Combinatorial study of colored Hurwitz polyzêtas

Jean-Yves Enjalbert, Hoang Ngoc Minh

To cite this version:

Jean-Yves Enjalbert, Hoang Ngoc Minh. Combinatorial study of colored Hurwitz polyzêtas. 2011. hal-00704926

HAL Id: hal-00704926

https://hal.science/hal-00704926

Preprint submitted on 6 Jun 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Combinatorial study of colored Hurwitz polyzêtas

June 6, 2012

Jean-Yves Enjalbert ${ }^{1}$, Hoang Ngoc Minh ${ }^{1,2}$
1 Universit Paris 13, Sorbonne Paris Cit, LIPN, CNRS(, UMR 7030), F-93430, Villetaneuse, France.
2 Université Lille II, 1 place Déliot, 59024 Lille, France
Email adresses : jean-yves.enjalbert@lipn.univ-paris13.fr, hoang@lipn.univ-paris13.fr

abstract

A combinatorial study discloses two surjective morphisms between generalized shuffle algebras and algebras generated by the colored Hurwitz polyzêtas. The combinatorial aspects of the products and co-products involved in these algebras will be examined.

1 Introduction

Classically, the Riemann zêta function is $\zeta(s)=\sum_{n>0} n^{-s}$, the Hurwitz zêta function is $\zeta(s ; t)=\sum_{n>0}(n-t)^{-s}$ and the colored zêta function is $\zeta\binom{s}{q}=\sum_{n>0} q^{s} n^{-s}$, where q is a root of unit. The three previous functions are defined over $\mathbb{Z}_{>0}$ but can be generalized over any composition (sequence of positive integers) $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$, like, respectively, the Riemann polyzêta function $\zeta(\mathbf{s})=\sum_{n_{1}>\ldots>n_{r}>0} n_{1}^{-s_{1}} \ldots n_{r}^{-s_{r}}$, the Hurwitz polyzêta function $\zeta(\mathbf{s} ; \mathbf{t})=\sum_{n_{1}>\ldots>n_{r}>0}\left(n_{1}-t_{1}\right)^{-s_{1}} \ldots\left(n_{r}-t_{r}\right)^{-s_{r}}$ and the colored polyzêta function $\zeta\binom{\mathbf{s}}{q^{\mathbf{i}}}=\sum_{n_{1}>\ldots>n_{r}>0} q^{i_{1} n_{1}} \ldots q^{i_{r} n_{r}} n_{1}^{-s_{1}} \ldots n_{r}^{-s_{r}}$, with q a root of unit and $\mathbf{i}=\left(i_{1}, \ldots, i_{r}\right)$ a composition. These sums converge when $s_{1}>1$.

To study simultaneously these families of polyzêtas, the colored Hurwitz polyzêtas, for a composition $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$ and a tuple of complex numbers $\xi=\left(\xi_{1}, \ldots, \xi_{r}\right)$ and a tuple of parameters in $]-\infty ; 1\left[, \mathbf{t}=\left(t_{1}, \ldots, t_{r}\right)\right.$, are defined by [6]

$$
\begin{equation*}
\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right)=\sum_{n_{1}>\ldots>n_{r}>0} \frac{\xi_{1}^{n_{1}} \ldots \xi_{r}^{n_{r}}}{\left(n_{1}-t_{1}\right)^{s_{1}} \ldots\left(n_{r}-t_{r}\right)^{s_{r}}} . \tag{1}
\end{equation*}
$$

Note that, for $l=1 \ldots, r$, the numbers ξ_{l} are not necessary roots of unity $q^{i_{l}}$. We are working, in this note, with the condition
(E) $\forall i,\left|\prod_{k=1}^{i} \xi_{k}\right| \leq 1$ and $\left.t_{i} \in\right]-\infty ; 1[$.

