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abstract

A combinatorial study discloses two surjective morphisms between generalized shuffle

algebras and algebras generated by the colored Hurwitz polyzêtas. The combinatorial

aspects of the products and co-products involved in these algebras will be examined.

1 Introduction

Classically, the Riemann zêta function is ζ(s) =
∑

n>0 n
−s, the Hurwitz zêta function

is ζ(s; t) =
∑

n>0 (n− t)−s and the colored zêta function is ζ
(

s
q

)

=
∑

n>0 q
sn−s,

where q is a root of unit. The three previous functions are defined over Z>0 but can

be generalized over any composition (sequence of positive integers) s = (s1, . . . , sr),
like, respectively, the Riemann polyzêta function ζ(s) =

∑

n1>...>nr>0 n
−s1
1 . . . n−sr

r ,
the Hurwitz polyzêta function ζ(s; t) =

∑

n1>...>nr>0 (n1 − t1)
−s1 . . . (nr − tr)

−sr

and the colored polyzêta function ζ
(

s

qi

)

=
∑

n1>...>nr>0 q
i1n1 . . . qirnrn−s1

1 . . . n−sr
r ,

with q a root of unit and i = (i1, . . . , ir) a composition. These sums converge when

s1 > 1.

To study simultaneously these families of polyzêtas, the colored Hurwitz polyzêtas,

for a composition s = (s1, . . . , sr) and a tuple of complex numbers ξ = (ξ1, . . . , ξr)
and a tuple of parameters in ]−∞; 1[, t = (t1, . . . , tr), are defined by [6]

Di(Fξ,t; s) =
∑

n1>...>nr>0

ξn1
1 . . . ξnr

r

(n1 − t1)s1 . . . (nr − tr)sr
. (1)

Note that, for l = 1 . . . , r, the numbers ξl are not necessary roots of unity qil . We are

working, in this note, with the condition
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(E) ∀i, |

i
∏

k=1

ξk| ≤ 1 and ti ∈]−∞; 1[.

Hence, Di(Fξ,t; s) converges if s1 > 1. We note E the set of C-tuples verifying (E).
These polyzêtas are obtained as special values of iterated integrals1 over singular

differential 1-forms introduced in [10]. As iterated integrals, they are encoded by words

or by non commutative formal power series [10] and are used to construct bases for

asymptotic expanding [14] or symbolic integrating fuchian differential equations [11]

exactly or approximatively [8]. The meromorphic continuation of the colored Hurwitz

polyzêtas2 is already studied in [5, 6]. In our studies, we constructed an integral repre-

sentation3 of colored Hurwitz polyzêtas and a distribution treating simultanously two

singularities and our methods permit to make the meromorphic continuation commuta-

tively over the variables s1, . . . , sr [5, 6]. Moreover, [6] gives another way to obtain the

meromorphic continuation thanks to translation equations [4]. Our methods give the

structure of multi-poles [5] (Theorem 4.2) and two ways to calculate algorithmically

the multi-residus4.

In this note, in continuation with our previous works [10, 11, 12, 13, 5, 6], we are

focusing on Hofp algebra, for a class of products as minusstuffle ( ), mulstuffle ( q ),
. . . , and in particular for the new product duffle ( q ), obtained as “tensorial product”

of q and the well known stuffle ( ), of symbolic representations of these polyzêtas

(see Definition 2.1 and Proposition 2.1 bellow).

2 Combinatorial objects

2.1 Some products and their algebraic structures

Let X be an encoding alphabet and the free monoid over X is denoted by X∗. The

length of any wordw ∈ X∗ is denoted by |w| and the unit of X∗ is denoted by 1X∗ . For

any unitary commutative algebra A, a formal power series S over X with coefficients

in A can be written as the infinite sum
∑

w∈X∗〈S|w〉w. The set of polynomials (resp.

formal power series) over X with coefficients in A is denoted by A〈X〉 (resp. A〈〈X〉〉).
The set of degree 1 monomials is AX = {ax/a ∈ A, x ∈ X}.

