By Theorem 9.12 and Proposition 9.13 in [32], if u0 ∈ L1 (Rn),
then there is a unique strong solution which is continuous on (0,∞) × Rn.
Moreover, if u0 ∈ L1 (Rn) which is strictly positive and continuous, then the
solution must be smooth. If we move beyond the scope of L1 (Rn) setting and
impose a weaker growth condition on u0 such as

sup
R≥1

R−(n+ 2
m−1 )

ˆ

|x|≤R

|u0 (x)| dx < ∞, (3)

then by [5] a unique solution in distribution sense exists on (0, T (u0)) × Rn,
where T (u0) ∈ (0,∞] depending on u0. By Theorem 3.1 in [2], the previous
growth condition is satisfied by any continuous non-negative solution. Therefore,
condition (3) is optimal for the class of continuous non-negative solutions. If the
initial data is allowed to be measure-valued, [13] gives a result which requires
similar growth condition as (3). As for FDE, no requirement on the growth of
initial data is needed. In fact, by Theorem 2.1 and 2.3 in [16], there exists a
unique solution u ∈ C

(

[0,∞) ;L1
loc (R

n)
)

in distribution sense if u0 ∈ L1
loc (R

n).
Alternatively, if we impose some growth and decay conditions on u0, by Theorem
1 in [6] there will be a classical solution in

[

0, T̄
]

× Rn, and T̄ is finite.
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The degeneracy of parabolicity of PME leads to finite propagation of its
solution, which is one of the special feature of PME. In particular, by Theorem
14.6 in [32], if u (t1, ·) is compactly supported in Rn, so is u (t2, ·) for any t2 > t1.
Consequently, for this kind of solutions, there is a set in (0,∞) × Rn that
separates the region on which u is positive and the region where u is zero.
According to Theorem 3.3 in [11], this set, or the so-called free boundary, is
locally Hölder continuous on (0,∞) × Rn. Moreover, in viewing it as a family
of boundaries in Rn indexed by t ∈ (0,∞), those boundaries expands to infinity
as t → ∞ [11]. When the solution overflows the support of the initial data
at some finite time t⋆, we see an improvement in the regularity of the free
boundary. More precisely, Theorem 3 in [10] asserts that the free boundary is
locally Lipschitz continuous on (t⋆,∞)× Rn.

Although m = 1 is a crucial value when talking about finite propagation and
existence theories of equation (1), it is not a significant value in the study of
extinction in finite time and smoothing effect, where the value m = n−2

n
becomes

decisive. The extinction in finite time of a solution is the phenomenon that arises
only when m < n−2

n
. On page 174 in [4], it is proved that any solution with

initial value u0 ∈ Lp⋆ (Rn) ∩ L1 (Rn), where p⋆ = n(1−m)
2 , becomes identically

zero after a finite time. More generally, by Theorem 5.2 in [29], the same result
holds for u0 ∈ Mp⋆ , where

Mp⋆ =

{

f ∈ L1
loc (R

n) :

ˆ

K

|f (x)| dx ≤ C |K|1−
1
p⋆ , ∀K with |K| < ∞

}

.

According to Lemma 5.6 in [29], this is already very close to the sufficient
condition for a solution to extinct in finite time. One can see from these results
that even a positive initial data may produce a solution that vanishes completely
in finite time, which is quite striking. The reason behind, is the failure of
conservation of mass when m < n−2

n
, as explained in Section 5.5 in [29].

Next, let us describe regularities of solutions in terms of boundedness, pos-
itivity and smoothness. In general, for any m ∈ (0,∞) and p ∈ [1,∞], the
solution decreases in Lp (Rn) norm as it evolves in time, according to Theorem
7.2 in [30]. Moreover, if m > n−2

n
, then by Section 3.4 in [29], for any p and q

such that 1 ≤ p ≤ q ≤ ∞,

‖u (t, ·)‖q ≤ c (m,n, p, q) ‖u0‖σp t−α (4)

where

α =
n (q − p)

q (n (m− 1) + 2p)
, σ =

p (n (m− 1) + 2q)

q (n (m− 1) + 2p)
.

In particular, from this result we see that initial data in L1 (Rn) produce so-
lutions u (t, ·) ∈ L∞ (Rn) for any time t > 0, which is termed as smoothing
effect. When m = n−2

n
, this is no longer true. Appendix A.3 in [12] constructed

a solution which is not bounded at any time while still having an initial value
in L1 (Rn). Moreover, when m < n−2

n
and n ≥ 3, Theorem 5.14 in [29] shows

that (4) holds for q = 1 and 1 < p < p⋆. This means that Lp (Rn) data yield
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solutions only in L1 (Rn), a somehow backward smoothing effect. Nevertheless,
we are still able to get a bounded solution in the case of m < n−2

n
if the initial

data belongs to a better space. By Theorem 6.7 in [29], if m < n−2
n

, p ≥ p⋆
and u0 ∈ Lp (Rn)+L∞ (Rn), then u (t, ·) is locally bounded and smooth for any
t > 0. Quantitatively, Theorem 2.1 in [9] gives a local upper bound for u (t, ·)
in terms of the Lp (Rn) (p > p⋆) norm of u0 over a larger local region.

As for positivity and smoothness, Theorem 3.1 in [2], Theorem 1.1 in [8]
and Theorem 1.1 in [9] give local lower bounds for solutions to (1) in terms
of local L1 (Rn) norm of initial data in the cases of m > 1, m ∈

(

n−2
n

, 1
)

and m ∈
(

0, n−2
n

)

respectively. These lead to results about the positivity of
solutions. For example, Proposition 1.1 in [10] gave a necessary and sufficient
condition for the positivity of u (t, x) when m > 1 which read as

sup
R>0

R−(n+ 2
m−1 )

ˆ

|y−x|≤R

|u0 (y)| dy = ∞.

Besides positivity, if the solution is also locally bounded, then standard quasi-
linear theory [21] implies the smoothness of the solution on that region. In
particular, when m ∈

(

n−2
n

, 1
)

, non-negative locally integrable initial data al-
ways produce positive and smooth global solutions, according to the remark
after Theorem 2.3 in [16]. This is not true when m ∈

(

0, n−2
n

)

, as non-negative
locally integrable initial data is not enough for local boundedness of solutions,
which can be seen from solution (0.2) in [9]. Moreover, when m is in this range,
extinction in finite time may occur, which kills positivity of solutions in a global
scale. As for PME, in general, solutions are only locally Hölder continuous.
Theorem 4.1 in [11] states that when u0 is non-negative, bounded and belongs
to L2 (Rn), um is uniformly Hölder continuous in every set (η0,∞)×Rn, η0 > 0.
Theorem 7.17 in [32] tells us that u is locally Hölder continuous on the region
where u is bounded.

During the development of the above works, one of the main tools is the
comparison principle for equation (1), which is established in Theorem 7.3 in
[30]. Generally speaking, the comparison is in terms of mass concentration of
radially symmetric functions. Once this comparison of mass concentration is
obtained, comparison in terms of Lp (Rn) (p ∈ [1,∞]) norm follows. There are
several special explicit solutions to (1) that are often used in combination with
the comparison principle. Let us only mention three of them here. The first
one is source-type solution, also known as Zel’dovich-Kompanyeets-Barenblatt
(ZKB) solution, which takes the form

U (t, x) = t−α
(

c− k |x|2 t−2β
)

1
m−1

+
,

with

α =
n

n (m− 1) + 2
, β =

α

n
, k =

α (m− 1)

2mn

and a positive constant c. For m > n−2
n

,

lim
t→0

U (t, x) = C (c, n,m) δ0 (x)
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in the sense of measures. So it is the solution to (1) with Dirac delta as initial
trace. One can see that it reproduces the heat kernel as m → 1. Since ZKB so-
lution has compact support when m > 1, it plays an important role in the study
of finite propagation speed. When m ≤ n−2

n
, U (t, x) is no longer integrable in

space variables. Therefore, although still solving (1), it is not a solution to any
Cauchy problem related to (1). The second type of solution is a family of self
similar solutions, which has the form

U (t, x) = t−λ1F
(

|x| t−λ2
)

.

By a scaling argument, it is shown in section 3.2.1 of [31] that any solution to (1)

on (0,∞)× Rn with initial data |x|−λ3 must have the above form. Notice that
in fact the ZKB solution also belongs to this type. The third type of solutions
we would like to mention is a variance of the self similar solutions. It has the
form

U (t, x) = (T − t)
−λ1 F̄

(

|x| (T − t)
−λ2

)

with T > 0. Usually it satisfies (1) only for t < T , after which it blows up or
vanishes. For this type of solutions, probably the most popular and explicit one
is

U (x, t;T ) = 2

(

n− 2

1−m

)

(

T − t

|x|2

)
1

1−m

with m < n−2
n

, which is a good example of solutions that extinct in finite time.
As frequently seen in the field of PDE, a crucial step in the study of equation

(1) is to derive various types of estimates for solutions. In [3], Aronson and
Bénilan established the following gradient estimate for solutions to (1). If m ∈
(

n−2
n

,∞
)

, u is a positive smooth solution to (1) and v = m
m−1u

m−1, then

∆v ≥ − α

(m− 1) t

where α = n(m−1)
n(m−1)+2 , which is equivalent to

|∇v|2
(m− 1) v

− vt

(m− 1) v
≤ α

(m− 1) t
.