Hence, $\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right)$ converges if $s_{1}>1$. We note \mathcal{E} the set of \mathbb{C}-tuples verifying (E).
These polyzêtas are obtained as special values of iterated integrals ${ }^{1}$ over singular differential 1-forms introduced in [10]. As iterated integrals, they are encoded by words or by non commutative formal power series [10] and are used to construct bases for asymptotic expanding [14] or symbolic integrating fuchian differential equations [11] exactly or approximatively [8]. The meromorphic continuation of the colored Hurwitz polyzêtas ${ }^{2}$ is already studied in [5, 6]. In our studies, we constructed an integral representation ${ }^{3}$ of colored Hurwitz polyzêtas and a distribution treating simultanously two singularities and our methods permit to make the meromorphic continuation commutatively over the variables s_{1}, \ldots, s_{r} [5, 6]. Moreover, [6] gives another way to obtain the meromorphic continuation thanks to translation equations [4]. Our methods give the structure of multi-poles [5] (Theorem 4.2) and two ways to calculate algorithmically the multi-residus ${ }^{4}$.

In this note, in continuation with our previous works $[10,11,12,13,5,6]$, we are focusing on Hofp algebra, for a class of products as minusstuffle (ப ப), mulstuffle (•), \ldots, and in particular for the new product duffle ($+ \pm \bullet$), obtained as "tensorial product" of \bullet and the well known stuffle ($\boldsymbol{\pm}$), of symbolic representations of these polyzêtas (see Definition 2.1 and Proposition 2.1 bellow).

2 Combinatorial objects

2.1 Some products and their algebraic structures

Let X be an encoding alphabet and the free monoid over X is denoted by X^{*}. The length of any word $w \in X^{*}$ is denoted by $|w|$ and the unit of X^{*} is denoted by $1_{X^{*}}$. For any unitary commutative algebra A, a formal power series S over X with coefficients in A can be written as the infinite sum $\sum_{w \in X^{*}}\langle S \mid w\rangle w$. The set of polynomials (resp. formal power series) over X with coefficients in A is denoted by $A\langle X\rangle$ (resp. $A\langle\langle X\rangle\rangle$). The set of degree 1 monomials is $A X=\{a x / a \in A, x \in X\}$.

Definition 2.1 We note \mathcal{P} the set of products \star over $A\langle X\rangle$ verifying the conditions :

[^0](i) the map $\star: A\langle X\rangle \times A\langle X\rangle \rightarrow A\langle X\rangle$ is bilinear,
(ii) for any $w \in X^{*}, 1_{X^{*}} \star w=w \star 1_{X^{*}}=w$,
(iii) for any $a, b \in X$ and $u, v \in X^{*}$,
$$
a u \star b v=a(u \star b v)+b(a u \star v)+[a, b](u \star v)
$$
where [., .] : AX $\times A X \rightarrow A X$ is a function verifying :
(S1) $\forall a \in A X,[a, 0]=0$,
(S2) $\forall(a, b) \in(A X)^{2},[a, b]=[b, a]$,
(S3) $\forall(a, b, c) \in(A X)^{3},[[a, b], c]=[a,[b, c]]$.
Example 1 (see [18]) Product of interated integrals.
The shuffle is a bilinear product such that :
\[

$$
\begin{array}{cl}
\forall w \in X^{*} & w ш 1_{X^{*}}=1_{X^{*}} w w=w \quad \text { and } \\
\forall(a, b) \in X^{2}, \forall(u, v) \in X^{* 2}, & a u ш v b=a(u ш b v)+b(a u ш v) .
\end{array}
$$
\]

For example, for any letter x_{0}, x and x^{\prime} in X,

$$
x_{0} x^{\prime} ш x_{0}^{2} x=x_{0} x^{\prime} x_{0}^{2} x+2 x_{0}^{2} x^{\prime} x_{0} x+3 x_{0}^{3} x^{\prime} x+3 x_{0}^{3} x x^{\prime}+x_{0}^{2} x x_{0} x^{\prime} .
$$

Example 2 (see [15]) Product of quasi-symmetric functions.
Let X be an alphabet indexed by \mathbb{N}.
The stuffle is a bilinear product such that :

$$
\begin{aligned}
& \forall w \in X^{*}, \quad w ゅ 1_{X^{*}}=1_{X^{*}}+w=w \quad \text { and } \\
& \forall\left(x_{i}, x_{j}\right) \in X^{2}, \forall(u, v) \in X^{* 2} \text {, } \\
& x_{i} u \uplus x_{j} v=x_{i}\left(u \uplus x_{j} v\right)+x_{j}\left(x_{i} u \uplus v\right)+x_{i+j}(u \uplus v) .
\end{aligned}
$$

