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DIFFUSION ASYMPTOTICS OF A KINETIC MODEL FOR GASEOUS MIXTURES

LAURENT BOUDIN, BÉRÉNICE GREC, MILANA PAVIĆ, AND FRANCESCO SALVARANI

Abstract. In this work, we investigate the asymptotic behaviour of the solutions to the non-reactive
fully elastic Boltzmann equations for mixtures in the diffusive scaling. We deal with cross sections such as
hard spheres or cut-off power law potentials. We use Hilbert expansions near the common thermodynamic
equilibrium granted by the H-theorem. The lower-order non trivial equality obtained from the Boltzmann
equations leads to a linear functional equation in the velocity variable which is solved thanks to the
Fredholm alternative. Since we consider multicomponent mixtures, the classical techniques introduced by
Grad cannot be applied, and we propose a new method to treat the terms involving particles with different
masses. The next-order equality in the Hilbert expansion then allows to write the macroscopic continuity
equations for each component of the mixture.

1. Introduction

The study of the asymptotic behaviour of the Boltzmann equation for small mean free path is known
as Hilbert’s sixth problem, after its formulation by Hilbert himself during the International Congress of
Mathematicians held in Paris in 1900 [18]. Since then, it is a very active field of research, and many
results have been obtained, both at a formal level and in the context of rigorous limits.

The main tools are based on asymptotic (Hilbert, Chapman-Enskog) expansions with respect to the
mean free path, see for instance [9]. The translation in a rigorous mathematical language has been
performed in a series of pioneering papers by Bardos, Golse and Levermore [1, 2, 3], where the authors
established the ground of the subsequent results concerning the rigorous asymptotic limits. They stated
a program that led to many interesting results, such as [21]. This trail culminated in [14], where Golse
and Saint-Raymond established a Navier-Stokes limit for the Boltzmann equation considered over the
infinite spatial domain R3: appropriately scaled families of DiPerna-Lions renormalized solutions are
shown to have fluctuations whose limit points are governed by Leray solutions of the limiting Navier-
Stokes equations. We can also refer to [15], which extends the results of [14] for hard cutoff potentials in
Grad’s sense.

Apart from the research concerning with the classical Boltzmann equation (see [10] as a review arti-
cle), which can be seen as a model describing a mono-species, monoatomic and ideal gas, one can focus
on the study, at a kinetic level, of gaseous mixtures, without excluding the possibility of chemical reac-
tions. In such a framework, the models are much more intricate. It is indeed necessary to treat systems
of Boltzmann-like equations, rather than one single equation, with multi-species kernels and cross in-
teractions between the different distribution functions describing each component of the mixture. The
complexity of the models grows dramatically if exchanges of internal energy and chemical reactions are
allowed [23, 25, 7, 24].

The derivation of macroscopic equations from kinetic models remains crucial for mixtures, both at a
mathematical level and for deducing relevant macroscopic equations based on the modelling of microscopic
binary interactions. In this spirit, in [11], the authors propose a model describing a reacting mixture of
polyatomic gases and recover in the limit, via the appropriate scaling (t, x) → (t/ε, x/ε) for ε > 0, the
reactive Euler equations.

The diffusive scaling we investigate here, i.e. (t, x) → (t/ε2, x/ε), is more complicated, and even the
formal structure of the asymptotic hierarchy is not trivial at all. After the first attempts of Chapman
and Cowling [9], in [4], the authors consider a binary mixture of red and blue particles which interact via
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strong short range (hard core) and weak long range pair potentials, and study the small free path limit
in various situations. Ref. [12] handles the same kind of model of binary mixture with a heavy species
and a lighter one.

In this paper, we consider a mixture of several different non reactive gases, which evolves in time via
the classical Boltzmann system for non-reacting multicomponent mixtures, and study the formal Hilbert
expansion leading to the Navier-Stokes system for mixtures. Even if this strategy dates back to Grad [16,
17], who studied the formal small free path limit for the monatomic and monospecies Boltzmann equation,
the development leading to write the Chapman-Enskog hierarchy owns some particular properties, which
are inherited from the multispecies feature of the mixture.

First of all, we can observe that the structure of the asymptotics is different for three or more species,
in comparison to the case of a monospecies gas or a binary mixture. The most apparent feature which
is peculiar to a (at least) ternary mixture is the phenomenon of uphill diffusion, independently foreseen
by Maxwell [22] and Stefan [26], and experimentally recovered by Duncan and Toor [13]. This kind of
diffusion is described by second-order coupled terms, which make the asymptotics quite different from the
limit related to a binary mixture [6].

A second important aspect is that we cannot apply Grad’s methodology when we have to deal with
different species, with different masses and different cross sections. We hence propose a new approach
to the problem which only works when the binary collisions involve particles with different masses, and
we then use Grad’s procedure [17] when considering collisions between same mass particles. Note that
both approaches are needed to give a complete answer to the question of resolvability of the first-order
(in ε) equations of the hierarchy, obtained by means of the Fredholm alternative. We point out that our
approach holds for generic cut-off cross sections, as those described in Section 2.

Note that this type of asymptotics is also numerically investigated, see, for instance, [5, 19], using BGK
approaches.

The article is structured as follows. In the next section, we describe the model, its basic properties
and the main results which are proved in the rest of the paper. Then, Sections 3 and 4 are devoted to
the proof the mathematical results stated in Section 2. More precisely, Fredholm’s alternative is applied
in Section 3 (provided the compactness of some operator is known), and the proof of the compactness is
treated in Section 4.

2. Model

We consider an ideal gas mixture constituted with I ≥ 2 species. Each species Ai of the mixture,
1 ≤ i ≤ I, is described by a microscopic density function fi. It depends on time t ∈ R+, space position
x ∈ R3 and molecular velocity v ∈ R3, and is nonnegative. More precisely, fi(t, x, v) dxdv allows to
quantify the number of molecules of species Ai at time t in an elementary volume of size dx, and whose
velocities equal v up to dv. We can also define the macroscopic density ni of each species Ai by

ni(t, x) =

∫
R3

fi(t, x, v) dv.

We assume that the mixture only involves molecular elastic collisions. Let us consider two colliding
molecules of species Ai and Aj , 1 ≤ i, j ≤ I. Their masses are mi and mj , and their pre-collisional
velocities v′ and v′∗. After a collision, the particles belong to the same species (no chemical reactions), so
their masses remains as they were, and their velocities become v and v∗. Since the collisions are elastic,
both momentum and kinetic energy are conserved, i.e.