This fundamental estimate is then employed in [5] for the study of existence
theory, in [16] for L∞

loc (R
n) estimate for solutions, and in [10] for obtaining

regularity results for the free boundary of solutions, to name but a few. Later
in [23], a local version of Aronson-Bénilan estimate was obtained by P. Lu, L. Ni,
J. L. Vazquez and C. Villani. They studied the same problem posed on a local
ball of a Riemannian manifold. Let B (O, 2R) denote a ball with center O and
radius 2R > 0 . Assume that u is a positive solution to (1) on B (O, 2R)× [0, T ]
and the Ricci curvature Ric≥ − (n− 1)K2 on B (O, 2R) for some K ≥ 0. They
showed that for any m > 1 and β > 1, it holds on B (O, R)× [0, T ] that

|∇v|2
v

− β
vt

v
≤ αβ2

(

1

t
+ C2K

2v2R,T
max

)

+ αβ2 v
2R,T
max

R2
C1
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where
v2R,T
max = max

B(O,2R)×[0,T ]
v.

For m ∈
(

1− 2
n
, 1
)

, they proved that on B (O, R)× [0, T ], for any γ ∈ (0, 1),

|∇v|2
v

− γ
vt

v
≥ αγ2

C3

(

1

t
+ C4

√

C3K
2v̄2R,T

max

)

+
αγ2

C3

v̄2R,T
max

R2
C5

where
v̄2R,T
max = max

B(O,2R)×[0,T ]
(−v) .

Later in [18] several results of similar type were obtained by G. Huang, Z. Huang
and H. Li. Note that these gradient bounds do not depend on the initial data.
While in [34], S.T. Yau established a similar type of gradient bounds depending
on derivatives of initial data for degenerate parabolic equations of the form

∂u

∂t
= ∆(F (u))

with F ∈ C2 (0,∞) and F ′ > 0. In particular, as explained in [24], Yau’s result
implies that for any function c (t) ∈ C1 (0,∞) satisfying











c (t) ≤ 0

c′ (t) ≥ 0

|∇v|2 − 2vt + 2m
(

m−1
m

v
)

m−2

m−1 ≤ c (t) at t = 0

it holds for all t > 0 that

|∇v|2 − 2vt + 2m

(

m− 1

m
v

)
m−2

m−1

≤ c (t) .

Besides gradient estimates of Aronson-Bénilan type, the Hamilton type es-
timate also plays an important role. It originates from Hamilton [15] where it
was proved that a positive smooth solution u to the heat equation on a compact
manifold without boundary and with Ric≥ −k, k > 0, we have

|∇u|2
u2

≤
(

1

t
+ 2k

)

ln
‖u‖∞
u

. (5)

This is an upper bound on the gradient of space variables only, hence leading
to a different type of Harnack inequalities. As proved by Kotschwar [20], the
same result holds for complete noncompact manifolds as well. Later a local
version was obtained by Souplet and Zhang in [27]. As for PME and FDE, L.
A. Caffarelli, J. L. Vázquez and N. I. Wolanski [10] discussed the case where
the initial data is compactly supported. Namely, under the assumption that the
initial data u0 ≥ 0 is integrable and compactly supported, they established that
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for m > 1, there exists a time T = T (u0) > 0 and a constant c = c (m,n) > 0
such that

|∇v (x, t)| ≤ c

(

(v

t

)
1
2

+
|x|
t

)

for any t > T and almost every x ∈ Rn. Later X. Xu [33] derived a local result
on a complete Riemannian manifold with Ric≥ −k for some k ≥ 0. For m > 1,

if there exists a constant δ ∈
(

0, 4
n−1

]

such that

1 ≤ v2R,T
max

v
2R,T
min

<
1

1 + δ

(

4m

(n− 1) (m− 1)
+ 1

)

then on B (x0, R)×
[

t0 − T
2 , t0

]

|∇v|
v
2R,T
max (1 + δ)− v

≤ C6 (m,n)





1 + δ

2ρδR
+

1
√

m−1
m

v
2R,T
max δρT

+

√

k

δ





where

ρ = 2m− (n− 1) (m− 1)

2

v2R,T
max (1 + δ)− v

2R,T
min

v
2R,T
min

,

v2R,T
max = sup

B(x0,2R)×[t0−T,t0]

v, v
2R,T
min = inf

B(x0,2R)×[t0−T,t0]
v.

For m ∈
(

1− 4
n+3 , 1

)

, they obtained that on B (x0, R)×
[

t0 − T
2 , t0

]

,

|∇v|
−v

≤ C7 (m,n)





1

2R
+

1
√

1−m
m

v̄
2R,T
min T

+
√
k





where
v̄
2R,T
min = inf

B(x0,2R)×[t0−T,t0]
(−v) .

This is a generalization of Li Ma et al. [24], where the same estimate was derived

only for n = 2 or 3 with m ∈
(

1− 1√
n
, 1
)

. In X. Zhu [36], it was proved that

for m ∈
(

1, 1 + 1√
2n+1

)

, on B (x0, R)×
[

t0 − T
2 , t0

]

v
1
4

2−m
m−1 |∇v| ≤ C8

(

v2R,T
max

)1+ 1
4

2−m
m−1

(

1

2R
+

1√
T

+
√
k

)

with
v2R,T
max = sup

B(x0,2R)×[t0−T,t0]

v.

In X. Zhu [35], a gradient bound for m ∈
(

1− 2
n
, 1
)

was obtained. On B (x0, R)×
[

t0 − T
2 , t0

]

|∇v|√
−v

≤ C9

√

v̄
2R,T
max

(

1

2R
+

1√
T

+
√
k

)

7



where
v̄2R,T
max = sup

B(x0,2R)×[t0−T,t0]

(−v) .

In this paper, let us denote by AR,ǫ
x0

the annulus B (x0, R+ ǫ) \ B (x0, R).
Set

L =
8

ǫ2

(

nǫ

2R+ ǫ
+

8 (R+ ǫ)
2

(2R+ ǫ)
2

)

,

h− = m−
√

1− (n− 1) (m− 1)
2
, h+ = m+

√

1− (n− 1) (m− 1)
2
. (6)

We derived several local and global gradient estimates as follows.

Theorem 1. If u is a positive and bounded solution to (1) on (0, t1)×B (x0, R+ ǫ)

with m ∈
(

1− 1√
n−1

, 1 + 1√
n−1

)

, then for any h ∈ (h−, h+) , ρ ∈
(

0,m
∣

∣

2m+h
2h

∣

∣

−1
)

,

and (T, x) ∈ (0, t1)×B (x0, R), we have

um+h−3 |∇u|2 (T, x)

≤
∥

∥IB(x0,R+ǫ)u
h
0

∥

∥

∞ − uh (T, x)

hm
(

m− ρ
∣

∣

2m+h
2h

∣

∣

)

T
+

(

ρ+
∣

∣

2m+h
2

∣

∣

)

LM2

|h| ρ
(

m− ρ
∣

∣

2m+h
2h

∣

∣

)

+
(

|2m− h| l−3 + 6l−1
)

mM1L
2T

8
(7)

where

l =
(h− h−) (h+ − h)

3
∣

∣m− h
2

∣

∣+ 3
, M1 = sup

[0,T ]×AR,ǫ
x0

u2m+h−2, M2 = sup
[0,T ]×AR,ǫ

x0

um+h−1.

Comparing to the existing work, our result is essentially about estimating
the gradient at time t0 with the information of u during [t0 − T, t0], while the
other results we listed above are using information of u during [t0 − 2T, t0].
Therefore, we have an extra term linear in T . In terms of the constraint on m,
one can see that when the dimension n = 1, there is no constraint. When n > 1,
comparing to all the existing results we are aware of, our bound is valid for a
wider range of m when m < 1. As for the case when m > 1, our range of m
is larger than that in [36]. If we look for a bound on the pressure variable, by
taking h = 0, the restriction on m becomes identical to the one in [35].

Corollary 2. If u is a positive and bounded solution to (1) on (0, t1)×B (x0, R+ ǫ)

with m ∈
(

1− 2
n
, 1
)

, and the pressure variable v = um−1

m−1 , then for any ρ ∈
(0,m), and (T, x) ∈ (0, t1)×B (x0, R), we have

|∇v|2
(m− 1) v

(T, x) ≤
∥

∥IB(x0,R+ǫ) log u0

∥

∥

∞ − log u (T, x)

m (m− ρ)T

+
LM3

ρ (m− ρ)
+

(

m

2
l−3 +

3

2
l−1

)

mM1L
2T

2
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where

l =
−n (m− 1)

2 − 2 (m− 1)

3 (m+ 1)
, M1 = sup

[0,T ]×AR,ǫ
x0

u2m−2,

M3 = sup
[0,T ]×AR,ǫ

x0

(

ρ log u+ (m logu+ 1)
2
)

um−1

As for the global case, by letting ǫ = R, then R → ∞ and ρ → 0 in (7), we
obtain a very neat gradient bound.

Corollary 3. If u is a positive and bounded solution to (1) on (0,∞)×Rn and

m ∈
(

1− 1√
n−1

, 1 + 1√
n−1

)

, then for any h ∈ [h−, h+] and (T, x) ∈ (0,∞)×Rn,

it holds that

um+h−3 |∇u|2 (T, x) ≤
∥

∥uh
0

∥

∥

∞ − uh (T, x)

Thm2
. (8)

First of all, this bound does not depend on the dimension n explicitly. This
is because the information about dimension has been incorporated into the ini-
tial value and the constraint on h. In fact, [7] derived a gradient bound which
is independent of the initial data, but dependent on dimension n. Secondly, it
naturally shows that when a function touches its maximum, its gradient van-
ishes. In this sense it is a tight gradient bound. Moreover, when m = 1 and
h → 0+, our results recovers Hamilton’s gradient bound for heat equation.

Corollary 4. (Hamilton’s gradient estimate) If u is a solution to the heat
equation on (0,∞) × Rn with positive and bounded initial data, then for any
(T, x) ∈ (0,∞)× Rn, it holds that

|∇u|2
u2

(T, x) ≤ 1

T
log

‖u0‖∞
u (T, x)

. (9)

Our last result is an extension of Corollary 3, where the condition that

(h− h−) (h− h+) < 0,

is essential.
We next consider the case where m and h satisfy the condition that

(h− h−) (h− h+) > 0.