Definition 2.1 We note P the set of products ⋆ over A〈X〉 verifying the conditions :

1They are presented as generalized Nielsen polylogarithms in [10] (Definition 2.3) and as generalized

Lerch functions in [12] (Definition 3).
2See also references and a discussion about meromorphic continuation of Riemann polyzêtas in [5].
3This integral representation is obtained by applying successively the polylogarithmic transform [10]. It is

an application of non commutative convolution as shown in [9] (Section 2.4). Other integral representations

can be also deduced easily by change of variables, for example t = zr and then r = e−u [5].
4Other meromorphic continuations can also be obtained by Mellin transform as already done in [17] or

by classical estimation on the imaginary part [7] but these later work reccursively, depth by depth, and the

commutativity of this process over the variables s1, . . . , sr must be proved. Unfortunately, the structure of

multi-poles as well as multi-residus are missing in both works [7, 17]. In [16], to make the meromorphic

continuation (giving the expression of non positive integers multi-residus via a generalization of Bernoulli

numbers – but not of all multi-residus) of the specialization at roots of unity of colored Hurwitz polyzêtas

Di(Fξ,t ; s), the author bases on the integral representation, on the contours, of the multiple Hurwitz-Lerch

which corresponds mutatis mutandis to the integral representation of generalized Lerch functions introduced

earlier in [5] (Corollary 3.3).
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(i) the map ⋆ : A〈X〉 × A〈X〉 → A〈X〉 is bilinear,

(ii) for any w ∈ X∗, 1X∗ ⋆ w = w ⋆ 1X∗ = w,

(iii) for any a, b ∈ X and u, v ∈ X∗,

au ⋆ bv = a(u ⋆ bv) + b(au ⋆ v) + [a, b](u ⋆ v),

where [., .] : AX ×AX → AX is a function verifying :

(S1) ∀a ∈ AX, [a, 0] = 0 ,

(S2) ∀(a, b) ∈ (AX)2, [a, b] = [b, a],

(S3) ∀(a, b, c) ∈ (AX)3, [[a, b], c] = [a, [b, c]].

Example 1 (see [18]) Product of interated integrals.

The shuffle is a bilinear product such that :

∀w ∈ X∗ w ⊔⊔ 1X∗ = 1X∗ ⊔⊔ w = w and

∀(a, b) ∈ X2, ∀(u, v) ∈ X∗2, au ⊔⊔ vb = a(u ⊔⊔ bv) + b(au ⊔⊔ v).

For example, for any letter x0, x and x′ in X ,

x0x
′
⊔⊔ x2

0x = x0x
′x2

0x+ 2x2
0x

′x0x+ 3x3
0x

′x+ 3x3
0xx

′ + x2
0xx0x

′.

Example 2 (see [15]) Product of quasi-symmetric functions.

Let X be an alphabet indexed by N.

The stuffle is a bilinear product such that :

∀w ∈ X∗, w 1X∗ = 1X∗ w = w and

∀(xi, xj) ∈ X2, ∀(u, v) ∈ X∗2,
xiu xjv = xi(u xjv) + xj(xiu v) + xi+j(u v).

In particular, with the alphabet Y = {y1, y2, y3, . . .},
(y3y1) y2 = y3y1y2 + y3y2y1 + y3y3 + y2y3y1 + y5y1.

Example 3 ([3]) Product of large multiple harmonic sums.

Let X be an alphabet indexed by N.

The minus-stuffle is a bilinear product such that :

∀w ∈ X∗, w 1X∗ = 1X∗ w = w and

∀(xi, xj) ∈ X2, ∀(u, v) ∈ X∗2,
xiu xjv = xi(u xjv) + xj(xiu v)− xi+j(u v).

Example 4 ([6]) Product of colored sums.

Let X be an alphabet indexed by a monoid (I,×).
The mulstuffle is a bilinear product such that :

∀w ∈ X∗ w q 1X∗ = 1X∗
q w = w and

∀(xi, xj) ∈ X2, ∀(u, v) ∈ X∗2,
xiu q xjv = xi(u q xjv) + xj(xiu q v) + xi×j(u q v).

For example, with X indexed by Q∗,

x 2
3
x−1

q x 1
2
= x 2

3
x−1x 1

2
+ x 2

3
x 1

2
x−1 + x 2

3
x−1

2
+ x 1

2
x 2

3
x−1 + x 1

3
x−1.
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Remark 2.1 Thanks to the one-to-one correspondence (i1, . . . , ir) 7→ xi1 . . . xir be-

tween tuples of I and word over X , the calculus of x 2
3
x−1

q x 1
2

can be written as
(

2
3 ,−1

)

q

(

1
2

)

=
(

2
3 ,−1, 12

)

+
(

2
3 ,

1
2 ,−1

)

+
(

2
3 ,

−1
2

)

+
(

1
2 ,

2
3 ,−1

)

+
(

1
3 ,−1

)

.