(1) miv
′ +mjv

′
∗ = miv +mjv∗,

1

2
miv

′ 2 +
1

2
mjv

′ 2
∗ =

1

2
miv

2 +
1

2
mjv

2
∗ .

Consequently, v′ and v′∗ can be written in terms of v and v∗:

(2) v′ =
miv +mjv∗
mi +mj

+
mj

mi +mj
Tω(v − v∗), v′∗ =

miv +mjv∗
mi +mj

− mi

mi +mj
Tω(v − v∗),
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where ω ∈ S2 is arbitrary, and Tω is the symmetry with respect to the plane {ω}⊥, i.e.

Tωw = w − 2(ω · w)ω, ∀w ∈ R3.

2.1. Collision operators. Let 1 ≤ i, j ≤ I. The collision operator associated to species Ai and Aj is
defined by

(3) Qij(f, g)(v) =

∫∫
R3×S2

[
f(v′)g(v′∗)− f(v)g(v∗)

]
B̌ij(v, v∗, ω) dω dv∗,

where v′ and v′∗ are defined by (2), and f and g are two functions of the velocity variable. The cross-section
B̌ij(v, v∗, ω) only depends on v, v∗ and ω.

In this work, B̌ij is a function of |v − v∗| and the angle θ between ω and V := v − v∗. Let us set

Bij(ω, v − v∗) = B̌ij(v, v∗, ω), ∀ω ∈ S2, ∀v, v∗ ∈ R3.

The collisions are also supposed microreversible. That ensures that

(4) Bij(ω, v − v∗) = Bji(ω, v − v∗), Bij(ω, v − v∗) = Bij(ω, v′ − v′∗), ∀ω ∈ S2, ∀v, v∗ ∈ R3.

Moreover, we assume that Bij satisfies a general condition

(5) Bij(ω, V ) ≤ a | sin θ| | cos θ|
(
|V |+ 1

|V |1−δ
)
, ∀ω ∈ S2, ∀V ∈ R3,

where a > 0, 0 < δ < 1. As emphasized in [17], this corresponds to intermolecular potentials with finite
range and it means that Bij linearly approaches 0 near θ = 0 and θ = π/2, and is of restricted growth for
both small and large |V |.

Condition (5) is, for instance, satisfied by hard spheres of diameter σij > 0:

Bij(ω, V ) = σ2
ij |V | sin θ cos θ

and, by all cutoff power-law potentials:

Bij(ω, V ) = |V |γijβij(θ), γij =
sij − 5

sij − 1
,

where βij(θ) is a bounded function and linearly approaches 0 when θ goes to π/2, and sij > 3. Note that
the previous condition does not allow to recover the monoatomic case (that would mean that sij = 3,
i.e. γij = −1), but includes the diatomic case (where sij = 5 and γij = 0).

The collision operators can be also written under weak forms, obtained from (3) using the changes of
variables (v, v∗) 7→ (v∗, v) and (v, v∗) 7→ (v′, v′∗) for a fixed ω ∈ S2. Weak forms in the cases i = j and
i 6= j are intrinsically different, and are explained in detail in [11, 6]. Mention that, if we choose suitable
test-functions, the weak forms of (3) allow to formally write, for any i and j, and any functions f and g
for which the following equations make sense:∫

R3

Qij(f, g)(v) dv = 0,(6) ∫
R3

Qij(f, g)(v)

(
mi v

mi v
2/2

)
dv +

∫
R3

Qji(g, f)(v)

(
mj v

mj v
2/2

)
dv = 0.(7)

2.2. H-theorem. Let us now write down the H-theorem corresponding to the collisional operators we
defined in the previous subsection, and discuss the mechanical equilibrium. More precisely, the following
result holds [6] (see also [11]).

Proposition 1. We assume that the cross sections (B̌ij)1≤i,j≤I are nonnegative almost everywhere.
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(a) For all fi ≡ fi(v) ≥ 0, 1 ≤ i ≤ I, such that the following quantities are defined, one has

I∑
i=1

I∑
j=1

∫
R3

Qij(fi, fj)(v) log

(
fi(v)

m3
i

)
dv ≤ 0.

(b) Moreover, the three following properties are equivalent.
i. For any 1 ≤ i, j ≤ I and v ∈ R3

(8) Qij(fi, fj)(v) = 0.

ii. The previous inequality is an equality:

I∑
i=1

I∑
j=1

∫
R3

Qij(fi, fj)(v) log

(
fi(v)

m3
i

)
dv = 0.

iii. There exist T > 0 and u ∈ R3 such that, for any i, there exists ni ≥ 0 such that

(9) fi(v) = ni

( mi

2π k T

)3/2
e−

mi
2kT
|v−u|2 .

2.3. Statement of the problem. In this work, we focus on the diffusion limit of the Boltzmann equa-
tions for mixtures. That limit is obtained from the framework of the classical diffusive scaling, where the
scaling parameter is the mean free path. Let us choose ε > 0 as the mean free path. Hence, for any i,
each distribution function f εi must solve the following scaled Boltzmann equation, that is

(10) ε ∂tf
ε
i + v · ∇xf εi =

1

ε

I∑
j=1

Qij(f
ε
i , f

ε
j ), t > 0, x ∈ R3, v ∈ R3.

Thanks to Proposition 1, the Maxwellian distributions (9) are zero-th order in ε solutions to (10).
Therefore, each distribution function f εi , 1 ≤ i ≤ I, can be seen as a perturbation of the equilibrium (9).
Without any loss of generality, we set u = 0 (diffusion limit) and kT = 1. Thus we can write f εi as

(11) f εi (t, x, v) = Mi(v)ni(t, x) + εMi(v)1/2 gi(t, x, v) +O(ε2), ∀t ≥ 0, ∀x, v ∈ R3.

where Mi(v) is the normalized, centred Maxwell function

Mi(v) =
(mi

2π

)3/2
e−

mi
2
v2 , ∀v ∈ R3.

In (11), we choose to put Mi(v)1/2 within the first-order term of f εi . As a matter of fact, it allows us to
work in a plain L2 framework in the variable v for gi.