In particular, with the alphabet $Y=\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}$,

$$
\left(y_{3} y_{1}\right) \pm y_{2}=y_{3} y_{1} y_{2}+y_{3} y_{2} y_{1}+y_{3} y_{3}+y_{2} y_{3} y_{1}+y_{5} y_{1}
$$

Example 3 ([3]) Product of large multiple harmonic sums.
Let X be an alphabet indexed by \mathbb{N}.
The minus-stuffle is a bilinear product such that:

$$
\begin{aligned}
& \forall w \in X^{*}, \quad w \backsim 1_{X^{*}}=1_{X^{*}} \bullet w=w \quad \text { and } \\
& \forall\left(x_{i}, x_{j}\right) \in X^{2}, \forall(u, v) \in X^{* 2} \text {, } \\
& x_{i} u \sqcup x_{j} v=x_{i}\left(u \sqcup x_{j} v\right)+x_{j}\left(x_{i} u \sqcup v\right)-x_{i+j}(u \sqcup v) \text {. }
\end{aligned}
$$

Example 4 ([6]) Product of colored sums.
Let X be an alphabet indexed by a monoid (\mathcal{I}, \times).
The mulstuffle is a bilinear product such that :

$$
\begin{aligned}
& \forall w \in X^{*} \quad w \bullet 1_{X^{*}}=1_{X^{*}} \bullet w=w \quad \text { and } \\
& \forall\left(x_{i}, x_{j}\right) \in X^{2}, \forall(u, v) \in X^{* 2}, \\
& \quad x_{i} u \bullet x_{j} v=x_{i}\left(u \bullet x_{j} v\right)+x_{j}\left(x_{i} u \bullet v\right)+x_{i \times j}(u \bullet v) .
\end{aligned}
$$

For example, with X indexed by \mathbb{Q}^{*},
$x_{\frac{2}{3}} x_{-1} \uplus x_{\frac{1}{2}}=x_{\frac{2}{3}} x_{-1} x_{\frac{1}{2}}+x_{\frac{2}{3}} x_{\frac{1}{2}} x_{-1}+x_{\frac{2}{3}} x_{\frac{-1}{2}}+x_{\frac{1}{2}} x_{\frac{2}{3}} x_{-1}+x_{\frac{1}{3}} x_{-1}$.

Remark 2.1 Thanks to the one-to-one correspondence $\left(i_{1}, \ldots, i_{r}\right) \mapsto x_{i_{1}} \ldots x_{i_{r}}$ between tuples of \mathcal{I} and word over X, the calculus of $x_{\frac{2}{3}} x_{-1} \bullet x_{\frac{1}{2}}$ can be written as $\left(\frac{2}{3},-1\right) \cdot\left(\frac{1}{2}\right)=\left(\frac{2}{3},-1, \frac{1}{2}\right)+\left(\frac{2}{3}, \frac{1}{2},-1\right)+\left(\frac{2}{3}, \frac{-1}{2}\right)+\left(\frac{1}{2}, \frac{2}{3},-1\right)+\left(\frac{1}{3},-1\right)$.

Example 5 ([6]) Product of colored Hurwitz polyzêtas.
Let Y and E be two alphabets and consider the alphabet $A=Y \times E$ with the concatenation defined recursively by $(y, e) .\left(w_{Y}, w_{E}\right)=\left(y w_{Y}, e w_{E}\right)$ for any letters $y \in Y$, $e \in E$, and any word $w_{Y} \in Y^{*}, w_{E} \in E^{*}$. The unit of the monoide A^{*} is given by $1_{A^{*}}=\left(1_{Y^{*}}, 1_{E^{*}}\right)$. If Y is indexed by \mathbb{N} and E by a monoid (\mathcal{I}, \times), the duffle is a bilinear product such that $\forall w \in A^{*}, \quad w \mid+\cup 1_{A^{*}}=1_{A^{*}}+\mathbb{L} \cdot \boldsymbol{d} w=w$,
$\forall\left(y_{i}, y_{j}\right) \in Y^{2}, \forall\left(e_{l}, e_{k}\right) \in E^{2}, \forall(u, v) \in A^{* 2}, \quad\left(y_{i}, e_{l}\right) \cdot u$ 납 $\left(y_{j}, e_{k}\right) \cdot v=\left(y_{i}, e_{l}\right)$.

