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Gradient estimates for porous medium and fast diffusion equations

via FBSDE approach

Ying Hu∗, Zhongmin Qian†and Zichen Zhang‡

June 6, 2012

Abstract

In this paper, we establish several gradient estimates for the positive solution of Porous
Medium Equations (PMEs) and Fast Diffusion Equations (FDEs). Our proof is probabilistic
and uses martingale techniques and Forward and Backward Stochastic Differential Equations
(FBSDEs).

1 Introduction

The Porous Medium Equation (PME) on R
n is

∂tu = ∆um, on (0,∞) ×R
n, (1.1)

where m > 1. It is a nonlinear version of heat equation arising in modelling fluid flow or heat
transfer in physics. Moreover, this equation is degenerate on u = 0, hence having finite speed of
propagation. On the other hand, when m ∈ (0, 1), (1.1) is called Fast Diffusion Equation (FDE).
It appears as diffusion in plasma in physics. We refer to [11] for a comprehensive study.

An important aspect in the study of (1.1) in connection with the existence / uniqueness problem
and the regularity problem is to establish a priori estimates, which is an interesting question by its
own. There is a large body of knowledge in this respect for the similar partial differential equations
in particular those linear equations, namely for linear heat equations or in general for parabolic
equations. For porous medium equations, usually only nonnegative solutions are considered for
both cases where m < 1 or m > 1, as this is natural from physical point of view.

To study positive solutions, mathematically a way of utilizing the non-negativity is to do the
transformation: v = m

m−1u
m−1. It is an analogy of the Hopf transformation for the heat equation

in the sense that

lim
m→1

(

v − m

m− 1

)

= log u .

It is easy to see that v evolves according to the following non-linear parabolic equation:

∂v

∂t
= (m− 1) v∆v + |∇v|2 . (1.2)
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It is this equation which can be used to derive various a priori estimates for the non-negative
solutions to (1.1).

The fact that the gradient term on the right-hand side of (1.2) is quadratic is useful for many
calculations. However, the diffusion coefficient in (1.2) is degenerate at v = 0. A standard way to
overcome this degeneracy is to consider strictly positive solutions which are bounded away from
zero at first, then use an approximation argument such as on page 200 in [11] to pass to the
non-negative solutions. Therefore, our result for nonnegative initial data should be understood
in distribution sense. From now on, however, in order to avoid such technical steps which have
been treated thoroughly in [11], by a positive solution to the porous medium equation we mean a
solution which is bounded below by a positive constant, whose initial data is Lipschitz continuous.
We on the other hand wish to emphasize that the a priori estimates we are going to establish in
this article are independent of the positive lower bound of a positive solution.

In [1], Aronson and Benilan established that if m > 1− 2
n , then for any positive smooth solution

u of (1.1),

∆v ≥ − α

(m− 1) t

with α = n(m−1)
(m−1)n+2 and v = m

m−1u
m−1, or equivalently

|∇v|2 − ∂v

∂t
≤ αv

t
. (1.3)

The proceeding a priori estimate plays a key role in the study of existence of initial value problem for
PME. A lot of work have been done to improve this result. Let us recall here some results which are
related to gradient estimates for positive solutions to (1.1). We apologize for any possible omissions
due to authors’ limited knowledge.

In [8] P. Lu, L. Ni, J. L. Vazquez and C. Villani established a local version of Aronson-Benilan’s
estimate for (1.1) where m > 1 − 2

n on a complete Riemannian manifold with Ricci curvature
bounded from below. Assume that Ric≥ − (n− 1)K2 on B (O, R) for some K ≥ 0, and u is a
positive smooth solution u to (1.1) on B (O, R)× [0, T ] (B (O, R) denotes the ball of radius R > 0
with centre O). If m > 1 and β > 1, they proved that

|∇v|2 − βvt ≤ αβ2

(

1

t
+C2K

2vR,T
max

)

v + αβ2 v
R,T
max

R2
C1v

on B
(

O, R2
)

× [0, T ], with

C1 = 40 (m− 1) [3 + (n− 1) (1 +KR)] +
200αβ2m2

β − 1

and C2 =
(m−1)(n−1)

β−1 , where vR,T
max = maxB(O,R)×[0,T ] v. They also established that, if m ∈

(

1− 2
n , 1
)

and γ ∈ (0, 1),

|∇v|2 − γvt ≤
αγ2

C3

(

1

t
+ C4

√

C3K
2v̄R,T

max

)

v +
αγ2

C3

v̄
R,T
max

R2
C5v
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on B
(

O, R2
)

