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Diffusion asymptotics of a kinetic model for gaseous mixtures

In this work, we consider the non-reactive fully elastic Boltzmann equations for mixtures in the diffusive scaling. We mainly use a Hilbert expansion of the distribution functions. After briefly recalling the H-theorem, the lower-order non trivial equality obtained from the Boltzmann equations leads to a linear functional equation in the velocity variable. This equation is solved thanks to the Fredholm alternative. Since we consider multicomponent mixtures, the classical techniques introduced by Grad cannot be applied, and we propose a new method to treat the terms involving particles with different masses.

Introduction

The study of the asymptotic behaviour of the Boltzmann equation for small mean free path is known as Hilbert's sixth problem, after its formulation by Hilbert himself during the International Congress of Mathematicians held in Paris in 1900 [START_REF] Hilbert | Mathematical problems[END_REF]. Since then, it has been a very active field of research, and many results have been obtained, both at a formal level and in the context of rigorous limits.

The main tools are based on asymptotic (Hilbert, Chapman-Enskog) expansions with respect to the mean free path, see for instance [START_REF] Chapman | The mathematical theory of nonuniform gases[END_REF]. The translation in a rigorous mathematical language has been performed in a series of pioneering papers by Bardos, Golse and Levermore [START_REF] Bardos | Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation[END_REF], where the authors established the ground of the subsequent results concerning the rigorous asymptotic limits. They stated a program that led to many interesting results, such as [START_REF] Lions | From the Boltzmann equations to the equations of incompressible fluid mechanics. I[END_REF]. This trail culminated in [START_REF] Golse | The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels[END_REF], where Golse and Saint-Raymond established a Navier-Stokes limit for the Boltzmann equation considered over the infinite spatial domain R 3 : appropriately scaled families of DiPerna-Lions renormalized solutions are shown to have fluctuations whose limit points are governed by Leray solutions of the limiting Navier-Stokes equations. We can also refer to [START_REF] Golse | The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials[END_REF], which extends the results of [START_REF] Golse | The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels[END_REF] for hard cutoff potentials in Grad's sense.

Apart from the research concerning with the classical Boltzmann equation (see [START_REF] Degond | Macroscopic limits of the Boltzmann equation: a review[END_REF] as a review article), which can be seen as a model describing a mono-species, monoatomic and ideal gas, one can focus on the study, at a kinetic level, of gaseous mixtures, without excluding the possibility of chemical reactions. In such a framework, the models are much more intricate. It is indeed necessary to treat systems of Boltzmann-like equations, rather than one single equation, with multi-species kernels and cross interactions between the different distribution functions describing each component of the mixture [START_REF] Sirovich | Kinetic modeling of gas mixtures[END_REF][START_REF] Greene | Mathematical aspects of kinetic model equations for binary gas mixtures[END_REF][START_REF] Morse | Kinetic model equations for a gas mixture[END_REF]. The complexity of the models grows dramatically if exchanges of internal energy and chemical reactions are allowed [START_REF] Ross | Some deductions from a formal statistical mechanical theory of chemical kinetics[END_REF][START_REF] Sirovich | Kinetic modeling of gas mixtures[END_REF][START_REF] Bourgat | Microreversible collisions for polyatomic gases and Boltzmann's theorem[END_REF][START_REF] Rossani | A note on the kinetic theory of chemically reacting gases[END_REF].

The derivation of macroscopic equations from kinetic models remains crucial for mixtures, both at a mathematical level and for deducing relevant macroscopic equations based on the modelling of microscopic binary interactions. In this spirit, in [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF], the authors propose a model describing a reacting mixture of polyatomic gases and recover in the limit, via the appropriate scaling (t, x) → (t/ε, x/ε) for ε > 0, the reactive Euler equations.

The diffusive scaling we investigate here, i.e. (t, x) → (t/ε 2 , x/ε), is more complicated, and even the formal structure of the asymptotic hierarchy is not trivial at all. After the first attempts of Chapman and Cowling [START_REF] Chapman | The mathematical theory of nonuniform gases[END_REF], in [START_REF] Bastea | Binary fluids with long range segregating interaction. I. Derivation of kinetic and hydrodynamic equations[END_REF], the authors consider a binary mixture of red and blue particles which interact via strong short range (hard core) and weak long range pair potentials, and study the small free path limit in various situations. Ref. [START_REF] Dogbe | Fluid dynamic limits for gas mixture. I. Formal derivations[END_REF] handles the same kind of model of binary mixture with a heavy species and a lighter one.

In this paper, we consider a mixture of several different non reactive gases, which evolves in time via the classical Boltzmann system for non-reacting multicomponent mixtures, and study the formal Hilbert expansion leading to the Navier-Stokes system for mixtures. Even if this strategy dates back to Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation[END_REF][START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF], who studied the formal small free path limit for the monatomic and monospecies Boltzmann equation, the development leading to write the Chapman-Enskog hierarchy owns some particular properties, which are inherited from the multispecies feature of the mixture.

First of all, we can observe that the structure of the small free-path asymptotics for mixtures, composed by three or more species, differs from the case of a mono-species gas or a binary mixture. The most apparent feature which is peculiar to a (at least) ternary mixture is the phenomenon of uphill diffusion, independently foreseen by Maxwell [START_REF] Maxwell | On the dynamical theory of gases[END_REF] and Stefan [START_REF] Stefan | Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen[END_REF], and experimentally recovered by Duncan and Toor [14]. This kind of diffusion is described by second-order coupled terms, which make the asymptotics quite different from the limit related to a binary mixture [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF].

A second important aspect is that we cannot apply Grad's methodology when we have to deal with different species, with different masses and different cross sections. We hence propose a new approach to the problem which only works when the binary collisions involve particles with different masses, and we then use Grad's procedure [START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF] when considering collisions between same mass particles. Note that both approaches are needed to give a complete answer to the question of resolvability of the first-order (in ε) equations of the hierarchy, obtained by means of the Fredholm alternative. We point out that our approach holds for generic cut-off cross sections, as those described in Section 2.

Note that this type of asymptotics is also numerically investigated, see, for instance, [START_REF] Bennoune | An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit[END_REF][START_REF] Jin | A BGK-penalization asymptotic-preserving scheme for the multispecies Boltzmann equation[END_REF], using BGK approaches.

