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On Minkowski dimension of quasicircles

Le Thanh Hoang Nhat, Zinsmeister Michel

June 6, 2012

Abstract

1 Introduction.

Let Ω $ C be a simply connected domain containing 0: by the Riemann Mapping theorem,
there is a unique conformal map f from the unit disk D = {|z| < 1} onto Ω such that f(0) =
0, f ′(0) > 0. In this paper we are interested in domains with fractal boundary and more
precisely with the Hausdorff dimension of these boundaries. Well-known examples of fractal
curves which have deserved a lot of investigations and attentions are the Julia sets and the limit
sets of quasifuchsian groups because of their dynamical properties.
For instance, let us consider the family of quadratic polynomials

Pt(z) = z2 + t, t ∈ C

in the neighborhood of t = 0. There is a smooth family of conformal map φt from C\D onto the
basin of infinity of the polynomial Pt(z) (the component containing ∞ of its Fatou set) with
φ0(z) = z and conjugating P0 to Pt on their basins of infinity. We thus have:

φt(P0) = Pt(φt(z)), z ∈ C \ D. (1)

Each φt extends to a quasiconformal map on the sphere C. Taking the derivative of the equation
(1) with respect to t, we obtain the equation:

φ̇t(z
2) = 2φt(z)φ̇t(z) + 1, (2)

where φ̇t =
∂φ

∂t
. Let V (z) denote the holomorphic vector field of V (z) =

∂φt

∂t

∣

∣

∣

∣

t=0

. Letting t = 0

in the equation (2), we get that the holomorphic vector field V satisfies the functional equation:

V (z2) = 2zV (z) + 1. (3)

If we replace z by z2 in the preceding equation, we obtain that

V (z4) = 2z2V (z2) + 1. (4)

Injecting V (z2) in (3) into (4), one gets V (z) = −
(

1

2z
+

1

2z2z2

)

+
V (z4)

2z2z2
. And by induction

we can obtain V (z) = −
n−1
∑

k=1

1

2z2z2...2z2k
+

V (z2
n
)

2z2z2...2z2n−1
. The term

V (z2
n
)

2n+1z2n−1
tends to 0 as

n tends to ∞. Therefore V (z) can be written as an infinite sum

V (z) = −z

∞
∑

k=0

1

2k+1z2k+1
. (5)
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Using thermodynamic formalism, Ruelle [Rul] (see also [Zin] and [McM]) proved that

d2

dt2
H.dim(J(Pt))

∣

∣

∣

∣

t=0

= lim
r−→1

1

4π

1

log 1
1−r

∫

|z|=r
|v′(z)|2|dz|. (6)

Using then the explicit formula (5) of V , he could proved that

H.dim(J(Pt)) = 1 +
|t|2

4 log 2
+ o(|t|2). (7)

for this particular family.
Passing to the disc instead of its complement, let us consider a general analytic one-parameter
family (φt), t ∈ U , a neighborhood of t = 0, of conformal maps with φ0 = id and φt(0) = 0,
∀t ∈ U.
Then

φt(z) =

∫ z

0
elog φ

′

t(u)du

and
∂

∂t
φt(z) =

∫ z

0

∂

∂t

(

log φ′
t(u)

)

elog φ
′

t(u)du.

From which follows that

V (z) =
∂

∂t
φt(z)

∣

∣

∣

∣

t=0

=

∫ z

0

∂

∂t

(

log φ′
t(u)

)
∣

∣

∣

∣

t=0

du

and b(z) = V ′(z) =
∂

∂t

(

log φ′
t(z)

)∣

∣

∣

∣

t=0

belongs to the Bloch space B which is defined as

follows:

B =

{

b holomorphic in D; sup
D

(1−|z|)|b′(z)|< ∞
}

.

It follows from λ−lemma (see [IT]) that φt has a quasiconformal extension to the plane if t is
small enough. In particular Γt = φt(∂D) is well-defined.
In [McM], Mc Mullen asked the following question: Under which condition on the family of (φt)
it is true that

d2

dt2
H.dim (Γt)

∣

∣

∣

∣

t=0

= lim
r−→1

1

4π| log(1− r)|

∫

|z|=r
|b(z)|2|dz| ? (8)

In other words, the question addresses the problem of how much formula (6) owes to dynamical
properties.
Conversely, starting from a function b ∈ B, it is known that if we put

φt(z) =

∫ z

0
etb(u)du, b ∈ B, (9)

is an analytic family and there exists a neighborhood U of 0 such that if t ∈ U then φt is a
conformal map with quasiconformal extension and we denote by Γt the image of the unit circle
by φt.
The aim of the work is two-fold: we will first describe a large family of function b ∈ B for
which if φt is defined by (9), (t being real) then (8) is true with Hausdorff dimension replaced
by Minkowski dimension. This class will be defined in term of the square function of the
associated of dyadic martingale of Re(b). Details and proper statement will be given in 2.
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The second result of this paper is a counter-example. The starting point is the construction
by Kahane and Piranian of a so-called “non Smirnov” rectifiable domain. These authors have
constructed a Bloch function b such that if we consider the associated family (φt) as in (9) then
φt(∂D) is rectifiable for t < 0. This function is very singular in the sense that

b(z) =

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ),

where µ is singular with respect to Lebesgue measure on the circle. We use this feature to prove
that there exists c > 0 such that

M.dim(Γt) ≥ 1 + ct2, t > 0 small.

which contradicts lim
t−→0

M.dim(Γt)− 1

t2
= 0 by (8) with Hausdorff dimension replaced by Minkowski

dimension.

2 Martingale condition

Before giving statement of the first result of this paper, we recall some preliminaries on Bloch
function and the notion of dyadic martingale.

2.1 Preliminaries on Bloch function

Proposition 1 If b ∈ B and b(0) = 0 then

1

2π

∫

T
|b(rξ)|2n|dξ|≤ n!‖b‖2nB

(

log
1

1− r2

)n

for 0 < r < 1 and n = 0, 1, ...

Proof: See [Pom].
This proposition implies that if b ∈ B, b(0) = 0,

lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ
2π log( 1

1−r )
≤ ‖b‖2B < +∞. (10)

This proposition can be generalized as follows.

Corollary 1 If b ∈ B and b(0) = 0 then there exists a constant C such that

∫

T
|b(rξ)|p|dξ| ≤ C

(

log
1

1− r2

)p/2

for 0 < r < 1 and p > 0.

Proof: For p > 0, there exists a positive integer n such that 0 <
p

2n
< 1. Applying the Hölder’s

inequality for α =
p

2n
< 1, we deduce that

∫

T
|b(rξ)|2n|dξ| ≥

(
∫

T
|b(rξ)|2nα

)1/α(

2π

)1/β

,
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where 1
α + 1

β = 1. Then Proposition 1 implies that

(
∫

T
|b(rξ)|p|dξ|

)

=

(
∫

T
|b(rξ)|2nα|dξ|

)

≤ (2π)−α/β

(
∫

T
|b(rξ)|2n|dξ|

)α

≤ C

(

log
1

1− r2

)p/2

,

where C = (2π)−α/β(n!‖b‖2nB )α.
Let h be a (complex-valued) continuous function on the unit circle T and satisfying

sup
|z|=1

|h(eiθz)− 2h(z) + h(e−iθz)| ≤ Cθ, for θ > 0.

This function is called a Zygmund function.