We insert the first-order Hilbert expansion (11) into (10), then consider expressions of the same order
(up to one) in ε. Taking (8) into account, we obtain the following equations, holding for any 1 ≤ i ≤ I,

M
−1/2
i

I∑
j=1

(
niQij(Mi,M

1/2
j gj) + nj Qij(M

1/2
i gi,Mj)

)
= M

1/2
i (v · ∇xni) ,(12)

Mi∂tni +M
1/2
i v · ∇xgi =

I∑
j=1

Qij(M
1/2
i gi,M

1/2
j gj).(13)

Let us now focus on equation (12). We denote g = (g1, . . . , gI)
T and write the L2 norm of g in the

variable v:

‖g‖2L2 =
I∑
j=1

‖gj‖2L2 =

I∑
j=1

∫
R3

gj(t, x, v)2 dv,

which in fact depends on t, x. However, in (12), the dependence on t and x is not crucial, in the sense
that t, x, (nj) and ∇xni can be seen as parameters, and g is the unknown function of v.
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We can write the left-hand side of (12) in a more suitable form if we introduce the operator K, where
the i-th component of Kg is given by

(14) [Kg]i (v) =

I∑
j=1

(mj

2π

)3/4
∫∫

R3×S2

Bij(ω, v − v∗) e−
1
4
miv

2
e−

1
2
mjv

2
∗

[
ni

(mi

2π

)3/4 (
e

1
4
mjv

′2
∗ gj(v

′
∗)− e

1
4
mjv

2
∗gj(v∗)

)
+ nj

(mj

2π

)3/4
e

1
4
miv

′2
gi(v

′)

]
dω dv∗,

for any i, and the positive function ν = ν(v), whose i-th component is

νi (v) =

I∑
j=1

nj

(mj

2π

)3/2
∫∫

R3×S2

e−
1
2
mjv

2
∗ Bij(ω, v − v∗) dω dv∗.

Consequently, g solves the following functional equation

(15) (K − ν Id) g =
(
M

1/2
i (v · ∇xni)

)
1≤i≤I

.

Let us now state the main result of this work.

Theorem 1. Consider (Bij)1≤i,j≤I nonnegative functions satisfying (5). If (ni(t, x)Mi)1≤i≤I are equilibria

of the collisional operators (Qij)1≤i,j≤I satisfying

(16)
I∑
i=1

ni(t, x) does not depend on x,

then (10) has a solution f εi close to the equilibrium niMi. More precisely, if f εi satisfies (11) for any i,
then, for every t, x, there exists g(t, x, ·) ∈ L2(R3

v) satisfying (15).

Condition (16) means that we consider a situation where the total number density of gaseous particles
is uniform in space, see 2.4 for further discussions. Let us briefly draw the sketch of the proof of this
theorem. We shall first need the following proposition.

Proposition 2. The operator K, defined by (14), is a compact operator L2(R3
v)→ L2(R3

v).

The proof of Proposition 2 is given in Section 4. Let us emphasize that, in Proposition 2, t and x are
considered as parameters and the compactness is only related to the variable v. Since K is compact, we
can apply the Fredholm alternative to the operator K − ν Id. This is explained in the next section.

2.4. Diffusion limit. To conclude this section, let us add a few words about the diffusion limit itself.
Theorem 1 ensures the existence of gi, 1 ≤ i ≤ I, in the expansion (11). Integrating (13) with respect to
v and using (6)–(7), we can write

∂tni(t, x) +∇x ·
∫
R3

v gi(t, x, v)Mi(v)1/2 dv = 0,

which is the usual continuity equation

∂tni(t, x) +∇x ·Ni(t, x) = 0,

where the flux Ni of species Ai is given for any i by

Ni(t, x) =

∫
R3

v gi(t, x, v)Mi(v)1/2 dv, 1 ≤ i ≤ I.

Macroscopic relationships between the fluxes (Ni) and the (macroscopic) densities (ni) may be obtained,
with further assumptions on the cross sections, by multiplying the Boltzmann equations (10) by v and
integrating them with respect to v. The reader can refer to [6] for more details. A closure relationship
is also needed, and the standard equimolar diffusion assumption can be used, as it is common in closed
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experimental settings [13, 20]:
∑
Ni = 0. This implies that

∑
ni equals its initial value. Hence, if we

suppose that the initial value does not depend on x, assumption (16) is fulfilled. Of course, there are
other situations allowing (16) to hold.

3. Proof of Theorem 1

This section is devoted to the proof of the main result of our article. We here assume that the
compactness of operator K is known. Let us denote L = K − ν Id, and study the null space of L, as
required by the Fredholm alternative.

Step 1 – Study of ker L. Writing down the i-th component of Lg and performing the change of variable
(v, v∗) 7→ (v′, v′∗) while ω remains fixed, we obtain

[Lg]i (v) =

I∑
j=1

∫∫
R3×S2

Mi(v)1/2Mj(v∗)
[
njMi(v

′)−1/2gi(v
′) + niMj(v

′
∗)
−1/2gj(v

′
∗)

− njMi(v)−1/2gi(v)− niMj(v∗)
−1/2gj(v∗)

]
Bij(ω, v − v∗) dω dv∗.

Thanks to the H-theorem, g ∈ kerL if and only if there exist α ∈ RI , β ∈ R3, γ ∈ R such that, for any i,

gi(t, x, v) = ni(t, x)Mi(v)1/2
(
αi +mi β · v + γ

mi

2
v2
)
, ∀ t > 0, x, v ∈ R3.

Consequently, kerL 6= {0}, and the Fredholm alternative allows to state that (15) has a solution if and
only if

(17)
(
M

1/2
i (v · ∇xni)

)
i=1,...,I

∈ (kerL∗)⊥ , ∀ t > 0, x ∈ R3.

Step 2 – Computation of L∗. Let us compute the adjoint operator L∗ by studying the inner product be-
tween Lg and a vector h ∈ L2(R3

v)
I . We successively write, using the change of variables (v, v∗) 7→ (v′, v′∗)

and (v, v∗) 7→ (v∗, v)

I∑
i=1

∫
R3

[Lg]i (v)hi(v)dv

=

I∑
i,j=1

∫∫∫
R3×R3×S2

hi(v)Mi(v)−1/2
[
niMi(v

′)M
1/2
j (v′∗)gj(v

′
∗)− niMi(v)Mj(v∗)

1/2ĝj(v∗)

+ njMj(v
′
∗)Mi(v

′)1/2gi(v
′)− njMj(v∗)Mi(v)1/2gi(v)

]
Bij(ω, v − v∗) dω dv∗dv

=

I∑
i,j=1

∫∫∫
R3×R3×S2

gi(v)njMi(v)−1/2
[
Mi(v

′)M
1/2
j (v′∗)hj(v

′
∗)−Mi(v)Mj(v∗)

1/2hj(v∗)

+Mj(v
′
∗)Mi(v

′)1/2hi(v
′)−Mj(v∗)Mi(v)1/2hi(v)

]
Bij(ω, v − v∗) dω dv∗dv.