The article is structured as follows. In the next section, we describe the model, its basic properties and the main results which are proved in the rest of the paper. Then Sections 3 and 4 are devoted to the proof of the mathematical results stated in Section 2. More precisely, Fredholm's alternative is applied in Section 3 (provided the compactness of some operator is known), and the proof of the compactness is treated in Section 4. As we already mentioned, the case of particles of same masses is treated following Grad's method [START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF] (see Section 4.1), whereas the case of different masses needs a new approach (see Section 4.2, in particular Lemma 3).

Model

We consider an ideal gas mixture constituted with I ≥ 2 species. Each species A i of the mixture, 1 ≤ i ≤ I, is described by a microscopic density function f i . It depends on time t ∈ R + , space position x ∈ R 3 and molecular velocity v ∈ R 3 , and is nonnegative. More precisely, f i (t, x, v) dxdv allows to quantify the number of molecules of species A i at time t in an elementary volume of size dx, and whose velocities equal v up to dv. We can also define the macroscopic density n i of each species A i by

n i (t, x) = R 3 f i (t, x, v) dv.
We assume that the mixture only involves molecular elastic collisions. Let us consider two colliding molecules of species A i and A j , 1 ≤ i, j ≤ I. Their masses are m i and m j , and their pre-collisional velocities v ′ and v ′ * . After a collision, the particles belong to the same species (no chemical reactions), so their masses remain as they were, and their velocities become v and v * . Since the collisions are elastic, both momentum and kinetic energy are conserved, i.e.

(1)

m i v ′ + m j v ′
where ω ∈ S 2 is arbitrary, and T ω is the symmetry with respect to the plane {ω} ⊥ , i.e.

T ω z = z -2(ω • z)ω, ∀z ∈ R 3 .
2.1. Collision operators. Let 1 ≤ i, j ≤ I. The collision operator associated to species A i and A j is defined by

(3) Q ij (f, g)(v) = R 3 ×S 2 f (v ′ )g(v ′ * ) -f (v)g(v * ) Bij (v, v * , ω) dω dv * ,
where v ′ and v ′ * are defined by [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF], and f and g are two functions of the velocity variable. The crosssection Bij (v, v * , ω) only depends on v, v * and ω. In fact, Bij is only a function of |v -v * | and the angle θ between ω and V := v -v * , by Galilean invariance. Let us set

B ij (ω, v -v * ) = Bij (v, v * , ω), ∀ω ∈ S 2 , ∀v, v * ∈ R 3 .
The collisions are also supposed microreversible. That ensures that (4)

B ij (ω, v -v * ) = B ji (ω, v -v * ), B ij (ω, v -v * ) = B ij (ω, v ′ -v ′ * ), ∀ω ∈ S 2 , ∀v, v * ∈ R 3 .
Moreover, we assume that B ij satisfies a general condition

(5) B ij (ω, V ) ≤ a | sin θ| | cos θ| |V | + 1 |V | 1-δ , ∀ ω ∈ S 2 , ∀ V ∈ R 3 ,
where a > 0, 0 < δ < 1. As emphasized in [START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF], this corresponds to intermolecular potentials with finite range and it means that B ij linearly approaches 0 near θ = 0 and θ = π/2, and is of restricted growth for both small and large |V |.

Condition ( 5) is, for instance, satisfied by hard spheres of diameter σ ij > 0:

B ij (ω, V ) = σ 2 ij
|V | sin θ cos θ and, by all cutoff power-law potentials:

B ij (ω, V ) = |V | γ ij β ij (θ), γ ij = s ij -5 s ij -1 ,
where β ij (θ) is a bounded function and linearly approaches 0 when θ tends to π/2, and s ij > 3.

The collision operators can be also written under weak forms, obtained from (3) using the changes of variables (v, v * ) → (v * , v) and (v, v * ) → (v ′ , v ′ * ) for a fixed ω ∈ S 2 . Weak forms in the cases i = j and i = j are intrinsically different, and are explained in detail in [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF][START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF]. Mention that, if we choose suitable test-functions, the weak forms of (3) allow to formally write, for any i and j, and any functions f and g for which the following equations make sense:

R 3 Q ij (f, g)(v) dv = 0, (6) R 3 Q ij (f, g)(v) m i v m i v 2 /2 dv + R 3 Q ji (g, f )(v) m j v m j v 2 /2 dv = 0. (7)
2.2. H-theorem. Let us now write down the H-theorem corresponding to the collisional operators we defined in the previous subsection, and discuss the mechanical equilibrium. The main tool is the entropy production functional, whose explicit form is given by

D(f 1 , . . . , f I ) := I i=1 I j=1 R 3 Q ij (f i , f j )(v) log f i (v) m 3 i dv.
It is well defined when all f i are non-negative and satisfy some suitable assumptions of regularity and decay to infinity, which we will not discuss here since our purpose consists in finding formal results.

The following properties hold [START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF] (see also [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF]).

Proposition 1. Let us assume that the cross sections ( Bij ) 1≤i,j≤I are positive almost everywhere and that all f i ≡ f i (v) ≥ 0, 1 ≤ i ≤ I, are such that both the collisional integrals Q ij and the entropy production D are well defined. Then (a) The entropy production is non-positive, i.e.

D(f 1 , . . . , f I ) = I i=1 I j=1 R 3 Q ij (f i , f j )(v) log f i (v) m 3 i dv ≤ 0.
(b) Moreover, the three following properties are equivalent. i. For any

1 ≤ i, j ≤ I and v ∈ R 3 (8) Q ij (f i , f j )(v) = 0.
ii. The entropy production vanishes, that is

D(f 1 , . . . , f I ) = I i=1 I j=1 R 3 Q ij (f i , f j )(v) log f i (v) m 3 i dv = 0.
iii. There exist T > 0 and u ∈ R 3 such that, for any i, there exists n i ≥ 0 such that

(9) f i (v) = n i m i 2 π k T 3/2 e -m i 2kT |v-u| 2 .

Statement of the problem.