The previous inequality is equivalent to that m ∈
(

0, 1− 1√
n−1

)

∪
(

1 + 1√
n−1

,∞
)

and h ∈ R , or m ∈
[

1− 1√
n−1

, 1 + 1√
n−1

]

but h ∈ (−∞, h−) ∪ (h+,∞). For

such m and h, let us define

U± =
mh± |h|

√

m2 + (h− h−) (h− h+)

(h− h−) (h− h+)
. (10)

9



Theorem 5. Let u be a positive and bounded solution to (1) on (0,∞) × Rn.
Suppose h ∈ R satisfying the condition that

(h− h−) (h− h+) > 0,

and

U ≡
∥

∥uh
0

∥

∥

∞
u
h,T
min

− 1 ∈ (U−, U+)

where
u
h,T
min = inf

(t,x)∈[0,T ]×Rn
uh (t, x) .

Then

um+h−3 |∇u|2 (T, x)

≤ 2

∥

∥uh
0

∥

∥

∞ − uh (T, x)

mT (h− h−) (h− h+)U−1 (U − U−) (U+ − U)
.

This result, together with Corollary 3 shows that when m ∈
(

1− 1√
n−1

, 1 + 1√
n−1

)

,

a gradient bound only depending on the maximum of initial data can be estab-
lished. While when m is outside of this range, the gradient bound will depend
on the minimum of u as well. A similar phenomena has been shown in [33] ,
but only for m > 1. Nevertheless, the meaning behind this phenomena is not
clear to us yet, which is worthy of exploring.

We would like to mention that employing martingale theory to derive gra-
dient estimate is not new, and there is a large number of papers devoted to
the study of solutions of PDEs by using stochastic differential equations, for
example [25], [1] and literature therein for a small sample. On the other hand,
to the best of authors’ knowledge, there are few papers dealing with the kind of
nonlinear PDEs by using martingale methods.

The rest of the paper is organized as follows. In Section 2, we illustrate
our main idea by establishing the gradient estimate for solution to the heat
equation. In Section 3, we prove our local and global estimates.

2 Gradient estimate for solutions to the heat equa-

tion

To illustrate the main idea, let us consider the heat equation in this chapter.
Assume u solves

∂u

∂t
= ∆u on (0,∞)× Rn

u (x, 0) = u0 (x) on Rn. (11)

To avoid technical difficulties, we also assume u is smooth, bounded and has
bounded derivatives with respect to space variables up to the second order. It

10



is known that there is a close link between a large class of parabolic PDEs
and diffusion processes, in the sense that the differential operator for a PDE
can be identified as a generator for a diffusion process. Once this one-to-one
correspondence has been established, we are given a way to study a PDE through
its diffusion process counterpart, or the other way around. For example, the
solution to a PDE can be expressed in terms of the expectation of a diffusion
process at a certain time, the so-called path integration, and the transition
probability density function of a diffusion process is the kernel of a PDE. For a
more comprehensive account of this area, we refer to the book [28] by Stroock
and Varadhan. Here we also relates our PDE, (11), to a diffusion process in the
way that we have just explained. For a given point (T, x) ∈ (0,∞)×Rn, define
an n−dimensional stochastic process Xt by solving the stochastic differential
equation

dXα
t =

√
2dWα

t

Xα
0 = xα

where α ∈ {1, · · · , n} and W =
(

W 1, · · · ,Wn
)

is a standard n−dimensional
Brownian motion on the probability space (Ω,F ,P). Then we have a progres-
sively measurable function X from ((0,∞)× Ω,B ((0,∞))⊗F) to Rn. Bearing

in mind that the aim is to get an upper bound for |∇u|2 (T, x), let us consider

the process |∇u|2 (T − t,Xt) with index t ∈ [0, T ], that is, the gradient run-

ning backward on diffusion process X . The way we composite |∇u|2 with X is
commonly seen. In terms of computation, this will lead to the disappearance of
terms containing the time derivative when using Ito formula. Intuitively, this is
because on the one hand our diffusion process always starts at the deterministic
point that we are interested in and then evolves in a certain random way as
t increases, but on the other hand, due to the nature of parabolic PDEs, we
need to use the information about the solution before T . So we need the time
variable to decrease when t increases.

One can observe that |∇u|2 (T − t,Xt) is a semimartingale. Hence we are
encouraged to turn to the theory of martingales, a concept introduced by Paul
Lévy in 1930s and greatly developed by J.L Doob in his book [14]. First of all,

let us decompose the semimartingale
(

|∇u|2 (T − t,Xt)
)

0≤t≤T
into a sum of a

local martingale and a process with finite variation. From now on, when there is
no potential confusion, we omit the specification of variables in functions, as we
always consider functions running backward on diffusion X . Taking derivatives
with respect to xα on both sides of (11) yields

∂2u

∂t∂xα
= ∆

∂u

∂xα
. (12)

Since u is smooth by our assumption, we can apply Ito formula on ∂u
∂xα (T − t,Xt)

11



and obtain

d
∂u

∂xα
= − ∂2u

∂t∂xα
dt+∆

∂u

∂xα
dt+

√
2

∂2u

∂xα∂xβ
dW

β
t

=
√
2

∂2u

∂xα∂xβ
dW

β
t

where the last equality results from (12). Then, again by Ito formula,

d |∇u|2 = 2
∂u

∂xα
d
∂u

∂xα
+
∑

α

d

〈

∂u

∂xα

〉

= 2
√
2
∂u

∂xα

∂2u

∂xα∂xβ
dW

β
t + 2

n
∑

α,β=1

(

∂2u

∂xα∂xβ

)2

dt. (13)

This is the decomposition we are looking for. It can be seen that the finite varia-
tion term is non-negative, and the local martingale part is a true martingale un-

der P, a consequence of the boundedness of ∂u
∂xα and ∂2u

∂xα∂xβ , ∀α, β ∈ {1, · · · , n}.
This means that |∇u|2 (T − t,Xt) is a submartingale, which implies that

E
[

|∇u|2 (T − t,Xt)
]

≥ E
[

|∇u|2 (T,X0)
]

= |∇u|2 (T, x)

for any t ∈ [0, T ], where the equality results from the fact that X0 = x P−almost
surely. By integrating both sides on t from 0 to T , we have

ˆ T

0

E
[

|∇u|2 (T − t,Xt)
]

dt ≥ T |∇u|2 (T, x) . (14)

On the other hand, through a scaling argument, one can see that a bound on

|∇u|2 (T, x) involving T and ‖u‖∞ should have the order O
(

‖u‖2

∞

T

)

. Therefore,

let us consider the process u2 (T − t,Xt). By Ito formula,

u2 (0, XT )− u2 (T,X0) = 2
√
2

ˆ T

0

u
∂u

∂xα
dWα

t + 2

ˆ T

0

|∇u|2 dt. (15)

Since u and ∂u
∂xα , α ∈ {1, · · · , n}, are bounded by our assumption,

´ ·
0
u ∂u
∂xα dW

α
t

is a true martingale. Hence E
[

´ T

0
u ∂u
∂xα dW

α
t

]

= 0. It then follows from (15)

that

E
[

u2 (0, XT )
]

− u2 (T, x) = 2E

[

ˆ T

0

|∇u|2 dt
]

. (16)

By Fubini’s theorem, E
[

´ T

0
|∇u|2 dt

]

=
´ T

0
E
[

|∇u|2
]

dt. Therefore, (14) and

(16) together yields

|∇u|2 (T, x) ≤ E
[

u2 (0, XT )
]

− u2 (T, x)

2T
.

Since the law of XT is absolutely continuous with respect to Lebesgue mea-
sure, u2 (0, XT ) ≤ ‖u0‖2∞ P− almost surely, where ‖·‖∞ denotes the essential
supremum. Hence we have the following result.
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Theorem 6. If u solves the Cauchy problem (11) and u is smooth, bounded and
has bounded derivatives with respect to space variables up to the second order,
then for any (T, x) ∈ (0,∞)× Rn, we have

|∇u|2 (T, x) ≤ ‖u0‖2∞ − u2 (T, x)

2T
≤ ‖u0‖2∞

T
. (17)

We want to remark here that this method also applies to estimates of gradi-
ents of higher orders. To see this, first observe that by considering the function
ū (t, x) = u (t+ ǫ, x) where ǫ > 0 in the above argument, we get

|∇u|2 (T, x) ≤ ‖u (ǫ, ·)‖2∞
T − ǫ

.

Since ∂u
∂xi also satisfies the heat equation, it holds that

∣

∣

∣

∣

∇ ∂u

∂xi

∣

∣

∣

∣

2

(T, x) ≤
∥

∥

∂u
∂xi (ǫ, ·)

∥

∥

2

∞
T − ǫ

.

Summing over the index i yields

n
∑

i,j=1

∣

∣

∣

∣

∂2u

∂xi∂xj

∣

∣

∣

∣

2

(T, x) ≤

∥

∥

∥|∇u|2 (ǫ, ·)
∥

∥

∥

∞
T − ǫ

≤ ‖u0‖2∞
ǫ (T − ǫ)

,

where the last inequality results from (17). Then we can minimize the right
hand side by choosing ǫ = T

2 , hence obtaining

n
∑

i,j=1

∣

∣

∣

∣

∂2u

∂xi∂xj

∣

∣

∣

∣

2

(T, x) ≤ 4 ‖u0‖2∞
T 2

.

Remark. An approach based on the link between Backward Stochastic Dif-
ferential Equation (BSDE) and PDE to establish gradient estimates for positive
solutions to the heat equation of elliptic or subelliptic operators on Euclidean
spaces or on Riemannian manifolds is developed in [17].