Theorem 1 (Zygmund) Let b be analytic on the disk D and let h(z) be a primitive function
of b. Then b belongs to Bloch space B if and only if h is continuous on the closed disk D and h
is a Zygmund function.

Proof: See [Dur].
Let I = (eiθ1 , eiθ2) be a subarc of ∂D. We can define bI , the mean value of b on the arc I ⊂ ∂D,
as the limit lim

r−→1
(br)I , where br(z) = b(rz), z ∈ D. Integration by parts shows that

bI = lim
r−→1

1

|I|

∫

I
b(reiθ)dθ =

−ie−iθ2h(eiθ2) + ie−iθ1h(eiθ1)

|I| +
1

|I|

∫

I
e−iθh(eiθ)dθ

and by the property of continuity up to the boundary of the primitive function h(z), the limit
exists. Hence the definition of mean value of Bloch function is well-defined. We recall now the
notion of dyadic martingale of a Bloch function.

2.2 Dyadic martingale.

On the probability space (∂D, |.|) (|dξ| = dθ/2π, ξ = eiθ ∈ ∂D), we consider the increasing
sequence of σ-algebras {Fn, n ≥ 0} generated by the partitions of the unit circle by the intervals
bounded by the (2n)th roots of the unity.
Let b be a Bloch function, b(0) = 0. We defined S = (Sn,Fn) by setting Sn|I = bI on each
dyadic interval I of rank n. In other words Sn = E(b|Fn). Then

∀ξ ∈ ∂D, Sn(ξ) =
∑

I∈Fn

bIχI(ξ).

This sequence is a martingale in the sense that E(Sn+1|Fn) = Sn. And it has the property:

∀n, ∀ξ ∈ ∂D,
∣

∣

∣

∣

Sn(ξ)− b((1− 2−n)ξ)

∣

∣

∣

∣

≤ C‖b‖B, (11)

where C is an absolute constant (see [Mak]).
We consider the increasing sequence 〈S〉2n =

∑n
j=1E((∆Sj)

2|Fj−1), where ∆Sj = Sj −Sj−1. In

the dyadic case ∆S2
j is Fj−1 measurable, so that 〈S〉2n =

∑n
j=1(∆Sj)

2.

We call 〈S〉2∞ =
∑

k≥1

(∆Sk)
2 the square function.

This first result is based on the computing of the integral means

∫

|z|=r
etRe(b(z))|dz|, b ∈ B

in which there is only the real part of a Bloch function b that appears, so that we just need
the dyadic martingale which arises from a real part of the Bloch function. Let us state this result.
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2.3 Statement of Theorem 2.

Let b be a Bloch function and bn be the dyadic martingale of Re(b). Let us assume the following
condition for its square function 〈S〉2n :

∀θ ∈ [0, 2π],

∣

∣

∣

∣

〈S〉2n(eiθ)−
1

2π

∫ 2π

0
〈S〉2n(eiθ)dθ

∣

∣

∣

∣

≤ nδ(n), (∗)

where δ(n) is a positive function which depends only on n and which tends to zero as n tends
to ∞. Let us also write d(t) = M.dim(Γt).

Theorem 2 If b belongs to B and satisfies the condition (∗) then the Minkowski dimension of
Γt has the following development at zero:

M.dim(Γt) = 1 + lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ
4π log 1

1−r

t2

2
+ o(t2), (12)

(

By (10), lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ

log 1
1−r

exists

)

.

Put Ωt = φt(D).
Now we will give the proof of Theorem 2 by using probability methods. The proof of this
theorem has two steps. In the first one, we will point out the relation between the Minkowski
dimension d(t) of Γt and the spectrum of integral means β(d(t), φ′

t) (for definition see below).

2.4 The first step of the proof.

First, we know that the image Ωt of the unit disk D by the conformal map φt is a quasidisk, for t
small. We recall the crucial proposition about Minkowski dimension of quasicircles (boundaries
of quasidisks) .
We define

β(p, φ′) = lim sup
r−→1

log

(

∫ 2π
0 |φ′(reiθ)|pdθ

)

| log(1− r)| = lim sup
r−→1

log

(

∫ 2π
0 exp{pReb(reiθ)}dθ

)

| log(1− r)| , (p ∈ R)

be the spectrum of integral means of φ′ = exp b(z) (z ∈ D; b ∈ B). In the case of the family of
conformal maps φt(z) =

∫ z
0 etb(u)du (z ∈ D; t ∈ R),

β(p, φ′
t) = lim sup

r−→1

log

(

∫ 2π
0 (exp{tReb(reiθ)})pdθ

)

| log(1− r)| = lim sup
r−→1

log

(

∫ 2π
0 exp{tpReb(reiθ)}dθ

)

| log(1− r)| .

This implies that β(p, φ′
t) = β(tp, φ′).

Proposition 2 If f maps D conformally onto a quasidisk Ω then

M.dim∂Ω = p

where p is the unique solution of β(p, f ′) = p− 1.

Proof: See [Pom]. As a consequence of Proposition 2, we deduce the next proposition.
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Proposition 3 Let b be a Bloch function. If the spectrum of integral means of φ′(z) = exp b(z) (z ∈
D) has the development at p = 0:

β(p, φ′) = ap2 + o(p2)

then the Minkowski dimension of Γt has the development at t = 0:

d(t) = 1 + at2 + o(t2).

Proof: We observe that d(t) −→ 1, as t −→ 0. Put x(t) = d(t) − 1. The proposition 2 implies
that

β(d(t), φ′
t) = d(t)− 1.

Since β(d(t), φ′
t) = β(td(t), φ′), we get

β(t(1 + x(t)), φ′) = x(t). (13)

And by the assumption we have β(t(1 + x(t)), φ′) = at2(1 + x(t))2 + o(t2(1 + x(t))2). Since
x(t) −→ 0 as t −→ 0, then t2(1 + x(t))2 = t2 + o(t2). This implies that

β(t(1 + x(t)), φ′) = at2 + o(t2) (14)

From (13) and (14), we obtain that x(t) = at2 + o(t2). The result follows.
Next we proceed with the second step of this proof.

2.5 The second step of the proof.

According to Proposition 3, in order to finish the proof of Theorem 2, we need to show that the
family of conformal maps φt =

∫ z
0 etb(u)du where the Bloch function b(z) satisfies the condition

(∗) has the spectrum of integral means of φ′(z) = exp b(z) expressed as β(p, φ′) = ap2 + o(p2).
This will be shown in the following theorem.

Theorem 3 If b belongs to B and satisfies the condition (∗) then the spectrum of the integral
means of function φ′(z) = exp b(z) has the following development at p = 0 :

β(p, φ′) =
1

4
lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ
2π log( 1

1−r )
p2 +O(p4).

Proof of Theorem 3: Let us give some remarks and the strategy for the proof of this theorem.
First, we note that if γ = Re(b(0)) 6= 0, then put b1(z) = b(z)− b(0) and we have

β(p, φ′) = lim sup
r−→1

log
∫ 2π
0 epγ+pReb1(reiθ)dθ

log 1
1−r

= lim sup
r−→1

{

log
∫ 2π
0 epReb1(re

iθ)dθ

log 1
1−r

+
pγ

log 1
1−r

}

= lim sup
r−→1

log
∫ 2π
0 epReb1(re

iθ)dθ

log 1
1−r

.

