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Let Ω C be a simply connected domain containing 0: by the Riemann Mapping theorem, there is a unique conformal map f from the unit disk D = {|z| < 1} onto Ω such that f (0) = 0, f ′ (0) > 0. In this paper we are interested in domains with fractal boundary and more precisely with the Hausdorff dimension of these boundaries. Well-known examples of fractal curves which have deserved a lot of investigations and attentions are the Julia sets and the limit sets of quasifuchsian groups because of their dynamical properties. For instance, let us consider the family of quadratic polynomials

P t (z) = z 2 + t, t ∈ C
in the neighborhood of t = 0. There is a smooth family of conformal map φ t from C \ D onto the basin of infinity of the polynomial P t (z) (the component containing ∞ of its Fatou set) with φ 0 (z) = z and conjugating P 0 to P t on their basins of infinity. We thus have: φ t (P 0 ) = P t (φ t (z)), z ∈ C \ D.

(1) Each φ t extends to a quasiconformal map on the sphere C. Taking the derivative of the equation (1) with respect to t, we obtain the equation:

φt (z 2 ) = 2φ t (z) φt (z) + 1, (2) 
where φt = ∂φ ∂t . Let V (z) denote the holomorphic vector field of V (z) = ∂φ t ∂t t=0 . Letting t = 0 in the equation (2), we get that the holomorphic vector field V satisfies the functional equation:

V (z 2 ) = 2zV (z) + 1. ( 3 
)
If we replace z by z 2 in the preceding equation, we obtain that

V (z 4 ) = 2z 2 V (z 2 ) + 1. ( 4 
)
Injecting V (z 2 ) in (3) into (4), one gets V (z) = -1 2z + 1 2z2z 2 + V (z 4 ) 2z2z 2 . And by induction we can obtain V (z) = -n-1 k=1 1 2z2z 2 ...2z 2 k + V (z 2 n ) 2z2z 2 ...2z 2 n-1 . The term V (z 2 n ) 2 n+1 z 2 n -1 tends to 0 as n tends to ∞. Therefore V (z) can be written as an infinite sum

V (z) = -z ∞ k=0 1 2 k+1 z 2 k+1 .
(5)

Using thermodynamic formalism, Ruelle [Rul] (see also [Zin] and [McM]) proved that

d 2 dt 2 H.dim(J(P t )) t=0 = lim r-→1 1 4π 1 log 1 1-r |z|=r |v ′ (z)| 2 |dz|. (6) 
Using then the explicit formula (5) of V , he could proved that H.dim(J(P t )) = 1 + |t| 2 4 log 2 + o(|t| 2 ). ( 7)

for this particular family.

Passing to the disc instead of its complement, let us consider a general analytic one-parameter family (φ t ), t ∈ U , a neighborhood of t = 0, of conformal maps with φ 0 = id and φ t (0) = 0, ∀t ∈ U.

Then φ t (z) = z 0 e log φ ′ t (u) du and ∂ ∂t φ t (z) = z 0 ∂ ∂t log φ ′ t (u) e log φ ′ t (u) du.
From which follows that It follows from λ-lemma (see [IT]) that φ t has a quasiconformal extension to the plane if t is small enough. In particular Γ t = φ t (∂D) is well-defined.

V (z) = ∂ ∂t φ t (z) t=0 = z 0 ∂ ∂t log φ ′ t (u)
In [McM], Mc Mullen asked the following question: Under which condition on the family of (φ t ) it is true that

d 2 dt 2 H.dim (Γ t ) t=0 = lim r-→1 1 4π| log(1 -r)| |z|=r |b(z)| 2 |dz| ? (8) 
In other words, the question addresses the problem of how much formula (6) owes to dynamical properties.

Conversely, starting from a function b ∈ B, it is known that if we put

φ t (z) = z 0 e tb(u) du, b ∈ B, (9) 
is an analytic family and there exists a neighborhood U of 0 such that if t ∈ U then φ t is a conformal map with quasiconformal extension and we denote by Γ t the image of the unit circle by φ t . The aim of the work is two-fold: we will first describe a large family of function b ∈ B for which if φ t is defined by ( 9), (t being real) then ( 8) is true with Hausdorff dimension replaced by Minkowski dimension. This class will be defined in term of the square function of the associated of dyadic martingale of Re(b). Details and proper statement will be given in 2.

The second result of this paper is a counter-example. The starting point is the construction by Kahane and Piranian of a so-called "non Smirnov" rectifiable domain. These authors have constructed a Bloch function b such that if we consider the associated family (φ t ) as in (9) then φ t (∂D) is rectifiable for t < 0. This function is very singular in the sense that

b(z) = 2π 0 e iθ + z e iθ -z dµ(θ),
where µ is singular with respect to Lebesgue measure on the circle. We use this feature to prove that there exists c > 0 such that 8) with Hausdorff dimension replaced by Minkowski dimension.

M.dim(Γ t ) ≥ 1 + ct 2 , t > 0 small. which contradicts lim t-→0 M.dim(Γ t ) -1 t 2 = 0 by (

Martingale condition

Before giving statement of the first result of this paper, we recall some preliminaries on Bloch function and the notion of dyadic martingale.

Preliminaries on Bloch function

Proposition 1 If b ∈ B and b(0) = 0 then 1 2π T |b(rξ)| 2n |dξ|≤ n! b 2n B log 1 1 -r 2 n for 0 < r < 1 and n = 0, 1, ... Proof: See [Pom]. This proposition implies that if b ∈ B, b(0) = 0, lim sup r-→1 2π 0 |b(re iθ )| 2 dθ 2π log( 1 1-r ) ≤ b 2 B < +∞. ( 10 
)
This proposition can be generalized as follows.

Corollary 1 If b ∈ B and b(0) = 0 then there exists a constant C such that

T |b(rξ)| p |dξ| ≤ C log 1 1 -r 2 p/2
for 0 < r < 1 and p > 0.