× [0, T ], where

C3 = 1− α (1− γ)− (1− γ)
(1− α+ ǫ1)

2

(1− γ)− α− (1− γ) ǫ22
,

C4 =
(m− 1) (n− 1)

(γ − 1) ǫ2
,

C5 = 1600m2 αγ2

2ǫ1 (γ − 1)
+ 40 (1−m) [3 + (n− 1) (1 +KR)]

and v̄
R,T
max = maxB(O,R)×[0,T ] (−v), and ǫ1 and ǫ2 are positive constants such that

1− γ − α− (1− γ) ǫ22 > 0,

1− α (1− γ)− (1− γ)
(1− α+ ǫ1)

2

1− γ − α− (1− γ) ǫ22
> 0.

On the other hand, some gradient bounds of Hamilton type have been established by various
authors in recent years. This is kind of estimates on the space derivatives of the solution. In L. A.
Caffarelli, J. L. Vazquez and N. I. Wolanski [4], the problem of (1.1) with a compactly supported
initial data has been studied thoroughly. Among of other interesting results, they proved that for
m > 1, there exist a time T = T (u0) > 0 and a constant c = c (m,n) > 0 such that for any t > T

and almost everywhere x ∈ R
n

|∇v (x, t)| ≤ c

(

(v

t

)
1

2

+
|x|
t

)

if u0 ≥ 0 is integrable with a compact support. In a recent paper [12] by X. Xu, positive solutions

of (1.1) on a complete Riemannian manifold have been considered, where m ∈
(

1− 4
n+3 ,∞

)

and

the Ricci curvature is bounded below: Ric≥ −k for some k ≥ 0. In particular, it was proved in [12]

that if m > 1 and if there exists a constant δ ∈
(

0, 4
n−1

]

such that

1 ≤ v
R,T
max

v
R,T
min

<
1

1 + δ

(

4m

(n− 1) (m− 1)
+ 1

)

then

|∇v|
v
R,T
max (1 + δ) − v

≤ C (n,m)





1 + δ

ρδR
+

1
√

m−1
m v

R,T
maxδρT

+

√

k

δ





on B
(

x0,
R
2

)

×
[

t0 − T
2 , t0

]

, where

ρ = 2m− (n− 1) (m− 1)

2

v
R,T
max (1 + δ)− v

R,T
min

v
R,T
min

,

v
R,T
max = supB(x0,R)×[t0−T,t0] v and v

R,T
min = infB(x0,R)×[t0−T,t0] v. In particular, if n = 1

|∇v|
v
R,T
max (1 + δ) − v

≤ C (m)





1 + δ

δR
+

1
√

m−1
m v

R,T
maxδT




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on B
(

x0,
R
2

)

×
[

t0 − T
2 , t0

]

for any δ > 0. On the other hand, for m ∈
(

1− 4
n+3 , 1

)

, it was also

proved in [12] that

|∇v|
−v

≤ C (m,n)





1

R
+

1
√

1−m
m v̄

R,T
minT

+
√
k





on B
(

x0,
R
2

)

×
[

t0 − T
2 , t0

]

, where v̄R,T
min = infB(x0,R)×[t0−T,t0] (−v). In X. Zhu [13], the author proved

a similar result for positive solution of (1.1) for m ∈
(

1− 2
n , 1
)

which reads as the following

|∇v|√
−v

≤ C
(

m,n, v̄R,T
max

)

√

v̄
R,T
max

(

1

R
+

1√
T

+
√
k

)

on B
(

x0,
R
2

)

×
[

t0 − T
2 , t0

]

, where v̄
R,T
max = supB(x0,R)×[t0−T,t0] (−v).

In this paper, by using a connection of a solution and its gradient to a backward stochastic
differential equation, we derive global estimates with explicit constants for the gradients of a positive
solution to the porous medium equation. Our estimates, in contrast with the preceding estimates,
involve only the supremum norm of the initial data rather than the norm over the solution over
whole evolving time interval [0, T ], furthermore the constants appearing in our a priori estimate are
explicit and are close to optimal. Our method uses some martingale methods and the link between
PDE and BSDE borrowing some idea from the paper [6].