This says that we do not lose generality if we assume that b(0) = 0. Moreover, we observe
that for each r ∈ (0, 1), there exists n such that 1/2n+1 ≤ 1 − r ≤ 1/2n and from (11)
(

|bn(eiθ)− Re(b(reiθ))| ≤ C‖b‖B, (r = 1− 2−n)

)

, we deduce that

β(p, φ′) = lim sup
r−→1

log(
∫ 2π
0 epb(re

iθ)dθ)

log( 1
1−r )

= lim sup
n−→∞

log(
∫ 2π
0 epbn(e

iθ)dθ)

n log 2
.
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Then, Theorem 3 will follow from the estimation of the integral

∫ 2π

0
epbn(e

iθ)dθ. The principle

idea of this estimation is to make use of the exponential transformation of dyadic martingale
bn (the dyadic martingale of Reb) which is defined as a sequence

{

Z0 = exp pb0;

Zn = exp pbn∏n−1

k=0
cosh(p∆bk)

, n ≥ 1.

Checking the condition E(Zn|Fn−1) = Zn−1, we see that Z = (Zn,Fn) is a positive martingale.

The integral

∫ 2π

0
epbn(e

iθ)dθ will be derived from the following equality which follows from the

martingale’s property that

∀n ∈ N, E(Zn) =
1

2π

∫ 2π

0

exp pbn(e
iθ)

∏n−1
k=0 cosh(p∆bk(eiθ))

dθ = E(Z0) = 1.

In other words,
1

2π

∫ 2π

0
epbn(e

iθ)−log(
∏n−1

k=0
cosh(p∆bn(eiθ)))dθ = 1. (15)

The rest part of the estimation of

∫ 2π

0
epbn(e

iθ)dθ is quite simply. We just apply the following

inequalities and the condition (∗) to (15).

∣

∣

∣

∣

log(
n−1
∏

k=0

cosh(p∆bn))−
p2

2
〈S〉2n

∣

∣

∣

∣

≤ p4

12

n−1
∑

k=0

(∆bk)
4 ≤ C ′p4‖b‖2B〈S〉2n, (16)

where C ′ is an absolute constant. The first inequality of (16) follows from the estimation that

∣

∣

∣

∣

log(cosh(x))− x2

2

∣

∣

∣

∣

≤ x4

12
, (x ∈ R).

Indeed, put g(x) = log(cosh(x))− x2

2
− x4

12
. We see that g′′(x) = −(tanhx)2−x2 ≤ 0, ∀x ∈ R.

Hence, g′(x) =

∫ x

0
g′′(u)du ≤ 0, ∀x ∈ R. Therefore, g(x) =

∫ x

0
g′(u)du ≤ 0, ∀x > 0 and since

g(x) is a even function, then g(x) ≤ 0, ∀x ∈ R. Similarly, put h(x) = log(cosh(x))− x2

2
+

x4

12
.

We observe that h′′(x) = −(tanhx)2 + x2 ≥ 0, ∀x ∈ R because | tanhx| ≤ |x|, ∀x ∈ R.
Analogously, we obtain that ∀x ∈ R, h(x) ≥ 0.
Besides, (11) (∀ξ ∈ T, |∆bn(ξ)| ≤ C‖b‖B) implies that

n−1
∑

k=0

(∆bk)
4 =

n−1
∑

k=0

(∆bk)
2(∆bk)

2 ≤ C2‖b‖2B
n−1
∑

k=0

(∆bk)
2 = C2‖b‖2B〈S〉2n.

Then the second one of (16) follows.
Finally, we’ll apply the following lemma to conclude that for p small

β(p, φ′) = lim sup
n−→∞

log

(

∫ 2π
0 epbn(e

iθ)dθ

)

n log 2
=

p2

4
lim sup
r−→1

∫ 2
0 |b(reiθ)|2(θ)dθ

2π log 1
1−r

+O(p4)
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Lemma 1 Let b be a Bloch function and 〈S〉2n be the square function of the dyadic martingale
bn of Re(b). Then

lim sup
n−→∞

∫ 2π
0 〈S〉2n(eiθ)dθ

n log 2
= lim sup

r−→1

∫ 2π
0 |b(reiθ)|2dθ
2 log 1

1−r

≤ π‖b‖2B.

Proof: Recall b̃ = Reb and bn is a dyadic martingale of b̃. We have:

‖bn‖22 =
∫ 2π

0
b2n(θ)dθ =

∫ 2π

0

n−1
∑

k=0

(∆bk(θ))
2dθ =

∫ 2π

0
〈S〉2n(θ)dθ.

The second equality follows from Proposition 5.4.5 [Gra] and the third one follows from the
definition of the square function of the dyadic martingale bn. Moreover, the fact that |bn(θ) −
b̃(reiθ)| ≤ C‖b‖B if r = 1− 2−n (see (11)) implies that:

∣

∣

∣

∣

‖bn‖2 − ‖b̃(reiθ)‖2
∣

∣

∣

∣

≤ ‖bn(eiθ)− b̃(reiθ)‖2 ≤ 2π(C‖b‖B).

Therefore if we divide both sides by (n log 2)1/2 of the above inequalities and take the limit as
n −→ ∞, then we obtain:

lim
j−→∞

(

∫ 2π
0 (bn)

2dθ

n log 2

)1/2

−
(

∫ 2π
0 (b̃((1− 2−n)eiθ))2dθ

n log 2

)1/2

= 0. (17)

By Proposition 1,

∫ 2π
0 (b̃((1− 2−n)eiθ))2dθ

n log 2
is bounded and then by (17)

∫ 2π
0 (bn)

2dθ

n log 2
is also

bounded. Moreover since the function x2 is continuous uniformly on some compact set of
[0,+∞), then (17) implies that

lim
j−→∞

∫ 2π
0 (bn)

2dθ

n log 2
−

∫ 2π
0 (b̃((1− 2−n)eiθ))2dθ

n log 2
= 0.

Thus,

lim sup
j−→∞

∫ 2π
0 (bn)

2dθ

j log 2
= lim sup

j−→∞

∫ 2π
0 (b̃((1− 2−n)eiθ))2dθ

n log 2
.

Then,

lim sup
n−→∞

∫ 2π
0 〈S〉2n(θ)dθ

n log 2
= lim sup

r−→1

∫ 2π
0 (b̃(reiθ))2dθ

log( 1
1−r )

(r = 1− 2−n).

Furthermore, since b is holomorphic in the unit disk D and by Proposition 1, we have:

lim sup
r−→1

∫ 2π
0 (Reb(reiθ))2dθ

log( 1
1−r )

= lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ
2 log( 1

1−r )
≤ π‖b‖2B.

The lemma is proven.
The proof of Theorem 3 remains the main step: that is to estimate the integral

∫ 2π
0 epbn(e

iθ)dθ.
The main step of the proof.
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Put ǫn(θ) =







log(
∏n−1

k=0
cosh(p∆bn(eiθ)))−

p2

2
〈S〉2n(e

iθ)

p2

2
〈S〉2n(e

iθ)
, if 〈S〉2n(eiθ) 6= 0

0, otherwise

, (θ ∈ [0, 2π]). This says

that

log

( n−1
∏

k=0

cosh(p∆bn(e
iθ))

)

=
p2

2
〈S〉2n(eiθ)

(

1 + ǫn(θ)

)

, (18)

where |ǫn(θ)| ≤ C ′p2‖b‖2B by (16).

Put In =
1

2π

∫ 2π

0
〈S〉2n(θ)dθ. By (18), (15) is equivalent to

1

2π

∫ 2π

0
exp

{

pbn(e
iθ)− p2

2
〈S〉2n(eiθ)(1 + ǫn(θ))

}

dθ = 1.

