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We derive an exact solution for the optical conductivity ���� of one hole in the Holstein t-J model in the

framework of dynamical mean-field theory. We investigate the magnetic and phonon features associated with

polaron formation as a function of the exchange coupling J, electron-phonon interaction �, and temperature.

Our solution directly relates the features of the optical conductivity to excitations in the single-particle spectral

function, revealing two distinct mechanisms of closing and filling of the optical pseudogap that take place upon

varying the microscopic parameters. We show that the optical absorption at the polaron crossover is charac-

terized by a coexistence of a magnon peak at low frequency and a broad polaronic band at higher frequency.

An analytical expression for ���� valid in the polaronic regime is presented.

DOI: 10.1103/PhysRevB.76.125111 PACS number�s�: 78.20.Bh, 71.38.Ht, 71.10.Fd

I. INTRODUCTION

The problem of a single hole in the t-J model interacting
also with lattice degrees of freedom has recently attracted
notable interest in connection with the physical properties of
high-Tc cuprates.1–5 In particular, in parent and strongly un-
derdoped compounds, angle-resolved photoemission spec-

troscopy �ARPES� reveals a low-energy peak whose disper-

sion is well described by the t-J model, while its

anomalously large broadness has been ascribed to incoherent

multiphonon shake-off processes.1,3,6,7 A similar interplay be-

tween electron-electron and electron-phonon interactions

should in principle be reflected in the optical conductivity

spectra. As a matter of fact, the most remarkable features

observed in the underdoped region are an ubiquitous midin-

frared �MIR� peak at �0.5 eV and a weaker peak around

�0.1 eV, the latter being more strongly doping and tempera-

ture dependent.8,9 Several interpretations have been proposed

for the origin of these features, including midgap or impurity

states,10,11 charge and spin stripes,12,13 polaronic

excitations,14–18 and the interaction with the antiferromag-

netic background.11

The first proposal of the t-J model as a suitable basis to

discuss the optical spectra of the cuprates was advanced by

Zhang and Rice19 who observed that the 1/� behavior20 of

the optical absorption above �0.5 eV could be naturally as-

sociated with the incoherent motion in an antiferromagnetic

background. Successively, the optical conductivity of the t-J

model has been investigated in detail using several tech-

niques, such as exact diagonalization,21 analytical

approximations,22–25 and dynamical mean-field theory

�DMFT�.26–29 However and in spite of the above-discussed

relevance of the electron-phonon coupling, the optical con-

ductivity of the t-J model in the presence of the lattice de-

grees of freedom has not been thoroughly investigated. Nu-

merical calculations based on exact diagonalization of finite

clusters were employed, for instance, in Ref. 30 to evaluate

����. Alternatively, the optical conductivity was calculated

analytically in Ref. 31 based on a noncrossing Born approxi-

mation, which is, however, unable to describe polaron for-

mation.

In this paper we present results for the optical conductiv-

ity of a single hole in the Holstein t-J model obtained in the

framework of dynamical mean-field theory. One-hole spec-

tral properties at zero temperature were discussed in a previ-

ous publication where antiferromagnetic correlations were

shown to enhance the effects of the electron-phonon

coupling.32 A similar result was found also in the antiferro-

magnetic phase of the Holstein-Hubbard model using DMFT

techniques.33 A serious drawback of DMFT, which is ob-

tained as the exact solution of the lattice problem in the limit

of infinite dimensions, is that the magnetic background is

treated in a classical way. This, together with the fact that

Trugman loops are negligible in infinite dimensions, prevents

the possibility to account for coherent hole propagation,

which is related to spin-flip fluctuations. As a consequence,

no Drude peak can be observed in the optical conductivity.

On the other hand, the incoherent contributions of ���� are

mainly dominated by local properties, such as local electron-

phonon scattering and spin-string excitations within the mag-

netic polaron, which are well captured by this approach.32

Bearing the above limitations in mind, the aim of the

present work is thus to focus on the incoherent part of the

optical conductivity of a single hole and to investigate in

detail its features in the different physical regimes of the

Holstein t-J model. The dependence of the optical spectra on

the microscopic parameters is analyzed with special attention

to the intermediate-coupling region, where the interplay be-

tween magnetic and lattice degrees of freedom is strongest.
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We show that a crucial role is played by the formation of the

lattice polaron, which drives a transfer of spectral weight

towards higher frequencies, opening a pseudogap at low fre-

quencies. Conversely, starting from the polaronic phase, two

different mechanisms can be clearly identified as being re-

sponsible for the disappearance of the pseudogap: �i� reduc-

ing the effective exchange energy scale suppresses the posi-

tive feedback of magnetism on polaron formation and can

lead to a closing of the pseudogap as the system crosses back

to the nonpolaronic regime; �ii� increasing the temperature,

which does not alter the lattice-magnetic interplay, leads to a

filling of the pseudogap more similar to what is expected in

purely polaronic models. Interestingly, in the immediate vi-

cinity of the polaron crossover, the spectra are characterized

by a coexistence of a magnon peak at low frequency and a

broad polaronic band at higher frequency.

On theoretical grounds, the definition of the optical con-

ductivity of a single hole is a delicate matter which needs

particular care. We provide an analytical derivation which

generalizes the results of Refs. 27 and 34 to the Holstein-t-J

model. This approach permits us to identify the role of the

different one-particle properties on the optical conductivity.

Comparison with numerical data is also discussed, showing

good agreement between our findings and exact diagonaliza-

tion results.

The paper is organized as follows. In Sec. II we discuss

the exact solution in infinite dimensions for the one-hole

Green’s function of the Holstein-t-J model at finite tempera-

ture. Results for the one-particle spectral features are dis-

cussed in Sec. III. An analytical expression for the optical

conductivity ���� is derived in Sec. IV where we also inves-

tigate the different polaronic features and their dependence

on the microscopic parameters. In Sec. V we present a fur-

ther simplified expression for ���� valid in the lattice po-

laron regime. The main results are briefly summarized in

Sec. VI where also the consequences of including spin fluc-

tuations �here neglected� are also discussed. Finally, a de-

tailed derivation of the analytical expression for the one-

particle spectral function and the optical conductivity is

reported in the Appendixes.

II. HOLSTEIN t-J MODEL IN INFINITE DIMENSIONS

In the following we consider the case of a single hole in

an antiferromagnetic �AF� background interacting with local

Holstein phonons. Using the linear spin-wave

approximation35–39 and neglecting terms that vanish in the

limit of large coordination number z�1, we can write the

Hamiltonian as32

H =
t

2�z
�
�ij�

�h j
†
hia j + H.c.� +

J�1 − 2x�

2
�

i

ai
†
ai

+ g�
i

hi
†
hi�bi + bi

†� + �0�
i

bi
†
bi. �1�

Here a† is the creation operator for boson spin defects, h† is

the single spinless hole operator, and x= �a†a� represents the

density of spin defects which is finite at nonzero tempera-

ture. Note that in the thermodynamical limit the presence of

a single hole does not affect the magnetic state, which can be

thus evaluated �in the z�1 limit� in the absence of spin

dynamics. The density of spin defects can be obtained from

the magnetization m=1−2x via the Curie-Weiss equation

m = tanh��Jm

4
	 , �2�

which defines a Néel temperature TN=J /4. Concerning the

electron-lattice interaction, we shall mainly focus on the

adiabatic regime �0� t which is relevant to the experimental

systems of interest. In this regime, a dimensionless electron-

phonon coupling constant can be defined as �=g2 /�0t, the

polaron energy in units of the hopping integral.