Theorem 1.1 Let u > 0 be a positive solution to the porous medium equation (1.1).
1) If m ∈ (1, 1 + 2

n), then

|∇u
3

2
(m−1)(t, ·)| ≤ 3||um−1

0 − 1||2∞√
2mt

1√
t
, ∀t > 0 . (1.4)

2) If n = 1 and m > 1, then

|∇um−1(t, ·)| ≤

√

2(m− 1)||um−1
0 − 1||∞

m

1√
t
, ∀t > 0. (1.5)

3) If 1− 6
n+8 ≤ m < 1, then

|∇u1−m(t, ·)| ≤
√
2||u1−m

0 − 1||∞
√

||u1−m
0 − 1||∞ + 1

√
m

1√
t
, ∀t > 0. (1.6)

4) If m ∈ (n−1
n+3 , 1), then

|∇ log u(t, ·)| ≤
2
√

m
1−m ||u1−m

0 − 1||∞

m2

√

∣

∣

∣
2m− 4−

√
2

m β2

∣

∣

∣

1√
t
, ∀t > 0 (1.7)

where β2 is given in equation (4.21).

This paper is organized as follows: in the next section, we introduce the PME, SDE and BSDE
and their link. In section 3, we use martingale method to state the main result on gradient estimate
when m > 1. The last section is devoted to the gradient estimate when 0 < m < 1.
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2 Fundamental equations and FBSDE

Consider a positive solution u to the porous medium equation (1.1). We will use the following
transformation:

f =
m

m− 1
(um−1 − 1)

in the case that m > 1. Since

f =
m

m− 1
(um−1 − u0) → log u as m ↓ 1,

the transformation coincides with the Hopf transformation for the linear heat equation, though in
the case that m ∈ (0, 1) we will use a slightly different transformation, see (2.5) below. Then

(m− 1)f +m = mum−1 > 0 ,

a fact will be used throughout the paper.
It is easy to verify that f satisfies equations:

∇f = mum−2∇u, |∇f |2 = m2u2m−4|∇u|2, (2.1)

∆f =
m

m− 1
∆(um)

m−1

m

= (um)
m−1

m
−1∆um − 1

m
m2u−m−1u2m−2|∇u|2

= u−1∆um − 1

m
u−m+1|∇f |2 (2.2)

and
∂

∂t
f = mum−2 ∂

∂t
u . (2.3)

Hence

∆f = u−m+1 1

m
∂tf − 1

m
u−m+1|∇f |2

that is
∂

∂t
f = ((m− 1)f +m)∆f + |∇f |2. (2.4)

If m ∈ (0, 1), then we use a slight different transformation

f =
m

1−m
(u1−m − 1). (2.5)

Then f is a solution to

∂

∂t
f =

m2

(1−m)f +m
∆f +

m2(2m− 1)

((1−m)f +m)2
|∇f |2. (2.6)

The link between Partial Differential Equation (PDE) and Backward Stochastic Differential
Equation (BSDE) is by now well known, see, e.g. [10], [9], [2]. In this section, we introduce the
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SDE and BSDE associated with PME (1.1) and recall this link in our framework. Throughout this
paper, we suppose that u is a bounded smooth solution to (1.1).

Given T > 0. We start with the PDE (2.4), and write down a Forward-Backward Stochastic
Differential Equation (FBSDE) for this PDE. Let (Ω,F , P ) be a complete probability space, and
W be an n-dimensional Brownian motion on it. And let {Ft} be the natural augmented filtration
of W .

Let X = (Xt) be the diffusion process defined to be the unique (strong) solution flow of the
following stochastic differential equation (SDE)

dX =
√

2((m − 1)f(T − t,X) +m) ◦ dW , X0 = x (2.7)

where ◦dW denotes the Stratonovich differentiation, which may be written in terms of Itô integral:

dX =
√

2((m− 1)f(T − t,X) +m)dW +
m− 1

2
∇f(T − t,X)dt . (2.8)

Let Y = f(T −·,X), U = 2((m−1)Y +m), Zi =
√
U ∂f

∂xi (T −·,X) and Z = (Zi) =
√
U∇f(T −

·,X). Then

dX =
√
UdW +

m− 1

2
√
U

Zdt, X0 = x . (2.9)

Itô’s formula applying to f(T − t,Xt) yields

YT − Yt =

∫ T

t
ZdW +

∫ T

t

m− 3

2

|Z|2
U

ds,

that is

dY = ZdW +
m− 3

2

|Z|2
U

dt, YT = f(0,XT ). (2.10)

The coupled system (2.9) and (2.10) form a system of FBSDEs.
Next, let us recall the representation of Z by the stochastic flow of Y .
Let J i

j =
∂

∂xjX
i be the Jacobi matrix, its inverse Ki

j . Let Y
i = ∂

∂xiY and Zi
j =

∂
∂xjZ

i. We will
use the following relation

Y i =
∂

∂xi
Y =

∂

∂Xk
f(T − t,X)Jk

i =
1√
U
ZkJk

i

so that Zi =
√
UY lK l

i , here and thereafter the Einstein convention is enforced, that is, repeated
indices are summed up within their range.