3 Gradient estimate for positive solutions to PME

and FDE

3.1 Local gradient estimate

Now we move to the equation (1). In this section we study the problem on
a local scale. Denote by B (x0, R+ ǫ) a closed ball in Rn with center x0 and
radius R + ǫ, where R, ǫ > 0. Let u be a positive and bounded solution
to (1) on [0, t1] × B (x0, R+ ǫ). The positivity of u ensures that no degen-
eracy of parabolicity would happen in [0, t1] × B (x0, R+ ǫ). Hence we can
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use theory about non-degenerate quasilinear parabolic PDE to obtain that u is
smooth in [0, t1]×B (x0, R+ ǫ). Note that at this moment u is defined only on
[0, t1] × B (x0, R+ ǫ). This brings difficulty to our martingale method, as we
will consider u running backward on a stochastic process, which takes values
on the whole space Rn at any time. To get around this obstacle, let ũ be a
positive and smooth function with bounded derivatives of all orders defined on
[0, t1]× Rn, such that

u = ũ on [0, t1]×B (x0, R+ ǫ) .

Note that as u is strictly positive and smooth on the compact set [0, t1] ×
B (x0, R+ ǫ), such ũ exists. It is worthwhile to point out here that the behavior
of the extended function ũ outside [0, t1]×B (x0, R+ ǫ) will not enter into our
computation in the sequel, as Li-Yau’s localization technique will be adopted.
Next, we take a transformation on ũ by setting

f =
ũh

h
(18)

for some h ∈ R \ {0}. This is a generalization of the transform v = um−1

m−1 , which
repeatedly appears in literature concerning PME and FDE, such as [3], [23],
[10], [33] and [35]. From (1) one can derive that the so-called pressure variable
v satisfies

∂v

∂t
= m (m− 1) v∆v +m |∇v|2 . (19)

We can see that the exponent m in (1) comes down into coefficients in (19), and
both terms on the right hand side of (19) are quadratic, which facilitates many
computations. However, this feature is not crucial to our method. Hence we
attempt to generalize this transform with (18). It turns out that the flexibility
in choosing h results in an enlargement of the range of m that our gradient
bound is valid for.

As we are looking for a gradient bound on a local scale, we are keen to only
use the local information about f . For this purpose, we adopt the localiza-
tion technique of Li and Yau [22] to introduce a cut-off function φ ∈ C2 (Rn)
satisfying

φ (x) =

{

1 on B (x0, R)

0 on B (x0, R+ ǫ)
c
,

|∆φ| ≤ Lφ
1
2 (20)

and
|∇φ|2 ≤ Lφ

3
2 , (21)

for some L > 0. Note that such cut-off function exists. One possible choice is

φ (x) =















1 on B (x0, R)

0 on B (x0, R+ ǫ)
c

(

(

R+ǫ
R

)2 − 1
)−4 (

(

R+ǫ
R

)2 −
∣

∣

x−x0

R

∣

∣

2
)4

otherwise
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and

L =
8

ǫ2

(

nǫ

2R+ ǫ
+

8 (R+ ǫ)2

(2R+ ǫ)
2

)

.

Then function φf , the multiplication of functions φ and f , cuts all the informa-
tion of f outside [0, t1] × B (x0, R+ ǫ), while faithfully preserving its behavior
in [0, t1]×B (x0, R). Therefore, it is this function that we are going to consider
in the sequel.

3.1.1 From PDE to SDE

Just as the case of heat equation, let us begin by fixing a point (T, x) ∈ [0, t1]×
B (x0, R). From (1) and the definition of f , we have on [0, t1]× Rn,

∂φf

∂t
= m (hf)

m−1

h φ∆f +m (m− h) (hf)
m−h−1

h φ |∇f |2

= m (hf)
m−1

h ∆(φf)−m (hf)
m−1

h f∆φ

−2m (hf)
m−1

h ∇f · ∇φ+m (m− h) (hf)
m−h−1

h φ |∇f |2 . (22)

Then let us link PDE (22) with the diffusion process X = (Xt)0≤t≤T , whose
generator L is given by

Ltw (y) = m (hf)
m−1

h (T − t, y)∆w (y) , ∀w ∈ C2
0 (R

n) .

L corresponds to the principle part of the differential operator in (22). Note

that by the definition of f , (hf)
m−1

h ≥ 0 since u ≥ 0. By [28] the way to obtain
X is to solve the stochastic differential equation (SDE)

dXα
t =

√
2m (hf)

m−1

2h (T − t,Xt) dW
α
t

X0 = x

for t ∈ [0, T ], where W =
(

W 1, · · · ,Wn
)

is a standard n-dimensional Brownian
motion on a probability space (Ω,F ,P) and the stochastic integral is in Ito’s

sense. By our assumption on u, (hf)
m−1

2h is bounded, smooth and has bounded
derivatives. Therefore, by [19] this SDE has a unique strong solution on the
time interval [0, T ].

3.1.2 Fundamental decompositions

The next step is to consider various functions running backward on process
X . They are f (T − t,Xt), φ (Xt), |∇f |2 (T − t,Xt) and so on. In fact, we
will omit the specification of variables in functions, as all the functions below
are compositions on (T − t,Xt). t will always take values in [0, T ], which is
exactly the time interval where X lives. One can see that these processes are all
semimartingales, waiting for us to decompose and then releasing information.
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But unlike the heat equation, (22) is not linear, a consequence of the non-
linearity of (1). Therefore, we should be very careful in choosing semimartingales
for decomposition. To begin with, let us consider

Yt , (φf) (T − t,Xt) .

By Ito formula,

dYt =
√
2m (hf)

m−1

2h
∂ (fφ)

∂xα
dWα

t −m (m− h) (hf)
m−h−1

h φ |∇f |2 dt

+

(

∆φm (hf)
m−1

h f + 2m (hf)
m−1

h
∂f

∂xα

∂φ

∂xα

)

dt. (23)

It is readily seen that

YT = φf (0, XT ) = φ
uh
0

h
(XT ) . (24)

Observe that in the finite variation part of (23), the term with highest degree
in ∇f is

−m (m− h) (hf)
m−h−1

h φ |∇f |2 (T − t,Xt) dt.

This means that it can be controlled in terms of ‖u0‖∞ with the help of (23).
Therefore, it is this term that worth investigation. Define

Ht = (hf)
m−h−1

h φ |∇f |2 (T − t,Xt) , t ∈ [0, T ] .

The function (hf)
m−h−1

h φ |∇f |2 is smooth on [0, t1] × Rn. Its dynamic only
depends on the behavior of u within [0, t1]×B (x0, R+ ǫ), which is governed by
(1). Therefore, we can use Ito formula and decompose H into local martingale
part and finite variation part as follows.
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dHt = d

(

(hf)
m−h−1

h φ
∑

α

∣

∣

∣

∣

∂f

∂xα

∣

∣

∣

∣

2
)

= 2
√
2m (hf)

3m−2h−3

2h φ
∂2f

∂xα∂xβ

∂f

∂xα
dW

β
t

+
√
2m (m− h− 1) (hf)

3m−4h−3

2h φ |∇f |2 ∂f

∂xβ
dW

β
t

+
√
2m (hf)

3m−2h−3

2h
∂φ

∂xβ
|∇f |2 dW β

t

−m (2m− h+ 1) (m− h− 1) (hf)
2m−3h−2

h φ |∇f |4 dt

+2m (m− h− 1) (hf)
2m−2h−2

h
∂φ

∂xα

∂f

∂xα
|∇f |2 dt

+m (hf)
2m−h−2

h ∆φ |∇f |2 dt
−2m (m− 1) (hf)

2m−2−2h
h φ∆f |∇f |2 dt

−4m (hf)
2m−2h−2

h φ
∂f

∂xβ

∂2f

∂xβ∂xα

∂f

∂xα
dt

+4m (hf)
2m−2−h

h
∂φ

∂xβ

∂2f

∂xα∂xβ

∂f

∂xα
dt

+2m (hf)
2m−h−2

h φ
∑

α,β

(

∂2f

∂xα∂xβ

)2

dt. (25)

This is the decomposition under measure P for semimartingale H . But in or-
der to get more flexibility, we need to take advantage of an important tool in
stochastic analysis-the change of measure. Let us introduce a family of proba-
bility measures on (Ω,F) depending on a parameter λ ∈ R. Define a measure
Q on (Ω,F) by

dQ

dP

∣

∣

∣

∣

Ft

= exp

(
ˆ t

0

√
2mλ (hf)

m−2h−1

2h
∂f

∂xβ
dW β −mλ2

ˆ t

0

(hf)
m−2h−1

h |∇f |2 dt
)

.