Example 5 ([6]) Product of colored Hurwitz polyzêtas.

Let Y and E be two alphabets and consider the alphabet A = Y ×E with the concate-

nation defined recursively by (y, e).(wY , wE) = (ywY , ewE) for any letters y ∈ Y ,

e ∈ E, and any word wY ∈ Y ∗, wE ∈ E∗. The unit of the monoide A∗ is given by

1A∗ = (1Y ∗ , 1E∗). If Y is indexed by N and E by a monoid (I,×), the duffle is a

bilinear product such that ∀w ∈ A∗, w q 1A∗ = 1A∗
q w = w,

∀(yi, yj) ∈ Y 2, ∀(el, ek) ∈ E2, ∀(u, v) ∈ A∗2, (yi, el).u q (yj , ek).v = (yi, el).
(u q (yj , ek).v) + (yj , ek). ((yi, el).u q v) + (yi+j , el×k).(u q v).

Proposition 2.1 The shuffle, the stuffle, the minus-stuffle and the mulstuffle are ele-

ments of P , with respectively, [xi, xj ] = 0, [xi, xj ] = xi+j , [xi, xj ] = −xi+j , [xi, xj ] =
xi×j for any letters xi and xj of X .

The duffle is in P , with [(yi, el), (yj , ek)] = (yi+j , el×k) for all yi, yj in Y , el, ek in E.

Proposition 2.2 Let ⋆ ∈ P , then (A〈X〉, ⋆) is a commutative algebra.

Proof. We just have to show the commutativity and the associativity of ⋆.

To obtain w1 ⋆w2 = w2 ⋆w1 for all w1, w2 in X∗, we use an induction on |w1|+ |w2|.
It is true when |w1| + |w2| ≤ 1 thanks to (i) since w1 or w2 is 1X∗ . The equality (iii),

the condition (S2) and the commutative of + give the induction. In the same way, an

induction on |w1|+ |w2|+ |w3| gives w1 ⋆ (w2 ⋆ w3) = (w1 ⋆ w2) ⋆ w3 thanks to (iii)

and (S3). ✷

If we associate to each letter of X an integer number called weight, the weight of a

word is the sum of the weight of its letters. In this case X is graduated.

In [15], Hoffman works over X = X ∪ {0} with [., .] : X ×X → X and call quasi-

product any product in P with the additional condition :

(S4) Either [a, b] = 0 for all a, b in X ; or the weight of [a, b] is the sum of the weight

of a and the weight of b for all a, b in X .

Example 6 1. The shuffle is a quasi-product.

2. Let X be an alphabet indexed by N and define the weight of xi, i ∈ N, by i .

Then the stuffle is a quasi-product.

Theorem 2.1 ([15]) If X is graduated and has a quasi-product ⋆, then (A〈X〉, ⋆) is a

commutative graduated A-algebra..

We can define (i) a comultiplication ∆ : A〈X〉 → A〈X〉 ⊗A〈X〉,
(ii) a counit ǫ : A〈X〉 → A,

by : ∀w ∈ X∗, ∆w =
∑

uv=w

u⊗ v and ǫ(w) =

{

1 if w = 1X∗

0 otherwise.

The coproduct ∆ is coassociative so (A〈X〉,∆, ǫ) is a coalgebra.
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Lemma 2.1 For any w ∈ X∗ and x ∈ X , (x ⊗ 1X∗)∆w + 1X∗ ⊗ xw = ∆xw.

Proof. ∀w ∈ X∗, ∀x ∈ X,∆xw =
∑

uv=xw

u⊗ v =
∑

u′v=w

xu′ ⊗ v + 1X∗ ⊗ xw

so ∆xw = x⊗ 1X∗

(

∑

u′v=w

u′⊗ v
)

+1X∗ ⊗xw = (x⊗ 1X∗)∆w+1X∗ ⊗xw. ✷

Proposition 2.3 If ⋆ ∈ P , then (A〈X〉, ⋆,∆, ǫ) is a bialgebra.

Remember that ⋆ acts over A〈X〉 ⊗A〈X〉 by (u⊗ v) ⋆ (u′ ⊗ v′) = (u ⋆ u′)⊗ (v ⋆ v′).
Proof. ǫ is obviously a ⋆-homomorphism. It still has to be show ∆(w1) ⋆ ∆(w2) =
∆(w1 ⋆ w2) over X∗. This equality is true if w1 or w2 is equal to 1X∗ .

