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Abstract. Electronic transport through rubrene single-crystal field-effect
transistors (FETs) is investigated experimentally in the high carrier density
regime (n ≃ 0.1 carrier molecule−1). In this regime, we find that the current does
not increase linearly with the density of charge carriers, and tends to saturate.
At the same time, the activation energy for transport unexpectedly increases
with increasingn. We perform a theoretical analysis in terms of a well-defined
microscopic model for interacting Fröhlich polarons, which quantitatively
accounts for our experimental observations. This work is particularly significant
for our understanding of electronic transport through organic FETs.

Contents

1. Introduction 2
2. Experimental results 2
3. The microscopic model 4
4. Discussion 7
5. Conclusion 9
Acknowledgment 9
Appendix. Calculation of the polaron radius 9
References 10

New Journal of Physics 10 (2008) 033031
1367-2630/08/033031+11$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:simone.fratini@grenoble.cnrs.fr
http://www.njp.org/


2

1. Introduction

The use of single-crystalline material for the fabrication of organic field-effect transistors
(FETs) has given, over the past few years, the experimental control needed for the investigation
of the intrinsic transport properties of dielectric/organic interfaces [1]. This has resulted in
the observation of anisotropic transport [2], a metallic-like temperature dependence of the
mobility [3], the Hall effect [4] and quasiparticle response in the infrared conductivity [5].
Following this progress, the successful quantitative analysis of experiments in terms of a simple
microscopic model has recently been possible in single-crystal FETs with highly polarizable
gate dielectrics [6]. In these devices, charge carriers accumulated electrostatically at the surface
of the organic semiconductor were shown to interact strongly with the polarization in the
dielectric, leading to the formation of Fröhlich polarons [7]. The quantitative agreement between
the behavior predicted by the Fröhlich Hamiltonian and the experimental data demonstrates
that the microscopic processes responsible for transport in organic FETs can be qualitatively
different from that in bulk organic semiconductors.

Here, we investigate the transport properties of rubrene (C42H28) single-crystal FETs with
highly polarizable Ta2O5 gate dielectrics, in the as yet unexplored high-carrier-density regime.
We find that in this regime the electrical characteristics of the devices exhibit pronounced
deviations from those of conventional FETs. Specifically, in all devices the source–drain
current Isd stops increasing linearly with the gate voltageVg, and shows a clear saturation.
Concomitantly, the activation energy for temperature-dependent transport increases whenVg

increases, a trend opposite to that usually observed in organic transistors. We build on the
Fröhlich model, which was used in our previous study to describe the dressing of the carriers by
the polarizability of the gate dielectric [6], and find that the observed behavior can be quanti-
tatively explained by considering the effects of the Coulomb interactions between holes. Our
results confirm that organic single-crystal transistors are suitable for the experimental
investigation of the intrinsic electronic properties of dielectric/organic interfaces, and extend
our fundamental understanding of transport in organic transistors to the high-carrier-density
regime.

2. Experimental results

The rubrene transistors used in our experiments are fabricated by laminating thin (<1µm
thick) rubrene single crystals onto a substrate with pre-fabricated FET circuitry, as described
in [8, 9]. The gate dielectric is a≃500 nm-thick layer of Ta2O5 (dielectric constantǫs = 25;
breakdown voltage≃6.5 MV cm−1), enabling the accumulation of up to 1014 holes cm−2 in
the FET channel. During device operation, however, we never exceed gate voltage values
corresponding to half the breakdown field, to minimize the chance of device failure [10] (we
reach hole densities of 5× 1013 cm−2, i.e. one order of magnitude higher than in [6]). The
transistor electrical characteristics were measured in the vacuum (10−6 mbar) chamber of a flow
cryostat, between 300 and 125–210 K depending on the specific device (at low temperature
the devices can easily break due to the difference in thermal expansion between crystal and
substrate).