An exact solution for the thermodynamical and the one-

particle spectral properties of Eq. �1� at T=0 was obtained in

Ref. 32 in terms of a continued fraction. In order to derive

the optical conductivity, the one-particle Green’s function

must be generalized to finite temperature, which involves the

following steps: �i� one has to allow for thermally excited

phonons; �ii� the presence of thermally excited spin defects

requires the introduction of a “spin-resolved” Green’s func-

tion, to distinguish hole excitations created on sites with and

without spin defects; �iii� finally, the reduced magnetization

introduces an effective exchange coupling J̃=Jm�J. The

details of a formal derivation of the one-particle propagator

at finite temperature are reported in Appendix A; we summa-

rize here the main results.

Following Ref. 27, we define Ḡi,0���= Ḡi��� as the

Green’s function for one hole created on a site in the absence

of spin defects. A careful analysis �see Appendix A� shows

that the Green’s function Ḡi,1��� for a hole created on a site

with a spin defect is simply Ḡi,1���= Ḡi��+J�. In addition, at

finite temperature the Green’s function Ḡi��� itself is defined

as a thermal average over the phonons:

Ḡ��� =
1

Zph
�

n

e−�n�0Ḡnn�� + n�0� , �3�

where Ḡnn��� represents the propagation of one hole created

on a site with n excited phonons and Zph is the single-site

phonon partition function Zph=1/ �1−e−��0�. Following Ref.

40, we can derive a self-consistent expression for Ḡnn in

terms of a continued fraction. We can write

Ḡnn��� =
1

G−1�� − n�0� − �em
n ��� − �abs

n ���
, �4�

where
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�em
n ��� =

�n + 1�g2

G−1„� − �n + 1��0… −
�n + 2�g2

G−1„� − �n + 2��0… −
�n + 3�g2

. . .

, �5�

�abs
n ��� =

ng2

G−1�� − n�0� −
�n − 1�g2

G−1„� − �n − 1��0… −
�n − 2�g2

. . .

. �6�

Carrier motion and exchange interactions are taken into

account by the bath propagator

G−1��� = � − �t��� , �7�

where the “hopping” self-energy is defined as

�t��� =
t2

4

�1 − x�Ḡ j�� − J̃/2� + xḠ j�� + J̃/2�� . �8�

Finally, the spin-defect-averaged Green’s function, which is

the physically probed quantity in photoemission experi-

ments, is obtained as

G��� = �1 − x�Ḡ��� + xḠ�� + J̃/2� . �9�

Note that the factors �1−x� and x in front of Ḡ j��− J̃ /2� and

Ḡ j��+ J̃ /2� account for the probability of a site to be, respec-

tively, free or populated by a spin defect. Note also that the

Green’s function Ḡ��� appearing in Eqs. �7� and �8� is a

phonon-averaged quantity, so that the solution of Eqs.

�3�–�9� involves the simultaneous self-consistency of all of

the Ḡi
nn, which is much more computationally expensive than

the solution at zero temperature.

It is easy to check that in the absence of an electron-

phonon interaction Eq. �9� recovers the thermal Green’s

function for the pure t-J model as defined in Eq. �2.12� by

Stumpf and Logan.27 On the other hand, it should be stressed

that the present solution, although it formally recovers the

results for the pure Holstein model in the limit J̃→0 �para-

magnetic case� 
Eqs. �40�–�42� of Ref. 40�, is still described

by a purely local Green’s function Gi,j���=	i,jG��� due to

the assumption of a classical �although disordered� spin

background. The main drawback of this assumption is thus

that no coherent dispersive peak is obtained in this frame-

work even in the J→0 limit of the t-J Holstein model, and

consequently, no Drude peak appears in the optical conduc-

tivity. Notwithstanding this limitation, the present approach,

as we will show below, is still quite able to reproduce in

more than qualitative agreement the incoherent features of

both the one-particle Green’s function and of the optical con-

ductivity.

III. ONE-HOLE SPECTRAL PROPERTIES

Before discussing the optical conductivity, let us briefly

present our results for the one-particle spectral function in

the Holstein t-J model at finite temperature. Previous ap-

proaches have focused separately on thermal effects either in

the pure Holstein or in the pure t-J model. The temperature

evolution of the hole spectral function


���=−�1/��Im G��� for the t-J model in the infinite-

dimensional limit has been analyzed in Ref. 27. At T=0, it

consists of a series of 	-function magnon peaks whose dis-

tribution reflects the strength of the magnetic polaron: for

sufficiently large J / t the profile is rapidly decaying with en-

ergy �reminiscent of the string picture of small magnetic po-

larons� whereas for small J / t it acquires a more symmetric

shape, reducing to a semicircular function in the limit J / t

→0. The effect of a nonzero temperature within this context

is to broaden each 	 function with a bandwidth Wx which is

ruled by the thermal spin-defect probability x. We shall term

this effect the intrinsic magnetic broadening. Such intrinsic

magnetic broadening Wx is, however, exponentially small for

T /TN�1, and it becomes significant only close to TN. A

semicircular shape is recovered also in the paramagnetic

phase T�TN, where J̃ / t=0.

As the electron-lattice coupling is turned on, each magnon

peak splits into several subpeaks spaced by �0, reflecting the

dressing of the hole by phononic excitations. In this context

the strength of the electron-phonon coupling rules not only

the number of phonon satellites but also its spectral weight

profile. Just as in the pure Holstein model, while the number

of phonon peaks is quite small in the weak-coupling regime,

in the polaronic state a large number of phonon satellites

appear with a characteristic Gaussian profile. The envelope

of the phononic fine structure has a spread which is governed

by the energy associated with the lattice fluctuations: it is

given by ���0t=g in the quantum limit and increases �2�Tt

as T
�0 /2.41

In Fig. 1 we show the temperature evolution of a typical

polaronic spectral function at �=0.7, �0 / t=0.05 and J / t

=0.4. Throughout the paper, when not specified, we shall

take the hopping matrix element t as the energy unit. The

temperatures considered here are T /TN=0.1,0.5,0.9, corre-

sponding to T /�0=0.2,1 ,1.8. At the lowest temperature

�T /TN=0.1� a phononic fine structure can be clearly seen,
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superimposed on the magnon peaks. The width of each
phononic peak is due to the intrinsic magnetic broadening Wx

described in Ref. 27. It is exponentially small at this tem-
perature, so that a small Lorentzian broadening �=0.007 has
been introduced for clarity. On the other hand, the spread of
the multiphonon structure gives rise to an overall width to
the magnon peaks that is in good agreement with the ex-
pected value g=0.19.