Assume now that ∆(u)⋆∆(v) = ∆(u⋆v) for any word u and v such that |u|+ |v| ≤ n,

n ∈ N, and let w1 and w2 be in X∗ with |w1| + |w2| = n+ 1. We note w1 = au and

w2 = bv, with a and b two letters of X , u and v two words of X∗. Thus, by definition,

∆w1 =
∑

u1u2=u au1 ⊗ u2 + 1X∗ ⊗ au and ∆w2 =
∑

v1v2=v bv1 ⊗ v2 + 1X∗ ⊗ bv.

∆(w1) ⋆∆(w2)

=
∑

u1u2=u,v1v2=v

(au1 ⋆ bv1)⊗ (u2 ⋆ v2) +
∑

u1u2=u

(au1)⊗ (u2 ⋆ bv)

+
∑

v1v2=v

(bv1)⊗ (au ⋆ v2) + 1X∗ ⊗ (au ⋆ bv)

=
∑

u1u2=u,v1v2=v

(a(u1 ⋆ bv1)⊗ (u2 ⋆ v2) + b(au1 ⋆ v1)⊗ (u2 ⋆ v2)

+([a, b](u1 ⋆ v1))⊗ (u2 ⋆ v2)) +
∑

u1u2=u

(au1)⊗ (u2 ⋆ bv)

+
∑

v1v2=v

(bv1)⊗ (au ⋆ v2) + 1X∗ ⊗ a(u ⋆ bv)

+1X∗ ⊗ b(au ⋆ v) + 1X∗ ⊗ [a, b](u ⋆ v)

=
∑

u1u2=u,v1v2=v

a(u1 ⋆ bv1)⊗ (u2 ⋆ v2) +
∑

u1u2=u

(au1)⊗ (u2 ⋆ bv)

+
∑

u1u2=u,v1v2=v

b(au1 ⋆ v1)⊗ (u2 ⋆ v2) +
∑

v1v2=v

(bv1)⊗ (au ⋆ v2)

+[a, b]⊗ 1X∗

∑

u1u2=u
v1v2=v

(u1 ⊗ u2) ⋆ (v1 ⊗ v2)

+(1X∗ ⊗ a(u ⋆ bv) + 1X∗ ⊗ b(au ⋆ v) + 1X∗ ⊗ [a, b](u ⋆ v))

= (a⊗ 1X∗)(∆(u) ⋆∆(w2)) + 1X∗ ⊗ a(u ⋆ bv) + (b ⊗ 1X∗)(∆(w1) ⋆∆(v))
+1X∗ ⊗ b(au ⋆ v) + ([a, b]⊗ 1X∗)(∆(u) ⋆∆(v)) + 1X∗ ⊗ [a, b](u ⋆ v).

Using the induction hypothesis then the lemma 2.1 (since [a, b] ∈ AX) gives

∆(w1) ⋆∆(w2) = ∆(a(u ⋆ w2)) + ∆(b(w1 ⋆ v)) + ∆([a, b](u ⋆ v))
= ∆(a(u ⋆ w2) + b(w1 ⋆ v) + [a, b](u ⋆ v))
= ∆(w1 ⋆ w2).

✷
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Remark 2.2 In particular, ∆ is a ⊔⊔ -homomorphism, a -homomorphism and a q -

homomorphism.

Let Cn be the set of positive integer sequences (i1, . . . , ik) such that i1 + . . .+ ik=n.

Theorem 2.2 Define a⋆ by, for all x1, . . . , xn in X ,

a⋆(x1 . . . xn)

=
∑

(i1,...,ik)∈Cn

(−1)kx1 . . . xi1 ⋆ xi1+1 . . . xi1+i2 ⋆ . . . ⋆ xi1+...+ik−1+1 . . . xn

then, if ⋆ ∈ P , (A〈X〉, ⋆,∆, ǫ, a⋆) is a Hopf algebra.

Proof. With the applications :

µ : A → A〈X〉
λ 7→ λ 1X∗

and
m : A〈X〉 ⊗A〈X〉 → A〈X〉

u⊗ v 7→ u ⋆ v
,

the antipode must verify m ◦ (a⋆ ⊗ Id) ◦∆ = µ ◦ ǫ, or, in equivalent terms
∑

uv=w

a⋆(u) ⋆ v = 〈w|1X∗〉1X∗ .

i.e.