Proof: For p > 0, there exists a positive integer n such that 0 < p 2n < 1. Applying the Hölder's inequality for α = p 2n < 1, we deduce that Proof: See [Dur]. Let I = (e iθ 1 , e iθ 2 ) be a subarc of ∂D. We can define b I , the mean value of b on the arc I ⊂ ∂D, as the limit lim 

T |b(rξ)| 2n |dξ| ≥ T |b(rξ)| 2nα 1/α 2π 1/β , where 1 α + 1 β = 1. Then Proposition 1 implies that T |b(rξ)| p |dξ| = T |b(rξ)| 2nα |dξ| ≤ (2π) -α/β T |b(rξ)| 2n |dξ| α ≤ C log 1 1 -r 2 p/2 , where C = (2π) -α/β (n! b 2n B ) α . Let h be a (complex-
I = lim r-→1 1 |I| I b(re iθ )dθ = -ie -iθ 2 h(e iθ 2 ) + ie -iθ 1 h(e iθ 1 ) |I| + 1 |I| I e -iθ h(e iθ )dθ
and by the property of continuity up to the boundary of the primitive function h(z), the limit exists. Hence the definition of mean value of Bloch function is well-defined. We recall now the notion of dyadic martingale of a Bloch function.

2.2 Dyadic martingale. This sequence is a martingale in the sense that E(S n+1 |F n ) = S n . And it has the property:

∀n, ∀ξ ∈ ∂D, S n (ξ) -b((1 -2 -n )ξ) ≤ C b B , (11) 
where C is an absolute constant (see [Mak]). We consider the increasing sequence S 2 n = n j=1 E((∆S j ) 2 |F j-1 ), where ∆S j = S j -S j-1 . In the dyadic case ∆S 2 j is F j-1 measurable, so that

S 2 n = n j=1 (∆S j ) 2 . We call S 2 ∞ = k≥1 (∆S k ) 2 the square function.
This first result is based on the computing of the integral means

|z|=r e tRe(b(z)) |dz|, b ∈ B
in which there is only the real part of a Bloch function b that appears, so that we just need the dyadic martingale which arises from a real part of the Bloch function. Let us state this result.

Statement of Theorem 2.

Let b be a Bloch function and b n be the dyadic martingale of Re(b). Let us assume the following condition for its square function S 2 n :

∀θ ∈ [0, 2π], S 2 n (e iθ ) -

1 2π 2π 0 S 2 n (e iθ )dθ ≤ nδ(n), ( * )
where δ(n) is a positive function which depends only on n and which tends to zero as n tends to ∞. Let us also write d(t) = M.dim(Γ t ).

Theorem 2 If b belongs to B and satisfies the condition ( * ) then the Minkowski dimension of Γ t has the following development at zero:

M.dim(Γ t ) = 1 + lim sup r-→1 2π 0 |b(re iθ )| 2 dθ 4π log 1 1-r t 2 2 + o(t 2 ), (12) 
By ( 10), lim sup

r-→1 2π 0 |b(re iθ )| 2 dθ log 1 1-r exists .
Put Ω t = φ t (D). Now we will give the proof of Theorem 2 by using probability methods. The proof of this theorem has two steps. In the first one, we will point out the relation between the Minkowski dimension d(t) of Γ t and the spectrum of integral means β(d(t), φ ′ t ) (for definition see below).

2.4

The first step of the proof.

First, we know that the image Ω t of the unit disk D by the conformal map φ t is a quasidisk, for t small. We recall the crucial proposition about Minkowski dimension of quasicircles (boundaries of quasidisks) . We define

β(p, φ ′ ) = lim sup r-→1 log 2π 0 |φ ′ (re iθ )| p dθ | log(1 -r)| = lim sup r-→1 log 2π 0 exp{pReb(re iθ )}dθ | log(1 -r)| , (p ∈ R) be the spectrum of integral means of φ ′ = exp b(z) (z ∈ D; b ∈ B). In the case of the family of conformal maps φ t (z) = z 0 e tb(u) du (z ∈ D; t ∈ R), β(p, φ ′ t ) = lim sup r-→1 log 2π 0 (exp{tReb(re iθ) }) p dθ | log(1 -r)| = lim sup r-→1 log 2π 0 exp{tpReb(re iθ )}dθ | log(1 -r)| . This implies that β(p, φ ′ t ) = β(tp, φ ′ ). Proposition 2 If f maps D conformally onto a quasidisk Ω then M.dim∂Ω = p
where p is the unique solution of β(p, f ′ ) = p -1.

Proof: See [Pom]. As a consequence of Proposition 2, we deduce the next proposition. 

β(p, φ ′ ) = ap 2 + o(p 2 )
then the Minkowski dimension of Γ t has the development at t = 0:

d(t) = 1 + at 2 + o(t 2 ). Proof: We observe that d(t) -→ 1, as t -→ 0. Put x(t) = d(t) -1. The proposition 2 implies that β(d(t), φ ′ t ) = d(t) -1. Since β(d(t), φ ′ t ) = β(td(t), φ ′ ), we get β(t(1 + x(t)), φ ′ ) = x(t). ( 13 
)
And by the assumption we have

β(t(1 + x(t)), φ ′ ) = at 2 (1 + x(t)) 2 + o(t 2 (1 + x(t)) 2 ). Since x(t) -→ 0 as t -→ 0, then t 2 (1 + x(t)) 2 = t 2 + o(t 2
). This implies that

β(t(1 + x(t)), φ ′ ) = at 2 + o(t 2 ) (14)
From ( 13) and ( 14), we obtain that x(t) = at 2 + o(t 2 ). The result follows.

Next we proceed with the second step of this proof.

2.5

The second step of the proof.

According to Proposition 3, in order to finish the proof of Theorem 2, we need to show that the family of conformal maps φ t = 

β(p, φ ′ ) = 1 4 lim sup r-→1 2π 0 |b(re iθ )| 2 dθ 2π log( 1 1-r ) p 2 + O(p 4 ).
Proof of Theorem 3: Let us give some remarks and the strategy for the proof of this theorem. First, we note that if γ = Re(b(0)) = 0, then put b 1 (z) = b(z) -b(0) and we have

β(p, φ ′ ) = lim sup r-→1 log 2π 0 e pγ+pReb 1 (re iθ ) dθ log 1 1-r = lim sup r-→1 log 2π 0 e pReb 1 (re iθ ) dθ log 1 1-r + pγ log 1 1-r = lim sup r-→1 log 2π 0 e pReb 1 (re iθ ) dθ log 1 1-r
.