Finally, we are in a position to write down the stochastic differential for Z from this repre-
sentation. The following computation involving the tangent process is standard, see for detail K.
Elworthy [5], N. Ikeda and S. Watanabe [7].

Differentiating the SDE for X (forward equation) to obtain the SDE for J :

dJ i
j =

(m− 1)Y j

√
U

dW i − (m− 1)2

2U3/2
Y jZidt

+
m− 1

2
√
U

Zi
jdt .

6



We then derive the equation for K by using KJ = JK = I, which is given by

dKi
j = −m− 1

U
ZjKi

kdW
k − m− 1

2
√
U

Ki
kK

l
jZ

k
l dt

+
3(m− 1)2

2U2
Ki

kZ
kZjdt . (2.11)

Differentiating the backward equation we obtain a SDE for Y i:

dY i = Zk
i dW

k +
(m− 3)ZkZk

i

U
dt− (m− 3)(m− 1)

U2
|Z|2Y idt . (2.12)

Thus, using (2.11) and (2.12), together with integration by parts finally in a position to write down
the equation for Z, which takes the following form:

dZi =
√
UK l

iZ
k
l

(

dW k +
(3m− 7)

2

Zk

U
dt

)

−(m− 3)(m− 1)

2

Zi|Z|2
U2

dt

−m− 1√
U

ZiK l
kZ

k
l dt. (2.13)

3 Porous Medium Equations

In this section we develop explicit estimates for the derivative of a positive solution u to the porous
equation (1.1), where m > 1, and f = m

m−1(u
m−1 − 1).

3.1 Gradient Estimates

The first ingredient of our approach is a Girsanov transformation of probability. In order to have
some flexibility, we introduce a family of change of probability depending on a parameter ε.

Lemma 3.1
Z
U ·W is a BMO martingale.

Making change of probability and define

dW̃ k = dW k − ε
Zk

U
dt. (3.1)

Then (2.13) and (2.10) can be rewritten as

dZi =
√
UK l

iZ
k
l dW̃

k − (m− 3)(m− 1)

2

Zi|Z|2
U2

dt

+
(3m− 7 + 2ε)

2
K l

iZ
k
l

Zk

√
U
dt− m− 1√

U
ZiK l

kZ
k
l dt (3.2)

and

dY = ZkdW̃ k +
m− 3 + 2ε

2

|Z|2
U

dt. (3.3)

According to [6], we work out Doob-Meyer’s decomposition for |Z|2 under the probability Q,
and identify conditions under which |Z|2 is a Q-submartingale.
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Lemma 3.2 Let θk =
∑

l K
l
kZ

k
l , and δ = 3m− 7 + 2ε. Then

d|Z|2 = 2
√
UZiK l

iZ
k
l dW̃

k

+

[

(n+ 3− (n+ 1)m)(m − 1) + (m− 1)δ − δ2

4

] |Z|4
U2

dt+A, (3.4)

where

A = U
∑

i 6=k

∣

∣

∣

∣

∣

∑

l

K l
iZ

k
l +

δ

2U3/2
ZiZk

∣

∣

∣

∣

∣

2

+U

∣

∣

∣

∣

θk −
1

2U3/2

(

δ|Zk|2 − 2(m− 1)|Z|2
)

∣

∣

∣

∣

2

. (3.5)

Proof. By (3.2) and integration by parts we obtain

d|Z|2 = 2
√
UZiK l

iZ
k
l dW̃

k + (3−m)(m− 1)
|Z|4
U2

dt

+U

n
∑

k=1

[

θk

U3/2

(

δ|Zk|2 − 2(m− 1)|Z|2
)

+ |θk|2
]

dt

+U
∑

i 6=k





∣

∣

∣

∣

∣

∑

l

K l
iZ

k
l

∣

∣

∣

∣

∣

2

+
δ

U3/2
ZiZkK l

iZ
k
l



 dt. (3.6)