{

a⋆(1X∗) = 1X∗n

∀x ∈ X, a⋆(x) = −x
and, if w = x1 . . . xn with n ≥ 2, x1, . . . , xn ∈ X ,

a⋆(w) = −

n−1
∑

k=1

a⋆(x1 . . . xk) ⋆ xk+1 . . . xn.

An induction over the length n shows that a⋆ defined in theorem verifies these equali-

ties, and, in the same way, a⋆ verifies m ◦ (Id⊗ a⋆) ◦∆ = µ ◦ ǫ. ✷

Corollary 2.1 If ⋆ is ⊔⊔ or or q or q , then this construction gives an Hopf

algebra. Moreover, for ⊔⊔ or , we obtain a graduated Hopf algebra.

2.2 Iterated integral

Let us associate to each letter xi in X a 1-differential form ωi, defined in some con-

nected open subset U of C. For all paths z0 z in U , the Chen iterated integral associ-

ated to w = xi1 · · ·xik along z0 z, noted is defined recursively as follows

αz
z0(w) =

∫

z0 z

ωi1(z1)α
z1
z0(xi2 · · ·xik ) and αz

z0(1X∗) = 1, (2)

verifying the rule of integration by parts [2] :

αz
z0(u ⊔⊔ v) = αz

z0(u)α
z
z0(v). (3)

We extended this definition over A〈X〉 (resp. A〈〈X〉〉) by

αz
z0(S) =

∑

w∈X∗

〈S|w〉αz
z0 (w). (4)
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2.3 Shuffle relations

2.3.1 First encoding for colored Hurwitz polyzêtas

Let ξ = (ξn) be a sequence of complex numbers and T a family of parameters. Put

X ′ an alphabet indexed over N∗ × CN × T and X = {x0} ∪X ′. To each x in X we

associate the differential form :















ω0(z) =
dz

z
si x = x0

ωi,ξ,t(z) =

∏i
k=1 ξk

1−
∏i

k=1 ξk z
×

dz

zt
if x = xi,ξ,t with i > 1.

(5)

For any T -tuple t = (t1, . . . , tr) we associate the T -tuple t = (t1, . . . , tr) given by























t1 = t1 − t2,

t2 = t2 − t3,
...

tr = tr−1 − tr

in this way























t1 = t1 + t2 + . . .+ tn,

t2 = t2 + . . .+ tn,
...

tr = tr

(6)

We choose the sequence ξ and the family t such that the condition (E) is satisfied.

Proposition 2.4 For any s = (s1, . . . , sr) with s1 > 1 if ξ = (ξ1, . . . , ξr) ∈ Er and

t = (t1, . . . , tr) ∈ T r, then Di(Fξ,t; s) = α1
0(x

s1−1
0 x1,ξ,t1

. . . xsr−1
0 xr,ξ,tr

).

Proof. Since ωi,ξ,t(z) =
∑

n>0

i
∏

k=1

ξnk
zndz

z1+t
then αz

0(xr,ξ,tr ) =
∑

n>0

r
∏

k=1

ξnk
zn−tr

n− tr
and

αz
0(x

sr−1
0 xr,ξ,tr ) =

∑

n>0

r
∏

k=1

ξnk
zn−tr

(n− tr)sr
. Hence, α1

0(x
s1−1
0 x1,ξ,t1 . . . x

sr−1
0 xr,ξ,tr )

gives
∑

m1,...,mr>0

r
∏

j=1

∏j
kj=1 ξ

mj

kj

(mj + . . .+mr − tj − . . .− tr)
sj , and then, by change of vari-

ables,
∑

n1>...>nr>0

ξn1
1 . . . ξnr

r

(n1 − t1)s1 . . . (nr − tr)sr
. ✷

Theorem 2.3 Let T be the group of parameters generated by 〈T ; +〉, C be a sub-

group of (C∗, .) and A a sub-ring of C. Put C′ = CN ∩ E and T ′ the set of finite tuple

with elements in T . Then the A algebra generated by {Di(Fξ,t; s)}ξ∈C′,t∈T ′ is the A
modulus generated by {Di(Fξ,t; s)}ξ∈C′,t∈T ′ .