This says that we do not lose generality if we assume that b(0) = 0. Moreover, we observe that for each r ∈ (0, 1), there exists n such that 1/2 n+1 ≤ 1 -r ≤ 1/2 n and from (11)

|b n (e iθ ) -Re(b(re iθ ))| ≤ C b B , (r = 1 -2 -n ) , we deduce that β(p, φ ′ ) = lim sup r-→1 log( 2π 0 e pb(re iθ ) dθ) log( 1 1-r ) = lim sup n-→∞

log(

2π 0 e pbn(e iθ ) dθ) n log 2 .

Then, Theorem 3 will follow from the estimation of the integral 2π 0 e pbn(e iθ ) dθ. The principle idea of this estimation is to make use of the exponential transformation of dyadic martingale b n (the dyadic martingale of Reb) which is defined as a sequence

Z 0 = exp pb 0 ; Z n = exp pbn n-1 k=0 cosh(p∆b k ) , n ≥ 1. Checking the condition E(Z n |F n-1 ) = Z n-1 , we see that Z = (Z n , F n ) is a positive martingale.
The integral 2π 0 e pbn(e iθ ) dθ will be derived from the following equality which follows from the martingale's property that

∀n ∈ N, E(Z n ) = 1 2π 2π 0 exp pb n (e iθ ) n-1 k=0 cosh(p∆b k (e iθ )) dθ = E(Z 0 ) = 1.
In other words, 1 2π

2π 0 e pbn(e iθ )-log( n-1 k=0 cosh(p∆bn(e iθ ))) dθ = 1. ( 15)

The rest part of the estimation of 2π 0 e pbn(e iθ ) dθ is quite simply. We just apply the following inequalities and the condition ( * ) to (15). log(

n-1 k=0 cosh(p∆b n )) - p 2 2 S 2 n ≤ p 4 12 n-1 k=0 (∆b k ) 4 ≤ C ′ p 4 b 2 B S 2 n , (16) 
where C ′ is an absolute constant. The first inequality of ( 16) follows from the estimation that log(cosh(x)) -

x 2 2 ≤ x 4 12 , (x ∈ R). Indeed, put g(x) = log(cosh(x)) - x 2 2 - x 4 12 . We see that g ′′ (x) = -(tanh x) 2 -x 2 ≤ 0, ∀x ∈ R. Hence, g ′ (x) = x 0 g ′′ (u)du ≤ 0, ∀x ∈ R. Therefore, g(x) = x 0 g ′ (u)du ≤ 0, ∀x > 0 and since g(x) is a even function, then g(x) ≤ 0, ∀x ∈ R. Similarly, put h(x) = log(cosh(x)) - x 2 2 + x 4 12 . We observe that h ′′ (x) = -(tanh x) 2 + x 2 ≥ 0, ∀x ∈ R because | tanh x| ≤ |x|, ∀x ∈ R. Analogously, we obtain that ∀x ∈ R, h(x) ≥ 0. Besides, (11) (∀ξ ∈ T, |∆b n (ξ)| ≤ C b B ) implies that n-1 k=0 (∆b k ) 4 = n-1 k=0 (∆b k ) 2 (∆b k ) 2 ≤ C 2 b 2 B n-1 k=0 (∆b k ) 2 = C 2 b 2 B S 2 n .
Then the second one of ( 16) follows.

Finally, we'll apply the following lemma to conclude that for p small

β(p, φ ′ ) = lim sup n-→∞ log 2π 0 e pbn(e iθ ) dθ n log 2 = p 2 4 lim sup r-→1 2 0 |b(re iθ )| 2 (θ)dθ 2π log 1 1-r + O(p 4 )
Lemma 1 Let b be a Bloch function and S 2 n be the square function of the dyadic martingale b n of Re(b). Then

lim sup n-→∞ 2π 0 S 2 n (e iθ )dθ n log 2 = lim sup r-→1 2π 0 |b(re iθ )| 2 dθ 2 log 1 1-r ≤ π b 2 B .
Proof: Recall b = Reb and b n is a dyadic martingale of b. We have:

b n 2 2 = 2π 0 b 2 n (θ)dθ = 2π 0 n-1 k=0 (∆b k (θ)) 2 dθ = 2π 0 S 2 n (θ)dθ.
The second equality follows from Proposition 5.4.5 [Gra] and the third one follows from the definition of the square function of the dyadic martingale b n . Moreover, the fact that

|b n (θ) - b(re iθ )| ≤ C b B if r = 1 -2 -n (see (11)) implies that: b n 2 -b(re iθ ) 2 ≤ b n (e iθ ) -b(re iθ ) 2 ≤ 2π(C b B ).
Therefore if we divide both sides by (n log 2) 1/2 of the above inequalities and take the limit as n -→ ∞, then we obtain:

lim j-→∞ 2π 0 (b n ) 2 dθ n log 2 1/2 - 2π 0 ( b((1 -2 -n )e iθ )) 2 dθ n log 2 1/2 = 0. ( 17 
)
By Proposition 1, Thus, lim sup

j-→∞ 2π 0 (b n ) 2 dθ j log 2 = lim sup j-→∞ 2π 0 ( b((1 -2 -n )e iθ )) 2 dθ n log 2 . Then, lim sup n-→∞ 2π 0 S 2 n (θ)dθ n log 2 = lim sup r-→1 2π 0 ( b(re iθ )) 2 dθ log( 1 1-r ) (r = 1 -2 -n ).
Furthermore, since b is holomorphic in the unit disk D and by Proposition 1, we have:

lim sup r-→1 2π 0 (Reb(re iθ )) 2 dθ log( 1 1-r ) = lim sup r-→1 2π 0 |b(re iθ )| 2 dθ 2 log( 1 1-r ) ≤ π b 2 B .
The lemma is proven. The proof of Theorem 3 remains the main step: that is to estimate the integral 2π 0 e pbn(e iθ ) dθ. The main step of the proof.