While

θk

U3/2

(

δ|Zk|2 − 2(m− 1)|Z|2
)

+ |θk|2

=

∣

∣

∣

∣

θk −
1

2U3/2

(

δ|Zk|2 − 2(m− 1)|Z|2
)

∣

∣

∣

∣

2

− δ2

4U3
|Zk|4 + (m− 1)δ|Zk|2 |Z|2

U3
− |Z|4

U3
(m− 1)2

and the last term on the right-hand side of (3.6) can be handled as the following

∑

i 6=k





∣

∣

∣

∣

∣

∑

l

K l
iZ

k
l

∣

∣

∣

∣

∣

2

+
δ

U3/2
ZiZk

∑

l

K l
iZ

k
l





=
∑

i 6=k

∣

∣

∣

∣

∣

∑

l

K l
iZ

k
l +

δ

2U3/2
ZiZk

∣

∣

∣

∣

∣

2

− δ2

4U3

∑

i 6=k

|Zi|2|Zk|2

so that (3.6) yields (3.4).

Lemma 3.3 Let us suppose m ≤ 1 + 2
n and choose δ = 2(m − 1). Then |Z|2 becomes a Q-

submartingale.
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Proof. Choosing δ = 2(m− 1) in (3.4), we deduce that

d|Z|2 ≥ 2
√
UZiK l

iZ
k
l dW̃

k + (n+ 2− nm)(m− 1)
|Z|4
U2

dt, (3.7)

from which we deduce the result.
Finally from the BSDE (3.3) satisfied by (Y,Z) under Q and Lemma 2.2 in [3],

EQ[

∫ T

0
|Z|2dt] ≤ 4||f0||2∞.

This together with the fact that |Z|2 is a Q-submartingale gives us the main result of this section.

Theorem 3.4 Suppose m ≤ 1 + 2
n . Then

((m− 1)f(T, x) +m)|∇f(T, x)|2 ≤ 2||f0||2∞
T

(3.8)

which is equivalent to (1.4).

Proof. Since

EQ[

∫ T

0
|Z|2dt] ≤ 4||f0||2∞

and |Z|2 is a Q-submartingale, we deduce that

T |Z0|2 ≤ 4||f0||2∞
which yields (3.8).

3.2 One-dimensional case

In Theorem 3.4, we have given an estimate on ((m−1)f+m)|∇f |2. The objective of this subsection
is to try to obtain an estimate on |∇f |2. The idea comes from the observation that from BSDE
(3.3),

∣

∣

∣

∣

m− 3 + 2ε

2

∣

∣

∣

∣

EQ

[∫ T

0

|Z|2
U

dt

]

≤ 2||f0||∞ .

Hence it is sufficient to give some condition under which M = |Z|2
U is a Q-submartingale.

Lemma 3.5 Let M = |Z|2
U and β = 2ε− 3−m. Then

dM =

(

2√
U
ZiK l

iZ
k
l − 2(m− 1)U−2|Z|2Zk

)

dW̃ k

+
(

(m− 1)2(1− n)− β2
) |Z|4
U3

dt+B, (3.9)

where

B =

n
∑

k=1

∣

∣

∣

∣

θk +
β|Zk|2 − 2(m− 1)|Z|2

2U3/2

∣

∣

∣

∣

2

+
∑

i 6=k

∣

∣

∣

∣

∣

∑

l

K l
iZ

k
l +

β

2U3/2
ZiZk

∣

∣

∣

∣

∣

2

. (3.10)

9



Proof. Recall that, by (3.6),

d|Z|2 = 2
√
UZiK l

iZ
k
l dW̃

k + (3−m)(m− 1)
|Z|4
U2

dt

+U

n
∑

k=1

[

θk

U3/2

(

(3m− 7 + 2ε) |Zk|2 − 2(m− 1)|Z|2
)

+ |θk|2
]

dt

+U
∑

i 6=k





∣

∣

∣

∣

∣

∑

l

K l
iZ

k
l

∣

∣

∣

∣

∣

2

+
(3m− 7 + 2ε)

U3/2
ZiZkK l

iZ
k
l



 dt, (3.11)

where θk =
∑

l K
l
kZ

k
l , U = 2(m− 1)Y + 2m, and

dY = ZkdW̃ k +
m− 3 + 2ε

2

|Z|2
U

dt. (3.12)