Proposition 2.1 The shuffle, the stuffle, the minus-stuffle and the mulstuffle are elements of \mathcal{P}, with respectively, $\left[x_{i}, x_{j}\right]=0,\left[x_{i}, x_{j}\right]=x_{i+j},\left[x_{i}, x_{j}\right]=-x_{i+j},\left[x_{i}, x_{j}\right]=$ $x_{i \times j}$ for any letters x_{i} and x_{j} of X.
The duffle is in \mathcal{P}, with $\left[\left(y_{i}, e_{l}\right),\left(y_{j}, e_{k}\right)\right]=\left(y_{i+j}, e_{l \times k}\right)$ for all y_{i}, y_{j} in Y, e_{l}, e_{k} in E.
Proposition 2.2 Let $\star \in \mathcal{P}$, then $(A\langle X\rangle, \star)$ is a commutative algebra.
Proof. We just have to show the commutativity and the associativity of \star.
To obtain $w_{1} \star w_{2}=w_{2} \star w_{1}$ for all w_{1}, w_{2} in X^{*}, we use an induction on $\left|w_{1}\right|+\left|w_{2}\right|$. It is true when $\left|w_{1}\right|+\left|w_{2}\right| \leq 1$ thanks to (i) since w_{1} or w_{2} is $1_{X^{*}}$. The equality (iii), the condition (S2) and the commutative of + give the induction. In the same way, an induction on $\left|w_{1}\right|+\left|w_{2}\right|+\left|w_{3}\right|$ gives $w_{1} \star\left(w_{2} \star w_{3}\right)=\left(w_{1} \star w_{2}\right) \star w_{3}$ thanks to (iii) and (S3).
If we associate to each letter of X an integer number called weight, the weight of a word is the sum of the weight of its letters. In this case X is graduated.
In [15], Hoffman works over $\bar{X}=X \cup\{0\}$ with [., .] : $\bar{X} \times \bar{X} \rightarrow \bar{X}$ and call quasiproduct any product in \mathcal{P} with the additional condition :
(S4) Either $[a, b]=0$ for all a, b in X; or the weight of $[a, b]$ is the sum of the weight of a and the weight of b for all a, b in X.

Example 6 1. The shuffle is a quasi-product.
2. Let X be an alphabet indexed by \mathbb{N} and define the weight of $x_{i}, i \in \mathbb{N}$, by i. Then the stuffle is a quasi-product.

Theorem 2.1 ([15]) If X is graduated and has a quasi-product \star, then $(A\langle X\rangle, \star)$ is a commutative graduated A-algebra..

We can define \quad (i) a comultiplication $\Delta: A\langle X\rangle \rightarrow A\langle X\rangle \otimes A\langle X\rangle$,
(ii) a counit $\epsilon: A\langle X\rangle \rightarrow A$,
by : $\quad \forall w \in X^{*}, \quad \Delta w=\sum_{u v=w} u \otimes v \quad$ and $\quad \epsilon(w)=\left\{\begin{array}{l}1 \text { if } w=1_{X^{*}} \\ 0 \text { otherwise. }\end{array}\right.$
The coproduct Δ is coassociative so $(A\langle X\rangle, \Delta, \epsilon)$ is a coalgebra.

Lemma 2.1 For any $w \in X^{*}$ and $x \in X,\left(x \otimes 1_{X^{*}}\right) \Delta w+1_{X^{*}} \otimes x w=\Delta x w$.
Proof. $\forall w \in X^{*}, \forall x \in X, \Delta x w=\sum_{u v=x w} u \otimes v=\sum_{u^{\prime} v=w} x u^{\prime} \otimes v+1_{X^{*}} \otimes x w$
so $\quad \Delta x w=x \otimes 1_{X^{*}}\left(\sum_{u^{\prime} v=w} u^{\prime} \otimes v\right)+1_{X^{*}} \otimes x w=\left(x \otimes 1_{X^{*}}\right) \Delta w+1_{X^{*}} \otimes x w$.
Proposition 2.3 If $\star \in \mathcal{P}$, then $(A\langle X\rangle, \star, \Delta, \epsilon)$ is a bialgebra.
Remember that \star acts over $A\langle X\rangle \otimes A\langle X\rangle$ by $(u \otimes v) \star\left(u^{\prime} \otimes v^{\prime}\right)=\left(u \star u^{\prime}\right) \otimes\left(v \star v^{\prime}\right)$.
Proof. ϵ is obviously a \star-homomorphism. It still has to be show $\Delta\left(w_{1}\right) \star \Delta\left(w_{2}\right)=$ $\Delta\left(w_{1} \star w_{2}\right)$ over X^{*}. This equality is true if w_{1} or w_{2} is equal to $1_{X^{*}}$.
Assume now that $\Delta(u) \star \Delta(v)=\Delta(u \star v)$ for any word u and v such that $|u|+|v| \leq n$, $n \in \mathbb{N}$, and let w_{1} and w_{2} be in X^{*} with $\left|w_{1}\right|+\left|w_{2}\right|=n+1$. We note $w_{1}=a u$ and $w_{2}=b v$, with a and b two letters of X, u and v two words of X^{*}. Thus, by definition, $\Delta w_{1}=\sum_{u_{1} u_{2}=u} a u_{1} \otimes u_{2}+1_{X^{*}} \otimes a u$ and $\Delta w_{2}=\sum_{v_{1} v_{2}=v} b v_{1} \otimes v_{2}+1_{X^{*}} \otimes b v$.