By subtraction and adding the term p2

2 In(1 + ǫn(θ)), we can rewrite the preceding equality as
follows

1

2π

∫ 2π

0
exp

{

pbn(e
iθ)− p2

2
In(1 + ǫn(θ))−

p2

2
(〈S〉2n(eiθ)− In)(1 + ǫn(θ))

}

dθ = 1.

Remark that In is a number, so we can take the term exp{p
2

2
In} out of the above integral, then

the equality turns out to be

1

2π

∫ 2π

0
exp

{

pbn(e
iθ)− ǫn(θ)p

2

2
In − p2

2
(〈S〉2n(eiθ)− In)(1 + ǫn(θ))

}

dθ = exp

(

p2

2
In

)

.

Put I =
1

2π

∫ 2π

0
exp

{

pbn(e
iθ)− ǫn(θ)p

2

2
In −

p2

2
(〈S〉2n(eiθ)− In)(1 + ǫn(θ))

}

dθ. Next, we will

estimate the integral I.

Combining the condition (∗)
∣

∣

∣

∣

〈S〉2n(ξ) − In

∣

∣

∣

∣

≤ nδ(n) with the fact that |ǫn| ≤ C ′p2‖b‖2B, we

have:

∣

∣

∣

∣

(1 + ǫn(θ))(〈S〉2n(ξ)− In)

∣

∣

∣

∣

≤ (1 + C ′p2‖b‖2B)nδ(n). Then, this implies that:

exp

{

−C ′p4‖b‖2BIn − nδ(n)

2
p2(1 + C ′p2‖b‖2B)

}

1

2π

∫ 2π

0
epbn(e

iθ)dθ ≤ I

and

I ≤ exp

{

C ′p4‖b‖2BIn +
nδ(n)

2
p2(1 + C ′p2‖b‖2B)

}

1

2π

∫ 2π

0
epbn(e

iθ)dθ.

Replacing I by exp

(

p2

2 In

)

and then taking logarithm of two sides of the above inequalities,

we deduce that

log

(
∫ 2π

0
epbn(e

iθ)dθ

)

−nδ(n)

2
p2(1 + C ′p2‖b‖B)− C ′p4‖b‖2BIn − log(2π) ≤ p2

2
In

and

p2

2
In ≤ log

(
∫ 2π

0
epbn(e

iθ)dθ

)

+
nδ(n)

2
p2(1 + C ′p2‖b‖B) + C ′p4‖b‖2BIn − log(2π).

9



Next, if we divide two both sides of the inequalities by n log 2, we then obtain the inequalities

p2

2

In
n log 2

≥
log

(

∫ 2π
0 epbn(e

iθ)dθ

)

n log 2
−

(

p2(1+C ′p2‖b‖2B)
nδ(n)

2n log 2
+C ′p4‖b‖2B

In
n log 2

+
log(2π)

n log 2

)

and

p2

2

In
n log 2

≤
log

(

∫ 2π
0 epbn(e

iθ)dθ

)

n log 2
+

(

p2(1+C ′p2‖b‖2B)
nδ(n)

2n log 2
+C ′p4‖b‖2B

In
n log 2

− log(2π)

n log 2

)

.

Taking the lim sup as n tends to ∞ of these inequalities, then we get

(

p2

2
−C ′p4‖b‖2B

)

lim sup
n−→∞

In
n log 2

≤ lim sup
n−→∞

log

(

∫ 2π
0 epbn(e

iθ)dθ

)

n log 2
≤
(

p2

2
+C ′p4‖b‖2B

)

lim sup
n−→∞

In
n log 2

.

Finally, we obtain the estimation

∣

∣

∣

∣

lim sup
n−→∞

log

(

∫ 2π
0 epbn(e

iθ)dθ

)

n log 2
− p2

2
lim sup
n−→∞

In
n log 2

∣

∣

∣

∣

≤ C ′p4‖b‖2B lim sup
n−→∞

In
n log 2

, (19)

where lim sup
n−→∞

In
n log 2

= lim sup
n−→∞

∫ 2π
0 〈S〉2n(θ)dθ
2πn log 2

= lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ
4π log( 1

1−r )
≤ ‖b‖2B

2
< +∞ by

Lemma 1. Thus, the estimation (19) gives us the desired formula for the spectrum of integral
means

β(p, φ′) = lim sup
r−→1

log

(

∫ 2π
0 epb(e

iθ)dθ

)

log( 1
1−r )

=
p2

4
lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ
2π log( 1

1−r )
+O(p4),

as p tends to zero. This finishes the proof of Theorem 3.
From Theorem 3 and Proposition 3, we conclude Theorem 2. For the sake of completeness of
this part, we will give a non-trivial example for Bloch function which satisfies condition (∗)

2.6 An example with constant square function.

First, we define the independent Bernoullian random variables εn on ∂D by the formula

εn(e
2πix) =

{

−1, xn = 0 or 3,

1, xn = 1 or 2,
(n = 1, 2, ...)

where xn denotes the 4-adic nth digit of x ∈ [0, 1].

Proposition 4 For any bounded sequence of a real numbers {an}, the 4-adic martingale Sn =
n
∑

k=1

akεk is a dyadic martingale (if considered as dyadic).

Proof: See [Mak].

Let {ak} be a bounded sequence of real number, then lim sup
n−→∞

∑n
k=1 a

2
k

n
= α < +∞. By Propo-

sition 4, there exists a Bloch function b which generates the dyadic martingale Sn.

10



Let φt(z) =

∫ z

0
etb(u)du: these are conformal mappings from D onto Ωt and the Minkowski

dimension of Γt = ∂Ωt has the following development at 0:

M.dim(Γt) = 1 + lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ
4π log 1

1−r

t2

2
+ o(t2)

= 1 +
α

2 log 2
t2 + o(t2). (20)

Indeed, since ∆Sk = akεk then 〈S〉2n =

n
∑

k=1

a2k is a constant square function. Thus, certainly the

square function 〈S〉2n satisfies the condition (∗). Besides, we have

lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ
2π log( 1

1−r )
= 2 lim sup

n−→∞

∫ 2π
0 〈S〉2n(θ)dθ
2πn log 2

= 2 lim sup
n−→∞

〈S〉2n
n log 2

=
2α

log 2
, (r = 1− 2n).

Then, (20) follows from Theorem 2.

3 Counter-example.

In this part we show that Mc Mullen’s property does not hold for all b ∈ B. The counter-example
we construct is reminiscent of Kahane’s construction of a non-Smirnov domain.

3.1 Kahane measure and its Herglotz transform.

3.1.1 Kahane measure

First of all, let us recall the construction of Kahane measure. Denote by ω0 the interval [0, 1]
and by ωj one of intervals of form 4-adic [p4−j , (p + 1)4−j ] contained in ω0. We construct
simultaneously a sequence of measure µj and their supports Ej as follow:

µ0 is the Lebesgue measure on interval ω0;
µj is proportional to the Lebesgue measure on each ωj .

We denote by Dj(ωj) its density on a given interval ωj and its support Ej is the union of
intervals ωj where Dj(ωj) 6= 0. In order to obtain µj+1 from µj , we divide each interval ω = ωj

of rank j contained in Ej into four equal subintervals ω1, ω2, ω3, ω4 of rank j + 1 and put

Dj+1(ω
1) = Dj+1(ω

4) = Dj(ω)− 1,

Dj+1(ω
2) = Dj+1(ω

3) = Dj(ω) + 1.