Proof. We have express the product Di(Fξ,t; s)Di(Fξ′,t′ ; s
′), with s = (s1, . . . , sr),

s
′ = (s′1, . . . , s

′
r′), ξ, ξ

′ ∈ C′ and t = (t1, . . . , tr), t
′ = (t′1, . . . , t

′
r) ∈ T ′, as lin-

ear combination of colored Hurwitz polyzêtas. This is an iterated integral associated

to xs1−1
0 x1,ξ,t1 . . . x

sr−1
0 xr,ξ,tr

⊔⊔ x
s′1−1
0 x1,ξ′,t′1

. . . x
s′
r′
−1

0 xr′,ξ′,t′
r′

which is a sum of
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terms of the form x
s′′1 −1
0 x1,ξ(1),t(1)

. . . x
s′′i −1
0 xji,ξ(i),t(i)

. . . x
s′′r −1
0 xjr′′ ,ξ

(r′′),t(r′′)
, with

s′′i ∈ N, ξ(i) is ξ or ξ′ and t(i) is tji or t′ji for all i; and r′′ = r + r′′. Note that

αz
0(xi,ξ,tix

s−1
0 xj,ξ′,tj )

=

∫ z

0

∑

m>0

i
∏

k=1

ξmk zm−ti−1
1 dz1

∫ z1

0

dz2
z2

...

∫ zs+1

0

∑

n>0

i
∏

k=1

ξ′nk z
n−t′

j
−1

s+1 dzs+1

=
∑

m,n>0

(ξ1 . . . ξi)
m (

ξ′1 . . . ξ
′
j

)n

(m+ n− ti − t′j)(n− t′j)
s
zn+m,

α1
0

(

x
s′′1 −1
0 x1,ξ(1),t(1)

. . . x
s′′i −1
0 xji,ξ(i),t(i)

. . . x
s′′r −1
0 xjr′′ ,ξ

(r′′),t(r′′)

)

=
∑

m1,...,mr′′>0

r′′
∏

i=1

(ξ
(i)
1 . . . ξ

(i)
ji

)mi

(mi + . . .+mr′′ − t(i) − . . .− t(r′′))
s′′
i

=
∑

n1>...>nr′′>0

r′′
∏

i=1

ξ′′ni

i

(ni − t′′i )
s′′
i

with ni = mi + . . . + mr′′ , t
′′
i = t(i) + . . . + t(r′′) for all i, so t

′′ ∈ T ; ξ′′1 = ξ
(1)
1

and ξ′′i =
ξ
(i)
1 ...ξ

(i)
ji

ξ
(i−1)
1 ...ξ

(i−1)
ji−1

for i > 1 so ξ′′ ∈ C : we can express each term of the shuffle

product as Di(Fξ′′,t′′ ; s
′′). ✷

Note that the shuffle product over two words of X∗X ′ acts separately over (C′, .),
(T ′,+) and the convergent compositions. We can describe the situation with the shuffle

algebra5 :

Theorem 2.4 Let H be the Q-algebra generated by the colored Hurwitz polyzêtas. The

map ζ : (Q〈(x∗
0xi,ξ,t)

∗
〉, ⊔⊔)։ (H, .), xs1

0 x1,ξ,t1 . . . x
sr
0 xr,ξ,tr 7→ Di(Fξ,t; s+ 1) is a

surjective algebra morphism.

Example 7 Since Di(Fξ,t; 3) = α1
0(x

2
0x1,ξ,t) and Di(Fξ′,t′ ; 2) = α1

0(x0x1,ξ′,t′) then

Di(Fxi,t; 3)Di(Fxi′,t′ ; 2) = α1
0(x0x1,ξ′,t′ ⊔⊔ x2

0x1,ξ,t). Example 1 with x = x1,ξ,t and

x′ = x1,ξ′,t′ gives the expression of x0x1,ξ′,t′ ⊔⊔ x2
0x1,ξ,t. But the first term obtained is

α1
0(x0x1,ξ′,t′x

2
0x1,ξ,t)

=

∫ 1

0

dz1
z1

∫ z1

0

∑

m>0

ξ′
m
zm−t′−1
2 dz2

∫ z2

0

dz3
z3

∫ z3

0

dz4
z4

∫ z4

0

∑

n>0

ξnzn−t−1
5 dz5

=
∑

n,m>0

ξ′
m
ξn

(m+ n− t′ − t)2(n− t)3

=
∑

n1>n2>0

(ξ′)
n1(ξ/ξ′)n2

(n1 − t′ − t)2(n2 − t)3

= Di(F(ξ,ξ/ξ′);(t+t′,t); (2, 3)).