$$
\begin{aligned}
& \Delta\left(w_{1}\right) \star \Delta\left(w_{2}\right) \\
& =\sum_{u_{1} u_{2}=u, v_{1} v_{2}=v}\left(a u_{1} \star b v_{1}\right) \otimes\left(u_{2} \star v_{2}\right)+\sum_{u_{1} u_{2}=u}\left(a u_{1}\right) \otimes\left(u_{2} \star b v\right) \\
& +\sum_{v_{1} v_{2}=v}\left(b v_{1}\right) \otimes\left(a u \star v_{2}\right)+1_{X^{*}} \otimes(a u \star b v) \\
& =\sum_{u_{1} u_{2}=u, v_{1} v_{2}=v}\left(a\left(u_{1} \star b v_{1}\right) \otimes\left(u_{2} \star v_{2}\right)+b\left(a u_{1} \star v_{1}\right) \otimes\left(u_{2} \star v_{2}\right)\right. \\
& \left.+\left([a, b]\left(u_{1} \star v_{1}\right)\right) \otimes\left(u_{2} \star v_{2}\right)\right)+\sum_{u_{1} u_{2}=u}\left(a u_{1}\right) \otimes\left(u_{2} \star b v\right) \\
& +\sum_{v_{1} v_{2}=v}\left(b v_{1}\right) \otimes\left(a u \star v_{2}\right)+1_{X^{*}} \otimes a(u \star b v) \\
& +1_{X^{*}} \otimes b(a u \star v)+1_{X^{*}} \otimes[a, b](u \star v) \\
& =\sum_{u_{1} u_{2}=u, v_{1} v_{2}=v} a\left(u_{1} \star b v_{1}\right) \otimes\left(u_{2} \star v_{2}\right)+\sum_{u_{1} u_{2}=u}\left(a u_{1}\right) \otimes\left(u_{2} \star b v\right) \\
& +\sum_{\substack{u_{1} u_{2}=u, v_{1} v_{2}=v}} b\left(a u_{1} \star v_{1}\right) \otimes\left(u_{2} \star v_{2}\right)+\sum_{v_{1} v_{2}=v}\left(b v_{1}\right) \otimes\left(a u \star v_{2}\right) \\
& +[a, b] \otimes 1_{X^{*}} \sum_{\substack{u_{1} u_{2}=u \\
u_{1} \\
u_{2}=v}}\left(u_{1} \otimes u_{2}\right) \star\left(v_{1} \otimes v_{2}\right) \\
& +\left(1_{X^{*}} \otimes a(u \star b v)+1_{X^{*}} \otimes b(a u \star v)+1_{X^{*}} \otimes[a, b](u \star v)\right) \\
& =\left(a \otimes 1_{X^{*}}\right)\left(\Delta(u) \star \Delta\left(w_{2}\right)\right)+1_{X^{*}} \otimes a(u \star b v)+\left(b \otimes 1_{X^{*} *}\right)\left(\Delta\left(w_{1}\right) \star \Delta(v)\right) \\
& +1_{X^{*}} \otimes b(a u \star v)+\left([a, b] \otimes 1_{X^{*}}\right)(\Delta(u) \star \Delta(v))+1_{X^{*}} \otimes[a, b](u \star v) .
\end{aligned}
$$