In this work, we focus on the diffusion limit of the Boltzmann equations for mixtures. That limit is obtained from the framework of the classical diffusive scaling, where the scaling parameter is the mean free path. Let us choose ε > 0 as the mean free path. Hence, for any i, each distribution function f ε i must solve the following scaled Boltzmann equation, that is

(10) ε ∂ t f ε i + v • ∇ x f ε i = 1 ε I j=1 Q ij (f ε i , f ε j ), t > 0, x ∈ R 3 , v ∈ R 3 .
We look for f ε i as a formal power series in ε, replace f ε i in [START_REF] Chapman | The mathematical theory of nonuniform gases[END_REF] and identify the same order terms. We only focus on the first two orders. Thanks to Proposition 1, the order -1 of (10) allows to find the zero-th order term of the series: Maxwell functions (9). Therefore, each distribution function f ε i , 1 ≤ i ≤ I, can be seen as a perturbation of the equilibrium [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF]. Without any loss of generality, we set u = 0 (diffusion limit) and kT = 1. Thus we can write f ε i as ( 11)

f ε i (t, x, v) = M i (v) n i (t, x) + ε M i (v) 1/2 g i (t, x, v) + ..., ∀t ≥ 0, ∀x, v ∈ R 3 , where M i (v) is the normalized, centred Maxwell function M i (v) = m i 2π 3/2 e -m i 2 v 2 , ∀v ∈ R 3 .
In [START_REF] Degond | Macroscopic limits of the Boltzmann equation: a review[END_REF], we choose to put M i (v) 1/2 within the first-order term of f ε i . As a matter of fact, it allows us to work in a plain L 2 framework in the variable v for g i .

We then focus on the zero-th order in ε coming from [START_REF] Chapman | The mathematical theory of nonuniform gases[END_REF]. Taking ( 8) into account, we obtain the following equation, holding for any 1 ≤ i ≤ I,

(12) M i -1/2 I j=1 n i Q ij (M i , M 1/2 j g j ) + n j Q ij (M 1/2 i g i , M j ) = M 1/2 i (v • ∇ x n i ) .
In this work, we investigate the existence of g = (g 1 , . . . , g I ) with respect to a given (n 1 , . . . , n I ) satisfying [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF]. Note that the dependence of (12) on t and x is not crucial, in the sense that t, x, (n i ) and (∇ x n i ) can be seen as parameters.

The role of the first-order in ε coming from [START_REF] Chapman | The mathematical theory of nonuniform gases[END_REF] is briefly discussed at the end of this article, in Section 5.

For any function g ∈ L 2 (R 3 ) I of v, we shall write the L 2 norm of g:

g 2 L 2 = I j=1 g j 2 L 2 = I j=1 R 3 g j (t, x, v) 2 dv.
We can write the left-hand side of ( 12) in a more suitable form if we introduce the operator K, where the i-th component of Kg is given by

(13) [Kg] i (v) = I j=1 m j 2π 3/4 R 3 ×S 2 B ij (ω, v -v * ) e -1 4 m i v 2 e -1 2 m j v 2 * n i m i 2π 3/4 e 1 4 m j v ′2 * g j (v ′ * ) -e 1 4 m j v 2 * g j (v * ) + n j m j 2π 3/4 e 1 4 m i v ′2 g i (v ′ ) dω dv * ,
for any i, and the positive function

ν = ν(v), whose i-th component is (14) ν i (v) = I j=1 n j m j 2π 3/2 R 3 ×S 2 e -1 2 m j v 2 * B ij (ω, v -v * ) dω dv * .
Consequently, ( 12) can be written as a functional equation in the variable v:

(15) (K -ν Id) g = M 1/2 i (v • ∇ x n i ) 1≤i≤I .
Let us now state the main result of this work.

Theorem 1. Suppose that the cross sections (B ij ) 1≤i,j≤I are positive functions satisfying [START_REF] Bennoune | An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit[END_REF]. If we assume that (16)

I i=1 n i (t, x) does not depend on x,
then, for any t, x, there exists g(t, x, [START_REF] Golse | The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels[END_REF], where K and ν are given by ( 13)- [START_REF] Duncan | An experimental study of three component gas diffusion[END_REF].

•) ∈ L 2 (R 3 v ) I satisfying
Condition [START_REF] Golse | The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials[END_REF] means that we consider a situation where the total number density of gaseous particles is uniform in space, see Section 5 for further discussions. Let us briefly draw the sketch of the proof of this theorem. We shall first need the following proposition.

Proposition 2. The operator K, defined by [START_REF] Dogbe | Fluid dynamic limits for gas mixture. I. Formal derivations[END_REF],

is compact from L 2 (R 3 v ) I to L 2 (R 3 v ) I .
The proof of Proposition 2 is given in Section 4. Let us emphasize again that, in Proposition 2, t, x and (n i ) are considered as parameters and the compactness is only related to the variable v. Since K is compact, we can apply the Fredholm alternative to the operator K -ν Id. This is explained in the next section.

Proof of Theorem 1

This section is devoted to the proof of the main result of our article. We here assume that the compactness of the operator K is known. Let us denote L = K -ν Id, and study the null space of L, as required by the Fredholm alternative.

Step 1 -Study of ker L. Writing down the i-th component of Lg and performing the change of variable (v, v * ) → (v ′ , v ′ * ) while ω remains fixed, we obtain

[Lg] i (v) = I j=1 R 3 ×S 2 M i (v) 1/2 M j (v * ) n j M i (v ′ ) -1/2 g i (v ′ ) + n i M j (v ′ * ) -1/2 g j (v ′ * ) -n j M i (v) -1/2 g i (v) -n i M j (v * ) -1/2 g j (v * ) B ij (ω, v -v * ) dω dv * .
Thanks to the H-theorem, g ∈ ker L if and only if there exist α ∈ R I , β ∈ R 3 , γ ∈ R such that, for any i,

g i (t, x, v) = n i (t, x) M i (v) 1/2 α i + m i β • v + γ m i 2 v 2 , ∀ t > 0, x, v ∈ R 3 .
Consequently, ker L = {0}, and the Fredholm alternative allows to state that (15) has a solution if and only if

(17) M 1/2 i (v • ∇ x n i ) i=1,...,I ∈ (ker L * ) ⊥ , ∀ t > 0, x ∈ R 3 .
Step 2 -Computation of L * . Let us compute the adjoint operator L * by studying the inner product between Lg and a vector h ∈ L 2 (R 3 v ) I . We successively write, using the change of variables