Upon increasing the temperature to T /TN=0.5, two differ-
ent effects are visible. First, the width Wx of each of the fine
peaks increases due to the intrinsic magnetic broadening,
leading to a much smoother curve �this effect actually over-
comes the small Lorentzian broadening � introduced previ-
ously�. Also, the overall spread of the multiphonon profiles
increases due to the thermal phonon fluctuations, as expected
for T
�0 /2. Finally, at T /TN=0.9, the system is so close to
the paramagnetic phase that neither the phonon peaks nor the
magnon structure can be resolved.

At this point, it is useful to comment about the effects of
coherent hole propagation, which are implicitly neglected in
our approach. These would induce a finite dispersion of order
�J to the lowest-energy magnon peak.1,30,31,35,37,42 It is clear
that such dispersion would be visible only at sufficiently low
temperatures and at moderate electron-phonon coupling
strengths, when the energy scale J is smaller than both the
intrinsic magnetic broadening and the Gaussian phonon
spread, whereas in the opposite case it will presumably be
hidden below a featureless background. These considerations
give further support to the present DMFT approach in the

polaronic and/or high-temperature regime, where neglecting

the coherent hole propagation would not affect significantly

the spectral properties. As we shall see below, this is even

more true for what regards the finite-frequency optical con-

ductivity, where any dispersive peak would be convolved in

any case with high-energy featureless structures.

IV. OPTICAL CONDUCTIVITY

The evaluation of the optical conductivity for a single

hole is a delicate matter, which is only partly simplified in

the context of DMFT due to the absence of vertex

corrections.43 A controlled procedure is derived in terms of

an expansion of the inverse fugacity at finite temperature,

performing the limit �→−� to enforce the thermodynami-

cally vanishing particle density. We can thus define the opti-

cal conductivity per hole, ����=limnh→0��� ;nh� /nh, which

is a finite quantity and which presents the same features as in

the dilute �but finite� hole density limit. Applying this for-

malism one derives a similar expression as obtained in Refs.

19 and 27, here adapted to take into account the electron-

phonon interaction. Leaving once more the technical details

in Appendix B, we report here the main results. The optical

conductivity per hole is expressed as

���� =
t2��1 − e−���

4�

 d�
̄w��� � 
x
̄�� + � + J̃/2�

+ �1 − x�
̄�� + � − J̃/2�� , �10�

where


̄��� = −
1

�
Im Ḡ��� �11�

and


̄w��� =
e−��
̄���


 d� e−��
̄���

. �12�

The last line defines a “weighted spectral function” 
̄w���,
which represents thermally excited states and plays an im-

portant role in the determination of the optical conductivity.

Let us remark that, although Eqs. �10�–�12� are formally

analogous to those for the pure t-J model, the electron-

phonon interaction appears implicitly in them in the evalua-

tion of the local Green’s function Ḡ���. Note also that, in the

paramagnetic limit J̃→0, Eqs. �10�–�12� do not recover the

results of the Holstein model,34 because Eq. �10� involves the

convolution of two local rather than k-dependent propaga-

tors. As discussed above, this is due to the classical treatment

of the spin degrees of freedom which does not allow for

coherent transport, so that no Drude peak is recovered in the

present analysis. This, however, has only a minor influence

on the finite-frequency optical conductivity, which is domi-

nated by local incoherent excitations.

In order to assess the validity of the present treatment, we

compare in Fig. 2 the optical conductivity of the Holstein t-J

model in infinite dimensions, as described by Eqs. �10�–�12�,
with numerical calculations using Lanczos diagonalization

for a single hole in the two-dimensional �2D� Holstein t-J

model on a �10��10 cluster.30 For technical reasons �see

discussion below�, DMFT data are averaged with a Gaussian

filter of amplitude �=3�0 /5 such that phonon resonances

are still well separated. Microscopic values are �=1, J / t

=0.4, �0 / t=0.2, and T=0 �for Ref. 30� and T=0.01t

=0.1TN for the present results. These values correspond to a

case where the lattice-magnetic polaron is formed and inco-

herent contributions to the optical conductivity are indeed

dominant. The good agreement of the overall shape confirms

-1 0 1

ω/t

0

1

2

3
ρ
(ω

)
T/T

N
= 0.1

T/T
N

= 0.5

T/T
N

= 0.9

λ = 0.7

J/t = 0.4

ω
0
/t = 0.05

FIG. 1. �Color online� Temperature evolution of the total spec-

tral function 
���=−�1/��Im G��� in the polaronic regime. Micro-

scopical parameters: �=0.7, �0 / t=0.05, J / t=0.4, and T /TN

=0.1,0.5,0.9 �corresponding to T /�0=0.2,1 ,1.8�. Numerical cal-

culations have been done with a small imaginary frequency part

�=0.007.
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the feasibility of our analysis to investigate the finite-

frequency optical conductivity.

A. Technical details

As discussed in the previous section, the one-hole spectral

function consists of a set of narrow bands whose width Wx is

controlled by the intrinsic magnetic broadening. This intrin-

sic width vanishes at low temperature due to the absence of

spin-wave dispersion, making the direct evaluation of Eqs.

�10�–�12� quite hard to perform. Special care is thus needed

in order to calculate numerically the optical conductivity.

We shall be mainly interested in the features of the optical

conductivity that are related to the electron-lattice coupling.

We shall therefore retain the details of the spectra on the

scale of the phonon frequency �0. From the practical point of

view, the primary object of our analysis will be a Gaussian

average of the optical conductivity ���� with a Gaussian

filter of amplitude �=3�0 /5.44 Note that, even though the

Gaussian average preserves the total spectral weight of the

original set of data, the accuracy of the final result will be

limited by the finite-frequency sampling ��. In explicit

terms, if the spacing �� is larger than the intrinsic peak

width Wx, the data sampling will probe the spectral features

in a random way, yielding a highly inaccurate result for both

the shape and spectral weight of the optical conductivity.

This is shown in the left panels of Fig. 3 where we plot the

dependence of the �Gaussian-averaged� optical conductivity

on the sampling spacing �� for different temperatures. At

high temperature T /TN=0.7 the intrinsic magnetic broaden-

ing Wx is large enough so that both the shape and the total

spectral weight of the optical conductivity are well captured

even with a relatively large mesh ��� / t=7.8�10−3�. At

lower temperature T /TN=0.5, however, Wx becomes so small

that a much finer mesh ��� / t=1.9�10−3� is needed in order

to get accurate results. At T /TN=0.3, finally, no convergence

is achieved even for the finest sampling mesh considered in

this paper, �� / t=1.1�10−4 �in Fig. 3, for graphical reasons,

we plot curves only up to �� / t=1.9�10−3�. Clearly, since

the intrinsic peak width Wx vanishes exponentially at low T,

the problem evidenced here cannot be solved by merely re-

ducing the sampling mesh.