Using the induction hypothesis then the lemma 2.1 (since $[a, b] \in A X$) gives

$$
\begin{aligned}
\Delta\left(w_{1}\right) \star \Delta\left(w_{2}\right) & =\Delta\left(a\left(u \star w_{2}\right)\right)+\Delta\left(b\left(w_{1} \star v\right)\right)+\Delta([a, b](u \star v)) \\
& =\Delta\left(a\left(u \star w_{2}\right)+b\left(w_{1} \star v\right)+[a, b](u \star v)\right) \\
& =\Delta\left(w_{1} \star w_{2}\right) .
\end{aligned}
$$

Remark 2.2 In particular, Δ is a ш-homomorphism, a ゅ-homomorphism and a •• homomorphism.
Let \mathcal{C}_{n} be the set of positive integer sequences $\left(i_{1}, \ldots, i_{k}\right)$ such that $i_{1}+\ldots+i_{k}=n$.
Theorem 2.2 Define a_{\star} by, for all x_{1}, \ldots, x_{n} in X,

$$
\begin{aligned}
& a_{\star}\left(x_{1} \ldots x_{n}\right) \\
& =\sum_{\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{C}_{n}}(-1)^{k} x_{1} \ldots x_{i_{1}} \star x_{i_{1}+1} \ldots x_{i_{1}+i_{2}} \star \ldots \star x_{i_{1}+\ldots+i_{k-1}+1} \ldots x_{n}
\end{aligned}
$$

then, if $\star \in \mathcal{P},\left(A\langle X\rangle, \star, \Delta, \epsilon, a_{\star}\right)$ is a Hopf algebra.
Proof. With the applications :

$$
\begin{array}{llllll}
\mu: \begin{array}{lll}
A & \rightarrow & A\langle X\rangle \\
\lambda & \mapsto & \lambda 1_{X^{*}}
\end{array} \quad \text { and } \quad m: & A\langle X\rangle \otimes A\langle X\rangle & \rightarrow & A\langle X\rangle \\
& u \otimes v & \mapsto & u \star v
\end{array}
$$

the antipode must verify $m \circ\left(a_{\star} \otimes I d\right) \circ \Delta=\mu \circ \epsilon$, or, in equivalent terms

$$
\sum_{u v=w} a_{\star}(u) \star v=\left\langle w \mid 1_{X^{*}}\right\rangle 1_{X^{*}}
$$

i.e. $\left\{\begin{array}{l}a_{\star}\left(1_{X^{*}}\right)=1_{X^{*}} n \\ \forall x \in X, a_{\star}(x)=-x\end{array} \quad\right.$ and, if $w=x_{1} \ldots x_{n}$ with $n \geq 2, x_{1}, \ldots, x_{n} \in X$,

$$
a_{\star}(w)=-\sum_{k=1}^{n-1} a_{\star}\left(x_{1} \ldots x_{k}\right) \star x_{k+1} \ldots x_{n}
$$

An induction over the length n shows that a_{\star} defined in theorem verifies these equalities, and, in the same way, a_{\star} verifies $m \circ\left(I d \otimes a_{\star}\right) \circ \Delta=\mu \circ \epsilon$.

Corollary 2.1 If \star is ш or \ddagger or \bullet or $\uplus \bullet$, then this construction gives an Hopf algebra. Moreover, for \amalg or \pm, we obtain a graduated Hopf algebra.

2.2 Iterated integral

Let us associate to each letter x_{i} in X a 1-differential form ω_{i}, defined in some connected open subset \mathcal{U} of \mathbb{C}. For all paths $z_{0} \rightsquigarrow z$ in \mathcal{U}, the Chen iterated integral associated to $w=x_{i_{1}} \cdots x_{i_{k}}$ along $z_{0} \rightsquigarrow z$, noted is defined recursively as follows

$$
\begin{equation*}
\alpha_{z_{0}}^{z}(w)=\int_{z_{0} \rightsquigarrow z} \omega_{i_{1}}\left(z_{1}\right) \alpha_{z_{0}}^{z_{1}}\left(x_{i_{2}} \cdots x_{i_{k}}\right) \quad \text { and } \quad \alpha_{z_{0}}^{z}\left(1_{X^{*}}\right)=1 \tag{2}
\end{equation*}
$$

verifying the rule of integration by parts [2] :

$$
\begin{equation*}
\alpha_{z_{0}}^{z}(u ш v)=\alpha_{z_{0}}^{z}(u) \alpha_{z_{0}}^{z}(v) . \tag{3}
\end{equation*}
$$