(v, v * ) → (v ′ , v ′ * ) and (v, v * ) → (v * , v) I i=1 R 3 [Lg] i (v) h i (v)dv = I i,j=1 R 3 ×R 3 ×S 2 h i (v) M i (v) -1/2 n i M i (v ′ )M 1/2 j (v ′ * )g j (v ′ * ) -n i M i (v)M j (v * ) 1/2 g j (v * ) + n j M j (v ′ * )M i (v ′ ) 1/2 g i (v ′ ) -n j M j (v * )M i (v) 1/2 g i (v) B ij (ω, v -v * ) dω dv * dv = I i,j=1 R 3 ×R 3 ×S 2 g i (v) n j M i (v) -1/2 M i (v ′ )M 1/2 j (v ′ * )h j (v ′ * ) -M i (v)M j (v * ) 1/2 h j (v * ) + M j (v ′ * )M i (v ′ ) 1/2 h i (v ′ ) -M j (v * )M i (v) 1/2 h i (v) B ij (ω, v -v * ) dω dv * dv.
Consequently, we have

[L * h] i = M -1/2 i I j=1 n j Q ij (M i , M 1/2 j h j ) + Q ij (M 1/2 i h i , M j ) .
Thanks to the H-theorem, h ∈ ker L * if and only if there exist

a ∈ R I , b ∈ R 3 , c ∈ R such that, for any i, (18) 
h i (v) = M i (v) 1/2 a i + m i b • v + c m i 2 v 2 , ∀ v ∈ R 3 .
Step 3 -Conclusion. Now, taking (18) into account, condition (17) can be rewritten as

I i=1 3 
k=1 ∂n i ∂x k R 3   v k m i v k v j m i v k v 2 /2   M i (v) dv = 0, 1 ≤ j ≤ 3.
Using parity arguments, the first and third integrals are immediately satisfied, as well as the second ones if k = j. In the case when k = j, the condition ∇ x n i = 0, which is assumed in [START_REF] Golse | The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials[END_REF], allows to complete the proof.

Proof of Proposition 2

We still have to prove that K is compact. In this section, (n i ) 1≤i≤I are assumed to be nonnegative constants. Let g ∈ L 2 (R 3 ) I . Note that we do not need g to be the function defined in [START_REF] Degond | Macroscopic limits of the Boltzmann equation: a review[END_REF]. First, we write K as the sum of four operators K 1 ,..., K 4 . For any i, the i-th component of each K ℓ g, 1 ≤ ℓ ≤ 4, is given by

[K 1 g] i (v) = -n i I j=1 m i m j 4π 2 3/4 R 3 ×S 2 e -1 4 m i v 2 e -1 4 m j v 2 * g j (v * ) B ij (ω, v -v * ) dω dv * , [K 2 g] i (v) = n i j ∈M i m i m j 4π 2 3/4 R 3 ×S 2 e -1 4 m i v 2 e -1 2 m j v 2 * e 1 4 m j v ′2 * g j (v ′ * ) B ij (ω, v -v * ) dω dv * , [K 3 g] i (v) = j∈M i m i 2π 3/2 R 3 ×S 2 e -1 4 m i v 2 e -1 2 m i v 2 * n i e 1 4 m i v ′2 * g j (v ′ * ) + n j e 1 4 m i v ′2 g i (v ′ ) B ij (ω, v -v * ) dω dv * , [K 4 g] i (v) = j ∈M i n j m j 2π 3/2 R 3 ×S 2 e -1 4 m i v 2 e -1 2 m j v 2 * e 1 4 m i v ′2 g i (v ′ ) B ij (ω, v -v * ) dω dv * .
We denoted, for any i,

M i := {1 ≤ j ≤ I | m j = m i } ,
which is non empty since i ∈ M i . It is crucial to dissociate the cases when m i = m j or m i = m j , because the proofs are quite different. We successively prove that K ℓ , 1 ≤ ℓ ≤ 4, is compact. To this end, we shall use the following property. An operator J is compact if it satisfies • a uniform decay at infinity

(19) J g L 2 (B(0,R) c ) ≤ σ(R) g L 2 (R 3 ) , ∀R > 0,
where B(0, R) denotes the open ball of R 3 v centred at 0 and of radius R, and σ(R) goes to 0 when R goes to +∞; • an equicontinuity property, i.e., for any ε > 0, there exists ̺ > 0 such that, for all w ∈ B(0, ̺),

(20) (τ w -I)J g L 2 (R 3 ) ≤ ε g L 2 (R 3 ) ,
where τ w denotes the translation operator, i.e.

τ w J g (v) = J g (v + w), ∀v, w ∈ R 3 . 4.1. Compactness of K 1 .
Let us denote, for any i, j,

k ij 1 (v, v * ) = S 2 e -1 4 m i v 2 e -1 4 m j v 2 * B ij (ω, v -v * ) dω, ∀ v, v * ∈ R 3 .
We immediately have, for any i,

[K 1 g] i (v) = -n i I j=1 m i m j 4π 2 3/4 R 3 g j (v * )k ij 1 (v, v * ) dv * , ∀ v ∈ R 3 . 4.1.1. Properties of k ij 1 . First of all, note that k ij 1 (v, v * ) = k ji 1 (v * , v
), for any i, j and v, v * , thanks to (4). In order to prove the uniform decay to infinity and the equicontinuity for K 1 (i.e. the inequalities [START_REF] Greene | Mathematical aspects of kinetic model equations for binary gas mixtures[END_REF] and ( 20)), we need to establish some preliminary properties of k ij 1 . Lemma 1. There exists C > 0 such that, for any i, j,

R 3 k ij 1 (v, v * )dv * ≤ C e -1 4 m i v 2 (1 + |v|) , ∀ v ∈ R 3 . (21) 
Proof. Thanks to (5) and using the change of variables v * → V * = v * -v, we can write

R 3 k ij 1 (v, v * )dv * ≤ C R 3 e -1 4 m i v 2 e -1 4 m j (V * +v) 2 |V * | + |V * | δ-1 dV * ≤ C e -1 4 m i v 2 |V * |≤1 |V * | + |V * | δ-1 dV * + |V * |≥1 (1 + |V * |) e -1 4 m j (V * +v) 2 dV * .
This inequality allows us to get [START_REF] Jin | A BGK-penalization asymptotic-preserving scheme for the multispecies Boltzmann equation[END_REF].