Figure1 shows the source–drain currentIsd measured on two different devices as a function
of gate voltageVg, at different temperatures. Since the carrier densityn in the channel is linearly
proportional to the gate voltageVg (n = C(Vg − Vth)/e, whereC is the capacitance per unit area
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Figure 1. Source–drain current versus gate voltage measured for two
different devices at different temperatures: (a) from top to bottom,
T = 280, 265, 250, 235, 215, 200, 175, 150 and 125 K (measurements were
performed at a source–drain biasVsd = −16 V; the channel width and length
are W = 340µm andL = 200µm, respectively); (b) from top to bottom,T =
300, 260, 240, 220 and 210 K (Vsd = −1 V, W = 28µm, L = 630µm). The full
lines are the theoretical fits. The inset in (a) shows the experimentally measured
activation energy ofIsd plotted versus carrier densityn = C |Vg − Vth|/e,
compared with the theory (full line). The experimental error is comparable with
the size of the data points. The device is sketched in (b).

andVth is the threshold voltage), it is normally expected thatIsd also increases linearly withVg.
The data, however, show a pronounced deviation from the conventional linear behavior, since at
high Vg the source–drain current tends to saturate. The effect is reversible and reproducible: the
devices can be measured many times without noticeable difference in the data, which implies
that the saturation ofIsd is not due to device degradation [10]. We have measured tens of
similar devices (room-temperature mobility values between 1.0 and 1.5 cm2 V s−1) and found
a similarly pronounced saturation of the source–drain current at high gate voltage in virtually
all cases, albeit with some differences in the details of theIsd–Vg characteristics (illustrated by
the data in figures1(a) and (b)).

The temperature dependence of the currentIsd is also unusual. At any fixed value of
carrier densityn, the currentIsd decreases in a thermally activated way [6]. The inset of
figure1(a) shows that the activation energyEa depends onn and that, for densities larger than
≃0.02 holes molecule−1, Ea increases with increasing n. This observation is surprising, because
normally (e.g. in organic thin-film FETs)Ea exhibits the opposite trend, which is attributed to
the effect of disorder (filling of traps) in the organic material.

A behavior of theIsd versusVg curves such as the one just described has not been reported
earlier in FETs realized on other conventional gate dielectrics (e.g. SiO2, Al2O3 and Si3N4).
Only recently, a strongly nonlinearIsd–Vg relation was observed in organic FETs with gate
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electrolytes [11, 12]. Gate electrolytes enable the accumulation of a large density of carriers,
5× 1013 carriers cm−2 or more, similar to our Ta2O5 dielectrics. At these densities, at which the
charges accumulate in the uppermost molecular layer of the crystal [6], the average distance
between the carriers is only a few molecules and the resulting (bare) Coulomb interaction is a
few hundreds of millielectronvolts, much larger than the thermal energy at room temperature.
This, together with the poor screening associated with the thermally activated motion of
charge carriers, suggests that interactions may be responsible for the observed anomalous FET
characteristics.

3. The microscopic model

As we proceed to show, the inclusion of Coulomb interactions between holes does indeed
successfully account for our experimental findings. To introduce the theoretical framework
needed for the quantitative description of the device characteristics, we recall the conclusions
of [6], namely that holes in rubrene FETs with highly polarizable gate dielectrics form small
Fröhlich polarons due to their strong interaction with the ionic polarization at the interface. This
conclusion was established by analyzing transport measurements in the low-density regime,
performed on FETs with a range of different gate dielectrics. Specifically, it was shown
that, using gate dielectrics of increasing polarizability, the ‘metallic-like’ transport previously
observed in rubrene [3, 13] is progressively suppressed, turning into an activated behavior
characteristic of self-localized particles. The experimentally observed behavior was consistently
explained in terms of the Fröhlich model—which describes the polar interaction with interface
phonon modes—by including explicitly the narrow-band nature of the organic crystal [6].
In FETs with Ta2O5 devices, the most polarizable dielectric used in our previous work, the
interaction with the interface modes completely dominates the carrier motion, reducing the
mobility at 200 K by two orders of magnitude with respect to isolated rubrene.