Consequently, we have

[L∗h]i = M
−1/2
i

I∑
j=1

nj

(
Qij(Mi,M

1/2
j hj) + Qij(M

1/2
i hi,Mj)

)
.

Thanks to the H-theorem, h ∈ kerL∗ if and only if there exist a ∈ RI , b ∈ R3, c ∈ R such that, for any i,

(18) hi(v) = Mi(v)1/2
(
ai +mi b · v + c

mi

2
v2
)
, ∀ v ∈ R3.
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Step 3 – Conclusion. Now, taking (18) into account, condition (17) can be rewritten as

I∑
i=1

3∑
k=1

∂ni
∂xk

∫
R3

 vk
mivk vj
mivk v

2/2

Mi(v) dv = 0, 1 ≤ j ≤ 3.

Using parity arguments, the first and third integrals are immediately satisfied, as well as the second ones
if k 6= j. In the case when k = j, the condition ∇x

∑
ni = 0, which is assumed in (16), allows to complete

the proof.

4. Proof of Proposition 2

We still have to prove that K is compact. In this section, (ni)1≤i≤I are assumed to be nonnegative

constants. Let g ∈ L2(R3)I . Note that we do not need g to be the function defined in (11). First, we
write K as the sum of four operators K1,..., K4. For any i, the i-th component of each K`g, 1 ≤ ` ≤ 4, is
given by

[K1g]i (v) = −ni
I∑
j=1

(mimj

4π2

)3/4
∫∫

R3×S2

e−
1
4
miv

2
e−

1
4
mjv

2
∗ gj(v∗)Bij(ω, v − v∗) dω dv∗,

[K2g]i (v) = ni
∑
j 6∈Mi

(mimj

4π2

)3/4
∫∫

R3×S2

e−
1
4
miv

2
e−

1
2
mjv

2
∗ e

1
4
mjv

′2
∗ gj(v

′
∗)Bij(ω, v − v∗) dω dv∗,

[K3g]i (v) =
∑
j∈Mi

(mi

2π

)3/2
∫∫

R3×S2

e−
1
4
miv

2
e−

1
2
miv

2
∗

[
ni e

1
4
miv

′2
∗ gj(v

′
∗) + nj e

1
4
miv

′2
gi(v

′)
]
Bij(ω, v − v∗) dω dv∗,

[K4g]i (v) =
∑
j 6∈Mi

nj

(mj

2π

)3/2
∫∫

R3×S2

e−
1
4
miv

2
e−

1
2
mjv

2
∗ e

1
4
miv

′2
gi(v

′)Bij(ω, v − v∗) dω dv∗.

We denoted, for any i,

Mi := {1 ≤ j ≤ I | mj = mi} ,

which is non empty since i ∈ Mi. It is crucial to dissociate cases when mi 6= mj or mi = mj , because
proofs are quite different.

We successively prove that K`, 1 ≤ ` ≤ 4, is compact. In order to obtain the compactness, we prove
two properties, a uniform decay at infinity

(19) ‖ [K`g]i ‖L2(B(0,R)c) ≤ σ`(R) ‖g‖L2(R3), ∀R > 0,

where B(0, R) denotes the open ball of R3
v centred at 0 and of radius R, and σ`(R) goes to 0 when R goes

to +∞, and the equicontinuity

(20) ‖ [(τw − I)K`g]i ‖L2(R3) ≤ %`(w) ‖g‖L2(R3), ∀w ∈ R3,

where τw denotes the translation operator, i.e.

τwK`g (v) = K`g (v + w), ∀v, w ∈ R3,

and %`(w) goes to 0 when w goes to 0.
The compactness of each K` is an immediate consequence of (19)–(20).
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4.1. Compactness of K1. Let us denote, for any i, j,

k ij1 (v, v∗) =

∫
S2

e−
1
4
miv

2
e−

1
4
mjv

2
∗ Bij(ω, v − v∗) dω, ∀ v, v∗ ∈ R3.

We immediately have, for any i,

[K1g]i(v) = −ni
I∑
j=1

(mimj

4π2

)3/4
∫
R3

gj(v∗)k
ij
1 (v, v∗) dv∗, ∀ v ∈ R3.

4.1.1. Properties of k ij1 . First of all, note that k ij1 (v, v∗) = k ji1 (v∗, v), for any i, j and v, v∗, thanks to (4).

We need preliminary properties of k ij1 to obtain (19)–(20) for K1.

Lemma 1. There exists C > 0 such that, for any i, j,

(21)

∫
R3

k ij1 (v, v∗)dv∗ ≤ C e−
1
4
miv

2
(1 + |v|) , ∀ v ∈ R3.

Proof. Thanks to (5) and using the change of variables v∗ 7→ V∗ = v∗ − v, we can write∫
R3

k ij1 (v, v∗)dv∗ ≤ C
∫
R3

e−
1
4
miv

2
e−

1
4
mj(V∗+v)2

(
|V∗|+ |V∗|δ−1

)
dV∗

≤ C e−
1
4
miv

2

[∫
|V∗|≤1

(
|V∗|+ |V∗|δ−1

)
dV∗ +

∫
|V∗|≥1

(1 + |V∗|) e−
1
4
mj(V∗+v)2dV∗

]
.

Thisx inequality allows us to get (21). �

Lemma 2. For any i, j, k ij1 belongs to L2(R3 × R3).

Proof. The proof follows the same strategy as the previous one, using (5) and the same change of variables.
We can write∫∫

R3×R3

k ij1 (v, v∗)
2dv∗ dv ≤ C

∫∫
R3×R3

e−
1
2
miv

2
e−

1
2
mjv

2
∗
(
|v − v∗|2 + |v − v∗|2δ−2

)
dv∗

≤ C
∫
R3

e−
1
2
miv

2 (
1 + v2

)
dv,

which is clearly finite. �

4.1.2. Uniform decay. The L2 norm of K1g decreases at infinity. More precisely, the following proposition
holds.

Proposition 3. Let g ∈ L2(R3)I . For any R > 0 and any i, we have

(22) ‖ [K1g]i ‖L2(B(0,R)c) ≤
C ni
R
‖g‖L2(R3),

where C > 0 is a constant.