Lemma 2. For any i, j, k ij 1 belongs to L 2 (R 3 × R 3 ). Proof. The proof follows the same strategy as the previous one, using [START_REF] Bennoune | An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit[END_REF] and the same change of variables. We can write

R 3 ×R 3 k ij 1 (v, v * ) 2 dv * dv ≤ C R 3 ×R 3 e -1 2 m i v 2 e -1 2 m j v 2 * |v -v * | 2 + |v -v * | 2δ-2 dv * ≤ C R 3 e -1 2 m i v 2 1 + v 2 dv,
which is clearly finite.

4.1.2. Uniform decay. The L 2 norm of K 1 g decreases at infinity. More precisely, the following proposition holds.

Proposition 3. Let g ∈ L 2 (R 3 ) I . For any R > 0 and any i, we have

(22) [K 1 g] i L 2 (B(0,R) c ) ≤ C n i R g L 2 (R 3 ) ,
where C > 0 is a constant.

Proof. Let 1 ≤ i ≤ I and write

R 3 v 2 [K 1 g] i (v) 2 dv ≤ Cn 2 i I j=1 R 3 v 2 R 3 k ij 1 (v, v * ) g j (v * ) dv * 2 dv.
Thanks to the Cauchy-Schwarz inequality, the previous inequality becomes

R 3 v 2 [K 1 g] i (v) 2 dv ≤ Cn 2 i I j=1 R 3 v 2 v * ∈R 3 g j (v * ) 2 k ij 1 (v, v * )dv * R 3 k ij 1 (v, v * )dv * dv.
Using Lemma 1 and Fubini's theorem, we get

R 3 v 2 [K 1 g] i (v) 2 dv ≤ Cn 2 i I j=1 R 3 g j (v * ) 2 R 3 k ij 1 (v, v * )φ i (v)dv dv * ,
where

φ i (v) = v 2 (1 + |v|) e -1 4 m i v 2 is clearly bounded. Consequently, since k ij 1 (v, v * ) = k ji 1 (v * , v), we have R 3 v 2 [K 1 g] i (v) 2 dv ≤ Cn 2 i I j=1 R 3 g j (v * ) 2 R 3 k ji 1 (v * , v)dv dv * .
Eventually, using Lemma 1 again, we obtain

R 3 v 2 [K 1 g] i (v) 2 dv ≤ Cn 2 i g 2 L 2 .
Besides, we can deduce, for any R > 0,

R 3 v 2 [K 1 g] i (v) 2 dv ≥ |v|≥R v 2 [K 1 g] i (v) 2 dv ≥ R 2 |v|≥R [K 1 g] i (v) 2 dv.
It is then easy to recover [START_REF] Krishna | The Maxwell-Stefan approach to mass transfer[END_REF].

4.1.3. Equicontinuity. The following property of equicontinuity of K 1 holds.

Proposition 4. For any w ∈ R 3 , set

̺ 1 (w) = C max i,j n i R 3 ×R 3 k ij 1 (v + w, v * ) -k ij 1 (v, v * ) 2 dv * dv 1/2
, where C is a suitable nonnegative constant. Then, for any i, we have

(23) [(τ w -Id)K 1 g] i L 2 (R 3 v ) ≤ ̺ 1 (w) g L 2 (R 3 v ) , ∀ w ∈ R 3
, and ̺ 1 (w) tends to 0 when w tends to 0.

Proof. First, thanks to Lemma 2, it is clear that ̺ 1 is a continuous function of w, and goes to 0 when w goes to zero. Let us now focus on [START_REF] Lions | From the Boltzmann equations to the equations of incompressible fluid mechanics. I[END_REF]. For any i, using the Cauchy-Schwarz inequality, we have

[(τ w -Id)K 1 g] i 2 L 2 (R 3 ) ≤ Cn 2 i I j=1 g j 2 L 2 R 3 ×R 3 k ij 1 (v + w, v * ) -k ij 1 (v, v * ) 2 dv * dv.
Estimate ( 23) is an immediate consequence of the previous inequality.

4.2.

Compactness of K 2 . As in section 4.1, we first write K 2 in a more convenient form. Indeed, thanks to (1), we have

- 1 4 m i v 2 - 1 2 m j v 2 * + 1 4 m j v ′2 * = - 1 4 m j v 2 * - 1 4 m i v ′2 . Hence, [K 2 ] i becomes (24) [K 2 g] i (v) = j ∈M i n i m i m j 4π 2 3/4 R 3 ×S 2 e -1 4 m j v 2 * e -1 4 m i v ′2 g j (v ′ * ) B ij (ω, v -v * ) dω dv * .
The next step consists in writing [START_REF] Maxwell | On the dynamical theory of gases[END_REF] in a form that allows to apply the same strategy used for K 1 .

In order to get this particular form, we need the following lemma.

Lemma 3. There exists b > 0 such that, for any i, j satisfying

m i = m j , (25) 
m i v ′2 + m j v 2 * ≥ b m i v 2 + m j v ′2 *
for any v, v * ∈ R 3 and v ′ , v ′ * given by (2).

Remark.

The assumption on the masses is here crucial, as we shall see in the proof. Indeed, [START_REF] Morse | Kinetic model equations for a gas mixture[END_REF] somehow gives a property of norm equivalence in R 3 × R 3 , linking (v, v ′ * ) and (v ′ , v * ). Such a property does not hold when we deal with molecules of the same mass.

Proof. Choose j ∈ M i . Equation ( 2) can be rewritten as

v ′ = I 3 -2 m j m i + m j ω ω T v + 2 m j m i + m j ω ω T v * , (26) v ′ * = I 3 -2 m i m i + m j ω ω T v * + 2 m i m i + m j ω ω T v, ( 27 
)
where I 3 is the identity matrix of R 3 . Then, from [START_REF] Rossani | A note on the kinetic theory of chemically reacting gases[END_REF], we get

I 3 -2 m i m i + m j ω ω T v * = v ′ * - 2 
m i m i + m j ω ω T v.
Let us now set

A = I 3 -2 m i m i + m j ω ω T .
This matrix A is invertible, since det A = (m j -m i ) / (m i + m j ) and j ∈ M i . Consequently, we can write

(28) v * = I 3 -A -1 v + A -1 v ′ * ,
where we used the equality -2

m i m i + m j A -1 ω ω T = I 3 -A -1 .
Then we put ( 28) in ( 26) to obtain

v ′ = m i + m j m i I 3 - m j m i A -1 v - m j m i I 3 -A -1 v ′ * .
Consider now the following block matrix

A =   m i +m j m i I 3 - m j m i A -1 - m j m i I 3 -A -1 m j m i I 3 -A -1 A -1   ,
which is invertible: det A = -1 and A -1 = A. The following vector equality holds:

√ m i v ′ √ m j v * = A √ m i v √ m j v ′ * .
In fact, ( 25) is obtained by finding a lower bound of

A √ m i v √ m j v ′ * T 2 √ m i v √ m j v ′ * T 2 , which is A -1 -2 2 = A -2 2 .
Since A is clearly a continuous function of ω, we may conclude that the matrix norm A 2 is a positive continuous function of ω on S 2 , which is compact. Therefore, it reaches its minimum, which of course remains positive. Choosing b = min

ω∈S 2 A -2
2 > 0 leads to the required estimate [START_REF] Morse | Kinetic model equations for a gas mixture[END_REF].