(26)

Since (hf)
m−2h−1

2h ∂f
∂xβ = u

m−3

2
∂u
∂xβ , β ∈ {1, · · · , n} are bounded by our assump-

tion, Novikov’s condition [26] is met. So the right hand side of (26) is a true
martingale under P, which ensures that measure Q is well defined. According

to Girsanov’s theorem [19], under measure Q, the process W̃ =
(

W̃ 1, · · · , W̃n
)

given by

dW̃
β
t = dW

β
t −

√
2mλ (hf)

m−2h−1

2h
∂f

∂xβ
dt
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is an n−dimensional Brownian motion. So from (25), we easily get the decom-
position for H under measure Q, which is

dHt = 2
√
2m (hf)

3m−2h−3

2h φ
∂2f

∂xα∂xβ

∂f

∂xα
dW̃

β
t

+
√
2m (m− h− 1) (hf)

3m−4h−3

2h φ |∇f |2 ∂f

∂xβ
dW̃

β
t

+
√
2m (hf)

3m−2h−3

2h
∂φ

∂xβ
|∇f |2 dW̃ β

t

−m (2m− h+ 1− 2λ) (m− h− 1) (hf)
2m−3h−2

h φ |∇f |4 dt

+2m (m− h− 1 + λ) (hf)
2m−2h−2

h
∂φ

∂xα

∂f

∂xα
|∇f |2 dt

+m (hf)
2m−h−2

h ∆φ |∇f |2 dt
−2m (m− 1) (hf)

2m−2−2h
h φ∆f |∇f |2 dt

+4m (λ− 1) (hf)
2m−2h−2

h φ
∂2f

∂xα∂xβ

∂f

∂xα

∂f

∂xβ
dt

+4m (hf)
2m−2−h

h
∂φ

∂xβ

∂2f

∂xα∂xβ

∂f

∂xα
dt

+2m (hf)
2m−h−2

h φ
∑

α,β

(

∂2f

∂xα∂xβ

)2

dt. (27)

While from (23), it is easy to see that under measure Q,

dYt

=
√
2m (hf)

m−1

2h
∂ (fφ)

∂xα
dW̃α

t

+m (2λ−m+ h) (hf)
m−h−1

h φ |∇f |2 dt
+∆φmh−1 (hf)

m−1+h
h dt

+2m
(

1 + λh−1
)

(hf)
m−1

h
∂f

∂xα

∂φ

∂xα
dt. (28)

Now we have (28) and (27) at hand, which are the fundamental decompositions
we are looking for.

3.1.3 Gradient bound for solution u

In contrast to (13) which appears in the case of global estimate for the heat
equation, (27) is more complicated, thanks to the nonlinearity of PDE (1) and
the introduction of cut-off function φ. To make use of it, recall that we aim
to estimate the first order derivatives of f . Therefore, it is reasonable to get
rid off the second order derivatives of f appearing in the decomposition (27).
This is done in the following lemma. For simplicity, denote by AR,ǫ

x0
the annulus

B (x0, R+ ǫ) \B (x0, R).
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Lemma 7. H satisfies

dHt

≥ AtdW̃t

−1

2
mn (m− 1)

2
(hf)

2m−3h−2

h φ |∇f |4 dt

−m ((2m− h+ 1− 2λ) (m− h− 1) + 2 (λ− 1) (λ−m)) (hf)
2m−3h−2

h φ |∇f |4 dt

+2m (2m− h− λ) (hf)
2m−2h−2

h
∂φ

∂xα

∂f

∂xα
|∇f |2 dt

+m (hf)
2m−h−2

h ∆φ |∇f |2 dt
−2m (hf)

2m−2−h
h φ−1IAR,ǫ

x0

|∇φ|2 |∇f |2 dt (29)

where

A = 2
√
2m (hf)

3m−2h−3

2h φ
∂2f

∂xα∂xβ

∂f

∂xα

+
√
2m (m− h− 1) (hf)

3m−4h−3

2h φ |∇f |2 ∂f

∂xβ

+
√
2m (hf)

3m−2h−3

2h
∂φ

∂xβ
|∇f |2 . (30)

Proof. From (27), let us write

dHt , AtdW̃t + (B + C +D) dt

where

A = 2
√
2m (hf)

3m−2h−3

2h φ
∂2f

∂xα∂xβ

∂f

∂xα

+
√
2m (m− h− 1) (hf)

3m−4h−3

2h φ |∇f |2 ∂f

∂xβ

+
√
2m (hf)

3m−2h−3

2h
∂φ

∂xβ
|∇f |2
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and by Cauchy-Schwartz inequality,

B =
∑

α

(

2m (hf)
2m−h−2

h φ

(

∂2f

∂xα∂xα

)2

−2m (m− 1) (hf)
2m−2−2h

h φ
∂2f

∂xα∂xα
|∇f |2

+4m (λ− 1) (hf)
2m−2h−2

h φ
∂2f

∂xα∂xα

∂f

∂xα

∂f

∂xα

+4m (hf)
2m−2−h

h
∂φ

∂xα

∂2f

∂xα∂xα

∂f

∂xα

)

≥ −2m (hf)
2m−2−h

h φ−1IAR,ǫ
x0

∑

α

(

∂φ

∂xα

)2(
∂f

∂xα

)2

−2m (λ− 1)
2
(hf)

2m−3h−2

h φ
∑

α

(

∂f

∂xα

)4

−4m (λ− 1) (hf)
2m−2h−2

h

∑

α

∂φ

∂xα

(

∂f

∂xα

)3

+2m (m− 1) (hf)
2m−2−2h

h |∇f |2 ∂φ

∂xα

∂f

∂xα

+

(

λ− 1− 1

4
n (m− 1)

)

2m (m− 1) (hf)
2m−2−3h

h φ |∇f |4 ,

C =
∑

α6=β

(

2m (hf)
2m−h−2

h φ

(

∂2f

∂xα∂xβ

)2

+4m (λ− 1) (hf)
2m−2h−2

h φ
∂2f

∂xα∂xβ

∂f

∂xα

∂f

∂xβ

+4m (hf)
2m−2−h

h
∂φ

∂xβ

∂2f

∂xα∂xβ

∂f

∂xα

)

≥
∑

α6=β

(

−2m (λ− 1)2 (hf)
2m−3h−2

h φ

(

∂f

∂xα

∂f

∂xβ

)2

−2m (hf)
2m−2−h

h φ−1IAR,ǫ
x0

(

∂φ

∂xβ

∂f

∂xα

)2

−4m (λ− 1) (hf)
2m−2h−2

h
∂φ

∂xβ

∂f

∂xα

∂f

∂xα

∂f

∂xβ

)

and

D = −m (2m− h+ 1− 2λ) (m− h− 1) (hf)
2m−3h−2

h φ |∇f |4

+m (hf)
2m−h−2

h ∆φ |∇f |2

+2m (m− h− 1 + λ) (hf)
2m−2h−2

h
∂φ

∂xα

∂f

∂xα
|∇f |2 .
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Then adding these three inequalities gives us (29).

To deal with the finite variation part in (29), let us assume that

1

2
n (m− 1)

2
+ (2m− h+ 1− 2λ) (m− h− 1) + 2 (λ− 1) (λ−m) < 0. (31)

This allows us to get the following estimate.

Lemma 8. Under assumption (31), we have

EQ

[

ˆ T

0

Hsds

]

≥ H0T −
(

1

2
|2m− h− λ| l−3 +

3

2
l−1

)

mM1L
2T

2

2
(32)

where

l =
1
2n (m− 1)2 + (2m− h+ 1− 2λ) (m− h− 1) + 2 (λ− 1) (λ−m)

− 3
2 |2m− h− λ| − 3

2

(33)

and
M1 = sup

[0,T ]×AR,ǫ
x0

u2m+h−2 (t, y) .

Proof. By Cauchy-Schwartz inequality, for any positive l1, l2, l3 and l4,

∣

∣

∣

∣

(hf)
2m−2h−2

h
∂φ

∂xα

∂f

∂xα
|∇f |2

∣

∣

∣

∣

≤ 1

2
l1 (hf)

2m−3h−2

h φ |∇f |4 + 1

2
l−1
1 (hf)

2m−h−2

h φ−1 |∇φ|2 |∇f |2

≤ 1

2
l1 (hf)

2m−3h−2

h φ |∇f |4 + 1

4
l−1
1 l2 (hf)

2m−3h−2

h φ |∇f |4

+
1

4
l−1
1 l−1

2 (hf)
2m+h−2

h φ−3 |∇φ|4 ,

∣

∣

∣(hf)
2m−h−2

h φ−1 |∇φ|2 |∇f |2
∣

∣

∣

≤ 1

2
l3 (hf)

2m−3h−2

h φ |∇f |4 + 1

2
l−1
3 (hf)

2m+h−2

h φ−3 |∇φ|4

and
∣

∣

∣
(hf)

2m−h−2

h ∆φ |∇f |2
∣

∣

∣

≤ 1

2
l4 (hf)

2m−3h−2

h φ |∇f |4 + 1

2
l−1
4 (hf)

2m+h−2

h φ−1 |∆φ|2 .
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Plugging them into (29) in the above lemma yields

dHt

≥ AtdW̃t

−1

2
mn (m− 1)

2
(hf)

2m−3h−2

h φ |∇f |4 dt

−m ((2m− h+ 1− 2λ) (m− h− 1) + 2 (λ− 1) (λ−m)) (hf)
2m−3h−2

h φ |∇f |4 dt

−2m |2m− h− λ|
(

1

2
l1 +

1

4
l−1
1 l2

)

(hf)
2m−3h−2

h φ |∇f |4 dt

−ml3 (hf)
2m−3h−2

h φ |∇f |4 dt

−1

2
ml4 (hf)

2m−3h−2

h φ |∇f |4 dt

−1

2
ml−1

4 (hf)
2m+h−2

h φ−1 |∆φ|2 dt

−1

2
m |2m− h− λ| l−1

1 l−1
2 (hf)

2m+h−2

h φ−3 |∇φ|4 dt

−ml−1
3 (hf)

2m+h−2

h φ−3 |∇φ|4 dt.

For simplicity, set l21 = l2 = l23 = l24 = l2. Then we have

dHt

≥ AtdW̃t

−1

2
mn (m− 1)2 (hf)

2m−3h−2

h φ |∇f |4 dt

−m ((2m− h+ 1− 2λ) (m− h− 1) + 2 (λ− 1) (λ−m)) (hf)
2m−3h−2

h φ |∇f |4 dt

−3

2
m |2m− h− λ| l (hf)

2m−3h−2

h φ |∇f |4 dt

−3

2
ml (hf)

2m−3h−2

h φ |∇f |4 dt

−1

2
m
(

|2m− h− λ| l−3 + 2l−1
)

(hf)
2m+h−2

h φ−3 |∇φ|4 dt

−1

2
ml−1 (hf)

2m+h−2

h φ−1 |∆φ|2 dt.
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By estimates for the cut-off function φ in (20) and (21),

dHt

≥ AtdW̃t

−1

2
mn (m− 1)

2
(hf)

2m−3h−2

h φ |∇f |4 dt

−m ((2m− h+ 1− 2λ) (m− h− 1) + 2 (λ− 1) (λ−m)) (hf)
2m−3h−2

h φ |∇f |4 dt

−3

2
m |2m− h− λ| l (hf)

2m−3h−2

h φ |∇f |4 dt

−3

2
ml (hf)

2m−3h−2

h φ |∇f |4 dt

−1

2
m
(

|2m− h− λ| l−3 + 3l−1
)

(hf)
2m+h−2

h IAR,ǫ
x0

L2dt.