Here, we extend the analysis of [6] to the high-density regime that had not been analyzed
previously, by adding a term which accounts for the mutual Coulomb interactions between the
carriers [14]. The resulting Hamiltonian:

H = −t
∑

〈i j〉

(c+
i c j + c+

j ci) +
K

2

∑

ℓ

X2
ℓ +

∑

i,ℓ

giℓni Xℓ +
1

2

∑

i 6= j

ni Vi j n j , (1)

is the simplest model that catches the main microscopic mechanisms that determine the transport
in our devices: finite electronic bandwidth, polar coupling of the carriers with the gate dielectric
and mutual interaction between carriers. The first three terms describe free holes in a tight-
binding scheme (c+

i andci are the corresponding creation and annihilation operators on sitei),
interacting with lattice deformationsXℓ through a non-local couplinggiℓ. Physically, giℓ

represents the polar interaction between the holes in the two-dimensional (2D) conducting
channel and the phonons at the organic/dielectric interface [6, 15]. When this interaction is
sufficiently strong, as is the case for the rubrene/Ta2O5 interface, it leads to the formation
of small polarons, i.e. self-trapped states whose characteristic radius is comparable with the
lattice spacing. This is demonstrated theoretically in the appendix, and is confirmed by the
experimental data, which exhibit a thermally activated mobility characteristic of small polarons
(see [6] and figure2 below). As in [6], we explicitly neglect the kinetic energy of the phonons,
which is appropriate in the adiabatic regime, for which the lattice dynamics is slow compared
to the band electrons.
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Figure 2. Polaron mobility extracted from the data of figure1(a). Red squares
are obtained by fitting the data with the theory for interacting polarons described
in section3, while black circles correspond to linear fits of theIsd–Vg curves
restricted to the low-density regime, as done in [6]. The lines are best fits to
the polaronic thermally activated behavior, yielding respectively1 = 53 and
55 meV (see text). The inset is the polaron mobility for the sample of figure1(b)
(units are the same as in the main panel; the temperature range is too small to
extract reliable values for1).

The last term—not considered previously—represents the mutual interaction between
holes through the unscreened Coulomb repulsionVi j , which is long-ranged (this contrasts with
the Hubbard model, where a purely on-site interaction is considered, leading to the appearance
of interaction effects only at densities close to 1 carrier molecule−1). In the following, we
evaluate quantitatively the effects of Coulomb interactions on the transport characteristics. We
shall only present the main formulae needed for the comparison with the experiments, leaving
the full details of the calculations to a further publication4.

In the temperature range of the experiment the motion of small Fröhlich polarons at
the rubrene/Ta2O5 interface takes place through successive uncorrelated hops from a given
molecule to a nearest neighbor. In this case, the mobility can be rigorously determined by
analyzing the hopping rate of a given carrier between two neighboring molecules (sayi =
1, 2) [17]. Integrating out the electronic degrees of freedom, it is found that the hole dynamics
is coupled to the long-range lattice polarization solely through the collective coordinateQ =
1
g

∑

ℓ(g1ℓ − g2ℓ)Xℓ. Taking advantage of the adiabatic assumption, we end up with the following

4 It should be noted that the electron–lattice interaction in equation (1) can mediate an effective attraction between
holes, leading under specific conditions to the stabilization of bipolarons, i.e. two holes bound together by a
common lattice deformation. This requires in particular that the phonon-mediated attraction is sufficiently strong to
overcome the instantaneous Coulomb repulsion between holes. This condition can be cast in terms of the effective
dielectric constants of the interface at high and low frequencies, and corresponds toη = (ǫ∞ +κ)/(ǫs +κ) being
less than a given critical valueηc. An accurate estimateηc = 0.131 was given in [16] for a pure 2D Fröhlich
interaction in the continuum limit. Such a critical value should be further reduced in the present case, because
the finite distancez of the conducting channel to the interface suppresses the electron–phonon interaction at large
momenta,Mq ∼ e−qz/

√
q (see the appendix). For the present rubrene/Ta2O5 interface, we haveη = 0.26, which

lies safely above the critical valueηc, so that bipolaron formation can in principle be excluded.

New Journal of Physics 10 (2008) 033031 (http://www.njp.org/)

http://www.njp.org/


6

double-well potential:

Ead(Q) =
K

4
Q2 −

√

(

g

2
Q −

ξ

2

)2

+ t2, (2)

where we have definedg2 =
∑

ℓ g1ℓ(g1ℓ − g2ℓ). The physical meaning of the above equation
is that in the adiabatic regime, the hole follows instantaneously the dynamics of the slow
coordinateQ in the effective potentialEad. The two minima atQ ≃ ∓g/2K are then associated
with the hole being at sites 1 and 2, respectively. The corresponding hopping rate can be
evaluated by standard techniques [18], by studying the escape rate of the coordinateQ over
the barrier. The variableξ that appears in equation (2) (defined below) accounts for the
instantaneous repulsion of all the other carriers in the conducting layer, and vanishes in the low-
density limit. In that case the double-well potential equation (2) is symmetric, with a barrier
given by1 = g2/4K − t (the polaronic gap, valid in the strong coupling regimeg2/4K ≫ t),
all the carriers diffuse with the same hopping ratew0 = (ωs/2π) e−1/kBT , and we recover the
mobility of independent polarons obtained in [6], namelyµP(T ) = (ea2/h̄T )w0 (hereωs is the
frequency of the interface optical phonons anda is the intermolecular distance).