Put ǫ n (θ) =    log( n-1 k=0 cosh(p∆bn(e iθ )))-p 2 2 S 2 n (e iθ ) p 2 2 S 2 n (e iθ ) , if S 2 n (e iθ ) = 0 0, otherwise , (θ ∈ [0, 2π]). This says that log n-1 k=0 cosh(p∆b n (e iθ )) = p 2 2 S 2 n (e iθ ) 1 + ǫ n (θ) , (18) 
where

|ǫ n (θ)| ≤ C ′ p 2 b 2 B by (16). Put I n = 1 2π 2π 0
S 2 n (θ)dθ. By ( 18), ( 15) is equivalent to

1 2π 2π 0 exp pb n (e iθ ) - p 2 2 S 2 n (e iθ )(1 + ǫ n (θ)) dθ = 1.
By subtraction and adding the term p 2 2 I n (1 + ǫ n (θ)), we can rewrite the preceding equality as follows

1 2π 2π 0 exp pb n (e iθ ) - p 2 2 I n (1 + ǫ n (θ)) - p 2 2 ( S 2 n (e iθ ) -I n )(1 + ǫ n (θ)) dθ = 1.
Remark that I n is a number, so we can take the term exp{ p 2 2 I n } out of the above integral, then the equality turns out to be

1 2π 2π 0 exp pb n (e iθ ) - ǫ n (θ)p 2 2 I n - p 2 2 ( S 2 n (e iθ ) -I n )(1 + ǫ n (θ)) dθ = exp p 2 2 I n . Put I = 1 2π 2π 0 exp pb n (e iθ ) - ǫ n (θ)p 2 2 I n - p 2 2 ( S 2 n (e iθ ) -I n )(1 + ǫ n (θ)) dθ.
Next, we will estimate the integral I.

Combining the condition ( * )

S 2 n (ξ) -

I n ≤ nδ(n) with the fact that |ǫ n | ≤ C ′ p 2 b 2 B , we have: (1 + ǫ n (θ))( S 2 n (ξ) -I n ) ≤ (1 + C ′ p 2 b 2 B )nδ(n).
Then, this implies that:

exp -C ′ p 4 b 2 B I n - nδ(n) 2 p 2 (1 + C ′ p 2 b 2 B ) 1 2π
2π 0 e pbn(e iθ ) dθ ≤ I and

I ≤ exp C ′ p 4 b 2 B I n + nδ(n) 2 p 2 (1 + C ′ p 2 b 2 B ) 1 2π
2π 0 e pbn(e iθ ) dθ.

Replacing I by exp p 2 2 I n and then taking logarithm of two sides of the above inequalities, we deduce that log 2π 0 e pbn(e iθ ) dθ -nδ(n)

2 p 2 (1 + C ′ p 2 b B ) -C ′ p 4 b 2 B I n -log(2π) ≤ p 2 2 I n and p 2 2 I n ≤ log 2π 0 e pbn(e iθ ) dθ + nδ(n) 2 p 2 (1 + C ′ p 2 b B ) + C ′ p 4 b 2 B I n -log(2π).
Next, if we divide two both sides of the inequalities by n log 2, we then obtain the inequalities

p 2 2 I n n log 2 ≥ log 2π 0 e pbn(e iθ ) dθ n log 2 -p 2 (1 + C ′ p 2 b 2 B ) nδ(n) 2n log 2 + C ′ p 4 b 2 B I n n log 2 + log(2π) n log 2 and p 2 2 I n n log 2 ≤ log 2π 0 e pbn(e iθ ) dθ n log 2 + p 2 (1+C ′ p 2 b 2 B ) nδ(n) 2n log 2 +C ′ p 4 b 2 B I n n log 2 - log(2π) n log 2 .
Taking the lim sup as n tends to ∞ of these inequalities, then we get 

p 2 2 -C ′ p 4 b 2 B lim sup n-→∞ I n n log 2 ≤ lim
I n n log 2 ≤ C ′ p 4 b 2 B lim sup n-→∞ I n n log 2 , ( 19 
)
where lim sup n-→∞ From Theorem 3 and Proposition 3, we conclude Theorem 2. For the sake of completeness of this part, we will give a non-trivial example for Bloch function which satisfies condition ( * ) 2.6 An example with constant square function.

I n n log 2 = lim sup n-→∞ 2π 0 S 2 n (θ)dθ 2πn log 2 = lim sup r-→1 2π 0 |b(re iθ )| 2 dθ 4π log( 1 1-r ) ≤ b 2 B 2 < +∞
First, we define the independent Bernoullian random variables ε n on ∂D by the formula

ε n (e 2πix ) = -1, x n = 0 or 3, 1, x n = 1 or 2, (n = 1, 2, ...)
where x n denotes the 4-adic nth digit of x ∈ [0, 1].

Proposition 4 For any bounded sequence of a real numbers {a n }, the 4-adic martingale S n = n k=1 a k ε k is a dyadic martingale (if considered as dyadic).

Proof: See [Mak].

Let {a k } be a bounded sequence of real number, then lim sup 

M.dim(Γ t ) = 1 + lim sup r-→1 2π 0 |b(re iθ )| 2 dθ 4π log 1 1-r t 2 2 + o(t 2 ) = 1 + α 2 log 2 t 2 + o(t 2 ). ( 20 
) Indeed, since ∆S k = a k ε k then S 2 n = n k=1
a 2 k is a constant square function. Thus, certainly the square function S 2 n satisfies the condition ( * ). Besides, we have lim sup

r-→1 2π 0 |b(re iθ )| 2 dθ 2π log( 1 1-r ) = 2 lim sup n-→∞ 2π 0 S 2 n (θ)dθ 2πn log 2 = 2 lim sup n-→∞ S 2 n n log 2 = 2α log 2 , (r = 1 -2 n ).
Then, (20) follows from Theorem 2.