Put µ = lim
j−→∞

µj and E =

∞
⋂

j=0

Ej . We call this measure µ Kahane’s measure.

There is another way to define the set E. Recall the independent Bernoullian random variables

εk on ∂D (defined in 2): put Σj(e
2πix) =

j
∑

k=1

εk(e
2πix) and let N be the first number such that

1 +

j
∑

k=1

εk(e
2πix) = 0 (x ∈ [0, 1]). By the definition of Dk, we have :

∀x ∈ [0, 1], D0(x) = 1; Dk(x) = (Dk−1(x) + εk(e
2πix))1Ek−1

(x).

11



Therefore,

Dk(x) =

((((

1+ε1(e
2πix)

)

1E0
(x)+ε2(e

2πix)

)

1E1
(x)+...+

)

1Ek−2
(x)+εk(e

2πix)

)

1Ek−1
(x), (x ∈ [0, 1]).

Since E0 ⊃ E1 ⊃ ... ⊃ Ek−1 then 1E0
...1Ek−1

= 1Ek−1
, therefore

Dk(x) = (1 + Σk(e
2πix))1Ek−1

(x).

This implies that the support of Dk: Ek = Ek−1 ∩ {1 + Σk > 0}. Then,

Ek = {1 + Σ1 > 0, ..., 1 + Σk > 0}, (k = 1, 2, ...).

Moreover, for x ∈ [0, 1]

Dk(x) = (1 + Σk(e
2πix))1Ek−1

(x)

= (1 + Σk(e
2πix))1Ek

(x) + (1 + Σk(e
2πix))1Ek−1\Ek

(x)

= (1 + Σk(e
2πix))1Ek

(x).

Because on the set Ek−1 \ Ek we have 1 + Σk(x) = 0.

In his paper [Kah], Kahane showed that the set E =
∞
⋂

k=0

Ek (support of the measure µ) has a

null Lebesgue measure. Therefore this measure is totally singular.

3.1.2 Herglotz transform of Kahane measure

Let b(z) be Herglotz transform of Kahane measure µ: that is

b(z) =

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ).

Kahane has proved that b ∈ B. Put Λj(e
2πix) = 1 + Σj(e

2πix) and

Sj(e
2πix) = Λj∧N (e2πix) =

{

1 + Σj(e
2πix), if x ∈ {N > j} = Ej

0, otherwise
, (x ∈ [0, 1]).

Similarly to the example of the square constant function in 2.6 above, Λj is a dyadic martingale
(if consider as dyadic). By the construction of µ, {N = j} =

⋃

ωj = Ej−1 \ Ej ∈ Fj , where
ωj is an interval 4-adic of rank j − 1 i.e dyadic of rank j. Therefore N is a stopping time with
respect to the σ-algebra {Fj , j ≥ 0} (defined above). Thus, Sj = ΛN∧j is a dyadic martingale
as well. Moreover, we have the following lemma.

Lemma 2 Sj is the dyadic martingale of the Bloch function Re(b).

Proof: Indeed, we recall h(θ) the cumulative distribution function of the Kahane measure µ,
(i.e. h(ϕ) = µ({ ϕ

2π > 0}) (ϕ ∈ [0, 2π]) and h(0) = 0. We observe that for z ∈ D

b(z) =
1

2π

∫ 2π

0

eiϕ + z

eiϕ − z
h′(ϕ)dϕ =

1

2π

∫ 2π

0

(

1 + 2

∞
∑

n=1

e−inϕzn
)

h′(ϕ)dϕ. (21)

By the Schwartz integral formula and Imb(0) = 0, we have

b(z) =
1

2π

∫ 2π

0

eiϕ + z

eiϕ − z
Reb(eiϕ)dϕ =

1

2π

∫ 2π

0

(

1 + 2

∞
∑

n=1

e−inϕzn
)

Reb(eiϕ)dϕ. (22)
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From (21),(22) we obtain

∫ 2π

0
e−inϕ(Reb(eiϕ)−h′(ϕ))dϕ = 0 (n = 0, 1, 2, ...). Since the sequence

{einθ}(n = 0, 1, 2, ...) is a basic in L2([0, 2π]), then

Reb(eiϕ)− h′(ϕ) = 0 in L2([0, 2π]).

Thus, Reb(eiϕ) = h′(ϕ) a.e in [0, 2π]. We observe that for each subarc 4-adic ωj = [ϕ0

2π ,
ϕ0

2π + ϕ
2π ]

of rank j of the interval [0, 1],

µj(ωj)

|ωj |
=

1

|ωj |

∫

ωj

Dj(x)dx

=
1

|ωj |

∫

ωj

(1 + Σj(e
2πix))1Ej

dx

= Λj∧N (e2πix)1ωj
(x) = Sj(e

2πix)|ωj
,

while
µj(ωj)

|ωj |
=

h(ϕ+ ϕ0)− h(ϕ0)

|ϕ| . Therefore,

Sj(e
2πix)|ωj

=
h(ϕ+ ϕ0)− h(ϕ0)

|ϕ| =
1

|ωj |

∫

ωj

Reb(e2πix)dx = (Reb)ωj
.

It means that Sj is the dyadic martingale Sj of the Bloch function Reb. Now, let us state
concretely the second result of this paper.

3.2 Statement of Theorem 4.

Let µ be Kahane’s measure and b(z) its Herglotz transform. We recall that Γt is the image of
the unit circle T by the conformal map φt(z) which is defined as φ′

t(z) = etb(z), t small enough.
If a family of conformal maps φt(z) =

∫ z
0 etb(u)du, (z ∈ D; b ∈ B) satisfies (8) with Hausdorff

dimension replaced by Minkowski dimension, then

M.dim(Γt) = 1 + lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ
4π log 1

1−r

t2

2
+ o(t2). (23)

Theorem 4 The behaviour of the curve Γt differs with the sign of t:
In the case of negative t, the singular property of the Kahane’s measure µ (the density function
of the probability measure µ is non negative and zero almost everywhere) makes φ′

t ∈ H1. This
is equivalent to the rectifiability of Γt and then H.dim(Γt) = M.dim(Γt) ≡ 1.
On the other hand, in the case of positive t, Γt is a fractal curve and its Minkowski dimension
satisfies the following inequality:

d(t) ≥ 1 +
t2

8 log 2
, ∀t > 0 small enough,

as a consequence the family of conformal map (φt), t > 0 gives a counter-example to (23).

Next, we’ll give the proof of this theorem.

3.3 Proof of Theorem 4

First of all, we will use the singularity of Kahane measure to show that in the case of small
negative t, H.dim(Γt) = M.dim(Γt) ≡ 1.
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3.3.1 Negative t.

We recall now the two theorems on Hp(p > 0) functions and then we’ll show how they imply
the first part of Theorem 4. Let us introduce some notions. Given a function f(z) 6≡ 0 of class
Hp(p > 0). Let (an) (may be finite, or even empty) be the sequence zeroes of the function f. A
function of the form

B(z) = zm
∏

n

|an|
an

an − z

1− anz

is called a Blaschke product. A singular inner function is a function of the form

S(z) = exp

{

−
∫ 2π

0

eiθ + z

eiθ − z
dµ(t)

}

,

where µ(t) be a bounded non-decreasing singular function (µ′(t) = 0 a.e). And an outer function
of class Hp is a function of form

F (z) = eiγ exp

{

1

2π

∫ 2π

0

eiθ + z

eiθ − z
log |f(eiθ)|dθ

}

,

where γ is a real number, |f(eiθ)| ∈ Lp([0, 2π]).