Proof. Let 1 ≤ i ≤ I and write∫
R3

v2 [K1g]i (v)2dv ≤ Cn2
i

I∑
j=1

∫
R3

v2

[∫
R3

k ij1 (v, v∗) gj(v∗) dv∗

]2

dv.

Thanks to the Cauchy-Schwarz inequality, the previous inequality becomes∫
R3

v2 [K1g]i (v)2dv ≤ Cn2
i

I∑
j=1

∫
R3

v2

[∫
v∗∈R3

gj(v∗)
2 k ij1 (v, v∗)dv∗

] [∫
R3

k ij1 (v, v∗)dv∗

]
dv.
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Using Lemma 1 and afterwards the Fubini theorem, we get∫
R3

v2 [K1g]i (v)2dv ≤ Cn2
i

I∑
j=1

∫
R3

gj(v∗)
2

[∫
R3

k ij1 (v, v∗)φi(v)dv

]
dv∗,

where φi(v) = v2 (1 + |v|) e−
1
4
miv

2
is clearly bounded. Consequently, since k ij1 (v, v∗) = k ji1 (v∗, v), we have∫

R3

v2 [K1g]i (v)2dv ≤ Cn2
i

I∑
j=1

∫
R3

gj(v∗)
2

(∫
R3

k ji1 (v∗, v)dv

)
dv∗.

Eventually, using Lemma 1 again, we obtain∫
R3

v2 [K1g]i (v)2dv ≤ Cn2
i ‖g‖2L2 .

Besides, we can write, for any R > 0,∫
R3

v2 [K1g]i (v)2dv ≥
∫
|v|≥R

v2 [K1g]i (v)2dv ≥ R2

∫
|v|≥R

[K1g]i (v)2dv.

It is then easy to recover (22). �

4.1.3. Equicontinuity. The following property of equicontinuity of K1 holds.

Proposition 4. For any w ∈ R3, set

%1(w) = C max
i,j

[
ni

∫∫
R3×R3

(
k ij1 (v + w, v∗)− k ij1 (v, v∗)

)2
dv∗dv

]1/2

,

where C is a suitable nonnegative constant. Then, for any i, we have

(23) ‖ [(τw − Id)K1g]i ‖L2(R3
v) ≤ %1(w)‖g‖L2(R3

v), ∀w ∈ R3,

and %1(w) goes to 0 when w goes to 0.

Proof. First, thanks to Lemma 2, it is clear that %1 is a continuous function of w, and goes to 0 when w
goes to zero. Let us now focus on (23). For any i, using the Cauchy-Schwarz inequality, we have

‖ [(τw − Id)K1g]i ‖
2
L2(R3) ≤ Cn

2
i

I∑
j=1

‖gj‖2L2

∫∫
R3×R3

(
k ij1 (v + w, v∗)− k ij1 (v, v∗)

)2
dv∗dv.

Estimate (23) is an immediate consequence of the previous inequality. �

4.2. Compactness of K2. As in section 4.1, we first write K2 in a more convenient form. Indeed, thanks
to (1), we have

−1

4
miv

2 − 1

2
mjv

2
∗ +

1

4
mjv

′2
∗ = −1

4
mjv

2
∗ −

1

4
miv

′2.

Hence, [K2]i becomes

(24) [K2g]i (v) =
∑
j 6∈Mi

ni

(mimj

4π2

)3/4
∫∫

R3×S2

e−
1
4
mjv

2
∗ e−

1
4
miv

′2
gj(v

′
∗)Bij(ω, v − v∗) dω dv∗.

The main idea is to recover a kernel form of (24) to be able to apply the same strategy as for K1. In
order to get this particular form, we need the following lemma.

Lemma 3. There exists b > 0 such that, for any i, j satisfying mi 6= mj,

(25) miv
′2 +mjv

2
∗ ≥ b

(
miv

2 +mjv
′2
∗
)

for any v, v∗ ∈ R3 and v′, v′∗ given by (2).
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Remark. The assumption on the masses is here crucial, as we shall see in the proof. Indeed, (25)
somehow gives a property of norm equivalence in R3 × R3, linking (v, v′∗) and (v′, v∗). Such a property
does not hold when we deal with molecules of the same mass.

Proof. Choose j 6∈ Mi. Equation (2) can be rewritten as

v′ =

(
I3−2

mj

mi +mj
ω ωT

)
v + 2

mj

mi +mj
ω ωT v∗,(26)

v′∗ =

(
I3−2

mi

mi +mj
ω ωT

)
v∗ + 2

mi

mi +mj
ω ωT v,(27)

where I3 is the identity matrix of R3. Then, from (27), we get(
I3−2

mi

mi +mj
ω ωT

)
v∗ = v′∗ − 2

mi

mi +mj
ω ωT v.

Let us now set

A = I3−2
mi

mi +mj
ω ωT .

This matrix A is invertible, since det A = (mj −mi) / (mi +mj) and j 6∈ Mi. Consequently, we can write

(28) v∗ =
(
I3−A−1

)
v + A−1 v′∗,

where we used the equality

−2
mi

mi +mj
A−1 ω ωT = I3−A−1 .

Then we put (28) in (26) to obtain

v′ =

(
mi +mj

mi
I3−

mj

mi
A−1

)
v − mj

mi

(
I3−A−1

)
v′∗.

Consider now the following block matrix

A =

mi+mjmi
I3−mj

mi
A−1 −

√
mj
mi

(
I3−A−1

)√
mj
mi

(
I3−A−1

)
A−1

 ,
which is invertible: detA = −1 and A−1 = A. The following vector equality holds:[√

mi v
′

√
mj v∗

]
= A

[√
mi v√
mj v

′
∗

]
.

In fact, (25) is obtained by finding a lower bound of∣∣∣A [√mi v
√
mj v

′
∗
]T ∣∣∣2∣∣∣[√mi v

√
mj v′∗

]T ∣∣∣2 ,

which is ‖A−1‖−2
2 = ‖A‖−2

2 . Since A is clearly a continuous function of ω, we may conclude that the
matrix norm ‖A‖2 is a positive continuous function of ω on S2, which is compact. Therefore, it reaches
its minimum, which of course remains positive. Choosing

b = min
ω∈S2

‖A‖−2
2 > 0

leads to the required estimate (25). �
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Using (5) and Lemma 3, we obtain the upper bound

[K2g]i (v) ≤ C ni
∑
j 6∈Mi

e−
1
4
mjv

2

∫
R3

e−
1
4
miv

′2
∗ gj(v

′
∗)
(
|v − v∗|+ |v − v∗|δ−1

)
dv∗.