3 Counter-example.

In this part we show that Mc Mullen's property does not hold for all b ∈ B. The counter-example construct is reminiscent of Kahane's construction of a non-Smirnov domain.

3.1 Kahane measure and its Herglotz transform.

Kahane measure

First of all, let us recall the construction of Kahane measure. Denote by ω 0 the interval [0, 1] and by ω j one of intervals of form 4-adic [p4 -j , (p + 1)4 -j ] contained in ω 0 . We construct simultaneously a sequence of measure µ j and their supports E j as follow: µ 0 is the Lebesgue measure on interval ω 0 ; µ j is proportional to the Lebesgue measure on each ω j . We denote by D j (ω j ) its density on a given interval ω j and its support E j is the union of intervals ω j where D j (ω j ) = 0. In order to obtain µ j+1 from µ j , we divide each interval ω = ω j of rank j contained in E j into four equal subintervals ω 1 , ω 2 , ω 3 , ω 4 of rank j + 1 and put

D j+1 (ω 1 ) = D j+1 (ω 4 ) = D j (ω) -1, D j+1 (ω 2 ) = D j+1 (ω 3 ) = D j (ω) + 1. Put µ = lim j-→∞ µ j and E = ∞ j=0 E j .
We call this measure µ Kahane's measure.

There is another way to define the set E. Recall the independent Bernoullian random variables 

ε k on ∂D (defined in 2): put Σ j (e 2πix ) =
∀x ∈ [0, 1], D 0 (x) = 1; D k (x) = (D k-1 (x) + ε k (e 2πix ))1 E k-1 (x). Therefore, D k (x) = 1+ε 1 (e 2πix ) 1 E 0 (x)+ε 2 (e 2πix ) 1 E 1 (x)+...+ 1 E k-2 (x)+ε k (e 2πix ) 1 E k-1 (x), (x ∈ [0, 1]). Since E 0 ⊃ E 1 ⊃ ... ⊃ E k-1 then 1 E 0 ...1 E k-1 = 1 E k-1 , therefore D k (x) = (1 + Σ k (e 2πix ))1 E k-1 (x).
This implies that the support of

D k : E k = E k-1 ∩ {1 + Σ k > 0}.
Then,

E k = {1 + Σ 1 > 0, ..., 1 + Σ k > 0}, (k = 1, 2, ...).
Moreover, for x ∈ [0, 1]

D k (x) = (1 + Σ k (e 2πix ))1 E k-1 (x) = (1 + Σ k (e 2πix ))1 E k (x) + (1 + Σ k (e 2πix ))1 E k-1 \E k (x) = (1 + Σ k (e 2πix ))1 E k (x).
Because on the set

E k-1 \ E k we have 1 + Σ k (x) = 0.
In his paper [Kah], Kahane showed that the set E = Kahane has proved that b ∈ B. Put Λ j (e 2πix ) = 1 + Σ j (e 2πix ) and

S j (e 2πix ) = Λ j∧N (e 2πix ) = 1 + Σ j (e 2πix ), if x ∈ {N > j} = E j 0, otherwise , (x ∈ [0, 1]).
Similarly to the example of the square constant function in 2.6 above, Λ j is a dyadic martingale (if consider as dyadic). By the construction of µ, {N = j} = ω j = E j-1 \ E j ∈ F j , where ω j is an interval 4-adic of rank j -1 i.e dyadic of rank j. Therefore N is a stopping time with respect to the σ-algebra {F j , j ≥ 0} (defined above). Thus, S j = Λ N ∧j is a dyadic martingale as well. Moreover, we have the following lemma.

Lemma 2 S j is the dyadic martingale of the Bloch function Re(b).

Proof: Indeed, we recall h(θ) the cumulative distribution function of the Kahane measure µ,

(i.e. h(ϕ) = µ({ ϕ 2π > 0}) (ϕ ∈ [0, 2π]) and h(0) = 0. We observe that for z ∈ D b(z) = 1 2π 2π 0 e iϕ + z e iϕ -z h ′ (ϕ)dϕ = 1 2π 2π 0 1 + 2 ∞ n=1 e -inϕ z n h ′ (ϕ)dϕ. ( 21 
)
By the Schwartz integral formula and Imb(0) = 0, we have

b(z) = 1 2π 2π 0 e iϕ + z e iϕ -z Reb(e iϕ )dϕ = 1 2π 2π 0 1 + 2 ∞ n=1 e -inϕ z n Reb(e iϕ )dϕ. (22) 
From ( 21),( 22) we obtain 2π 0 e -inϕ (Reb(e iϕ )-h ′ (ϕ))dϕ = 0 (n = 0, 1, 2, ...). Since the sequence

{e inθ }(n = 0, 1, 2, ...) is a basic in L 2 ([0, 2π]), then Reb(e iϕ ) -h ′ (ϕ) = 0 in L 2 ([0, 2π]).
Thus, Reb(e iϕ ) = h ′ (ϕ) a.e in [0, 2π]. We observe that for each subarc 4-adic

ω j = [ ϕ 0 2π , ϕ 0 2π + ϕ 2π ] of rank j of the interval [0, 1], µ j (ω j ) |ω j | = 1 |ω j | ω j D j (x)dx = 1 |ω j | ω j (1 + Σ j (e 2πix ))1 E j dx = Λ j∧N (e 2πix )1 ω j (x) = S j (e 2πix )| ω j , while µ j (ω j ) |ω j | = h(ϕ + ϕ 0 ) -h(ϕ 0 ) |ϕ| . Therefore, S j (e 2πix )| ω j = h(ϕ + ϕ 0 ) -h(ϕ 0 ) |ϕ| = 1 |ω j | ω j
Reb(e 2πix )dx = (Reb) ω j .

It means that S j is the dyadic martingale S j of the Bloch function Reb. Now, let us state concretely the second result of this paper.

Statement of Theorem 4.