To overcome this difficulty we add to the system a small

uncorrelated disorder with semielliptic distribution of ampli-

tude Wd,26,27 which is able to yield a finite peak width even

in the zero-temperature limit. We choose Wd=40�� to as-

sure a sufficiently dense mesh for an accurate sampling. We

then scale Wd→0, keeping fixed the ratio Wd /��=40 in

order to approach the correct physical limit in the absence of

disorder. Results obtained with a finite Wd are shown in the

right panels of Fig. 3. No appreciable difference is visible at

high temperature T /TN=0.7 where the thermally driven mag-

netic broadening Wx is large enough to guarantee the conver-

gence even in the absence of disorder. On the other hand, our

procedure provides a clear improvement already at T /TN

=0.5 where the convergence as a function of sampling spac-

ing is more easily achieved in the presence of disorder �note

that the converged results coincide with the results for the

most dense mesh in the absence of disorder, showing that no

spurious structures appear due to our scaling procedure�. Fi-

nally, for T /TN=0.3 the disorder scaling procedure is the

only way to guarantee convergence of both the shape and the

total spectral weight of the optical conductivity.

B. Results

Using the above described procedure, we shall now con-

centrate on the evolution of the optical conductivity in the

adiabatic regime, fixing the ratio �0 / t=0.05. This value is

qualitatively representative of the cuprates, where the half-

bandwidth t�1.2 eV and typical optical phonon frequencies
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ω/t
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0.8
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)
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n
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s
]

Ref. [30] (T=0)

this work (T/t=0.01)

λ = 1

J/t = 0.4

ω
0
/t = 0.2

FIG. 2. �Color online� Comparison between the optical conduc-

tivity ���� obtained by our DMFT solution and Lanczos diagonal-

ization in two dimensions on a finite cluster �Ref. 30, arbitrarily

scaled�. A Gaussian broadening �=3�0 /5 for ���� has been em-

ployed in our DMFT analysis �see text for details�.
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N
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T/T
N
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FIG. 3. �Color online� Left panels: Gaussian-averaged optical

conductivity as a function of the sampling mesh �� for different

temperatures. Right panel: the corresponding Gaussian-averaged

optical conductivity in the presence of a disorder-induced band-

width Wd /��=40 as described by our scaling procedure. The mi-

croscopic parameters are �=0.7, �0 / t=0.05, and J / t=0.4.
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�ph�60 meV. This regime is also the most interesting one

from the theoretical point of view, since in this case the

interplay between lattice and spin degrees of freedom has its

most dramatic effects.

Figure 4 shows the evolution of the optical absorption at

fixed J / t=0.4 and low temperature T /TN=0.3 upon varying

the electron-lattice coupling. At �=0.2, the result is very

reminiscent of the spectra calculated for the pure t−J model

in Ref. 27. It consists of a series of magnetic peaks, domi-

nated by the sharp single-magnon peak located at ��J /2

and rapidly decaying at higher frequency. In this weak-

coupling regime �=0.2, the electron-phonon interaction sim-

ply gives rise to a multiphonon fine structure with a Gaussian

profile. Each magnon peak acquires thus a phonon-driven

width without modifying, however, the overall distribution of

spectral weight.

The main effect of increasing the electron-lattice coupling

is a progressive shift of the spectral weight towards higher

frequencies. This is evidence of the formation of the lattice

polaron, which occurs through a gradual crossover in the

presence of a finite �0. Increasing � also modifies the shape

of the low-energy absorption edge, converting the sharp

magnon peak at �→0 into a smoother Gaussian line shape,

typical of polaronic absorption. In the strong-coupling re-

gime ���1�, characteristic of a small lattice polaron, the

position of the maximum in the optical conductivity is ex-

pected to scale linearly as �=2�t. This is in good qualitative

agreement with our data reported in Fig. 4 where, however,

the effects of a finite hopping integral t �Ref. 34� and of the

1/� behavior at high frequency �see Ref. 19� result in a

slight redshift of the maximum of the polaronic structure.

The evolution of the optical conductivity with � can be

understood by analyzing the building blocks of Eqs. �11� and

�12�. In Fig. 5�a�, we report both the spectral function 
̄ and

the weighted spectral function 
̄w for two typical values �
=0.2 and �=0.7. In the first case �dark red curve�, there is no

energy separation between the single-hole excitations in 
̄
and the thermally excited states in 
̄w. The low-frequency

gap in the optical absorption seen in Fig. 4 arises due to the

explicit shift of the spectral function by the quantity J̃ /2 in

Eq. �10�, representing the energy cost to create one spin de-

fect as the hole hops in the AF background. It is now inter-

esting to compare these features with the results for �=0.7


light green curve in Fig. 5�a��. As we can see, the spectral

functions 
̄��� for �=0.7 and �=0.2 are qualitatively simi-

lar, the only major difference being the increased number of

phonon satellites involved in each magnetic peak, reflecting

the increased number of phonons in the polaron cloud. In

order to understand the modification of the optical conduc-

tivity we thus focus on the weighted spectral function 
̄w.

The latter undergoes a much more drastic change, reflecting

in an explicit way the signature of polaron formation. Of

particular relevance is the shift of 
̄w to much more negative

energies which characterizes the lattice trapping. Note also

that the magnetic peaks that are clearly visible at �=0.2 are

completely washed out at �=0.7, merging into a broad po-

laroniclike spectrum centered at higher “binding” energies.

This change in the nature of the thermally excited states is at

the origin of both the opening of a polaronic pseudogap and

the smoothening of the features observed in ����.
A qualitatively similar evolution is observed upon varying

J, which gives a clear illustration of the positive interplay

between magnetic and lattice polaron effects. This is shown

in Fig. 6 where we report the optical conductivity for differ-

ent values of J at constant �=0.7 and at the same tempera-

ture T /�0=0.6 as in Fig. 4 �note that this corresponds to

different T /TN as TN scales with J�. Remarkably, even

though � is kept constant, reducing the magnetic exchange
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ω
0
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FIG. 4. �Color online� Optical conductivity versus � across the

polaron crossover at fixed J=0.4, �0 / t=0.05, and T /�0=0.6

�T /TN=0.3�. The two arrows at low and high energy mark, respec-

tively, the first magnon peak at ��J /2 in the weak electron-

phonon coupling limit ��1 and the position ��2�t of the broad

polaronic absorption expected at ��1 �shown here for �=1.5�.
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FIG. 5. �Color online� Spectral function 
̄��� and weighted

spectral function 
̄w��� for the different cases reported in the leg-

end. For better readability, the weighted spectral function 
̄w��� is

reported on the negative axis. The dashed black line in panel �a�
refers to the strong-coupling �SC� approximate formula as discussed

in Sec. V.
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from the initial value J=0.4 leads to a gradual loss of the

lattice polaronic features and to the undressing of the hole

from multiphonon excitations. This results in a shift of spec-

tral weight from the polaronic peak to a magnon peak at

lower frequency. The magnon peak is already visible as a

shoulder in the data of Fig. 6 at J / t=0.3 and J / t=0.2, and it

emerges more clearly at lower values of J. At J=0.17, in

particular, both the magnetic peak and the broad polaronic

band are visible in the absorption spectrum. The featureless

nature of the absorption curves at low J / t can be ascribed to

the increasing disorder of the AF environment as J dimin-

ishes and T /TN increases.27

Once again, the comparison of 
̄w and 
̄ for J / t=0.4 
light

green curve in Fig. 5�a�� and for J / t=0.15 
dark blue curve

in Fig. 5�b�� allows one to visualize in a simple way the loss

of the polaronic features. Even in this case the most relevant

quantity is the weighted spectral function 
̄w whose main

excitations, for J=0.15, are shifted to much less negative

energies than for J / t=0.4, closing the gap between 
̄w and 
̄.