According to Itô’s formula

d
1

U
= d [2(m− 1)Y + 2m]−1

= −2(m− 1)U−2ZkdW̃ k − (1 + 2ε− 3m) (m− 1)
|Z|2
U3

dt,

so that, integrating by parts we obtain

dM =
2√
U
ZiK l

iZ
k
l dW̃

k − 2(m− 1)U−2|Z|2ZkdW̃ k

+2(m+ 1− ε)(m− 1)
|Z|4
U3

dt

+

n
∑

k=1

[

(

β|Zk|2 − 2(m− 1)|Z|2
) θk

U3/2
+ |θk|2

]

dt

+
∑

i 6=k





∣

∣

∣

∣

∣

∑

l

K l
iZ

k
l

∣

∣

∣

∣

∣

2

+
β

U3/2
ZiZk

∑

l

K l
iZ

k
l



 dt. (3.13)

By using the elementary equalities

∑

i 6=k





∣

∣

∣

∣

∣

∑

l

K l
iZ

k
l

∣

∣

∣

∣

∣

2

+
β

U3/2
ZiZk

∑

l

K l
iZ

k
l





=
∑

i 6=k

∣

∣

∣

∣

∣

∑

l

K l
iZ

k
l +

β

2U3/2
ZiZk

∣

∣

∣

∣

∣

2

− β2

4

1

U3

∑

i 6=k

|Zi|2|Zk|2

10



and

n
∑

k=1

[

(

β|Zk|2 − 2(m− 1)|Z|2
) θk

U3/2
+ |θk|2

]

=
n
∑

k=1

∣

∣

∣

∣

θk +
β|Zk|2 − 2(m− 1)|Z|2

2U3/2

∣

∣

∣

∣

2

− β2

4U3

n
∑

k=1

|Zk|4 + (m− 1) (β − nm+ n)
|Z|4
U3

.

Thus (3.9) follows from (3.13).
It is trivial to see that if n = 1 and β = 0, then M is a Q-submartingale.

Lemma 3.6 If n = 1, and ε = 3+m
2 , then M is a Q-submartingale.

Theorem 3.7 If n = 1 and m > 1, then

|∇f(T, x)|2 ≤ 2||f0||∞
mT

which is equivalent to (1.5).

Proof. From BSDE (3.3) for (Y,Z), we know that

mEQ[

∫ T

0
Mtdt] ≤ 2||f0||∞,

from which we deduce

|∇f(T, x)|2 ≤ 2||f0||∞
mT

.

4 Fast diffusion Equations

4.1 Forward-Backward Systems

If 0 < m < 1 and u is a positive solution to ∂tu = ∆um we use a different change of variable
f = m

1−m (u1−m − 1). Note that

f =
m

1−m
(u1−m − u0) → log u as m ↑ 1.

Then

∂tf =
m2

(1−m)f +m
∆f +

m2(2m− 1)

((1−m)f +m)2
|∇f |2. (4.1)

As in Section 2, we first derive a coupled system of FBSDEs for this PDE. Run a diffusion X

with generator L = m2

(1−m)f+m∆. Consider the following diffusion

dX = m
√
2 ((1−m)f(T − ·,X) +m)−

1

2 ◦ dW , X0 = x. (4.2)

11



Let Y = f(T − ·,X),

U = (1−m)f(T − ·,X) +m and Z =
m
√
2√

U
∇f(T − ·,X) . (4.3)

Then, we may rewrite the SDE (4.2) as the following (in Itô’s integral)

dX =
m
√
2√

U
dW −

√
2m(1−m)

4

Z

U
3

2

dt . (4.4)

For simplicity, let J i
j =

∂
∂xjX

i, Ki
j is the inverse of J . Let Yj =

∂
∂xj Y,Uj =

∂
∂xjU , Zα

j = ∂
∂xjZ

α.
Then

Uj = (1−m)
n
∑

i=1

J i
j

∂f

∂xi
(T − ·,X) = (1−m)Yj (4.5)

and

Yj =

n
∑

i=1

∂

∂Xi
f(T − t,X)J i

j =

√
U√
2m

ZiJ i
j . (4.6)

Therefore
Zi =

√
2mU− 1

2YjK
j
i . (4.7)

As Z = m
√
2√

U
∇f(T − ·,X),we have

|∇f |2(T − ·,X) =
1

2m2
U |Z|2.