Let µ be Kahane's measure and b(z) its Herglotz transform. We recall that Γ t is the image of the unit circle T by the conformal map φ t (z) which is defined as φ ′ t (z) = e tb(z) , t small enough. If a family of conformal maps φ t (z) = z 0 e tb(u) du, (z ∈ D; b ∈ B) satisfies (8) with Hausdorff dimension replaced by Minkowski dimension, then

M.dim(Γ t ) = 1 + lim sup r-→1 2π 0 |b(re iθ )| 2 dθ 4π log 1 1-r t 2 2 + o(t 2 ). ( 23 
)
Theorem 4 The behaviour of the curve Γ t differs with the sign of t:

In the case of negative t, the singular property of the Kahane's measure µ (the density function of the probability measure µ is non negative and zero almost everywhere) makes φ ′ t ∈ H 1 . This is equivalent to the rectifiability of Γ t and then H.dim(Γ t ) = M.dim(Γ t ) ≡ 1. On the other hand, in the case of positive t, Γ t is a fractal curve and its Minkowski dimension satisfies the following inequality:

d(t) ≥ 1 + t 2 8 log 2
, ∀t > 0 small enough, as a consequence the family of conformal map (φ t ), t > 0 gives a counter-example to (23).

Next, we'll give the proof of this theorem.

Proof of Theorem 4

First of all, we will use the singularity of Kahane measure to show that in the case of small negative t, H.dim(Γ t ) = M.dim(Γ t ) ≡ 1.

Negative t.

We recall now the two theorems on H p (p > 0) functions and then we'll show how they imply the first part of Theorem 4. Let us introduce some notions. Given a function f (z) ≡ 0 of class H p (p > 0). Let (a n ) (may be finite, or even empty) be the sequence zeroes of the function f. A function of the form 

B(z) = z m n |a n | a n a n -z 1 -a n z
.dim(Γ t ) = M.dim(Γ t ) ≡ 1. ( 24 
)
The first part of Theorem 4 follows. Now, we'll go to the main part of the proof of Theorem 4: the case of small positive t.

Positive t.

We want to show that d(t) ≥ 1 + t 2 8 log 2 , t > 0 small. Analogously to section 2, in order to prove this, we need to show that the spectrum of integral means β(p, φ ′ ) where φ ′ = exp b(z) satisfies the following inequality This leads us to estimate the integral T e pS j (e iθ ) dθ, (S j = Λ j∧N ), p > 0 small. The difficult point is that S j is not a sum of independent random variables. However we can go around this difficulty by using the stopping time of the random walk argument of the dyadic martingale S j which will be introduced in the following.

β(p, φ ′ ) ≥ p 2 8 log 2 , p > 0 small. ( 25 

Random walk argument.

Let us describe this random walk on graph. On the lattice Z + × Z, we consider that a particle moves in the direction parallel to two diagonals of the unit square. We denote the individual steps generically by ε 1 , ε 2 , ..., ε n with the probability p = 1 2 (defined above in 2.6) and the position of the particle by Σ 1 , Σ 2 , ..., Σ n . According to the assumption of this dyadic martingale, the particle will stop as it reaches to the horizontal axis y = 0 on the lattice. We denote the event { at epoch n the particle is at the position r } by {Σ n = r} and we can write the event {N > k} by {1 + Σ 1 > 0, ..., 1 + Σ k > 0} and then by {Σ 1 ≥ 0, ..., Σ k ≥ 0}. We need the following lemma to obtain the inequality (25).

Lemma 3 For a random walk Σ n = ε 1 + ε 2 + ... + ε n , where ε k are Bernoulli independent random variables with the probability p = 1 2 , we have:

P (Σ 1 ≥ 0, Σ 2 ≥ 0, ..., Σ 2n ≥ 0) = P (Σ 2n = 0) = C n 2n 2 2n .
Moreover by Stirling's formula P (N > 2n) ≃ 1 √ 2n .

Proof: See [Fel]. Furthermore, we remark that for each positive integer k, {N > 2k + 1} = {N > 2k}. Indeed,

{Σ 1 ≥ 0, ..., Σ 2k ≥ 0} = {Σ 1 ≥ 0, ..., Σ 2k ≥ 0, Σ 2k+1 ≥ 0} ∩ {Σ 1 ≥ 0, ..., Σ 2k ≥ 0, Σ 2k+1 < 0}.
By the assumption of the stopping time, the particle will stop as it reaches to the axis y = 0, hence {Σ 1 ≥ 0, ..., Σ 2k ≥ 0, Σ 2k+1 < 0} = Ø. Thus, {Σ 1 ≥ 0, ..., Σ 2k ≥ 0} = {Σ 1 ≥ 0, ..., Σ 2k ≥ 0, Σ 2k+1 ≥ 0}. Now we proceed to the main step of the proof of Theorem 4.

3.3.4

The main step of the proof.

We'll estimate the integral T e pS j (e iθ ) dθ. First we note that on the set {N ≤ j} S j (e iθ ) = Λ j∧N (e iθ ) = 0, then 1 2π T e pS j (e iθ ) dθ = 1 2π {N >j} e pS j (e iθ ) dθ + 1 2π {N ≤j} e pS j (e iθ ) dθ = 1 2π {N >j} e pS j (e iθ ) dθ + P ({N ≤ j}),

where 1 2π {N >j} e pS j (e iθ ) dθ = 1 2π {N >j} e p(1+Σ j (e iθ )) dθ. We observe that 1 2π {N >j} e p(1+Σ j (e iθ )) dθ = 1 2π T e p(1+Σ j (e iθ )) dθ -1 2π {N ≤j} e p(1+Σ j (e iθ )) dθ.

Since Σ j = j k=1 ε k where ε k with k = 1, 2, ... are the independent random variables, then the integral 1 2π T e p(1+Σ j (e iθ )) dθ = e p j k=1

E(e pε k ) = e p j k=1 cosh p = e p (cosh p) j .

Besides, the integral {N ≤j} e p(1+Σ j (e iθ )) dθ can be rewritten as:

{N ≤j} e p(1+Σ j (e iθ )) dθ = j k=1 {N =k} e p(1+Σ j (e iθ )) dθ.