Note in addition that, although less evident than at J / t=0.4,

a magnetic peak in the spectral function 
̄ is still visible even

for J / t=0.15. The convolution of 
̄ with 
̄w gives rise to the

small magnetic peak at �� J̃ /2 observed in the optical con-

ductivity.

In Fig. 7 we report the evolution of the optical spectra

versus temperature in the polaronic regime at �=0.7, �0 / t

=0.05, and J /4=0.4. Although Fig. 7 can look at a first

glance quite similar to Fig. 4, no shift of the peak of ���� is

observed here. Instead, there is a progressive filling of the

low-frequency gap with temperature that is quite similar to

what is observed in the pure Holstein model.34 This can be

pointed out again by the comparative study of 
̄ with 
̄w. For

T /TN=0.9 
light brown curve in Fig. 5�b�� the weighted

spectral function 
̄w��� still presents an extended peak at

negative energy � / t�−1.3, signaling that the lattice polaron

is not completely destroyed. However, the broadening of


̄w��� is now significantly enhanced as T
�0. This feature,

along with a similar broadening of the spectral function 
���

due to the approaching of the paramagnetic limit T /TN→1

�see Sec. III�, leads to a significant overlap of the two spec-

tral functions and to a continuous filling of the gap in the

optical conductivity as the temperature is increased.

V. STRONG-COUPLING FORMULA

In the previous section we have discussed the technical

difficulties involved in the calculation of the optical conduc-

tivity. Even adopting the proposed scaling procedure �cf.

Sec. IV A�, the computational cost can still be quite demand-

ing, especially in the strong-coupling lattice polaron regime

where the number of phonons to be taken into account scales

as �2=�t /�0. In this section we present a simple analytical

formulation of the optical conductivity which is valid pre-

cisely in the adiabatic ��0→0� small-polaron regime and

which involves almost no numerical effort.

The basis of this simplified formulation is the polaronic

nature of the weighted spectral function 
̄w pointed out in

Fig. 5. We have seen indeed that at moderate values of the

electron-lattice coupling, just above the polaron crossover,

the function 
̄w becomes essentially independent of the ex-

change term J. A closer look shows that in the lattice polaron

regime the spectral function 
̄w can be well approximated

with the result of the atomic limit t→0,45


̄w��� =
1

�2�s2
exp�−

�� + 2�t�2

2s2 � , �13�

where s=g /�tanh��0 /2T�. This function for the case �
=0.7, J / t=0.4, �0 / t=0.05, and T /TN=0.3 is shown in Fig.

5�a� compared with the full numerical solution for the same

parameters. The good agreement can be ascribed to the

atomic nature of the thermally induced excitations, which do

not hybridize with the hopping continuum described by the

self-energy, Eq. �8� �an equivalent result was already pointed

out in Ref. 34�. Equation �13� provides thus a simple analyti-

cal expression for 
̄w��� which can be employed in Eq. �10�
for the evaluation of the optical conductivity.

A simple analytical approximation can also be derived for

the one-hole spectral function 
̄��� involved in Eq. �10�. At
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FIG. 6. �Color online� Optical conductivity across the polaron

crossover, as varying J for fixed �=0.7, �0 / t=0.05, and fixed tem-

perature T /�0=0.6. Note that this fixed temperature corresponds to

different T /TN for J / t=0.4,0.3,0.2,0.17,0.15, respectively, T /TN

=0.3,0.4,0.6,0.7,0.8.
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this level, we are mainly interested in the overall shape of the

optical conductivity ����, disregarding the multiphonon fine

structure that will be anyway washed out at large � as shown

in Fig. 4. In this perspective we can consider formally the

limit �0→0 and use the approach devised in Refs. 40 and 41

as well as in Ref. 2 to treat the adiabatic limit. In particular,

the sum over the discrete energy levels in Eq. �3� can be

replaced by an integration over Gaussian-distributed local

random energies � which account for the thermal and quan-

tum fluctuations of the phonon field. The local propagator

thus becomes2,40,41

Ḡ��� =
 d�
P���

G−1��� − �
, �14�

where P���= �1/�2�s2�e−�2
/2s

2

is a Gaussian function with

the same variance as in Eq. �13�. Self-consistency is

achieved by employing Eqs. �7� and �8�. The comparison

between the approximate formula for 
̄��� valid in the po-

laronic regime and the full numerical solution is also shown

in Fig. 5�a� for �=0.7, J / t=0.4, �0 / t=0.05, and T /TN=0.3.

Note that, although the bath propagator G��� does not de-

pend explicitly on the local random energies �, it still de-

pends parametrically on � and J through the self-consistency

conditions �7� and �8�, so that it still retains the relevant

lattice and magnetic spectral structures.

Once the approximate analytical expressions for the spec-

tral functions 
̄ and 
̄w are provided, we can now simply

evaluate the optical conductivity by using Eq. �10�. Let us

stress that the numerical solution of the approximate expres-

sions for 
̄ and 
̄w, defined in Eqs. �13� and �14� requires a

remarkably smaller computational cost than the full numeri-

cal solution, especially in the lattice polaronic regime where

Eqs. �13� and �14� are valid and where the computational

cost of the full numerical solution is highest. The comparison

of the approximate formula with the full numerical solution

as a function of the electron-phonon coupling constant � is

illustrated in Fig. 8. The agreement is excellent in the small-

polaron regime �
0.7, and it is still quite satisfactory even

for moderate electron-phonon coupling �=0.5.

VI. SUMMARY AND CONCLUSIONS

In this work, we have provided an analytical treatment for

the optical conductivity ���� of one hole in the Holstein-t-J

model at finite temperature in the limit of infinite dimen-

sions. In this context a dynamical mean-field solution can be

derived where the local self-consistent problem is solved ex-

actly. Due to intrinsic limitations enforced in infinite dimen-

sions, we are not able to account for the coherent propaga-

tion of a single hole in the antiferromagnetic background.

Nevertheless, we have shown how the incoherent optical

processes, related to local excitations �Einstein phonons and

local spin flips�, are well described in our approach, as con-

firmed by the comparison with numerical results obtained by

Lanczos diagonalization.