5Working in Q〈
(

x∗

0
xi,ξ,t

)

∗

〉 implies working in the graduated Hopf algebra (Q〈X∗〉, ⊔⊔ ,∆, ǫ, a
⊔⊔

).
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We can make similar calculus for the other terms and find :

Di(Fξ,t; 3)Di(Fξ′,t′ ; 2)
= Di(F(ξ′,ξ/ξ′);(t+t′,t); (2, 3)) + 2Di(F(ξ′,ξ/ξ′);(t+t′,t); (3, 2))
+ 3Di(F(ξ′,ξ/ξ′);(t+t′,t); (4, 1)) + 3Di(F(ξ,ξ′/ξ);(t+t′,t′); (4, 1))
+Di(F(ξ,ξ′/ξ);(t+t′,t′); (3, 2)).

2.3.2 Second encoding for colored Hurwitz polyzêtas

For the Hurwitz polyzêtas, we can obtain an encoding indexed by a finite alphabet. Let

the alphabet X = {x0;x1} and associate to x0 the form ω0(z) = z−1dz and at x1 the

form ω1(z) = (1 − z)−1dz.

For each x ∈ X and λ ∈ C, we note (λx)∗ =
∑

k≥0(λx)
k . Then, (see [10], [11]),

α1
0

(

xs1−1
0 (t1x0)

∗s1x1 . . . x
sr−1
0 (trx0)

∗srx1

)

= ζ(s; t).

Theorem 2.5 Let H′ be the Q-algebra generated by the Hurwitz polyzêtas and X the

Q-algebra generated by (t1x0)
∗s1x1 . . . (trx0)

∗srxr. Then, ζ : (X , ⊔⊔)։ (H′, .) is a

surjective morphism of algebras.

Note that we can apply the idea of encoding of “simple” colored Hurwitz zetas

functions (with depth one : r = 1). Let ξ = (ξn) be a sequence of complex numbers in

the unit ball B(0; 1) and T a family of parameters. Let X = {x0, x1, . . .} be a alphabet

indexed by N. Associate to x0 the differential form ω0(z) = z−1dz and to xi, i ≥ 1,

the differential form ωi(z) = ξi(1 − ξiz)
−1dz.

Proposition 2.5 With this notation, α1
0

(

((tx0)
∗x0)

s−1
(tx0)

∗xi

)

=
∑

n>0

ξni
(n− t)s

.

Proof. Since
ξidz0

1− ξiz0
= ξi

∑

n≥0

(ξiz0)
ndz0, we can write

αz
0

(

(tx0)
kxi

)

= tk
∫ z

0

dzk
zk

∫ zk

0

. . .

∫ z1

0

ξi
∑

n≥0

(ξiz0)
ndz0 =

∑

n>0

tk
ξni z

n

nk+1
,

for z ∈ B(0; 1) and for k ∈ N. Thanks to the absolute convergence,

αz
0 ((tx0)

∗xi) =
∑

n>0

ξni z
n

n

∑

k≥0

(

t

n

)k

=
∑

n>0

ξni z
n

n− t
.

In the same way, if z ∈ B(0; 1) :

∀k ∈ N, αz
0

(

(tx0)
kx0(tx0)

∗xi

)

=
∑

n>0

tk
ξni

n− t

zn

nk+1
,

so αz
0 ((tx0)

∗x0(tx0)
∗xi) =

∑

n>0

ξni z
n

(n− t)2

9



and αz
0

(

((tx0)
∗x0)

s−1
(tx0)

∗xi

)

=
∑

n>0

ξni z
n

(n− t)s
.

✷

Remark 2.3 Note that, with the same notation,

αz
0

(

x1 ((t2x0)
∗x0)

s−1
(t2x0)

∗x2

)

=
∑

n,m>0

ξn2 ξ
m
1 zn+m

(n− t2)s(m+ n)

=
∑

n1>n2>0

ξn2
2 ξn1−n2

1 zn1

n1(n2 − t2)s
.

In other words, this encoding appears to be widespread only as couples of the type

ξ = (1, 1, . . . , 1, ξr) : with ξ1 = 1 and ω1 = (1− z)−1dz,

α1
0

(

xs1−1
0 (t1x0)

∗s1x1 . . . x
sr−1−1
0 (tr−1x0)

∗sr−1xr−1x
sr−1
0 (trx0)

∗srxr

)

=
∑

n1>...>nr

ξnr
r

(n1 − t1)s1 . . . (nr − tr)sr
.