Now, by assumption (31), we can choose a positive l small enough such that

−1

2
mn (m− 1)

2 −m ((2m− h+ 1− 2λ) (m− h− 1) + 2 (λ− 1) (λ−m))

=

(

3

2
|2m− h− λ|+ 3

2

)

ml.

Hence we have for any t ∈ [0, T ],

dHt ≥ AtdW̃t −
(

1

2
|2m− h− λ| l−3 +

3

2
l−1

)

mM1L
2dt

where

M1 = sup
[0, T ]×AR,ǫ

x0

∣

∣

∣(hf)
2m+h−2

h (t, y)
∣

∣

∣ = sup
[0,T ]×AR,ǫ

x0

u2m+h−2 (t, y) .

This gives

Hs −H0 ≥
ˆ s

0

AtdW̃t −
(

1

2
|2m− h− λ| l−3 +

3

2
l−1

)

mM1L
2s (34)

for any s ∈ [0, T ]. According to our assumption on u, A, defined by (30), is
bounded. So

´ ·
0
AsdW̃s is a true martingale under Q. Therefore we can take

expectation on both sides of (34) and obtain

EQ [Hs] ≥ H0 −
(

1

2
|2m− h− λ| l−3 +

3

2
l−1

)

mM1L
2s. (35)

Integrating both sides with respect to s on [0, T ] yields (32).

On the other hand, by using (23), we have an upper bound on the left hand
side of (32).
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Lemma 9. Assume
2λ−m+ h > 0. (36)

Then for any ρ > 0 such that

2λ−m+ h− ρ
∣

∣1 + λh−1
∣

∣ > 0, (37)

we have

EQ

[

ˆ T

0

Htdt

]

≤ EQ [YT ]− Y0 +
(∣

∣h−1
∣

∣+ ρ−1
∣

∣1 + λh−1
∣

∣

)

mLM2T

m (2λ−m+ h− ρ |1 + λh−1|) (38)

with
M2 = sup

[0,T ]×AR,ǫ
x0

um+h−1 (t, y) .

Proof. Recall (28), which is the fundamental decomposition of Y under measure
Q. Then by property (20) of cut-off function φ and Cauchy-Schwartz inequality,
for any ρ > 0,

dYt

≥
√
2m (hf)

m−1

2h
∂ (fφ)

∂xα
dW̃α

t

+m (2λ−m+ h) (hf)
m−h−1

h φ |∇f |2 dt
−Lφ

1
2 IAR,ǫ

x0

m
∣

∣h−1
∣

∣ (hf)
m−1+h

h dt

−ρm
∣

∣1 + λh−1
∣

∣ (hf)
m−1−h

h φ |∇f |2 dt

−ρ−1m
∣

∣1 + λh−1
∣

∣ (hf)
m−1+h

h IAR,ǫ
x0

φ−1 |∇φ|2 dt

≥
√
2m (hf)

m−1

2h
∂ (fφ)

∂xα
dW̃α

t

+m
(

2λ−m+ h− ρ
∣

∣1 + λh−1
∣

∣

)

Htdt

−
(∣

∣h−1
∣

∣+ ρ−1
∣

∣1 + λh−1
∣

∣

)

mLM2dt (39)

where

M2 = sup
[0,T ]×AR,ǫ

x0

(hf)
m+h−1

h (t, y) = sup
[0,T ]×AR,ǫ

x0

um+h−1 (t, y) .

According to our assumption on u, (hf)
m−1

2h ∂(fφ)
∂xα , α ∈ {1, · · · , n} are all bounded,

which ensures that
´ ·
0
(hf)

m−1

2h ∂(fφ)
∂xα dW̃α

t is a Q martingale. Hence

EQ [YT−t1 ]− Y0

≥ m
(

2λ−m+ h− ρ
∣

∣1 + λh−1
∣

∣

)

EQ

[

ˆ T−t1

0

Htdt

]

−
(∣

∣h−1
∣

∣+ ρ−1
∣

∣1 + λh−1
∣

∣

)

mLM2 (T − t1) .

Dividing both sides by m
(

2λ−m+ h− ρ
∣

∣1 + λh−1
∣

∣

)

yields (38).
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Now, based on (32) and (38), we are ready to obtain a gradient bound for
u.

Proposition 10. Let the assumptions in Lemma 8 and Lemma 9 be satisfied,
then for any (T, x) ∈ (0, t1)×B (x0, R),

um+h−3 |∇u|2 (T, x)

≤ EQ
[

φuh
0 (XT )

]

− uh (T, x)

hm (2λ−m+ h− ρ |1 + λh−1|)T +

(∣

∣h−1
∣

∣ + ρ−1
∣

∣1 + λh−1
∣

∣

)

LM2

2λ−m+ h− ρ |1 + λh−1|

+

(

1

2
|2m− h− λ| l−3 +

3

2
l−1

)

mM1L
2T

2
. (40)

Proof. Combining (32) with (38), we have

H0

≤ EQ [YT ]− Y0 +
(∣

∣h−1
∣

∣+ ρ−1
∣

∣1 + λh−1
∣

∣

)

mLM2T

m (2λ−m+ h− ρ |1 + λh−1|)T

+

(

1

2
|2m− h− λ| l−3 +

3

2
l−1

)

mM1L
2T

2
.

Then we arrive at (40) by noting that

H0 = (hf)
m−h−1

h φ |∇f |2 (T, x) ,

Y0 = φf (T, x) = φ
uh

h
(T, x)

and

EQ [YT ] = EQ

[

φ
uh
0

h
(XT )

]

.

Let us revise the assumptions we have made, that is, (31) and (36). They
impose a restriction on the choice of m. Let us look at (31) first. It is equivalent
to

2λ2 − 2 (2m− h)λ+
1

2
n (m− 1)

2
+ (2m− h+ 1) (m− h− 1) + 2m < 0 (41)

To let the left hand side attain the minimum, we take λ = 2m−h
2 . Then (41) is

reduced to
h2 − 2mh+ n (m− 1)2 + 2 (m− 1) < 0. (42)

Notice that after setting λ = 2m−h
2 , condition (36) is automatically satisfied.

Moreover, (42) holds if and only if m ∈
(

1− 1√
n−1

, 1 + 1√
n−1

)

, and

h ∈
(

m−
√

1− (n− 1) (m− 1)2,m+

√

1− (n− 1) (m− 1)2
)

.

Then we arrive at Theorem 1 by substituting λ = 2m−h
2 into (37) and (33), and

noting that EQ
[

φuh
0 (XT )

]

≤
∥

∥IB(x0,R+ǫ)u
h
0

∥

∥

∞ .
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3.1.4 Gradient bound for pressure variable v = um−1

m−1

Since most of the existing results are in terms of |∇v|2
v

, we are tempted to work

out a bound on it with our method. Notice that |∇v|2
v

= (m− 1)um−3 |∇u|2,
which corresponds to the LHS of (7) in Theorem 1 when h = 0. However, the
RHS of (7) will explode when h → 0. Therefore, we can not use the result in
Theorem 1 directly.

Let us modify the estimate we obtained from the decomposition of Y , so that
the bound does not explode when h → 0. The idea is to decompose Yt − φ

h
(Xt)

instead of Yt. This is because

Yt −
φ

h
(Xt) = φ

uh − 1

h
→ φ log u,

which is finite.

Lemma 11. Assume
2λ−m+ h > 0. (43)

Then for any ρ > 0 such that

2λ−m+ h− ρ > 0, (44)

we have

EQ

[

ˆ T

0

Htdt

]

≤
EQ
[

YT − φ
h
(XT )

]

− Y0 +
φ
h
(x) + Lmρ−1M3T

m (2λ−m+ h− ρ)
(45)

where

M3 = sup
[0,T ]×AR,ǫ

x0

(

ρ

∣

∣

∣

∣

uh − 1

h

∣

∣

∣

∣

uh +

(

λ

(

uh − 1

h

)

+ uh

)2
)

um−h−1 (t, y) .

Proof. From (28),

d

(

Yt −
φ

h
(Xt)

)

=
√
2m (hf)

m−1

2h

(

φ
∂f

∂xα
+

(

f − 1

h

)

∂φ

∂xα

)

dW̃α
t

+m (2λ−m+ h) (hf)
m−h−1

h φ |∇f |2 dt

+∆φm

(

f − 1

h

)

(hf)
m−1

h dt

+2m

(

λ

(

f − 1

h

)

+ hf

)

(hf)
m−h−1

h
∂f

∂xα

∂φ

∂xα
dt. (46)
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Then by Cauchy-Schwartz inequality, for any ρ > 0,

d

(

Yt −
φ

h
(Xt)

)

≥
√
2m (hf)

m−1

2h

(

φ
∂f

∂xα
+

(

f − 1

h

)

∂φ

∂xα

)

dW̃α
t

+m (2λ−m+ h) (hf)
m−h−1

h φ |∇f |2 dt

−Lφ
1
2 IAR,ǫ

x0

m

∣

∣

∣

∣

f − 1

h

∣

∣

∣

∣

(hf)
m−1

h dt

−ρm (hf)
m−h−1

h φ |∇f |2 dt

−ρ−1m

(

λ

(

f − 1

h

)

+ hf

)2

(hf)
m−h−1

h IAR,ǫ
x0

φ−1 |∇φ|2 dt

≥
√
2m (hf)

m−1

2h

(

φ
∂f

∂xα
+

(

f − 1

h

)

∂φ

∂xα

)

dW̃α
t

+m (2λ−m+ h− ρ)Htdt

−Lmρ−1

(

ρ

∣

∣

∣

∣

f − 1

h

∣

∣

∣

∣

hf +

(

λ

(

f − 1

h

)

+ hf

)2
)

(hf)
m−h−1

h dt.