Our main aim has been to investigate the incoherent fea-

tures of ���� in an intermediate-coupling region where the

positive interplay between the magnetic and lattice degrees

of freedom is more relevant, sustaining the formation of a
spin-lattice polaron. In this context we have studied the evo-
lution of polaronic features in the optical conductivity as a
function of the different microscopic parameters, such as the
electron-phonon coupling �, the temperature T, and the ef-

fective exchange energy J̃. We recall that J̃ does not repre-
sent the bare exchange energy but rather a mean-field-like
Weiss exchange coupling which depends on the local mag-
netization m. In the cuprates, for example, this parameter can
be tuned by varying the hole doping starting from the parent
AF phase. We have shown that the role of electron-phonon

coupling is twofold. On the one hand, it rules the formation

of the lattice polaron, changing the incoherent part of ����
from a typical spin-polaron spectrum, characterized by mag-

netic peaks and by an optical gap at J /2, to a broad lattice-

polaron-like shape located at higher frequency, from which

the magnetic peaks are essentially washed out. On the other

hand, it also tunes the amount of quantum lattice fluctua-

tions, reflected in the emergence of multiphonon satellite

peaks. This fine structure survives also when the lattice po-

laron is destroyed at small �, and it gives rise to an effective

broadening of the magnetic peaks which can be much larger

than the intrinsic broadening driven by the thermal magnetic

fluctuations.

The present approach allows us to distinguish between

two different mechanisms leading to a suppression of the

polaronic pseudogap: �i� At intermediate values of the

electron-phonon coupling, the reduction of the effective ex-

change energy J̃ leads to a shift of spectral weight from

high-energy lattice polaronic features to low-energy mag-

netic excitations. This results in a closing of the pseudogap

as the hole undresses from its lattice polaron cloud. �ii� Con-

versely, increasing the temperature within the polaronic re-

gime gives rise to a filling of the pseudogap. Both these

behaviors seem to be qualitatively observed in the optical

spectra of the underdoped cuprates.46
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As a final remark, we briefly comment on the robustness
of our results in physical systems where quantum spin fluc-
tuations are present, allowing for coherent motion of the
holes. As discussed above, one of the main effects is the
emergence of a dispersive pole with small spectral weight in
the one-particle spectral function. In the optical spectra, this
gives rise to a Drude-like low-frequency response, but it does
not affect the high-frequency incoherent part �moreover, the
coherent spectral weight is strongly reduced when the
electron-lattice coupling is turned on�. Regarding the high-
frequency part, the intrinsic dispersion of the spin fluctua-
tions is itself expected to smear the magnetic peaks. This
would affect our results only in the weak electron-phonon
coupling regime, where no lattice polaron is formed. In this
case an intrinsic broadening of the magnetic peaks in the
optical spectra due to the spin fluctuation dispersion should
be considered for a quantitative analysis. On the other hand,
the effects of the dispersion of spin-fluctuations are expected
to be barely visible in the lattice polaron regime, where the
smearing due to the multiphonon satellite structure around
each magnetic peak dominates.
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APPENDIX A: FINITE-TEMPERATURE GREEN’S

FUNCTION OF THE HOLSTEIN-t-J MODEL IN INFINITE

DIMENSIONS

In this appendix we provide a detailed derivation of the

Green’s function of one hole in the Holstein-t-J model at

finite temperature in the infinite-dimensional limit. A formal

derivation for the pure t-J model was discussed in Ref. 27,

while the derivation for the full Holstein t-J model at T=0

was provided in Ref. 32. On this ground, here we limit our-

selves to the derivation of the finite-temperature self-

consistent equations in terms of continued fractions.

Let us start by writing the Hamiltonian in Eq. �1� as H

=Ht+HL, where Ht represents the nonlocal hopping term

while HL contains all the other, purely local, contributions.

We also define the Green’s function as

Gi�t� = − i��t�
1

ZT�N� �
�n�i,�s�i

��s� j�i,�n� j�i;si,ni�e
−�He−iHtci

†
eiHtci�ni,si = 0;�n� j�i,�s� j�i� , �A1�

where �ni ,si ; �n� j�i , �s� j�i� denotes the state with ni phonons and si spin defects �si=0, no spin defect; si=1, spin defect� on site

i and with a generic set �n� j�i of phonons and �s� j�i of spin defects on all the other sites. With these notations ci=hi
† when si=0

and ci=hi
†ai when si=1. In addition, ZT�N� is the total partition function of the system in the absence of holes, N being the

number of sites; in this case, Ht does not contribute and ZT�N� factorizes into a phonon and a spin part as ZT�N�
=Zph�N�Zspin�N�. Each of them can be in addition factorized with respect to the site index—e.g., Zspin�N�=Zi

spin� j�iZ j
spin.

Similar considerations hold true for the exponential terms e−�He−iHt which apply on the states with no holes on the right-hand

side of Eq. �A1�. Recalling HL�ni ,si�=ni�0+siJ̃ /2, we can write, after few straightforward steps, in the Fourier space,

Gi��� = �
ni,si

exp�− �
ni�0 + siJ̃/2��

Zi
ph

Zi
spin �

�n�j�i,�s�j�i

exp�− ��
j�i


n j�0 + s jJ̃/2��

Z j�i
ph

Z j�i
spin

���s� j�i,�n� j�i;si,ni�ci
† 1

� + ni�0 + siJ̃/2 − H
ci�ni,si;�n� j�i,�s� j�i� . �A2�

This can be rewritten as

Gi��� =
1

Zph�
n

e−�n�0Gi
nn�� + n�0� , �A3�

where

Gi
nn��� = �

si

exp�− �siJ̃/2�

Zi
spin �

�n�j�i,�s�j�i

exp�− ��
j�i


n j�0 + s jJ̃/2��

Z j�i
ph

Z j�i
spin ���s� j�i,�n� j�i;si,ni�ci

† 1

� + siJ̃/2 − H
ci�ni,si;�n� j�i,�s� j�i� .

�A4�

Similarly, the factor ps=e−�siJ̃/2 /Zi
spin defines the local population of spin defects which can be evaluated within the mean-field

theory enforced by the infinite dimensional limit—namely, p1=x, p0=1−x. We have thus
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Gi
nn��� = �1 − x�Ḡi,0

nn��� + xḠi,1
nn��� , �A5�

with

Ḡi,si

nn ��� = �
�n�j�i,�s�j�i

exp�− ��
j�i


n j�0 + s jJ̃/2��

Z j�i
ph

Z j�i
spin ��s� j�i,�n� j�i;si,ni�ci

† 1

� + siJ̃/2 − H
ci�ni,si;�n� j�i,�s� j�i� . �A6�

Finally, using the definition of ci, one can see that Ḡi,1
nn���= Ḡi,0

nn��+ J̃ /2� and we can write

Gi
nn��� = �1 − x�Ḡi

nn��� + xḠi
nn�� + J̃/2� , �A7�

where

Ḡi
nn��� = �

�n�j�i,�s�j�i

exp�− ��
j�i


n j�0 + s jJ̃/2��

Z j�i
ph

Z j�i
spin ��s� j�i,�n� j�i;ni� 1

� − H
�ni;�n� j�i,�s� j�i� . �A8�

Here �ni ; �n� j�i , �s� j�i� denotes the state with ni phonons on

site i, �n� j�i, �s� j�i being the phonon and spin configurations

on the sites j� i with one hole on the site i.