Using [START_REF] Bennoune | An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit[END_REF] and Lemma 3, we obtain the upper bound

[K 2 g] i (v) ≤ C n i j ∈M i e -1 4 m j v 2 R 3 e -1 4 m i v ′2 * g j (v ′ * ) |v -v * | + |v -v * | δ-1 dv * .
Let us then perform the change of variable v * → v ′ * , whose Jacobian is 1/det A. Since

v -v * = A -1 v -v ′ * and A -1 2 ≤ A -1 (v -v ′ * ) |(v -v ′ * )| ≤ A -1 2 , we can write |v -v * | + |v -v * | δ-1 ≤ A -1 2 v -v ′ * + A 1-δ 2 v -v ′ * δ-1 .
Eventually, we obtain

[K 2 g] i (v) ≤ C n i
The upper bound in the previous equality has exactly a kernel form, which allows us to conclude on the compactness of K 2 in the same way as in section 4.1.

4.3.

Compactness of K 3 . This operator describes interactions between molecules with the same mass. Note that it does not mean that species A i and A j are the same, since B ii , B ij and B jj can be different. We only have to adapt ideas from [START_REF] Grad | Asymptotic theory of the Boltzmann equation. II[END_REF] and [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF] used in the monospecies case.

4.3.1. Obtaining a kernel form. Note that if m i = m j , (2) becomes (29) 
v ′ = v -(ω • (v -v * )) ω, v ′ * = v * + (ω • (v -v * )) ω.
Symmetry properties allow us to write [K 3 g] i in terms of v, v * and v ′ , and not v ′ * anymore. More precisely, we have the following lemma. Lemma 4. For any i, there exist nonnegative functions Bij 1≤j≤I satisfying (5), such that

(30) [K 3 g] i (v) = j∈M i R 3 ×S 2 e -1 4 m i v 2 -1 2 m j v 2 * + 1 4 m i v ′2 g j (v ′ ) Bij (ω, v -v * ) dω dv * , ∀v ∈ R 3 .
Proof. The key idea of the proof lies in [START_REF] Stefan | Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen[END_REF]. Indeed, if we consider the relative velocity V = v -v * , we can choose one unit vector ω ⊥ ∈ Span(V, ω) orthogonal to ω (the choice of either ω ⊥ or -ω ⊥ is relevant, but must be performed in a continuous way with respect to ω, and not randomly). Consequently, we can write

V = ω(ω • V ) + ω ⊥ (ω ⊥ • V ), from which we immediately get (31) v -(ω • V )ω = v * + (ω ⊥ • V )ω ⊥ , v * + (ω • V )ω = v -(ω ⊥ • V )ω ⊥ .
We can see that, if we look for the post-collision relative velocity for the same pre-collisional V , but with respect to ω ⊥ , we just exchange the velocities v ′ and v ′ * : for instance, the new v ′ * , depending on ω ⊥ , will be the old v ′ , depending on ω. Hence, it is clear that ω

→ ω ⊥ implies v ′ → v ′ * and v ′ * → v ′ . Consequently, if we replace ω by ω ⊥ in the integral R 3 ×S 2 e -1 2 m i v 2 * e 1 4 m i (v * +(ω•V )ω) 2 g j (v * + (ω • V )ω) B ij (ω, V ) dω dv * , it becomes R 3 ×S 2 e -1 2 m i v 2 * e 1 4 m i (v * +(ω ⊥ •V )ω ⊥ ) 2 g j (v * + (ω ⊥ • V )ω ⊥ ) B ij (ω ⊥ , V ) dω ⊥ dv * .
Changing the variable ω into ω ⊥ is obtained thanks to a rotation, so dω ⊥ = dω. Hence, using (31), the previous integral becomes

R 3 ×S 2 e -1 2 m i v 2 * e 1 4 m i v ′2 g j (v ′ ) B ij (ω ⊥ , V ) dω ⊥ dv * = R 3 ×S 2 e -1 2 m i v 2 * e 1 4 m i v ′2 g j (v ′ ) B ij (ω ⊥ , V ) dω dv * . Let us set Bij (ω, V ) = m i 2π 3/2        n i B ij (ω ⊥ , V ) if i = j, k∈M i n k B ik (ω, V ) + n i B ii (ω ⊥ , V ) if i = j.
Assumption (5) on both B ij (ω, V ) and B ij (ω ⊥ , V ) ensures that, for any i, j

(32) Bij (ω, V ) ≤ 2 a m i 2π 3/2 max k∈M i n k | sin θ| | cos θ| |V | + |V | δ-1 ,
as well as (30).