The fact that 1 + Σ k (e iθ ) is equal to zero on each set {N = k} makes the value of the integral j k=1 {N =k} e p(1+Σ j (e iθ )) dθ unchanged if we divide the integrand e p(1+Σ j (e iθ )) by the term e 1+Σ k (e iθ ) . Thus we have: j k=1 {N =k} e p(1+Σ j (e iθ )) dθ = j k=1 {N =k} e p(1+Σ j (e iθ )-1-Σ k (e iθ )) dθ = j k=1 {N =k} e p(Σ j (e iθ )-Σ k (e iθ )) dθ.

In addition, if we rewrite the integral {N =k} e p(Σ j (e iθ )-Σ k (e iθ )) dθ as T 1 {N =k} e p(Σ j (e iθ )-Σ k (e iθ )) dθ, then by the independence of two random variables 1 {N =k} and e p(Σ j -Σ k ) it follows that 1 2π T 1 {N =k} e p(Σ j (e iθ )-Σ k (e iθ )) dθ = P ({N = k})E(e p(Σ j (e iθ )-Σ k (e iθ )) )

= P ({N = k})(cosh p) j-k .

Hence we obtain 1 2π {N >j} e pS j (e iθ ) dθ = e p cosh(p) j 1 - 

The inequality above follows from the fact that for p > 0 (cosh p) k e p ≥ 1, k = 1, 2, .., j. From ( 26), ( 27) and Jensen's inequality, we deduce log T e pS j (e iθ ) dθ ≥ 1 2 log 2

{N >j} e pS j (e iθ ) dθ + 1 2 log 4πP ({N ≤ j}) ≥ p 2 + log(4π) + 1 2 log(cosh(p) j ) + 1 2 log(P ({N > j})) + 1 2 log(P ({N ≤ j}))

By Lemma 3: log(P (N > j)) ≃ -log j 2 and log(P (N ≤ j)) ≃ -1 √ j as j -→ ∞, thus when we divide the above inequality by j log 2 and take the lim sup as j -→ ∞, we deduce that β(p, φ ′ ) ≥ lim sup j-→∞ log(cosh(p) j ) 2j log 2 = log cosh(p) 2 log 2 , p > 0.

Therefore if we divide both sides by (j log 2) 1/2 of the above inequalities and take the limit as j tends to ∞, then we obtain Analogously, if we devide the above inequalities by (j log 2) p/2 and take the limit as j tends to ∞, then we have Then (32) follows.

According to Theorem 7, if we divide the integral 1 2π 2π 0 ( S 2 j (θ)) p/2 dθ by (j log 2) p/2 and let j -→ ∞, then we have lim sup j-→∞ 2π 0 ( S 2 j (θ)) p/2 dθ (j log 2) p/2 = 0.

This finishes the proof.

  Bloch space B which is defined as follows:B = b holomorphic in D; sup D (1-|z|)|b ′ (z)|< ∞ .

  valued) continuous function on the unit circle T and satisfying sup |z|=1 |h(e iθ z) -2h(z) + h(e -iθ z)| ≤ Cθ, for θ > 0. This function is called a Zygmund function. Theorem 1 (Zygmund) Let b be analytic on the disk D and let h(z) be a primitive function of b. Then b belongs to Bloch space B if and only if h is continuous on the closed disk D and h is a Zygmund function.

  ) I , where b r (z) = b(rz), z ∈ D. Integration by parts shows that b

  On the probability space (∂D, |.|) (|dξ| = dθ/2π, ξ = e iθ ∈ ∂D), we consider the increasing sequence of σ-algebras {F n , n ≥ 0} generated by the partitions of the unit circle by the intervals bounded by the (2 n )th roots of the unity. Let b be a Bloch function, b(0) = 0. We defined S = (S n , F n ) by setting S n |I = b I on each dyadic interval I of rank n. In other words S n = E(b|F n ). Then ∀ξ ∈ ∂D, S n (ξ) = I∈Fn b I χ I (ξ).

Proposition 3

 3 Let b be a Bloch function. If the spectrum of integral means of φ ′ (z) = exp b(z) (z ∈ D) has the development at p = 0:

z 0 e

 0 tb(u) du where the Bloch function b(z) satisfies the condition ( * ) has the spectrum of integral means of φ ′ (z) = exp b(z) expressed as β(p, φ ′ ) = ap 2 + o(p 2 ). This will be shown in the following theorem. Theorem 3 If b belongs to B and satisfies the condition ( * ) then the spectrum of the integral means of function φ ′ (z) = exp b(z) has the following development at p = 0 :

  since the function x 2 is continuous uniformly on some compact set of [0, +∞), then (17) implies that lim

  by Lemma 1. Thus, the estimation (19) gives us the desired formula for the spectrum of integral means β(p, φ ′ ) = lim sup to zero. This finishes the proof of Theorem 3.

0 e

 0 +∞. By Proposition 4, there exists a Bloch function b which generates the dyadic martingale S n .Let φ t (z) = z tb(u) du: these are conformal mappings from D onto Ω t and the Minkowski dimension of Γ t = ∂Ω t has the following development at 0:

  e 2πix ) and let N be the first number such that 1 + j k=1 ε k (e 2πix ) = 0 (x ∈ [0, 1]). By the definition of D k , we have :

E

  k (support of the measure µ) has a null Lebesgue measure. Therefore this measure is totally singular.3.1.2 Herglotz transform of Kahane measureLet b(z) be Herglotz transform of Kahane measure µ:

)

  In addition, from the fact that |S j (e iθ ) -Re(b(re iθ ))| ≤ C b B , (r = 1 -2 -j ), see (11), we have β(p, φ ′ ) = lim sup j (e iθ ) dθ j log 2 .

P

  ({N = k}) (cosh p) k e p ≥ e p (cosh p) j 1 -j k=1 P ({N = k}) , (p > 0) = e p (cosh p) j P ({N > j}), (p > 0).