We can write Eq. �A8� using the shorthand notation

Ḡi
nn��� = P̂i�ni� 1

� − H
�ni� , �A9�

where �ni���ni ; �n� j�i , �s� j�i� and where the operator

P̂i �ni�¯ �ni� = �
�n�j�i,�s�j�i

exp�− ��
j�i


n j�0 + s jJ̃/2��

Z j�i
ph

Z j�i
spin

� ��s� j�i,�n� j�i� ¯ ��n� j�i,�s� j�i� �A10�

denotes the average over the spin and phonon configurations

on all the sites but i. The operator P̂i represents a direct

generalization of the quantity P�s� introduced by Stumpf and

Logan in Ref. 27 to include the phonon degrees of freedom.

It is also convenient to note that �for j� i�

P̂i �ni�¯ �ni� = P̂i�
nj,sj

P̂ij

exp�− �
n j�0 + s jJ̃/2��

Z j
ph

Z j
spin

� �s j,n j,ni� ¯ �ni,n j,s j� , �A11�

where P̂ij is defined in similar way as P̂i as the average over

the spin and phonon configurations on all the sites except i

and j.

Having introduced the necessary definitions, from now on

we can follow the derivation in Ref. 32 properly adapted to

the finite-temperature case. In particular, we can introduce

the local Green’s function ḡi
nn��� defined as the atomic t=0

limit of Eq. �A9�. Note that in the atomic limit P̂i=1 so that

ḡi
nn��� =

1

� − n�0

. �A12�

We can also generalize Eq. �A9� for off-diagonal local pho-

non matrix elements:

ḡi
np��� = P̂i�ni� 1

� − HL

�pi� , �A13�

whose analytical expression will be provided in Eq. �A18�.
We can now employ the standard relation

1

� − H
=

1

� − HL

+
1

� − HL

Ht

1

� − HL

+
1

� − HL

Ht

1

� − HL

Ht

1

� − HL

+ ¯ , �A14�

which, on a classical spin background, gives rise to the re-

traceable path approximation. We have thus

Ḡi
nm��� = ḡi

nm��� − �
p

ḡi
np����̄ j

�p�i���Ḡi
pm��� , �A15�

where �̄
j

�p�i��� represents the dynamics of the hole after hop-

ping on the neighboring site j. Since in the leading term of a

1/d expansion the hopping process and the further dynamics

of the hole do not involve the phonon degrees of freedom on

site i, such evolution occurs in the presence of p phonons on

the site i, which are reflected in an shift of the frequency

argument, �̄
j

�p�i���= �̄ j��− p�0�. Note that �̄ j��� still con-

tains the full thermal average on the phonons at site j, so that

it is related to the thermally averaged Green’s function de-

fined in Eq. �A3�. In addition, �̄ j��� will depend also on the

initial spin configuration s j at site j: hopping to a site j free

of spin defects will create a spin defect on the site i, while

hopping to a site i with a spin defect will restore the initial

magnetic background at site i destroying a spin defect at i.

Using these considerations we have thus
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� j��� =
t2

4 ��sj

psj
Ḡ j„� + �2s j − 1�J̃/2…�

=
t2

4

�1 − x�Ḡ j�� − J̃/2� + xḠ j�� + J̃/2�� ,

�A16�

and we can write Eq. �A15� in the compact form

Ḡnm��� = ḡnm��� − �
p

ḡi
np����t�� − p�0�Ḡpm��� ,

�A17�

where we have dropped the unnecessary site indices and we

have added the index �t to denote a self-energy term arising

from the hopping processes.

We can indeed employ now the usual procedure to obtain

the electron-phonon self-energy in terms of a continued frac-

tion. In particular, in addition to the diagonal elements of Eq.

�A12�, we specify also the nondiagonal ones which read


ḡ����nm = 
� − n�0�	n,m + gXn,m. �A18�

Using the standard derivation, we can thus write the

Green’s function Ḡi
nn��� as

Ḡnn��� =
1

G−1�� − n�0� − �em
n ��� − �abs

n ���
, �A19�

where G−1���=�−�t���,

�em
n ��� =

�n + 1�g2

G−1„� − �n + 1��0… −
�n + 2�g2

G−1„� − �n + 2��0… −
�n + 3�g2

. . .

, �A20�

and

�abs
n ��� =

ng2

G−1�� − n�0� −
�n − 1�g2

G−1„� − �n − 1��0… −
�n − 2�g2

. . .

. �A21�

APPENDIX B: OPTICAL CONDUCTIVITY

In the previous appendix we have derived an exact ex-

pression for the Green’s function of a single hole in the Hol-

stein t-J model in infinite dimensions. Here we investigate

within the same framework the optical conductivity per hole,

����, in the zero density limit. To this aim we provide an

alternative derivation with respect to Ref. 27. The main ad-

vantage of the present approach is to deal at the same level

with both the spin and phonon degrees of freedom, allowing

thus for an immediate generalization of the t-J model to the

Holstein t-J model. As a result we obtain a final expression

of the optical conductivity as a functional of the one-hole

Green’s function which is formally similar to the one of Ref.

27 but where the local Green’s function takes into account

the electron-phonon interaction.

The formal way to derive the optical conductivity ����
for a single charge is to consider the limit ����
=limnh→0��� ;nh� /nh, where ��� ;nh�, nh are quantities de-

fined in the grand-canonical ensemble �O�
=�Nh

e��NhTr�O�Nh
/ZGC, and where Nh it the total number of

charges. The limit nh→0 is enforced by expanding to lowest

order in terms of the fugacity z=e�� ��→−��. In this limit

only the subsector Nh=1 survives both in ��� ;nh� and in nh.

Let us first consider the hole density, which we can write

as

nh =
e��

ZT �
i,�

e−�E����hi
†
hi��� , �B1�

where ��� is a complete set of eigenstates with eigenvalues

E� of one single hole �subspace Nh=1�. Here, since the state

��� must contain one hole at site i, the hole-number operator

is simply defined as N̂h,i=hi
†hi without any spin defect. In-

serting now into Eq. �B1� a complete set of eigenstates ��� in

the subspace Nh=0 �no hole� and a 	 function, we obtain

nh = e��
 d� e−��

� ��
i,�,�

e−�E�

ZT
����hi

†����2	�� − E� + E��� . �B2�

Note that only the ��� which do not contain any spin defect at

site i would contribute to Eq. �B2�; otherwise, after the hole

h† creation, we would end up with a state with one hole and

one spin defect present, which is forbidden in the Hilbert

space. We have thus
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nh = Ne��p0
 d� e−��

� ��
�,�

e−�E�

ZT
����hi

†����2	�� − E� + E��� , �B3�

where p0 is the statistical probability to have a site with no

spin defect and where now only the ��� with no spin defect at

the site i are selected. The set of square brackets in Eq. �B3�
is just the local spectral function


̄���=−�1/��Im Ḡ0���—namely,


̄��� = �
�,�

e−�E�

ZT
����hi

†����2	�� − E� + E�� , �B4�


recall that Ḡ0���= Ḡ����, so that we have

nh = Ne��p0
 d� e−��
̄��� . �B5�

Let us turn now to the optical conductivity or, more pre-

cisely, to the current-current response function ���� which

is related to ��� ;nh� through the relation

��� ;nh�=−Im ���+ i	� /�. According to the previous argu-

ment, in the limit nh→0 we can limit our analysis to the

Nh=1 subspace and write

���� = −
e��

ZT
Tr�T�J���J�Nh=1, �B6�

where � is the imaginary time in the Matsubara space and J

is the current operator to be defined below.