Theorem 5 (Canonical factorization theorem). Every function f(z) 6≡ 0 of class Hp(p > 0)
has a unique factorization of the form f(z) = B(z)S(z)F (z) where B(z) is a Blaschke product,
S(z) is a singular inner function and F (z) is an outer function of class Hp. Conversely, every
such product B(z)S(z)F (z) belongs to Hp.

Proof: See [Dur].

Theorem 6 Let f(z) maps the unit disk D conformally onto a Jordan domain Ω. Then the
boundary ∂Ω is rectifiable if and only if f ′ ∈ H1.

Proof: See [Dur].
Since t small enough and b(z) is a Bloch function, then by Becker univalence criterion the maps
φt(z) maps conformally the unit disk D onto a quasidisk Ωt. And its derivative has the form

φ′
t(z) = exp

{

t

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ)

}

,

where t < 0 and µ is a positive singular measure i.e the density function h′(θ) of Kahane measure
µ is non negative and zero almost everywhere on [0, 2π] (mentioned above). Then, Theorem 5
yields φ′

t ∈ H1.
Since φ′

t ∈ H1 is equivalent to the rectifiability of the boundary Γt by Theorem 6, then obviously

H.dim(Γt) = M.dim(Γt) ≡ 1. (24)

The first part of Theorem 4 follows.
Now, we’ll go to the main part of the proof of Theorem 4: the case of small positive t.

3.3.2 Positive t.

We want to show that d(t) ≥ 1 +
t2

8 log 2
, t > 0 small. Analogously to section 2, in order to

prove this, we need to show that the spectrum of integral means β(p, φ′) where φ′ = exp b(z)
satisfies the following inequality

β(p, φ′) ≥ p2

8 log 2
, p > 0 small. (25)
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In addition, from the fact that |Sj(e
iθ)−Re(b(reiθ))| ≤ C‖b‖B, (r = 1−2−j), see (11), we have

β(p, φ′) = lim sup
r−→1

∫ 2π
0 epReb(re

iθ)dθ

log 1
1−r

= lim sup
j−→∞

∫ 2π
0 epSj(e

iθ)dθ

j log 2
.

This leads us to estimate the integral

∫

T
epSj(e

iθ)dθ, (Sj = Λj∧N ), p > 0 small. The difficult

point is that Sj is not a sum of independent random variables. However we can go around this
difficulty by using the stopping time of the random walk argument of the dyadic martingale Sj

which will be introduced in the following.

3.3.3 Random walk argument.

Let us describe this random walk on graph. On the lattice Z+ × Z, we consider that a particle
moves in the direction parallel to two diagonals of the unit square. We denote the individual
steps generically by ε1, ε2, ..., εn with the probability p = 1

2 (defined above in 2.6) and the
position of the particle by Σ1,Σ2, ...,Σn. According to the assumption of this dyadic martingale,
the particle will stop as it reaches to the horizontal axis y = 0 on the lattice.
We denote the event { at epoch n the particle is at the position r } by {Σn = r} and we can
write the event {N > k} by {1 + Σ1 > 0, ..., 1 + Σk > 0} and then by {Σ1 ≥ 0, ...,Σk ≥ 0}. We
need the following lemma to obtain the inequality (25).

Lemma 3 For a random walk Σn = ε1 + ε2 + ... + εn, where εk are Bernoulli independent
random variables with the probability p = 1

2 , we have:

P (Σ1 ≥ 0,Σ2 ≥ 0, ...,Σ2n ≥ 0) = P (Σ2n = 0) =
Cn
2n

22n
.

Moreover by Stirling’s formula P (N > 2n) ≃ 1√
2n

.

Proof: See [Fel].
Furthermore, we remark that for each positive integer k, {N > 2k + 1} = {N > 2k}. Indeed,
{Σ1 ≥ 0, ...,Σ2k ≥ 0} = {Σ1 ≥ 0, ...,Σ2k ≥ 0,Σ2k+1 ≥ 0} ∩ {Σ1 ≥ 0, ...,Σ2k ≥ 0,Σ2k+1 < 0}.
By the assumption of the stopping time, the particle will stop as it reaches to the axis y = 0,
hence {Σ1 ≥ 0, ...,Σ2k ≥ 0,Σ2k+1 < 0} = Ø. Thus, {Σ1 ≥ 0, ...,Σ2k ≥ 0} = {Σ1 ≥ 0, ...,Σ2k ≥
0,Σ2k+1 ≥ 0}.
Now we proceed to the main step of the proof of Theorem 4.

3.3.4 The main step of the proof.

We’ll estimate the integral

∫

T
epSj(e

iθ)dθ. First we note that on the set {N ≤ j} Sj(e
iθ) =

Λj∧N (eiθ) = 0, then

1

2π

∫

T
epSj(e

iθ)dθ =
1

2π

∫

{N>j}
epSj(e

iθ)dθ +
1

2π

∫

{N≤j}
epSj(e

iθ)dθ

=
1

2π

∫

{N>j}
epSj(e

iθ)dθ + P ({N ≤ j}), (26)

where
1

2π

∫

{N>j}
epSj(e

iθ)dθ =
1

2π

∫

{N>j}
ep(1+Σj(e

iθ))dθ. We observe that

1

2π

∫

{N>j}
ep(1+Σj(e

iθ))dθ =
1

2π

∫

T
ep(1+Σj(e

iθ))dθ − 1

2π

∫

{N≤j}
ep(1+Σj(e

iθ))dθ.
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Since Σj =
∑j

k=1 εk where εk with k = 1, 2, ... are the independent random variables, then the
integral

1

2π

∫

T
ep(1+Σj(e

iθ))dθ = ep
j
∏

k=1

E(epεk) = ep
j
∏

k=1

cosh p = ep(cosh p)j .

Besides, the integral
∫

{N≤j} e
p(1+Σj(e

iθ))dθ can be rewritten as:

∫

{N≤j}
ep(1+Σj(e

iθ))dθ =

j
∑

k=1

∫

{N=k}
ep(1+Σj(e

iθ))dθ.

The fact that 1 + Σk(e
iθ) is equal to zero on each set {N = k} makes the value of the inte-

gral
∑j

k=1

∫

{N=k} e
p(1+Σj(e

iθ))dθ unchanged if we divide the integrand ep(1+Σj(e
iθ)) by the term

e1+Σk(e
iθ). Thus we have:

j
∑

k=1

∫

{N=k}
ep(1+Σj(e

iθ))dθ =

j
∑

k=1

∫

{N=k}
ep(1+Σj(e

iθ)−1−Σk(e
iθ))dθ

=

j
∑

k=1

∫

{N=k}
ep(Σj(e

iθ)−Σk(e
iθ))dθ.

In addition, if we rewrite the integral
∫

{N=k} e
p(Σj(e

iθ)−Σk(e
iθ))dθ as

∫

T 1{N=k}e
p(Σj(e

iθ)−Σk(e
iθ))dθ,

then by the independence of two random variables 1{N=k} and ep(Σj−Σk) it follows that

1

2π

∫

T
1{N=k}e

p(Σj(e
iθ)−Σk(e

iθ))dθ = P ({N = k})E(ep(Σj(e
iθ)−Σk(e

iθ)))

= P ({N = k})(cosh p)j−k.