0

  2 -j )e iθ )| p dθ (j log 2) p/2 is bounded and then by (33) 2π 0 |S j | p dθ (j log 2) p/2 is also bounded. Moreover since the function x p is continuous uniformly on some compact set of [0, +∞), then (33) implies that limj-→∞ 2π 0 |S j | p dθ (j log 2) p/2 -2π 0 |Reb((1 -2 -j )e iθ )| p dθ (j log 2) |S j | p dθ (j log 2) p/2 = lim sup j-→∞ 2π 0 |Reb((1 -2 -j )e iθ )| p dθ (j log 2) p/2 .In the case of 0 < p ≤ 1, again the fact that|S j (θ) -Reb(re iθ )| ≤ C b B if r = 1 -2 -j (see (11)) implies that 2π 0 |S j | p dθ -2π 0 |Reb((1 -2 -j )e iθ )| p dθ ≤ 2π 0 |S j -Reb((1 -2 -j )e iθ )| p dθ ≤ 2π(C b B ) p .

  2 -j )e iθ )| p dθ (j log 2) p/2.

  sup

				n-→∞	log	2π 0 e pbn(e iθ ) dθ n log 2	≤	p 2 2	+C ′ p 4 b 2 B	lim sup n-→∞	I n n log 2	.
	Finally, we obtain the estimation						
	lim sup n-→∞	log	2π 0 e pbn(e iθ ) dθ n log 2	-	p 2 2	lim sup n-→∞			

  where γ is a real number, |f (e iθ )| ∈ L p ([0, 2π]).Theorem 5 (Canonical factorization theorem). Every function f (z) ≡ 0 of class H p (p > 0) has a unique factorization of the form f (z) = B(z)S(z)F (z) where B(z) is a Blaschke product, S(z) is a singular inner function and F (z) is an outer function of class H p . Conversely, every such product B(z)S(z)F (z) belongs to H p . Let f (z) maps the unit disk D conformally onto a Jordan domain Ω. Then the boundary ∂Ω is rectifiable if and only if f ′ ∈ H 1 . H 1 is equivalent to the rectifiability of the boundary Γ t by Theorem 6, then obviously H

	is called a Blaschke product. A singular inner function is a function of the form
	S(z) = exp -where µ(t) be a bounded non-decreasing singular function (µ ′ (t) = 0 a.e). And an outer function 2π 0 e iθ + z dµ(t) , e iθ -z
	of class H p is a function of form					
	F (z) = e iγ exp	1 2π	0	2π	e iθ + z e iθ -z	log |f (e iθ )|dθ ,
	Proof: See [Dur].					
	Theorem 6 Proof: See [Dur].					
	Since t small enough and b(z) is a Bloch function, then by Becker univalence criterion the maps
	φ t (z) maps conformally the unit disk D onto a quasidisk Ω t . And its derivative has the form
	φ ′ t (z) = exp t where t < 0 and µ is a positive singular measure i.e the density function h ′ (θ) of Kahane measure 2π 0 e iθ + z dµ(θ) , e iθ -z
	µ is non negative and zero almost everywhere on [0, 2π] (mentioned above). Then, Theorem 5
	yields φ ′ t ∈ H 1 . Since φ ′ t ∈					

Moreover, the inequality log cosh(x) ≥

x 2 2 -x 4 12 , (x > 0) (proved in 2) implies that log cosh(x) ≥

x 2 4 for x > 0 small enough, which implies (25): β(p, φ ′ ) ≥ p 2 8 log 2 , p > 0 small. As a consequence of (25), the spectrum of integral means β(d(t), φ ′ t ) of the family of the conformal maps φ ′ t (z) = exp tb(z) satisfies the following inequality:

8 log 2 , t > 0 small, where d(t) = M.dim(Γ t ) ≥ 1. Finally, by Proposition 2: d(t) = β(d(t), φ ′ t ) + 1, we deduce that :

This means that (23) fails for the family of conformal map (φ t ), t > 0 because if this family holds for (23) then the fact that lim sup

which follows from the following results would contradict (28). Theorem 4 is proven.

Theorem 7 Let S 2 j be the square function of the dyadic martingale S j of Reb ( b defined above) and a real positive p, then there exist positive constants M 1 , M 2 , K 1 , K 2 , T 1 , T 2 do not depend on j such that:

Proof: First we'll show that

and then we'll prove that there exist positive constant A 1 , A 2 do not depend on j such that

The proof will follow from the estimation of the sum l n=1 1 (2n) (3-p)/2 . We first separate the unit circle into two sets {N > j} and {N ≤ j}, then

We observe that on the set {N > j}, S 2 j = j, hence

Note that S 2 j = k on {N = k}. This implies that

By using summation by parts, we have

This implies (30). We observe that if p ≥ 2 then

and since (k + 1

Thus,

If p < 2 we have the inverse inequality

Using the remark in 3.3.3 that P ({N > 2n + 1}) = P ({N > 2n}), therefore without lost generality we assume that j = 2(l + 1). If p ≥ 2 then

By Lemma 3, there exist absolute positive constants C 1 , C 2 such that

This implies that

This implies (31). Now we observe that if p ≥ 3 the function f

Now we can go to the conclusion that there exist positive constants M 1 , M 2 , K 1 , K 2 , T 1 , T 2 do not depend on j such that:

The theorem is proven. Proof: The proof will be given as follows. First of all, we'll show that for p > 0 lim sup

Then we'll estimate 2π 0 |S j | p dθ (j log 2) p/2 by using the fact that: for 1 < p < ∞ (see [Bur]) there exist absolute positive constants b p and B p such that b p S 2 j 2 (p/2) ≤ S j p ≤ B p S 2 j 2 (p/2) and for 0 < p ≤ 1 (see [Gan]) there also exists a positive absolute constant ν p such that S j p ≤ ν p S 2 j 2 (p/2) , where the square function S 2 j = n k=1 (∆S k ) 2 . Then the proof will follow by Theorem 7. That is the main idea of the proof. First, let us prove (32). The fact that |S j (θ) -Reb(re iθ )| ≤ C b B if r = 1 -2 -j (see ( 11)) implies that for p ≥ 1 S j p -Reb(re iθ ) p ≤ S j -Reb(re iθ ) p ≤ 2π(C b B ).