Let us then perform the change of variable v∗ 7→ v′∗, whose Jacobian is 1/det A. Since

v − v∗ = A−1
(
v − v′∗

)
and ‖A‖−1

2 ≤
∣∣A−1 (v − v′∗)

∣∣
|(v − v′∗)|

≤ ‖A−1‖2,

we can write

|v − v∗|+ |v − v∗|δ−1 ≤ ‖A−1‖2
∣∣v − v′∗∣∣+ ‖A‖1−δ2

∣∣v − v′∗∣∣δ−1
.

Eventually, we obtain

[K2g]i (v) ≤ C ni
∑
j 6∈Mi

∫∫
R3×S2

e−
1
4
miv

2
e−

1
4
mjv

′2
∗ gj(v

′
∗)
(
|v − v′∗|+ |v − v′∗|δ−1

)
dω dv′∗.

The upper bound in the previous equality has exactly a kernel form, which allows us to conclude on the
compactness of K2 in the same way as in section 4.1.

4.3. Compactness of K3. This operator deals with a situation where the molecular masses are equal.
Note that it does not mean that species Ai and Aj are the same, since Bii, Bij and Bjj can be different.
We only have to adapt ideas from [17] and [8] used in the monospecies case.

4.3.1. Obtaining a kernel form. Note that if mi = mj , (2) becomes

(29) v′ = v − (ω · (v − v∗))ω, v′∗ = v∗ + (ω · (v − v∗))ω.

Symmetry properties allow us to write [K3g]i in terms of v, v∗ and v′, and not v′∗ anymore. More precisely,
we have the following lemma.

Lemma 4. For any i, there exist nonnegative functions
(
B̃ij
)

1≤j≤I
satisfying (5), such that

(30) [K3g]i (v) =
∑
j∈Mi

∫∫
R3×S2

e−
1
4
miv

2− 1
2
mjv

2
∗+

1
4
miv

′2
gj(v

′) B̃ij(ω, v − v∗) dω dv∗, ∀v ∈ R3.

Proof. The key idea of the proof lies in (29). Indeed, if we consider the relative velocity V = v − v∗, we
can choose one unit vector ω⊥ ∈ Span(V, ω) orthogonal to ω (the choice of either ω⊥ or −ω⊥ is relevant,
but must be performed in a continuous way with respect to ω, and not randomly). Consequently, we can
write

V = ω(ω · V ) + ω⊥(ω⊥ · V ),

from which we immediately get

(31) v − (ω · V )ω = v∗ + (ω⊥ · V )ω⊥, v∗ + (ω · V )ω = v − (ω⊥ · V )ω⊥.

We can see that if we look for the post-collision relative velocity for the same pre-collisional V , but with
respect to ω⊥, we just exchange velocities v′ and v′∗: for instance, the new v′∗, depending on ω⊥, will be
the old v′, depending on ω. Hence, it is clear that ω 7→ ω⊥ implies v′ 7→ v′∗ and v′∗ 7→ v′.

Consequently, if we replace ω by ω⊥ in the integral∫
R3×S2

e−
1
2
miv

2
∗ e

1
4
mi(v∗+(ω·V )ω)2 gj(v∗ + (ω · V )ω)Bij(ω, V ) dω dv∗,

it becomes ∫∫
R3×S2

e−
1
2
miv

2
∗ e

1
4
mi(v∗+(ω⊥·V )ω⊥)2 gj(v∗ + (ω⊥ · V )ω⊥)Bij(ω⊥, V ) dω⊥ dv∗.
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Changing the variable ω into ω⊥ is obtained thanks to a rotation, so dω⊥ = dω. Hence, using (31), the
previous integral becomes∫∫

R3×S2

e−
1
2
miv

2
∗ e

1
4
miv

′2
gj(v

′)Bij(ω⊥, V ) dω⊥ dv∗ =

∫∫
R3×S2

e−
1
2
miv

2
∗ e

1
4
miv

′2
gj(v

′)Bij(ω⊥, V ) dω dv∗.

Let us set

B̃ij(ω, V ) =
(mi

2π

)3/2


ni Bij(ω⊥, V ) if i 6= j,∑
k∈Mi

nk Bik(ω, V ) + ni Bii(ω⊥, V ) if i = j.

Assumption (5) on both Bij(ω, V ) and Bij(ω⊥, V ) ensures that, for any i, j

(32) B̃ij(ω, V ) ≤ 2 a
(mi

2π

)3/2 (
max
k∈Mi

nk

)
| sin θ| | cos θ|

(
|V |+ |V |δ−1

)
,

as well as (30). �

Lemma 4 allows to obtain the kernel form of K3. More precisely, we have

Proposition 5. Denote, for any i, j,

(33) k ij3 (η, v) = e
− 1

8
mi(η−v)2− 1

8
mi

(η2−v2)2

(η−v)2 |η − v|−1ϕij3 (η − v), ∀ η, v ∈ R3,

where

(34) ϕij3 (p) =
2

|p|

∫
{p}⊥

e−
1
2
mi(q+z2)2 B̃ij(p, q) | sin(p, p+ q)|−1 dq, ∀ p ∈ R3.

Then we have

[K3g]i (v) =
∑
j∈Mi

∫
R3

gj(η) k ij3 (η, v)dη, ∀ v ∈ R3.

Proof. We perform the change of variable v∗ 7→ V∗ = v∗ − v in (30), whose Jacobian equals 1, and get

(35) [K3g]i (v) =
∑
j∈Mi

∫
R3

∫
S2

e−
1
4
miv

2
e−

1
2
mi(V∗+v)2 e

1
4
miv

′2
gj(v

′) B̃ij(ω, V∗) dω dV∗.

Next, we consider the components of V∗ respectively parallel and orthogonal to ω, i.e. we write V∗ = p+q,
where p = ω(ω · V∗), q = V∗ − ω(ω · V∗). The component q which is orthogonal to ω belongs to the plane
Π = {ω}⊥ = {p}⊥.

We want to perform the change of variables (see Figure 1)

(36) (V∗, ω) 7→ (p, q), R3 × S2 → R3 ×Π.