Let

M3 = sup
[0,T ]×AR,ǫ

x0

(

ρ

∣

∣

∣

∣

uh − 1

h

∣

∣

∣

∣

uh +

(

λ

(

uh − 1

h

)

+ uh

)2
)

um−h−1 (t, y) .

According to our assumption on u, (hf)
m−1

2h

(

φ ∂f
∂xα +

(

f − 1
h

)

∂φ
∂xα

)

, α ∈ {1, · · · , n}
are all bounded, which ensures that the local martingale part of Yt − φ

h
(Xt) is

a true Q martingale. Hence

EQ

[

YT − φ

h
(XT )

]

− Y0 +
φ

h
(x)

≥ m (2λ−m+ h− ρ)EQ

[

ˆ T

0

Htdt

]

− Lmρ−1M3T,

which completes the proof.

By combining (45) with (32) in the way as in the proof of Theorem 1 and
also taking λ = 2m−h

2 , we are able to get the following gradient bound.

Theorem 12. If u is a positive and bounded solution to (1) on (0, t1)×B (x0, R+ ǫ)

with m ∈
(

1− 1√
n−1

, 1 + 1√
n−1

)

, then for any

h ∈
(

m−
√

1− (n− 1) (m− 1)2,m+

√

1− (n− 1) (m− 1)2
)

,
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ρ ∈ (0,m), and (T, x) ∈ (0, t1)×B (x0, R), we have

um+h−3 |∇u|2 (T, x)

≤ EQ
[

φ
(

uh
0 − 1

)

(XT )
]

−
(

uh (T, x)− 1
)

hm (m− ρ)T

+
LM3

ρ (m− ρ)
+

(

1

4
|2m− h| l−3 +

3

2
l−1

)

mM1L
2T

2

where

l =
− 1

2n (m− 1)2 + (h− 1) (m− 1)− 1
2h

2 + h
3
4 |2m− h|+ 3

2

, M1 = sup
[0,T ]×AR,ǫ

x0

u2m+h−2,

M3 = sup
[0,T ]×AR,ǫ

x0

(

ρ

∣

∣

∣

∣

uh − 1

h

∣

∣

∣

∣

uh +

(

2m− h

2

(

uh − 1

h

)

+ uh

)2
)

um−h−1 (t, y) ,

and L is a constant depending on the cut-off function φ by (20) and (21).

By letting h → 0, we immediately get Corollary 2.

3.2 Global gradient estimate

In this section, we consider a positive and bounded solution u to (1) on (0,∞)×
Rn. First of all, as a direct consequence of the main result in the last section,
we can get a global gradient bound from the local bound by letting the radius
of the local ball tend to infinity.

3.2.1 From local bound to global bound

Since u is positive and bounded on (0,∞) × Rn, the local result in Theorem
1 holds for any t1, R and ǫ. By substituting ǫ = R into (7), and then taking
R → ∞ on both sides, we obtain

um+h−3 |∇u|2 (T, x) ≤ EQ
[

uh
0 (XT )

]

− uh (T, x)

Thm
(

m− ρ
∣

∣

2m+h
2h

∣

∣

)

where we have used the fact that when ǫ = R

lim
R→∞

L = lim
R→∞

8

R2

(

nR

2R+R
+

8 (2R)
2

(3R)
2

)

= 0 and lim
R→∞

φ = 1.

By letting ρ = 0, we have

um+h−3 |∇u|2 (T, x) ≤ EQ
[

uh
0 (XT )

]

− uh (T, x)

Thm2
. (47)
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Note that in the local case, due to the existence of l−1 in (7), h is not allowed
to touch the boundary of the open interval

(

m−
√

1− (n− 1) (m− 1)
2
,m+

√

1− (n− 1) (m− 1)
2

)

.

But now we can take limit of h to

m−
√

1− (n− 1) (m− 1)2 or m+

√

1− (n− 1) (m− 1)2

on both sides of (47). Since

EQ
[

uh
0 (XT )

]

= EQ
[

uh
0 (XT ) I{u0(XT )≥1}

]

+ EQ
[

uh
0 (XT ) I{u0(XT )<1}

]

,

we can apply monotone convergence theorem and bounded convergence theorem
on these two terms respectively. Therefore, (47) holds also for

h = m−
√

1− (n− 1) (m− 1)2 and h = m+

√

1− (n− 1) (m− 1)2.

Hence we obtained Corollary 3.
Note that when m = 1 in Corollary 3, h is allowed to approach to 0+. Since

u0 > 0, by Jensen’s inequality, it holds that

lim
h→0+

EQ
[

uh
0 (XT )

]

− uh (T, x)

Th
= lim

h→0+

EQ
[

uh
0 (XT )− 1

]

Th
− lim

h→0

uh (T, x)− 1

Th

=
EQ [log u0 (XT )]− log u (T, x)

T

=
EQ
[

log u0(XT )
u(T,x)

]

T

≤ 1

T
log

EQ [u0 (XT )]

u (T, x)

≤ 1

T
log

‖u0‖∞
u (T, x)

Therefore, by letting h → 0 in (8), we have Corollary 4.

3.2.2 Negative finite variation part

Now we proceed from fundamental decompositions in a different way in order
to get a global gradient bound valid for a wider class of m. From (29) and (28),
we have the global version of two fundamental decompositions.

dHt

≥ AtdW̃t

−1

2
mn (m− 1)

2
(hf)

2m−3h−2

h |∇f |4 dt (48)

−m ((2m− h+ 1− 2λ) (m− h− 1) + 2 (λ− 1) (λ−m)) (hf)
2m−3h−2

h |∇f |4 dt.
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dYt =
√
2m (hf)

m−1

2h
∂f

∂xα
dW̃α

t +m (2λ−m+ h) (hf)
m−h−1

h |∇f |2 dt. (49)

For simplicity, set

L1 = m ((2m− h+ 1− 2λ) (m− h− 1) + 2 (λ− 1) (λ−m)) +
1

2
mn (m− 1)

2
,

Then (49) becomes

dHt ≥ AtdW̃t − L1 (hf)
2m−3h−2

h |∇f |4 dt
= AtdW̃t − L1h

−1Y −1
t H2

t dt. (50)

Previously, in order to obtain the submartingale property of H , we always as-
sume L1 ≤ 0, resulting in a constraint on m. In this section, we consider the
situation when

L1 > 0.

Instead of deriving a gradient bound directly, we seek for an integral inequality
satisfied by the gradient bound as a function of t. The arguments are based on
the following estimate.

Lemma 13. H·e
´

·

0
L1h

−1Y −1
r Hrdr is a submartingale. Moreover,

m (2λ−m+ h)EQ

[

ˆ T

s

Ht

∣

∣

∣

∣

∣

Fs

]

= EQ [YT | Fs]− Ys. (51)

Now let us define
g (t) =

∥

∥Y −1
t Ht

∥

∥

∞ .

Lemma 14. Let u be a positive and bounded solution to (1) on (0,∞) × Rn.
Assume L1 ≥ 0 and 2λ−m+ h > 0. Then

g (s) ≤

∥

∥

∥EQ
[

YT

Ys

∣

∣

∣Fs

]

− 1
∥

∥

∥

∞

m (2λ−m+ h)
´ T

s
e−
´

t

s
L1h−1g(u)dudt

. (52)

Proof. Since
(

e
´

t

0
L1h

−1Y −1
r HrdrHt

)

t∈[0,T ]
is a submartingale by Lemma 13, for

any 0 ≤ s < t ≤ T

EQ
[

e
´

t

0
L1h

−1Y −1
r HrdrHt

∣

∣

∣Fs

]

≥ e
´

s

0
L1h

−1Y −1
r HrdrHs,

which implies

EQ
[

e
´

t

s
L1h

−1Y −1
r HrdrHt

∣

∣

∣Fs

]

≥ Hs.

Hence
EQ [Ht| Fs] ≥ e−

´

t

s
L1h

−1g(r)drHs.
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Then we have

EQ

[

ˆ T

s

Htdt

∣

∣

∣

∣

∣

Fs

]

≥ Hs

ˆ T

s

e−
´

t

s
L1h

−1g(r)drdt.

Together with (51), it follows that

m (2λ−m+ h)Hs

ˆ T

s

e−
´

t

s
L1h

−1g(r)drdt ≤ EQ [YT | Fs]− Ys

which leads to

g (s) ≤

∥

∥

∥EQ
[

YT

Ys

∣

∣

∣Fs

]

− 1
∥

∥

∥

∞

m (2λ−m+ h)
´ T

s
e−
´

t

s
L1h−1g(u)dudt

.

Let us solve this integral inequality. Set

G (s) =

ˆ T

s

e−
´

t

s
L1h

−1g(u)dudt.

Then

g (0) ≤
EQ
[

YT

Y0

]

− 1

m (2λ−m+ h)G (0)
, (53)

G (T ) = 0. Moreover, for any s ∈ (0, T )

G′ (s) = −1 + L1h
−1g (s)

ˆ T

s

e−
´

t

s
L1h

−1g(u)dudt

≤ −1 + L1h
−1

∥

∥

∥EQ
[

YT

Ys

∣

∣

∣Fs

]

− 1
∥

∥

∥

∞
m (2λ−m+ h)

.