Hence we obtain

1

2π

∫

{N>j}
epSj(e

iθ)dθ = ep cosh(p)j
(

1−
j

∑

k=1

P ({N = k})
(cosh p)kep

)

≥ ep(cosh p)j
(

1−
j

∑

k=1

P ({N = k})
)

, (p > 0)

= ep(cosh p)jP ({N > j}), (p > 0). (27)

The inequality above follows from the fact that for p > 0 (cosh p)kep ≥ 1, k = 1, 2, .., j. From
(26), (27) and Jensen’s inequality, we deduce

log

(
∫

T
epSj(e

iθ)dθ

)

≥ 1

2
log

(

2

∫

{N>j}
epSj(e

iθ)dθ

)

+
1

2
log

(

4πP ({N ≤ j})
)

≥ p

2
+ log(4π) +

1

2
log(cosh(p)j) +

1

2
log(P ({N > j})) + 1

2
log(P ({N ≤ j}))

By Lemma 3: log(P (N > j)) ≃ − log j

2
and log(P (N ≤ j)) ≃ − 1√

j
as j −→ ∞, thus when we

divide the above inequality by j log 2 and take the lim sup as j −→ ∞, we deduce that

β(p, φ′) ≥ lim sup
j−→∞

log(cosh(p)j)

2j log 2
=

log cosh(p)

2 log 2
, p > 0.
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Moreover, the inequality log cosh(x) ≥ x2

2
−x4

12
, (x > 0) (proved in 2) implies that log cosh(x) ≥

x2

4
for x > 0 small enough, which implies (25): β(p, φ′) ≥ p2

8 log 2
, p > 0 small. As a conse-

quence of (25), the spectrum of integral means β(d(t), φ′
t) of the family of the conformal maps

φ′
t(z) = exp tb(z) satisfies the following inequality:

β(d(t), φ′
t) = β(td(t), φ′) ≥ t2d(t)2

8 log 2
, t > 0 small,

where d(t) = M.dim(Γt) ≥ 1.
Finally, by Proposition 2: d(t) = β(d(t), φ′

t) + 1, we deduce that :

d(t) ≥ 1 +
t2

8 log 2
, t > 0 small. (28)

This means that (23) fails for the family of conformal map (φt), t > 0 because if this family
holds for (23) then the fact that

lim sup
r−→1

∫ 2π
0 |b(reiθ)|2dθ

log 1
1−r

= 2 lim sup
r−→1

∫ 2π
0 |Reb(reiθ)|2dθ

log 1
1−r

= 0 (29)

which follows from the following results would contradict (28). Theorem 4 is proven.

Theorem 7 Let 〈S〉2j be the square function of the dyadic martingale Sj of Reb ( b defined
above) and a real positive p, then there exist positive constants M1,M2,K1,K2, T1, T2 do not
depend on j such that:
If p > 1

M1j
(p−1)/2 ≤ 1

2π

∫ 2π

0
(〈S〉2j )p/2dθ ≤ M2j

(p−1)/2;

If p = 1

K1 log j ≤
1

2π

∫ 2π

0
(〈S〉2j )p/2dθ ≤ K2 log j;

If p < 1

T1 ≤
1

2π

∫ 2π

0
(〈S〉2j )p/2dθ ≤ T2.

Proof: First we’ll show that

1

2π

∫ 2π

0
(〈S〉2j (θ))p/2dθ =

j−1
∑

k=1

((k + 1)p/2 − kp/2)P ({N > k}) (30)

and then we’ll prove that there exist positive constant A1, A2 do not depend on j such that

A1

l
∑

n=1

1

(2n)(3−p)/2
≤

∫ 2π

0
(〈S〉2j )p/2dθ ≤ A2

l
∑

n=1

1

(2n)(3−p)/2
. (31)

The proof will follow from the estimation of the sum
l

∑

n=1

1

(2n)(3−p)/2
. We first separate the

unit circle into two sets {N > j} and {N ≤ j}, then

1

2π

∫ 2π

0
(〈S〉2j )p/2dθ =

1

2π

∫

{N>j}
(〈S〉2j )p/2dθ +

1

2π

∫

{N≤j}
(〈S〉2j )p/2dθ.

17



We observe that on the set {N > j}, 〈S〉2j = j, hence
1

2π

∫

{N>j}
(〈S〉2j )p/2dθ = jp/2P ({N > j}).

Besides,
∫

{N≤j}
(〈S〉2j )p/2dθ =

j
∑

k=1

∫

{N=k}
(〈S〉2j )p/2dθ.

Note that 〈S〉2j = k on {N = k}. This implies that

1

2π

∫

{N≤j}
(〈S〉2j )p/2dθ =

j
∑

k=1

1

2π

∫

{N=k}
(〈S〉2j )p/2dθ =

j
∑

k=1

kp/2P ({N = k}).

By using summation by parts, we have

j
∑

k=1

kp/2P ({N = k}) =
j−1
∑

k=1

((k + 1)p/2 − kp/2)P ({N > k})− jp/2P ({N > j}).

This implies (30). We observe that if p ≥ 2 then

1

2π

∫ 2π

0
(〈S〉2j (θ))dθ ≥

j−1
∑

k=1

(p/2)k(p−2)/2P ({N > k})

and

1

2π

∫ 2π

0
(〈S〉2j (θ))dθ ≤

j−1
∑

k=1

(p/2)(k + 1)(p−2)/2P ({N > k}),

and since (k + 1)(p−2)/2 ≤ e(p−2)/2k(p−2)/2, k = 1, 2, ... then

1

2π

∫ 2π

0
(〈S〉2j (θ))dθ ≤ e(p−2)/2

j−1
∑

k=1

(p/2)k(p−2)/2P ({N > k}).

Thus,

p

2

j−1
∑

k=1

k(p−2)/2P ({N > k}) ≤ 1

2π

∫ 2π

0
(〈S〉2j )p/2dθ ≤ pe(p−2)/2

2

j−1
∑

k=1

k(p−2)/2P ({N > k}).

If p < 2 we have the inverse inequality

p

2

j−1
∑

k=1

k(p−2)/2P ({N > k}) ≥ 1

2π

∫ 2π

0
(〈S〉2j )p/2dθ ≥ pe(p−2)/2

2

j−1
∑

k=1

k(p−2)/2P ({N > k}),

Using the remark in 3.3.3 that P ({N > 2n + 1}) = P ({N > 2n}), therefore without lost
generality we assume that j = 2(l + 1).
If p ≥ 2 then

p/2 + p

l
∑

n=1

(2n)(p−2)/2P ({N > 2n}) ≤ 1

2π

∫ 2π

0
(〈S〉2j )p/2dθ

≤ pe(p−2)/2

2

(

(1 + e(p−2)/2)
l

∑

n=1

(2n)(p−2)/2P ({N > 2n}) + 1/2

)

,
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If p < 2 then

p/2 + p

l
∑

n=1

(2n)(p−2)/2P ({N > 2n}) ≥ 1

2π

∫ 2π

0
(〈S〉2j )p/2dθ

≥ pe(p−2)/2

2

(

(1 + e(p−2)/2)
l

∑

n=1

(2n)(p−2)/2P ({N > 2n}) + 1/2

)

,

By Lemma 3, there exist absolute positive constants C1, C2 such that

C1
1√
2n

≤ P (N > 2n) = P ({Σ2n = 0}) ≤ C2
1√
2n

.