By Itô’s formula to f(T − ·,X),

dY = Z.dW − (3m− 1)

4

|Z|2
U

dt . (4.8)

(4.4) and (4.8) form a coupled system of FBSDEs. Now differentiating in the initial data we
deduce that

dYj = Zi
jdW

i − (3m− 1)

2
Zi
j

Zi

U
dt+

(3m− 1)(1 −m)

4

|Z|2Yj

U2
dt . (4.9)

On the other hand, differentiating X in the initial data in the stochastic differential equation (4.4)
we obtain

dJ i
j = −(1−m)

2

Za

U
Ja
j dW

i +
3

2

(1−m)2

4

ZiZa

U2
Ja
j dt−

√
2m(1−m)

4

Zi
j

U
3

2

dt . (4.10)

It follows that, by using KJ = I, to obtain

dKi
j =

(1−m)

2

Ki
kZ

j

U
dW k +

√
2m(1−m)

4

Ki
cK

k
j Z

c
k

U
3

2

dt− 1

2

(1−m)2

4

Ki
kZ

kZj

U2
dt. (4.11)

We then can derive the stochastic differential equation for Zi. Indeed by integrating by parts the
following relation Zi =

√
2mU− 1

2YjK
j
i , we deduce

1√
2m

dZi =

∑

l K
l
iZ

k
l√

U
dW k − 3(3m− 1)(m − 1)

8

YjK
j
i√

UU

|Zk|2
U

dt

−5m− 1

4

Kc
iZ

k
c Z

k

U
√
U

dt− m− 1

2

Zk
j K

j
kZ

i

U
√
U

dt. (4.12)

12



4.2 Gradient Estimates

We are now in a position to establish the following

Theorem 4.1 If 1− 6
n+8 ≤ m ≤ 1, then

|∇f(T, x)| ≤
√
2||f0||∞

√

(1−m)||f0||∞ +m

m
√
T

(4.13)

which yields (1.6).

From (4.12), we have

d|Z|2 = 2
√
2m

K
j
i Z

k
j Z

i

√
U

dW k +
3

4
(3m− 1)(1 −m)

|Z|4
U2

dt

−
√
2(5m− 1)m

2

K
j
i Z

k
j Z

iZk

U
√
U

dt+
√
2(1−m)m

Zk
j K

j
k|Z|2

U
√
U

dt

+2m2
∑

k

∣

∣

∣

∣

∣

K
j
i Z

k
j√

U

∣

∣

∣

∣

∣

2

dt. (4.14)

Let us return to the equation for Y , which may be written as

dY =
∑

k

Zk

(

dW k − ε
Zk

U
dt

)

− (
3m− 1

4
− ε)

|Z|2
U

dt. (4.15)

Hence we first define a new probability such that

dW̃ k = dW k − ε
Zk

U
dt

is a Brownian motion. Then

d|Z|2 = 2
√
2m

K
j
i Z

k
j Z

i

√
U

dW̃ k +
3

4
(3m− 1)(1 −m)

|Z|4
U2

dt

+
∑

k

[

(

δ|Zk|2 +
√
2(1−m)m|Z|2

) 1

U

θk√
U

+ 2m2

∣

∣

∣

∣

θk√
U

∣

∣

∣

∣

2
]

dt

+
∑

k 6=i



2m2

∣

∣

∣

∣

∣

∑

j K
j
i Z

k
j√

U

∣

∣

∣

∣

∣

2

dt+ δ
ZiZk

U

∑

j K
j
i Z

k
j√

U



 dt (4.16)

where

δ = 2
√
2mε−

√
2(5m− 1)m

2
, θk =

∑

j

K
j
kZ

k
j .

13



Since

∑

k

[

(

δ|Zk|2 +
√
2(1−m)m|Z|2

) 1

U

θk√
U

+ 2m2

∣

∣

∣

∣

θk√
U

∣

∣

∣

∣

2
]

= 2m2
∑

k

∣

∣

∣

∣

θk√
U

+
(

δ|Zk|2 +
√
2(1−m)m|Z|2

) 1

4m2U

∣

∣

∣

∣

2

−
(

n(1−m)2

4
+

√
2δ(1 −m)

4m

)

|Z|4
U2

− δ2

8m2U2

∑

k

|Zk|4

and

∑

k 6=i



2m2

∣

∣

∣

∣

∣

∑

j K
j
i Z

k
j√

U

∣

∣

∣

∣

∣

2

dt+ δ
ZiZk

U

∑

j K
j
i Z

k
j√

U





= 2m2
∑

k 6=i

∣

∣

∣

∣

∣

∑

j K
j
i Z

k
j√

U
+

δ

4m2

ZiZk

U

∣

∣

∣

∣

∣

2

− δ2

8m2

1

U2

∑

k 6=i

|Zi|2|Zk|2 .