As a consequence,

G (0) = G (T )−
ˆ T

0

G (s)
′
ds

≥ G (T ) +

ˆ T

0

m (2λ−m+ h)− L1h
−1
∥

∥

∥EQ
[

YT

Ys

∣

∣

∣Fs

]

− 1
∥

∥

∥

∞
m (2λ−m+ h)

ds

=
1

m (2λ−m+ h)

ˆ T

0

m (2λ−m+ h)− L1h
−1

∥

∥

∥

∥

EQ

[

YT

Ys

∣

∣

∣

∣

Fs

]

− 1

∥

∥

∥

∥

∞
ds.

This, together with (53) yields

g (0) ≤
EQ
[

YT

Y0

]

− 1

´ T

0 m (2λ−m+ h)− L1h−1
∥

∥

∥EQ

[

YT

Ys

∣

∣

∣Fs

]

− 1
∥

∥

∥

∞
ds
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as long as

ˆ T

0

m (2λ−m+ h)− L1h
−1

∥

∥

∥

∥

EQ

[

YT

Ys

∣

∣

∣

∣

Fs

]

− 1

∥

∥

∥

∥

∞
ds > 0.

This means

um+h−3 |∇u|2 (T, x) ≤ EQ
[

uh
0 (XT )

]

− uh (T, x)
´ T

0 mh (2λ−m+ h)− L1

∥

∥

∥EQ

[

uh
0
(XT )

uh(T−s,Xs)

∣

∣

∣Fs

]

− 1
∥

∥

∥

∞
ds

.

Define
u
h,T
min = inf

(t,x)∈[0,T ]×Rn
uh (t, x) .

It then follows that when

mh (2λ−m+ h)− L1

(
∥

∥uh
0

∥

∥

∞
u
h,T
min

− 1

)

> 0, (54)

we have

um+h−3 |∇u|2 (T, x) ≤
∥

∥uh
0

∥

∥

∞ − uh (T, x)

T

(

mh (2λ−m+ h)− L1

(

‖uh
0‖

∞

u
h,T

min

− 1

)) . (55)

To maximize mh (2λ−m+ h)−L1

(

‖uh
0‖

∞

u
h,T

min

− 1

)

, we should take λ = 2m−h
2 +

h
2

(

‖uh
0‖

∞

u
h,T

min

− 1

)−1

. Then (55) becomes

um+h−3 |∇u|2 (T, x)

≤
∥

∥uh
0

∥

∥

∞ − uh (T, x)

mT

(

mh+
(

mh−m+ 1− h2

2 − 1
2n (m− 1)2

)

(

‖uh
0‖

∞

u
h,T

min

− 1

)

+ h2

2

(

‖uh
0‖

∞

u
h,T

min

− 1

)−1
) ,

and the constraint (54) becomes

mh+

(

mh−m+ 1− h2

2
− 1

2
n (m− 1)2

)

(
∥

∥uh
0

∥

∥

∞
u
h,T
min

− 1

)

+
h2

2

(
∥

∥uh
0

∥

∥

∞
u
h,T
min

− 1

)−1

> 0.

By rewriting them in terms of U , U± and h±, we have Theorem 5.

References

[1] M. Arnaudon and A. Thalmaier. Li-Yau type gradient estimates and Har-
nack inequalities by stochastic analysis. Probabilistic approach to geometry,
29–48, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010.

32



[2] D. G. Aronson and L. A. Caffarelli. The initial trace of a solution of the
porous medium equation. Trans. Amer. Math. Soc. 280 (1983), no. 1, 351–
366.

[3] D. G. Aronson and P. Bénilan. Régularité des solutions de l’équation des
milieux poreux dans RN . C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no.
2, A103–A105.

[4] P. Bénilan and M. G. Crandall. The continuous dependence on ϕ of solu-
tions of ut−∆ϕ(u) = 0. Indiana Univ. Math. J. 30 (1981), no. 2, 161–177.

[5] P. Bénilan, M. G. Crandall and M. Pierre. Solutions of the porous medium
equation in RN under optimal conditions on initial values. Indiana Univ.
Math. J. 33 (1984), no. 1, 51–87.

[6] G. Bernard. Existence theorems for fast diffusion equations. Nonlinear
Anal. 43 (2001), no. 5, Ser. A: Theory Methods, 575–590.

[7] M. Bertsch and M. Ughi. Positivity properties of viscosity solutions of a
degenerate parabolic equation. Nonlinear Anal. 14 (1990), no. 7, 571–592.

[8] M. Bonforte and J. L. Vazquez. Global positivity estimates and Harnack
inequalities for the fast diffusion equation. J. Funct. Anal. 240 (2006), no.
2, 399–428.

[9] M. Bonforte and J. L. Vázquez. Positivity, local smoothing, and Harnack
inequalities for very fast diffusion equations. Adv. Math. 223 (2010), no. 2,
529–578.

[10] L. A. Caffarelli, J. L. Vázquez and N. I. Wolanski. Lipschitz continuity
of solutions and interfaces of the N -dimensional porous medium equation.
Indiana Univ. Math. J. 36 (1987), no. 2, 373–401.

[11] L. A. Caffarelli and A. Friedman. Regularity of the free boundary of a
gas flow in an n-dimensional porous medium. Indiana Univ. Math. J. 29

(1980), no. 3, 361–391.

[12] E. Chasseigne and J. L. Vazquez. Theory of extended solutions for fast-
diffusion equations in optimal classes of data. Radiation from singularities.
Arch. Ration. Mech. Anal. 164 (2002), no. 2, 133–187.

[13] B. E. J. Dahlberg and C. E. Kenig. Nonnegative solutions of generalized
porous medium equations. Rev. Mat. Iberoamericana 2 (1986), no. 3, 267–
305.

[14] J. L. Doob. Stochastic processes. John Wiley & Sons, Inc., New York;
Chapman & Hall, Limited, London, 1953.

[15] R. S. Hamilton. A matrix Harnack estimate for the heat equation. Comm.
Anal. Geom. 1 (1993), no. 1, 113–126.

33



[16] M. A. Herrero and M. Pierre. The Cauchy problem for ut = ∆um when
0 < m < 1. Trans. Amer. Math. Soc. 291 (1985), no. 1, 145–158.

[17] Y. Hu and Z. Qian. BMO Martingales and Positive Solutions of Heat Equa-
tions. Math. Control Relat. Fields. To appear.

[18] G. Huang, Z. Huang and H. Li. Gradient Estimates for the Porous Medium
Equations on Riemannian Manifolds. J. Geom. Anal. 23 (2013), no. 4,
1851–1875.

[19] I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus. Sec-
ond edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New
York, 1991.

[20] B. L. Kotschwar. Hamilton’s gradient estimate for the heat kernel on com-
plete manifolds. Proc. Amer. Math. Soc. 135 (2007), no. 9, 3013–3019.

[21] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva. Linear and
quasi-linear equations of parabolic type. Izdat. “Nauka”, Moscow 1967

[22] P. Li and S. T. Yau. On the parabolic kernel of the Schrödinger operator.
Acta Math. 156 (1986), no. 3–4, 153–201.

[23] P. Lu, L. Ni, J. L. Vázquez and C. Villani. Local Aronson-Bénilan estimates
and entropy formulae for porous medium and fast diffusion equations on
manifolds. J. Math. Pures Appl. (9) 91 (2009), no. 1, 1–19.

[24] L. Ma, L. Zhao and X. Song. Gradient estimate for the degenerate parabolic
equation ut = ∆F (u) +H(u) on manifolds. J. Differential Equations 244

(2008), no. 5, 1157–1177.

[25] J. Picard. Gradient estimates for some diffusion semigroups. Probab. Theory
Related Fields 122 (2002), no. 4, 593–612.

[26] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Third
edition. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999.

[27] P. Souplet and Q. S. Zhang. Sharp gradient estimate and Yau’s Liouville
theorem for the heat equation on noncompact manifolds. Bull. London
Math. Soc. 38 (2006), no. 6, 1045–1053.

[28] D. W. Stroock and S. R. S. Varadhan. Multidimensional diffusion processes.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], 233. Springer-Verlag, Berlin-New York, 1979.

[29] J. L. Vázquez. Smoothing and decay estimates for nonlinear parabolic equa-
tions of porous medium type. 2005.

34



[30] J. L. Vázquez. Symmetrization and mass comparison for degenerate nonlin-
ear parabolic and related elliptic equations. Adv. Nonlinear Stud. 5 (2005),
no. 1, 87–131.

[31] J. L. Vázquez. Smoothing and decay estimates for nonlinear diffusion equa-
tions. Equations of porous medium type. Oxford Lecture Series in Mathe-
matics and its Applications, 33. Oxford University Press, Oxford, 2006.

[32] J. L. Vázquez. The porous medium equation. Mathematical theory. Oxford
Mathematical Monographs. The Clarendon Press, Oxford University Press,
Oxford, 2007.

[33] X. Xu. Gradient estimates for ut = ∆F (u) on manifolds and some Liouville-
type theorems. J. Differential Equations 252 (2012), no. 2, 1403–1420.

[34] S. T. Yau. On the Harnack inequalities of partial differential equations.
Comm. Anal. Geom. 2 (1994), no. 3, 431–450.

[35] X. Zhu. Hamilton’s gradient estimates and Liouville theorems for fast diffu-
sion equations on noncompact Riemannian manifolds. Proc. Amer. Math.
Soc. 139 (2011), no. 5, 1637–1644.

[36] X. Zhu. Hamilton’s gradient estimates and Liouville theorems for porous
medium equations on noncompact Riemannian manifolds. J. Math. Anal.
Appl. 402 (2013), no. 1, 201–206.

35