This implies that

C1

l
∑

n=1

1

(2n)(3−p)/2
≤

l
∑

n=0

(2n)(p−2)/2P ({N > 2n}) ≤ C2

l
∑

n=1

1

(2n)(3−p)/2
.

This implies (31). Now we observe that if p ≥ 3 the function f(x) =
1

(2x)(3−p)/2
is increasing

on [1,∞), then

2(p−3)/2 +

∫ l

1

1

(2x)(3−p)/2
dx ≤

l+1
∑

n=1

1

(2n)(3−p)/2
≤

∫ l+1

1

1

(2x)(3−p)/2
dx,

where

∫ l

1

1

(2x)(3−p)/2
dx =

1

p− 1

(

(j−2)(p−1)/2−2(p−1)/2

)

and

∫ l+1

1

1

(2x)(3−p)/2
dx =

1

p− 1

(

(j)(p−1)/2 − 2(p−1)/2

)

.

If p < 3 the function f(x) =
1

2n(3−p)/2
is decreasing on [1,∞), then :

if
3− p

2
< 1 ⇐⇒ p > 1 then

∫ l+1

1

1

(2x)(3−p)/2
dx ≤

l
∑

n=1

1

(2n)(3−p)/2
≤

∫ l

1

1

(2x)(3−p)/2
dx+

1

2(3−p)/2
,

where

∫ l

1

1

(2x)(3−p)/2
dx =

1

p− 1

(

(j−2)(p−1)/2−2(p−1)/2

)

and

∫ l+1

1

1

(2x)(3−p)/2
dx =

1

p− 1

(

(j)(p−1)/2 − 2(p−1)/2

)

;

if
3− p

2
= 1 ⇐⇒ p = 1 then

1

2

∫ l+1

1

1

x
dx ≤

l
∑

n=1

1

2n
≤ 1

2

∫ l

1

1

x
dx+

1

2
,
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where

∫ l+1

1

1

x
dx = log(j)− log 2 and

∫ l

1

1

x
dx = log(j − 2)− log 2;

if
3− p

2
> 1 ⇐⇒ p < 1 then

l
∑

n=1

1

(2n)(3−p)/2
converges as j −→ ∞ because

∫ l+1

1

1

(2x)(3−p)/2
dx ≤

l
∑

n=1

1

(2n)(3−p)/2
≤

∫ l

1

1

(2x)(3−p)/2
dx+

1

2(3−p)/2
,

where

∫ l

1

1

(2x)(3−p)/2
dx =

1

p− 1

(

(j−2)(p−1)/2−2(p−1)/2

)

and

∫ l+1

1

1

(2x)(3−p)/2
dx =

1

p− 1

(

(j)(p−1)/2 − 2(p−1)/2

)

converges as j −→ ∞.

Now we can go to the conclusion that there exist positive constants M1,M2,K1,K2, T1, T2 do
not depend on j such that:
If p > 1

M1j
(p−1)/2 ≤ 1

2π

∫ 2π

0
(〈S〉2j )p/2dθ ≤ M2j

(p−1)/2;

If p = 1

K1 log j ≤
1

2π

∫ 2π

0
(〈S〉2j )p/2dθ ≤ K2 log j;

If p < 1

T1 ≤
1

2π

∫ 2π

0
(〈S〉2j )p/2dθ ≤ T2.

The theorem is proven.

Corollary 2 Let b be the Bloch function (defined above) and a real positive p, then

lim sup
r−→1

∫ 2π
0 |Reb(reiθ)|pdθ
(log 1

1−r )
p/2

= 0

Proof: The proof will be given as follows. First of all, we’ll show that for p > 0

lim sup
j−→∞

∫ 2π
0 |Reb((1− 2−j)eiθ)|pdθ

(j log 2)p/2
= lim sup

j−→∞

∫ 2π
0 |Sj |pdθ
(j log 2)p/2

. (32)

Then we’ll estimate

∫ 2π
0 |Sj |pdθ
(j log 2)p/2

by using the fact that: for 1 < p < ∞ (see [Bur]) there exist

absolute positive constants bp and Bp such that

bp‖〈S〉2j‖2(p/2) ≤ ‖Sj‖p ≤ Bp‖〈S〉2j‖2(p/2)

and for 0 < p ≤ 1 (see [Gan]) there also exists a positive absolute constant νp such that
‖Sj‖p ≤ νp‖〈S〉2j‖2(p/2), where the square function 〈S〉2j =

∑n
k=1(∆Sk)

2. Then the proof will
follow by Theorem 7. That is the main idea of the proof.
First, let us prove (32). The fact that |Sj(θ) − Reb(reiθ)| ≤ C‖b‖B if r = 1 − 2−j (see (11))
implies that for p ≥ 1

∣

∣

∣

∣

‖Sj‖p − ‖Reb(reiθ)‖p
∣

∣

∣

∣

≤ ‖Sj − Reb(reiθ)‖p ≤ 2π(C‖b‖B).
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Therefore if we divide both sides by (j log 2)1/2 of the above inequalities and take the limit as
j tends to ∞, then we obtain

lim
j−→∞

(

∫ 2π
0 |Sj |pdθ
(j log 2)p/2

)1/p

−
(

∫ 2π
0 |Reb((1− 2−j)eiθ)|pdθ

(j log 2)p/2

)1/p

= 0. (33)

According to Corollary 1

∫ 2π
0 |Reb((1− 2−j)eiθ)|pdθ

(j log 2)p/2
is bounded and then by (33)

∫ 2π
0 |Sj |pdθ
(j log 2)p/2

is also bounded. Moreover since the function xp is continuous uniformly on some compact set
of [0,+∞), then (33) implies that

lim
j−→∞

∫ 2π
0 |Sj |pdθ
(j log 2)p/2

−
∫ 2π
0 |Reb((1− 2−j)eiθ)|pdθ

(j log 2)p/2
= 0

Thus,

lim sup
j−→∞

∫ 2π
0 |Sj |pdθ
(j log 2)p/2

= lim sup
j−→∞

∫ 2π
0 |Reb((1− 2−j)eiθ)|pdθ

(j log 2)p/2
.

In the case of 0 < p ≤ 1, again the fact that |Sj(θ) − Reb(reiθ)| ≤ C‖b‖B if r = 1 − 2−j (see
(11)) implies that

∣

∣

∣

∣

∫ 2π

0
|Sj |pdθ −

∫ 2π

0
|Reb((1− 2−j)eiθ)|pdθ

∣

∣

∣

∣

≤
∫ 2π

0
|Sj − Reb((1− 2−j)eiθ)|pdθ ≤ 2π(C‖b‖B)p.

Analogously, if we devide the above inequalities by (j log 2)p/2 and take the limit as j tends to
∞, then we have

lim
j−→∞

∫ 2π
0 |Sj |pdθ
(j log 2)p/2

−
∫ 2π
0 |Reb((1− 2−j)eiθ)|pdθ

(j log 2)p/2
= 0

which implies that

lim sup
j−→∞

∫ 2π
0 |Sj |pdθ
(j log 2)p/2

= lim sup
j−→∞

∫ 2π
0 |Reb((1− 2−j)eiθ)|pdθ

(j log 2)p/2
.

Then (32) follows.

According to Theorem 7, if we divide the integral
1

2π

∫ 2π

0
(〈S〉2j (θ))p/2dθ by (j log 2)p/2 and let

j −→ ∞, then we have

lim sup
j−→∞

∫ 2π
0 (〈S〉2j (θ))p/2dθ

(j log 2)p/2
= 0.

This finishes the proof.
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