After the usual manipulations we can write in the Fourier

space

��i�m� = e���
�

e−�E�

ZT ���J 1 − e−��H−E��

i�m − H + E�

J��� ,

�B7�

where �m=2�mT are bosonic frequencies and where we re-

call that ��� are eigenstates in the Nh=1 subspace.

The current density operator can be written as J

= �it /2�z���i,j��ci
†c j −c j

†ci�, where we are summing explicitly

on all possible directions �this prescription compensates for

the well-known vanishing of the current-current response in

infinite dimensions26�. As discussed in Refs. 32 and 35 and

as appearing in Eq. �1�, ci
†c j =hih j

†a j, if there is a spin defect

on the site j �s j =1�, while ci
†c j =ai

†hih j
† if there is no spin

defect on the site j �s j =0�. Due to the classical nature of the

magnetic background, it is easy to realize that a retraceable

path approximation is enforced also in the current-current

response function just as in the one-particle Green’s function.

We obtain thus

��i�m� =
t2e��

4z
�
�

e−�E�

ZT

� �
�i,j�
���ci

†
c j

1 − e−��H−E��

i�m − H + E�

c j
†
ci��� . �B8�

As usual, we can now insert twice in Eq. �B8� the identity

operator ��������, where ��� are eigenstates in the subspace

without any hole. We have thus

��i�m� =
t2e��

4z
�

�,�,��

e−�E�

ZT �
�i,j�

���c j���

����ci
† 1 − e−��H−E��

i�m − H + E�

ci��������c j
†��� . �B9�

Let us summarize the physical meaning of Eq. �B9�. The

eigenstate ��� contains one hole at site j, and Eq. �B9� de-

scribes the hopping of the hole to site i. If no spin defect is

initially present at i �si=0�, this process involves the creation

of a spin defect at j, and hence ci=hi
†, c j

†=a j
†h j. On the other

hand, in the alternative case where a spin defect is initially

present at i �si=1�, the hopping process destroys the spin

defect at the site i, so that ci=aihi
† and c j

†=h j.

Let us consider for the moment the first case. We have

thus

�0�i�m� =
t2e��

4z
�

�,�,��

e−�E�

ZT �
�i,j�

���h j
†
a j���

����hi

1 − e−��H−E��

i�m − H + E�

hi
†��������a j

†
h j��� .

�B10�

Let us now ask ourselves the following question: how

much does the one-hole state ��� differ from the “free like”

state ��� in the absence of holes? It is clear that in the t=0

case only the phonon-spin configuration on the site j is af-

fected by the presence of the hole, whereas all the other sites

would be unaffected. In the presence of hole dynamics

�t�0�, however, all the other sites are in principle affected.

We recall also that, because of the classical magnetic back-

ground, the hole dynamics obeys a retraceable path approxi-

mation just as in a Bethe lattice, as depicted in Fig. 9. Let us

consider now a given specific link of two nearest-neighbor

sites, �i , j�. In a true Bethe lattice, the whole system can be

H2H1

i j

FIG. 9. Schematic picture of the hole dynamics in the retrace-

able path approximation for z→�. Given a hole at site j 
subspace

�2��, the probability to affect the subspace �1�, through the link �i , j�
or other links �dashed connections�, is O�1/�z�. In the leading order

1 /z→0 the subspaces H1 and H2 are thus independent.
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divided in two subspaces, �1� and �2�, connected by the hop-
ping term tij � t /�z. This means that, to leading order, the
presence of one hole on the site j would not affect the sub-
space �1�. Similar considerations hold true for a generic lat-
tice under the retraceable path conditions: additional links
between the two subspaces �dashed lines in Fig. 9� will con-
tribute only to O�1/�z�, and they can be neglected in the z

→� limit. For practical purposes we can thus split the total

Hamiltonian as H=H1+H2, where H1 accounts for the

phonon-spin degrees of freedom of the subspace �1� �not

including j�, while H2 contains the phonon-spin degrees of

freedom of the subspace �2� �not including i�. In a similar

way the eigenstates ���, ��� can be written �in the leading

order of a 1/z expansion� as ���= ��1� � ��2� and ���= ��1�
� ��2�. Employing these results and noting that ���h j

†a j���
= ��1�h j

†a j��1�	�2 ,�2, ����a j
†h j���= ��1��a j

†h j��1�	�2� ,�2,

���hi¯hi
†����= ��2�hi¯hi

†��2��	�1 ,�1�, we have thus

�0�i�m� =
t2e��

4z � �
�j�i,�1,�1

e−�E�1

Z1
T

���1�h j
†
a j��1��2���

i,�2

e−�E�2

Z2
T ��2�hi

1 − e−��E�1
+H2−E�1

−E�2
�

i�m − E�1
− H2 + E�1

+ E�2

hi
†��2�� , �B11�

where Z1
T and Z2

T are the partition functions of the corresponding subspaces and ��j�i
denotes a sum over the z nearest neighbors

of site i. Performing the analytical continuation i�m→�+ i	 and introducing once more appropriate 	 functions, we end up

thus with

�0��;nh� = −
Im �0�� + i	�

�
=

t2�e��
1 − e−���

4z�

 d� e−��� �

�j�i,�1,�1

e−�E�1

Z1
T

���1�h j
†
a j��1��2	�� − E�1

+ E�1
��

� � �
i,�2,�2

e−�E�2

Z1
T

���2�hi��2��2	�� + � − E�2
+ E�2

��
=

t2�Ne��
1 − e−���

4�
p0p1
 d� e−��
̄1���
̄0�� + �� , �B12�

where ��2� are eigenstates in the Nh=1 subspace, p0=1−x

and p1=x are the statistical probabilities to have no spin

defect and one spin defect, respectively, and where


̄1��� = �
�,�

e−�E�

ZT
����hi

†
ai����2	�� − E� + E�� . �B13�

The same derivation can be now employed for the case

when a spin defect is present on site i. After few straightfor-

ward calculations, we obtain

�1��;nh� =
t2�Ne��
1 − e−���

4�
p0p1

�
 d� e−��
̄0���
̄1�� + �� . �B14�

Summing the two contributions �B12� and �B14�, and recall-

ing 
̄0���= 
̄��� and 
̄1���= 
̄��+ J̃ /2�, after a change of

variable we obtain

���;nh� = �0��;nh� + �1��;nh�

=
t2�Ne��
1 − e−���p0

4�

�
 d� e−��
̄���
p1
̄�� + � + J̃/2�

+ p0
̄�� + � − J̃/2�� , �B15�

where we made use also of the relation p1e�J̃/2= p0. Finally,
dividing Eq. �B15� by Eq. �B5� we obtain the dimensionless

quantity �10�. Note that, dividing Eq. �B15� by Eq. �B5�, the

common factors Ne�� cancel out, so that the limit �→−� is

well defined.
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