Let us compute its Jacobian. For ω fixed, the replacement of V∗ by p and q has unit Jacobian. Note that
V∗ and ω are independent of each other, which is not the case with p and q. Therefore, we need to pay
attention on the integration order. Hence we first integrate with respect to q since Π = {p}⊥. Then we
combine the one-dimensional integration in the direction ω with the integral of ω over the unit sphere to
give a three-dimensional integration over the three rectangular components of |p|ω. We have to introduce
the factor 2, since p = ±|p|ω. The Jacobian from p to (|p|, ω) (Cartesian to spherical coordinates) is
p2 sin(p, p+ q). Consequently, we can write

dV∗ dω =
2

p2 sin(p, p+ q)
dp dq.

Eventually, it is clear that

v′ = v − ω(ω · (v − v∗)) = v + ω(ω · V∗) = v + p.
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Π ∈ Π

x2

x3

x1

ω
V = v − v∗

θ

ω⊥V∗ = v∗ − v

p

q

θ

Figure 1. Geometrical situation for the change of variables (36)

Hence, (35) becomes

(37) [K3g]i (v) = 2
∑
j∈Mi

∫
R3

∫
Π
e−

1
4
miv

2− 1
2
mi(p+q+v)2+ 1

4
mi(v+p)2 gj(v + p)

B̃ij(p, q) |p|−2 | sin(p, p+ q)|−1 dq dp.

Since p · q = 0, the quantity in the exponential term can be written (without mi) as

−1

4
v2 +

1

4
(v + p)2 − 1

2
(p+ q + v)2 = −1

8
p2 − 1

2

[
q +

1

2
(2v + p)

]2

.

Consequently, we obtain

[K3g]i (v) = 2
∑
j∈Mi

∫
R3

∫
Π
e−

1
8
mip

2− 1
2
mi[q+ 1

2
(2v+p)]

2

gj(v + p)B̃ij(p, q) |p|−2 | sin(p, p+ q)|−1 dq dp.

Furthermore, let us set

z =
1

2
(2v + p),

and denote by z1 the component of z which is parallel to ω and z2 = z − z1 ∈ Π. Then we can write[
q +

1

2
(2v + p)

]2

= (q + z1 + z2)2 = z1
2 + (q + z2)2,

and [K3g]i becomes

[K3g]i = 2
∑
j∈Mi

∫
R3

e−
1
8
mip

2− 1
2
miz1

2
gj(v + p) |p|−2

∫
Π
e−

1
2
mi(q+z2)2 B̃ij(p, q) | sin(p, p+ q)|−1 dq dp.

Finally, we perform the change of variable p 7→ η = p+ v, and write

z1
2 =

(
z · η − v
|η − v|

)2

=

(
1

2
(η + v) · (η − v)

|η − v|

)2

=
1

4

(η2 − v2)2

|η − v|2
.

This completes the proof. �
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4.3.2. Properties of k ij3 . Let us first prove the following lemma, and then investigate some properties of

k ij3 .

Lemma 5. The function ϕij3 : R3 → R, defined by (34) for any i, j, belongs to L∞(R3).

Proof. Let 1 ≤ i, j ≤ I, and choose p ∈ R3 and q ∈ {p}⊥. From (32), we obtain

0 ≤ B̃ij(p, q)
| sin(p, p+ q)|

≤ 2 a
(mi

2π

)3/2 (
max
k∈Mi

nk

)
| cos(p, p+ q)|

(
|p+ q|+ |p+ q|δ−1

)
.

Since | tan(p, p+ q)| = |q|/|p|, we can write

0 ≤ B̃ij(p, q)
| sin(p, p+ q)|

≤ Ci
(

max
k∈Mi

nk

)(
1 +

q2

p2

)− 1
2 [

(p2 + q2)
1
2 + (p2 + q2)

δ−1
2

]
,

where Ci = 2 a (mi/2π)3/2 > 0. In what follows, Ci will denote any nonnegative constant only depending
on mi. This implies

0 ≤ B̃ij(p, q)
|p| | sin(p, p+ q)|

≤ Ci
(

max
k∈Mi

nk

)[
1 +

(
p2 + q2

) δ
2
−1
]
≤ Ci

(
max
k∈Mi

nk

) [
1 + |q|δ−2

]
,

using the fact that δ < 1. Now, we split the range of integration in (34) into |q| ≤ 1 and |q| ≥ 1, and
finally get

0 ≤ ϕij3 (p) ≤ Ci max
k∈Mi

nk

(∫
|q|≤1

(1 + |q|δ−2)dq +

∫
|q|≥1

e−
1
2

(q+z2)2dq

)
≤ Ci max

k∈Mi

nk.

This ends the proof of Lemma 5. �

Let us now investigate two properties of k ij3 , which are related to Lemmas 1 and 2 for k ij1 .

Lemma 6. There exists C > 0 such that, for any i, j,∫
R3

k ij3 (η, v) dη ≤ C

|v|
, ∀ v ∈ R3 \ {0},

∫
R3

k ij3 (η, v) dη ≤ C, ∀ v ∈ R3.

Proof. Let 1 ≤ i, j ≤ I. We integrate (33) with respect to η and perform the change of variable η 7→ p =
η − v. Using Lemma 5, we get∫

R3

k ij3 (η, v) dη ≤ C
∫
R3

e
− 1

8
mip

2− 1
8
mi

(p2+2p·v)2

p2
1

|p|
dp, ∀ v ∈ R3.

We split the right-hand integral into I1 + I2, where I1 refers to |p| ≥ |v| and I2 to |p| ≤ |v|. On the one
hand, we have

I1 ≤
∫
|p|≥|v|

e−
1
8
mip

2 1

|p|
dp ≤ C e−

1
8
miv

2
.

On the other hand, for the second integral, with spherical coordinates, we have

I2 =

∫ |v|
0

∫ 2π

0

∫ π

0
e−

1
8
mir

2− 1
8
mi(r+2 |v| cosψ1)2r sinψ1 dψ1 dψ2 dr

= 2π

∫ |v|
0

re−
1
8
mir

2

∫ π

0
e−

1
8
mi(r+2 |v| cosψ1)2 sinψ1 dψ1 dr,

where ψ1 corresponds to the angle between p and v. We then have to consider two situations for I2:
|v| ≥ 1 and |v| ≤ 1. Simple changes of variables give, if v 6= 0,∫ π

0
e−

1
8
mi(r+2 |v| cosψ1)2 sinψ1 dψ1 =

1

2|v|

∫ r+2|v|

r−2|v|
e−

1
8
mis

2
ds.
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If |v| ≥ 1,

I2 ≤
C

|v|

∫ +∞

0
r e−

1
8
mir

2
dr

∫ +∞

−∞
e−

1
8
mis

2
ds =

Ci
|v|
≤ Ci.