In the high-density regime accessible with Ta2O5 gate dielectrics, it becomes essential to
include the Coulomb interactions that were not analyzed previously, which requires considering
the case of a finiteξ . From the model equation (1) it can be shown that:

ξ =
∑

j 6=1,2

(V̄2 j − V̄1 j)n j , (3)

where V̄i j = 2e2/(ǫs +κ)/Ri j is the Coulomb potential, appropriately screened by the ionic
polarization at the interface (κ = 3 is the dielectric constant of rubrene). A finiteξ causes an
energy unbalance between the initial and final hopping sites (the double-well potentialEad(Q)

becomes asymmetric) so that the hopping rate changes tow(ξ) = w0 e−ξ/2kBT . Now each carrier
diffuses with a different hopping rate, determined by its own environment. Correspondingly, the
mobility of the sample is obtained as the statistical average〈w(ξ)〉 over all the possible values
of the local electronic potentialξ .

Since the polaronic barrier sets the dominant energy scale, due to the high polarizability
of the gate dielectric Ta2O5 used in our devices, we always haveξ ≪ 1 in the explored
density range. As a result, correlations between subsequent hops can be neglected to a first
approximation, which corresponds to replacing〈w(ξ)〉 → w(〈ξ〉). This yields the leading term
of the mobility in the presence of electron–electron interactions as

µ(T ) = µP(T ) e−〈ξ〉/2kBT . (4)

The density-dependent quantity〈ξ〉 represents the average extra energy cost for hopping from
site to site, induced by the long-range Coulomb interactions between the carriers. As the
comparison between theory and experiments will show (see below), it is this dependence of
µ on the density (through〈ξ〉) that causes the saturation ofIsd observed in figure1.

In the linear response regime, the calculation of〈ξ〉 follows, through equation (3), from the
statistical distribution of the occupation numbers{n j} constrained to n1 = 1 (site 1 is initially
occupied by the hole, which then hops to site 2). Such a constraint reflects the fact that the
relaxation of the remaining carriers occurs on a timescale∼w−1

0 , much longer than that of
the hopping event under consideration,∼ω−1

s , and can be neglected. In this case, the occupation
numbers{n j} are given, by definition, by the pair distribution functiong(2)(R1 j) of the electronic
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system at equilibrium [19]. Furthermore, due to the diffusive nature of their hopping motion
(transport is thermally activated), the small polarons behave as classical interacting particles.
The two-body correlations of such a classical fluid of charged particles are determined solely
by the Coulomb interactions, and are therefore equivalent to those of a classical 2D plasma.
Observing that in the explored density range the mean interparticle distance is always larger
than the lattice periodicity, we can use forg(2) the known pair distribution function of the 2D
plasma in the continuous limit. Correspondingly, we can replace the discrete sum in equation (3)
by an integral, which finally yields

〈ξ〉 = n
∫

dr [V̄ (r + R12) − V̄ (r)] g(2)(r) ≡
π

2
na2kBT F(Ŵ). (5)

In the above equation, the universal functionF(Ŵ) is an intrinsic property of the 2D electron
plasma. It depends on a single dimensionless parameterŴ that measures the ratio of the
Coulomb interactions to the thermal energy.F(Ŵ) can be evaluated directly by using the data of
g(2)(r) available from extensive Monte Carlo simulations [20]. In the range 1< Ŵ < 20, we find
F(Ŵ) = 1 + 0.85Ŵ to within 1% accuracy. In the present FET geometry, the plasma interaction
parameter is given byŴ = 2

√
πne2/(kBT )/(ǫs +κ), and can attain the value∼9 at the lowest

temperatures/highestVg, placing our devices in the range of weak to moderate interactions
(electron crystallization is expected atŴ = 125).