2.4 Duffle relations

Let λ = (λn) be a set of parameters, s = (s1, . . . , sr) a composition, ξ ∈ Cr. Then

∀n ∈ Z>0, Mn
s,ξ(λ) =

∑

n>n1>...>nr>0

r
∏

i=1

ξni

i λsi
ni

and Mn
(),()(λ) = 1. (7)

We can export the duffle over the tuples s = (s1, . . . , sr) ∈ Zr
>0 and ξ ∈ Cr with :

(s, ξ) q ((), 1) = ((), 1) q (s, ξ) = (s, ξ) and

(s1, s; ξ1, ξ) q (r1, r; ρ1, ρ)
= (s1; ξ1). ((s; , ξ) q (r1, r; ρ1, ρ)) + (r1; ρ1). ((s1, s; ρ1, ξ) q (r; ρ))
+(s1 + r1; ξ1ρ1). ((s; ξ) q (r; ρ)) (8)

Proposition 2.6 Let s = (s1, . . . , sl) and r = (r1, . . . , rk) be two compositions, ξ ∈
Cl, ρ ∈ Ck. Then

∀n ∈ N, Mn
s,ξ(λ)M

n
r,ρ(λ) = Mn

(s,ξ) q (r,ρ)(λ).

Proof. Put the compositions s′ = (s2, . . . , sl), r
′ = (r2, . . . , rk), the tuples of complex

numbers ξ′ = (ξ2, . . . , ξl) and ρ′ = (ρ2, . . . , ρk), then

Mn
s,ξ(λ)M

n
r,ρ(λ)

=
∑

n>n1,n>n′

1

ξn1
1 λs1

n1
Mn1

s′,ξ′(λ) ρ
n′

1
1 λr1

n′
1
Mn′

1

r′,ρ′(λ)

=
∑

n>n1

ξn1
1 λs1

n1
Mn1

s′,ξ′(λ)M
n1
r,ρ(λ) +

∑

n>n′
1

ρn
′

1
1 λr1

n′
1
Mn′

1

s,ξ (λ)M
n′

1

r′,ρ′(λ)
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+
∑

n>m

(ξ1ρ1)
mλs1+r1

m Mm
s′,ξ′(λ)M

m
r′,ρ′(λ).

A recurrence ended the demonstration. ✷

Theorem 2.6 Let s = (s1, . . . , sl) and r = (r1, . . . , rk) be two compositions, ξ a l-
tuple and ρ a k-tuple of E , t = (t, . . . , t) a l-tuple and t

′ = (t, . . . , t) a k-tuple, both

formed by the same parameter t diagonally. Then

Di(Fξ,t; s)Di(Fξ′,t′ ; s
′) = Di(Fξ′′,(t,...,t); s

′′),

with (s′′; ξ′′) = (s; ξ) q (s′; ξ′).

Proof. With λn =
1

n− t
for all n ∈ N, Mn

s,ξ(λ) =
∑

n>n1>...>nr

r
∏

i=1

ξni

i

(ni − t)si
. So

lim
n→∞

Mn
s,ξ(λ) = Di(Fξ,t; s) and taking the limit of Proposition 2.6 gives the result.

✷

Example 8 The use of examples 2 and 4 gives

Di(F( 2
3 ,−1),t; (3, 1))Di(F( 1

2 ),(t)
; (2))

= Di(F( 2
3 ,−1, 12 ),(t,t,t)

; (3, 1, 2)) + Di(F( 2
3 ,

1
2 ,−1),(t,t,t); (3, 2, 1))

+Di(F( 2
3 ,−

1
2 ),t

; (3, 3)) + Di(F( 1
2 ,

2
3 ,−1),(t,t,t); (2, 3, 1)) + Di(F( 1

3 ,−1),t; (5, 1))

Remark 2.4 Extend the duffle product to triplets (s, t, ξ) ∈ ∪r∈N∗Nr × {t}r × Cr by

(s1, s; t, t; ξ1, ξ) q (r1, r; t, t
′; ρ1, ρ) = (s1; t; ξ1). ((s; t; ξ) q (r1, r; t, t

′; ρ1, ρ))
+ (r1; t; ρ1). ((s1, s; t, t; ρ1, ξ) q (r; t′; ρ))
+ (s1 + r1; t; ξ1ρ1). ((s; t; ξ) q (r; t′; ρ)) ,

and define the function F over I = ∪r∈N∗Nr ×{t}r ×Cr by F (s, t, ξ) = Di(Fξ,t; s).
Then, by Theorem 2.6, the function F : (I, q ) → (C, .) is morphism of algebras.
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