Lemma 4 allows to obtain the kernel form of K 3 . More precisely, we have Proposition 5. Denote, for any i, j,

k ij 3 (η, v) = e -1 8 m i (η-v) 2 -1 8 m i (η 2 -v 2 ) 2 (η-v) 2 |η -v| -1 ϕ ij 3 (η -v), ∀ η, v ∈ R 3 , where (34) ϕ ij 3 (p) = 2 |p| {p} ⊥ e -1 2 m i (q+z 2 ) 2 Bij (p, q) | sin(p, p + q)| -1 dq, ∀ p ∈ R 3 . (33) 
Then we have

[K 3 g] i (v) = j∈M i R 3 g j (η) k ij 3 (η, v)dη, ∀ v ∈ R 3 .
Proof. We perform the change of variable v * → V * = v * -v in (30), whose Jacobian equals 1, and get

(35) [K 3 g] i (v) = j∈M i R 3 ×S 2 e -1 4 m i v 2 e -1 2 m i (V * +v) 2 e 1 4 m i v ′2 g j (v ′ ) Bij (ω, V * ) dω dV * .
Next, we consider the components of V * respectively parallel and orthogonal to ω, i.e. we write We now perform the change of variables (see Figure 1)

V * = p + q, where p = ω(ω • V * ), q = V * -ω(ω • V * ). The component q which is orthogonal to ω belongs to the plane Π = {ω} ⊥ = {p} ⊥ . Π ∈ Π x 2 x 3 x 1 ω V = v -v * θ ω ⊥ V * = v * -v p q θ
(36) (V * , ω) → (p, q), R 3 × S 2 → R 3 × Π.
Let us compute its Jacobian. For ω fixed, the replacement of V * by p and q has unit Jacobian. Note that V * and ω are independent of each other, which is not the case with p and q. Therefore, the integration order is crucial. Hence we first integrate with respect to q since Π = {p} ⊥ . Then we combine the one-dimensional integration in the direction ω with the integral of ω over the unit sphere to give a threedimensional integration over the three rectangular components of |p|ω. We have to introduce the factor 2, since p = ±|p|ω. The Jacobian from p to (|p|, ω) (Cartesian to spherical coordinates) is p 2 sin(p, p + q). Consequently, we can write dV * dω = 2 p 2 sin(p, p + q) dp dq.

Eventually, it is clear that

v ′ = v -ω(ω • (v -v * )) = v + ω(ω • V * ) = v + p.
Hence, (35) becomes

(37) [K 3 g] i (v) = 2 j∈M i R 3 Π e -1 4 m i v 2 -1 2 m i (p+q+v) 2 + 1 4 m i (v+p) 2 g j (v + p) Bij (p, q) |p| -2 | sin(p, p + q)| -1 dq dp.
Since p • q = 0, we can deduce

- 1 4 v 2 + 1 4 (v + p) 2 - 1 2 (p + q + v) 2 = - 1 8 p 2 - 1 2 q + 1 2 (2v + p) 2 .
Consequently, we obtain

[K 3 g] i (v) = 2 j∈M i R 3 Π e -1 8 m i p 2 -1 2 m i[ q+ 1 2 (2v+p)] 2 g j (v + p) Bij (p, q) |p| -2 | sin(p, p + q)| -1 dq dp.
Furthermore, let us set

z = 1 2 (2v + p),
and denote by z 1 the component of z which is parallel to ω and z 2 = z -z 1 ∈ Π. Then we can write

q + 1 2 (2v + p) 2 = (q + z 1 + z 2 ) 2 = z 1 2 + (q + z 2 ) 2 ,
and

[K 3 g] i becomes [K 3 g] i = 2 j∈M i R 3 e -1 8 m i p 2 -1 2 m i z 1 2 g j (v + p) |p| -2 Π e -1 2 m i (q+z 2 ) 2 Bij (p, q) | sin(p, p + q)| -1 dq dp.
Finally, we perform the change of variable p → η = p + v, and write

z 1 2 = z • η -v |η -v| 2 = 1 2 (η + v) • (η -v) |η -v| 2 = 1 4 (η 2 -v 2 ) 2 |η -v| 2 .
This completes the proof.

Properties of k ij

3 . Let us first prove the following lemma, and then investigate some properties of k ij 3 .

Lemma 5. The function ϕ ij 3 : R 3 → R, defined by (34) for any i, j, belongs to L ∞ (R 3 ). Proof. Let 1 ≤ i, j ≤ I, and choose p ∈ R 3 and q ∈ {p} ⊥ . From (32), we obtain

0 ≤ Bij (p, q) | sin(p, p + q)| ≤ 2 a m i 2π 3/2 max k∈M i n k | cos(p, p + q)| |p + q| + |p + q| δ-1 .
Since | tan(p, p + q)| = |q|/|p|, we can write

0 ≤ Bij (p, q) | sin(p, p + q)| ≤ C i max k∈M i n k 1 + q 2 p 2 -1 2 (p 2 + q 2 ) 1 2 + (p 2 + q 2 ) δ-1 2
, where C i = 2 a (m i /2π) 3/2 > 0. In what follows, C i will denote any nonnegative constant only depending on m i . This implies

0 ≤ Bij (p, q) |p| | sin(p, p + q)| ≤ C i max k∈M i n k 1 + p 2 + q 2 δ 2 -1 ≤ C i max k∈M i n k 1 + |q| δ-2 ,
using the fact that δ < 1. Now, we split the range of integration in (34) into |q| ≤ 1 and |q| ≥ 1, and finally get

0 ≤ ϕ ij 3 (p) ≤ C i max k∈M i n k |q|≤1 (1 + |q| δ-2 )dq + |q|≥1 e -1 2 (q+z 2 ) 2 dq ≤ C i max k∈M i n k .
This ends the proof of Lemma 5.

Let us now investigate two properties of k ij 3 , which are related to Lemmas 1 and 2 for k ij 1 . Lemma 6. There exists C > 0 such that, for any i, j,

R 3 k ij 3 (η, v) dη ≤ C |v| , ∀ v ∈ R 3 \ {0}, R 3 k ij 3 (η, v) dη ≤ C, ∀ v ∈ R 3 .
Proof. Let 1 ≤ i, j ≤ I. We integrate (33) with respect to η and perform the change of variable η → p = η -v. Using Lemma 5, we get

R 3 k ij 3 (η, v) dη ≤ C R 3 e -1 8 m i p 2 -1 8 m i (p 2 +2p•v) 2 p 2 1 |p| dp, ∀ v ∈ R 3 .
We split the right-hand integral into I 1 + I 2 , where I 1 refers to |p| ≥ |v| and I 2 to |p| ≤ |v|. On the one hand, we have

I 1 ≤ |p|≥|v| e -1 8 m i p 2 1 |p| dp ≤ C e -1 8 m i v 2 .
On the other hand, for the second integral, with spherical coordinates, we have

I 2 = |v| 0 2π 0 π 0 e -1 8 m i r 2 -1 8 m i (r+2 |v| cos ψ 1 ) 2 r sin ψ 1 dψ 1 dψ 2 dr = 2π |v| 0 re -1 8 m i r 2 π 0 e -1 8 m i (r+2 |v| cos ψ 1 ) 2 sin ψ 1 dψ 1 dr,
where ψ 1 corresponds to the angle between p and v. We then have to consider two situations for

I 2 : |v| ≥ 1 and |v| ≤ 1. Simple changes of variables give, if v = 0, π 0 e -1 8 m i (r+2 |v| cos ψ 1 ) 2 sin ψ 1 dψ 1 = 1 2|v| r+2|v| r-2|v| e -1 8 m i s 2 ds. If |v| ≥ 1, I 2 ≤ C |v| +∞ 0 r e -1 8 m i r 2 dr +∞ -∞ e -1 8 m i s 2 ds = C i |v| ≤ C i .
On the contrary, if |v| ≤ 1,

I 2 ≤ C i |v| r+2|v| r-2|v| ds = C i , if v = 0.
Consequently, we get the required estimates.