4. Discussion

We are now in a position to compare the experimental data with our calculations. By inserting
equation (5) into (4), and using the definition ofŴ, we obtain the explicit functional dependence
of the mobility µ on densityn = C(Vg–Vth)/e and temperature. TheIsd–Vg curves can then
be calculated fromIsd = A|Vg–Vth| e−〈ξ〉/2kBT , with A = µPCV sdW/L having the dimensions of
conductance (hereW andL are the width and length of the channel,Vsd the applied source–drain
voltage ande the electron charge). To analyze the data, we fix the temperature and fit theIsd–Vg

curve usingµP andVth as fitting parameters. The polaron microscopic parameters are obtained
by analyzing the temperature dependence ofµP extracted in this way.

The values ofµP extracted for the different devices from the theory of interacting polarons
are reported in figure2 (red squares). They are close to the ones that one would obtain from
linear fits of theIsd–Vg curves in the low-density regime (the conventional definition of the
mobility; data shown as black circles in figure2) and they exhibit the same trend. Indeed,
by comparing the temperature dependence of the fittedµP to the theoretical relationµP(T ) =
(ea2ωs/2πkBT )exp(−1/kBT ) we obtain, for the device of figure1(a), the following values of
the polaron parameters:ωs/(2π) = 390 cm−1 and1 = 53 meV. These values are comparable
to those obtained by assuming a linearIsd versusVg dependence (ωs/(2π) = 315 cm−1 and
1 = 55 meV). This shows that the results of the interpretation based on the theory with
interactions is compatible with the analysis performed by only looking at the low-density part
of the Isd–Vg curves, and that the effect of the interactions is determined by the carrier density
only (i.e. without the need to include any additional parameter). For the second device (the
inset of figure2), a precise quantitative analysis of the temperature dependence of the mobility
is prevented by the restricted temperature range of the available data, and it is not possible to
extract reliable values for the parametersωs/(2π) and1. Still, the fitted values ofµP andVth

are well defined for all the curves of figure1(b), thus allowing for an accurate analysis of the
density dependence of the mobility at each given temperature.
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Figure 3. Scaling plot of the data of figure1(a) (the same symbols have been
used). The full line corresponds to the prediction of the 2D classical plasma.

The values ofVth obtained from the interacting theory also follow the same trend as those
that one obtains by extrapolating the linear part of theIsd–Vg curves to zero current, i.e. the usual
definition ofVth. The two estimates differ by a systematic offset of∼7 V, which is approximately
the same for all samples and at all temperatures. Such a deviation does not have a particular
physical significance, because the exact absolute value ofVth defined in the usual way does not
have a precise physical meaning.

The continuous lines in figures1(a) and (b) are the results of the theoretical fits of the
Isd–Vg curves, using the theory for interacting polarons. The theory reproduces the saturation
of the source–drain current at high carrier density and the quantitative agreement with the data
is remarkable, at all temperatures and in both the devices analyzed. From equation (4), we see
that theory predicts an activation energy which increases with increasing density (via the term
〈ξ〉/2). This is illustrated in the inset of figure1(a), where the circles are the experimental
values extracted from the data and the continuous line is the theoretical curve computed
using equation (5), again without any new free parameters. Also here the agreement is very
satisfactory, and at smalln we recover the value given by the analysis of the linear regime in
terms of non-interacting polarons [6].

Notably, the theoretical derivation presented above implies that the density-induced
increase of the hopping activation barrier (cf equation (4)) is a scaling function of the
parameterŴ of the interacting plasma. This scaling behavior is checked in figure3, where
we use the experimental data to directly plot the quantity log(Isd/A|Vg − Vth|)/|Vg − Vth|,
which is proportional to the universal functionF(Ŵ) (see equations (4) and (5)) versus
√

|Vg − Vth|/T ∝ Ŵ. In terms of these variables and at sufficiently high gate voltages, the
data do indeed tend to collapse on a single linear curve corresponding toF(Ŵ) = 1 + 0.85Ŵ
(full line in the figure). Considering the high sensitivity to details of such a scaling plot,
the agreement between theory and experiment is satisfactory. It confirms the validity of the
assumptions underlying our derivation, giving a strong indication that the anomalous behavior
of the electrical characteristics observed at finite carrier concentrations is indeed due to the
long-range Coulomb interactions between the carriers.