On the contrary, if |v| ≤ 1,

I2 ≤
Ci
|v|

∫ r+2|v|

r−2|v|
ds = Ci, if v 6= 0.

Consequently, we get the required estimates. �

Using the same strategy as above, the following lemma can also be proved.

Lemma 7. For any i, j, k ij3 belongs to L2
loc

(
R3
v;L

2
(
R3
η

))
.

4.3.3. Uniform decay. Let us now prove the uniform decay property at infinity.

Proposition 6. Let g ∈ L2(R3)I . For any R > 0 and any i, we have

‖ [K3g]i ‖L2(B(0,R)c) ≤
C√
R
‖g‖L2(R3),

where C > 0 is a constant.

Proof. Using the Cauchy-Schwarz inequality and Lemma 6, we can write

‖ [K3g]i ‖
2
L2(B(0,R)c) ≤ C

∫
|v|≥R

∑
j∈Mi

[∫
R3

gj(η)2k ij3 (η, v) dη

] [∫
R3

k ij3 (η, v) dη

]
dv

≤ C

R

∑
j∈Mi

∫
R3

[∫
R3

k ij3 (v, η) dv

]
gj(η)2dη =

C

R
‖g‖2L2(R3),

where we also used the fact that k ij3 (η, v) = k ij3 (v, η). This ends the proof. �

4.3.4. Equicontinuity. This property is described in the following proposition.

Proposition 7. For all ε > 0, there exists α > 0 (not depending on g or i) such that

(38) ‖ [(τw − Id)K3g]i ‖L2(R3) ≤ ε‖g‖L2(R3), ∀w ∈ B(0, α).

Remark. The previous result is not exactly like (20), but is enough to ensure the equicontinuity property.

Proof. Let R > 0. We obviously have, for any w ∈ B(0, R),

(39) ‖ [(τw − Id)K3g]i ‖
2
L2(R3) ≤

∫
B(0,2R)

([K3g]i (v + w)− [K3g]i (v))2 dv +

∫
B(0,R)c

[K3g]i (v)2dv.

Proposition 6 ensures that the second integral is upper-bounded by ‖g‖2L2/R. The first one can also be
upper-estimated by ∑

j∈Mi

‖gj‖2L2

∫
B(0,2R)

∫
R3

(
k ij3 (η, v + w)− k ij3 (η, v)

)2
dη dv.

We can now choose R ≥ 2/ε2 > 0. Thanks to Lemma 7, there exists α > 0 such that

|w| < α ⇒
∫
B(0,2R)

∫
R3

(
k ij3 (η, v + w)− k ij3 (η, v)

)2
dη dv ≤ ε2

2
.

It is then immediate to recover (38) from (39). �
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4.4. Compactness of K4. The proof of the compactness of K4 is very similar to the final part of the
proof for K3. The main difficulty is to obtain a kernel form of K4. Once it is done, (19)–(20) can easily
be proven as in section 4.3. Using the same change of variables as to obtain (37), we can write

[K4g]i (v) = 2
∑
j 6∈Mi

nj

(mj

2π

)3/2
∫
R3

∫
Π
e
− 1

4
miv

2− 1
2
mj(p+q+v)2+ 1

4
mi

(
v+2

mj
mi+mj

p

)2

gi

(
v + 2

mj

mi +mj
p

)
Bij(p, q) |p|−2 | sin(p, p+ q)|−1 dq dp.

The exponential term can be modified thanks to the following relation

−1

4
miv

2 − 1

2
mj (p+ q + v)2 +

1

4
mi

(
v + 2

mj

mi +mj
p
)2

= − mjm
2
i

2 (mi +mj)
2 p

2 − mj

2

(
q + v +

mj

mi +mj
p
)2
.

If we denote

z = v +
mj

mi +mj
p,

and decompose it into the component z1 parallel to ω and the component z2 orthogonal to ω (z2 ∈ Π),
we obtain the new form of [K4g]i:

[K4g]i (v) = 2
∑
j 6∈Mi

nj

(mj

2π

)3/2
∫
R3

e
−

mj m
2
i

2(mi+mj)
2 p

2− 1
2
mjz1

2

gi

(
v + 2

mj

mi +mj
p

)
|p|−2

∫
Π
e−

1
2
mj(q+z2)2 Bij(p, q) | sin(p, p+ q)|−1 dq dp.

Next, we perform the change of variables

p 7→ η = v + 2
mj

mi +mj
p, whose Jacobian equals

(
2

mj

mi +mj

)3

,

and write z2
1 in the following form

z2
1 =

(
z · η − v
|η − v|

)2

=
1

4

(
η2 − v2

)2
(η − v)2

.

Thus [K4g]i becomes

[K4g]i (v) =
1

4

∑
j 6∈Mi

nj

(mj

2π

)3/2
(
mi +mj

mj

)∫
η∈R3

e
− 1

8

m2
i

mj
(η−v)2− 1

8
mj

(η2−v2)2

(η−v)2 gi(η) |η − v|−2

∫
Π
e−

1
2
mj(q+z2)2 Bij

(
mi +mj

2mj
(η − v) , q

) ∣∣∣∣sin(mi +mj

2mj
(η − v) ,

mi +mj

2mj
(η − v) + q

)∣∣∣∣−1

dq dη.

To write [K4g]i into the convenient kernel form, we introduce the function

ϕij4 (p) =
(mj

2π

)3/2 mi +mj

2mj |p|

∫
q∈Π

e−mj
1
2

(q+z2)2 Bij (p, q) |sin (p, p+ q)|−1 dq.

It is easy to prove, in the same way as in Lemma 5, that there exists C > 0 such that ‖ϕij4 ‖L∞(R3) ≤ C
for any i, j. The i-th component of K4g can be written in the kernel form

[K4g]i (v) =
∑
j 6∈Mi

nj

∫
R3

k ij4 (η, v)gi(η) dη,
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where k ij4 (η, v) is given by

k ij4 (η, v) =
1

4
e
− 1

8

m2
i

mj
(η−v)2− 1

8
mj

(η2−v2)2

(η−v)2 |η − v|−1 ϕij4

(
mi +mj

2mj
(η − v)

)
.

The form of each k ij4 is exactly the same as in (33). Consequently, k ij4 inherits the same properties as k ij3
(see Lemmas 5 and 6), which allows to obtain (19)–(20) as in Propositions 6 and 7, and the compactness
of K4.
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discussions.
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