Hence

d|Z|2 = 2
√
2m

ZiK
j
i Z

k
j√

U
dW̃ k + (A+B)dt+

G(δ)

4

|Z|4
U2

dt (4.17)

where

G(δ) = 3(3m − 1)(1 −m)− n(1−m)2 −
√
2(1−m)

m
δ − 1

2m2
δ2, (4.18)

A = 2m2
∑

k 6=i

∣

∣

∣

∣

∣

∑

j K
j
i Z

k
j√

U
+

δ

4m2

ZiZk

U

∣

∣

∣

∣

∣

2

and

B = 2m2
∑

k

∣

∣

∣

∣

θk√
U

+
(

δ|Zk|2 +
√
2(1−m)m|Z|2

) 1

4m2U

∣

∣

∣

∣

2

.

Setting
δ = −

√
2m(1−m)

then
G(δ) = [(n+ 8)m− 2− n)] (1−m) ≥ 0

if and only if

1− 6

n+ 8
≤ m ≤ 1.

Using the same argument as that in Theorem 3.4, we obtain (4.13).
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4.3 Estimates on Logarithm of Gradient

Let us prove the following

Theorem 4.2 If 1 > m ≥ n−1
n+3 , then

|∇ log u(T, x)| ≤ 2
√

||f0||∞

m2

√

T
∣

∣

∣
2m− 4−

√
2

m β2

∣

∣

∣

, (4.19)

where β2 is given in (4.21), which yields (1.7)

The idea of the proof for this theorem is to identify conditions under which M = |Z|2
U is a

Q-submartingale.
Since

d
1

U
= −(1−m)U−2

∑

k

ZkdW̃ k + (1−m)(
3

4
− ε− m

4
)U−2 |Z|2

U
dt,

together with (4.16) we get

UdM = 2
√
2m

K
j
i Z

k
j Z

i

√
U

dW̃ k − (1−m)
|Z|2
U

ZkdW̃ k

+
∑

k

[

(

β|Zk|2 +
√
2(1−m)m|Z|2

) 1

U

θk√
U

+ 2m2

∣

∣

∣

∣

θk√
U

∣

∣

∣

∣

2
]

dt

+
∑

k 6=i



2m2

∣

∣

∣

∣

∣

∑

j K
j
i Z

k
j√

U

∣

∣

∣

∣

∣

2

dt+ β
ZiZk

U

∑

j K
j
i Z

k
j√

U



 dt

+(1−m)(2m− ε)
|Z|4
U2

dt

where

β = δ − 2
√
2m(1−m), δ = 2

√
2mε−

√
2(5m− 1)m

2

so that

ε =

√
2β

4m
+

m+ 3

4
.

Finally,

UdM = 2
√
2m

K
j
i Z

k
j Z

i

√
U

dW̃ k − (1−m)
|Z|2
U

ZkdW̃ k

+H(β)
|Z|4
4U2

+ Ldt,

where

H(β) = (1−m) ((7 + n)m− 3− n)− 2
√
2β(1−m)

m
− β2

2m2
,
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and

L = 2m2
∑

k

∣

∣

∣

∣

θk√
U

+
(

β|Zk|2 +
√
2(1−m)m|Z|2

) 1

4m2U

∣

∣

∣

∣

2

+2m2
∑

k 6=i

∣

∣

∣

∣

∣

∑

j K
j
i Z

k
j√

U
+

β

4m2

ZiZk

U

∣

∣

∣

∣

∣

2

.

Hence, if m ≥ n−1
n+3 , then if β ∈ [β1, β2], with

β1 = −2
√
2m(1−m)−m

√

2(1−m)((3 + n)m+ 1− n) (4.20)

and
β2 = −2

√
2m(1−m) +m

√

2(1−m)((3 + n)m+ 1− n). (4.21)

Recall that

dY =
∑

k

ZkdW̃ k −
(

2m− 4−
√
2

m
β

)

|Z|2
4U

dt

and

dW̃ k = dW k −
(√

2

m
β + 3 +m

)

Zk

4U
dt

Hence,
∣

∣

∣

∣

∣

2m− 4−
√
2

m
β

∣

∣

∣

∣

∣

∫ T

0

|Z|2
4U

dt ≤ 2||f0||∞.

The same argument as that in Section 3.2 leads (4.19).
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