New Journal of Physics 10 (2008) 033031 (http://www.njp.org/)

http://www.njp.org/


9

5. Conclusion

We have studied electronic transport through rubrene single-crystal FETs in the high-density
regime and found new unexpected phenomena, such as a saturation of the currentIsd versus
Vg and an increase of the activation energy with increasing density. The experimental data are
accurately reproduced by a theoretical analysis based on interacting small Fröhlich polarons,
which naturally extends previous studies in the low-density regime to include the effect
of the long-range Coulomb repulsion between charge carriers. Remarkably, the quantitative
description of the high-density regime does not require the introduction of any new parameter,
as the effect of the interactions is fully determined by the (known) density of charge carriers.
Our results demonstrate that, by devoting sufficient effort to control the experimental systems,
single-crystal organic FETs do allow a detailed quantitative study of the intrinsic transport
properties of organic FETs.
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Appendix. Calculation of the polaron radius

The theoretical analysis developed in the text treats the charge carriers as small Fröhlich
polarons, having dimensions comparable to the lattice spacing. To demonstrate that this is the
case, in this appendix we evaluate the radius of the polarons that form at a rubrene/Ta2O5

interface. To this aim we solve the adiabatic model equation (1) variationally for a single hole
in the HOMO band, and evaluate the polaron radiusRP as a function of the electron–phonon
coupling strength. The calculations indeed show thatRP is of the order of the lattice spacing.

The electron–phonon interactiongi j is obtained from the Fourier transform of the
electron–phonon matrix elementMq = M0 e−qz/

√
q [6, 15]. Here, M2

0 = 2π h̄ωse2β/S, where
S is the total surface of the device, andz is the distance of the conducting layer to the
polar dielectric. The parameterβ = (ǫs − ǫ∞)/(ǫs +κ)/(ǫ∞ +κ) is a combination of the known
dielectric constants of the gate dielectric and of the organic semiconductor, which determines
the strength of the electron–phonon coupling. In principle, the interactiongi j defined above
must be cut off at short distances to account for the discreteness of the rubrene lattice. A precise
prescription to carry out this procedure will be reported elsewhere. For the present purposes it
suffices to say that the overall behavior of the polaron radius does not depend on the particular
choice of the short-distance cutoff.

As is customary for lattice models, we introduce the dimensionless electron–phonon
coupling

λ =
EP

D
, (A.1)

defined as the energy of a fully localized polaron in units of the half bandwidthD ∝ t . The
energyEP can be written in general as:

EP =
∑

Ri
g2

0i

h̄ωs
, (A.2)
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Table A.1. Polaron radius in units of the lattice spacinga for different values of
the dimensionless electron–phonon couplingλ.

λ 0.1 0.2 0.4 0.7 1.0 1.2 1.4 1.6 2

RP/a 6.0 3.7 2.3 1.6 1.2 0.9 0.5 0.4 0.3

where the sum spans all the lattice sitesRi . The model is solved by taking the following
Gaussian trial wavefunction:

φ(Ri) =
1

N 1/2
exp(−α2R2

i /2) (A.3)

whereN is a normalization factor. The parameterα is obtained after minimization of the
ground-state energy. The polaron radius is then given by

RP =

[

∑

Ri

φ2(Ri)R2
i

]1/2

, (A.4)

which tends to 1/α in the large polaron limit (smallα, RP ≫ a). The results forRP at different
values of the electron–phonon coupling are summarized in tableA.1. As expected, the polaron
radius becomes comparable to the lattice spacing aroundλ ∼ 1, i.e. when the polaron energy is
of the order of the half bandwidth.

Performing the sum in equation (A.2) with the electron–phonon coupling parameters
appropriate to our devices (β = 0.1 andz = 2 Å), we obtainEP = 170 meV. The width of the
HOMO band in the rubrene crystal has been evaluated through a semi-empiricalab initio
calculation in [21] as 2D = 341 meV. Such a value should be considered as an upper bound to
the actual bandwidth, which was shown in [22] to be sizably reduced by the effects of molecular
polarization. A further effective reduction of the bandwidth can arise from thermal fluctuations,
as considered in [13]. From the above arguments and from the definition equation (A.1), we
conclude thatλ > 1, which, as can be seen from tableA.1, corresponds to a small polaron.
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