Using the same strategy as above, the following lemma can also be proved.

Lemma 7. For any i, j, k ij 3 belongs to L 2 loc R 3 v ; L 2 R 3 η . 4.3.3. Uniform decay. Let us now prove the uniform decay property at infinity. Proposition 6. Let g ∈ L 2 (R 3 ) I . For any R > 0 and any i, we have

[K 3 g] i L 2 (B(0,R) c ) ≤ C √ R g L 2 (R 3 ) ,
where C > 0 is a constant.

Proof. Using the Cauchy-Schwarz inequality and Lemma 6, we can write

[K 3 g] i 2 L 2 (B(0,R) c ) ≤ C |v|≥R j∈M i R 3 g j (η) 2 k ij 3 (η, v) dη R 3 k ij 3 (η, v) dη dv ≤ C R j∈M i R 3 R 3 k ij 3 (v, η) dv g j (η) 2 dη = C R g 2 L 2 (R 3 ) ,
where we also used the fact that k ij 3 (η, v) = k ij 3 (v, η). This ends the proof. 4.3.4. Equicontinuity. This property is described in the following proposition.

Proposition 7. For all ε > 0, there exists α > 0 (not depending on g or i) such that

(38) [(τ w -Id)K 3 g] i L 2 (R 3 ) ≤ ε g L 2 (R 3 ) , ∀ w ∈ B(0, α).
Proof. Let R > 0. We obviously have, for any w ∈ B(0, R),

[(τ w -Id) K 3 g] i 2 L 2 (R 3 ) ≤ B(0,2R) ([K 3 g] i (v + w) -[K 3 g] i (v)) 2 dv + B(0,R) c [K 3 g] i (v) 2 dv. (39) 
Proposition 6 ensures that the second integral is upper-bounded by g 2 L 2 /R. The first one can also be upper-estimated by

j∈M i g j 2 L 2 B(0,2R) R 3 k ij 3 (η, v + w) -k ij 3 (η, v) 2 dη dv.
We can now choose R ≥ 2/ε 2 > 0. Thanks to Lemma 7, there exists α > 0 such that

|w| < α ⇒ B(0,2R) R 3 k ij 3 (η, v + w) -k ij 3 (η, v) 2 dη dv ≤ ε 2 2 .
It is then immediate to recover (38) from (39). e -1 2 m j (q+z 2 ) 2 B ij m i + m j 2m j (η -v) , q sin m i + m j 2m j (η -v) , m i + m j 2m j (η -v) + q -1 dq dη.

To write [K 4 g] i into the convenient kernel form, we introduce the function

ϕ ij 4 (p) = m j 2π
3/2 m i + m j 2m j |p| q∈Π e -m j 1 2 (q+z 2 ) 2 B ij (p, q) |sin (p, p + q)| -1 dq.

It is easy to prove, in the same way as in Lemma 5, that there exists C > 0 such that ϕ ij 4 L ∞ (R 3 ) ≤ C for any i, j. The i-th component of K 4 g can be written in the kernel form

[K 4 g] i (v) = j ∈M i n j R 3 k ij 4 (η, v)g i (η) dη,
where k ij 4 (η, v) is given by

k ij 4 (η, v) = 1 4 e -1 8 
m 2 i m j (η-v) 2 -1 8 m j (η 2 -v 2 ) 2 (η-v) 2 |η -v| -1 ϕ ij 4 m i + m j 2m j (η -v) .
The form of each k ij 4 is exactly the same as in (33). Consequently, k ij 4 inherits the same properties as k ij 3 (see Lemmas 5 and 6), which allows to obtain ( 19)-( 20) as in Propositions 6 and 7, and the compactness of K 4 .

Diffusion limit

To conclude this work, let us add a few words about the diffusion limit itself. Theorem 1 ensures the existence of g = (g i ) 1≤i≤I , in the expansion [START_REF] Degond | Macroscopic limits of the Boltzmann equation: a review[END_REF], with respect to (n i ). Let us then write the first order in ε coming from [START_REF] Chapman | The mathematical theory of nonuniform gases[END_REF], that is

M i ∂ t n i + M 1/2 i v • ∇ x g i = I j=1 Q ij (M 1/2 i g i , M
1/2 j g j ).

Integrating the previous equality with respect to v, and using ( 6)-( 7), we can write the usual continuity equation (40)

∂ t n i + ∇ x • N i = 0,
where the flux N i of species A i is given by (41)

N i (t, x) = R 3 v g i (t, x, v) M i (v) 1/2 dv, ∀x, v 1 ≤ i ≤ I.
Since g i only depends on (n j ), the flux N i shares the same property thanks to (41). Consequently, the continuity equations give a system, which only involves (n j ). The existence of (n j ) was not investigated here. The reader can refer to [START_REF] Bisi | Incompressible Navier-Stokes equations from kinetic models for a mixture of rarefied gases[END_REF][START_REF] Boudin | The Maxwell-Stefan diffusion limit for a kinetic model of mixtures[END_REF] for more details about the related macroscopic equations. The expression of the flux (41) allows to clarify Assumption ( 16) of Theorem 1: the equimolar diffusion situation, which means N i = 0, is common in closed experimental settings [START_REF] Duncan | An experimental study of three component gas diffusion[END_REF][START_REF] Krishna | The Maxwell-Stefan approach to mass transfer[END_REF]. This property clearly implies that n i equals its initial value (sum (40) over i). Hence, if we suppose that the initial value does not depend on x, assumption ( 16) is fulfilled.
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