We extended this definition over $A\langle X\rangle$ (resp. $A\langle\langle X\rangle\rangle$) by

$$
\begin{equation*}
\alpha_{z_{0}}^{z}(S)=\sum_{w \in X^{*}}\langle S \mid w\rangle \alpha_{z_{0}}^{z}(w) \tag{4}
\end{equation*}
$$

2.3 Shuffle relations

2.3.1 First encoding for colored Hurwitz polyzêtas

Let $\xi=\left(\xi_{n}\right)$ be a sequence of complex numbers and T a family of parameters. Put X^{\prime} an alphabet indexed over $\mathbb{N}^{*} \times \mathbb{C}^{\mathbb{N}} \times T$ and $X=\left\{x_{0}\right\} \cup X^{\prime}$. To each x in X we associate the differential form :

$$
\begin{cases}\omega_{0}(z)=\frac{d z}{z} & \text { si } x=x_{0} \tag{5}\\ \omega_{i, \xi, t}(z)=\frac{\prod_{k=1}^{i} \xi_{k}}{1-\prod_{k=1}^{i} \xi_{k} z} \times \frac{d z}{z^{t}} & \text { if } x=x_{i, \xi, t} \text { with } i \geqslant 1 .\end{cases}
$$

For any T-tuple $\mathbf{t}=\left(t_{1}, \ldots, t_{r}\right)$ we associate the T-tuple $\overline{\mathbf{t}}=\left(\overline{t_{1}}, \ldots, \overline{t_{r}}\right)$ given by

$$
\left\{\begin{array} { r l }
{ \overline { t _ { 1 } } } & { = t _ { 1 } - t _ { 2 } , } \tag{6}\\
{ \overline { t _ { 2 } } } & { = t _ { 2 } - t _ { 3 } , } \\
{ } & { \vdots } \\
{ \overline { t _ { r } } } & { = t _ { r - 1 } - t _ { r } }
\end{array} \quad \text { in this way } \quad \left\{\begin{array}{rl}
t_{1} & =\overline{t_{1}}+\overline{t_{2}}+\ldots+\overline{t_{n}}, \\
t_{2} & =\overline{t_{2}}+\ldots+\overline{t_{n}}, \\
& \vdots \\
t_{r} & =\overline{t_{r}}
\end{array}\right.\right.
$$

We choose the sequence ξ and the family \mathbf{t} such that the condition (E) is satisfied.
Proposition 2.4 For any $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$ with $s_{1}>1$ if $\xi=\left(\xi_{1}, \ldots, \xi_{r}\right) \in \mathcal{E}^{r}$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{r}\right) \in T^{r}$, then $\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right)=\alpha_{0}^{1}\left(x_{0}^{s_{1}-1} x_{1, \xi, \overline{t_{1}}} \ldots x_{0}^{s_{r}-1} x_{r, \xi, \overline{t_{r}}}\right)$.

Proof. Since $\omega_{i, \xi, t}(z)=\sum_{n>0} \prod_{k=1}^{i} \xi_{k}^{n} \frac{z^{n} d z}{z^{1+t}}$ then $\alpha_{0}^{z}\left(x_{r, \xi, \overline{t_{r}}}\right)=\sum_{n>0} \prod_{k=1}^{r} \xi_{k}^{n} \frac{z^{n-\overline{t_{r}}}}{n-\overline{t_{r}}}$ and $\alpha_{0}^{z}\left(x_{0}^{s_{r}-1} x_{r, \xi, \overline{t_{r}}}\right)=\sum_{n>0} \prod_{k=1}^{r} \xi_{k}^{n} \frac{z^{n-\overline{t_{r}}}}{\left(n-\overline{t_{r}}\right)^{s_{r}}}$. Hence, $\alpha_{0}^{1}\left(x_{0}^{s_{1}-1} x_{1, \xi, \overline{t_{1}}} \ldots x_{0}^{s_{r}-1} x_{r, \xi, \overline{t_{r}}}\right)$ gives $\sum_{m_{1}, \ldots, m_{r}>0} \prod_{j=1}^{r} \frac{\prod_{k_{j}=1}^{j} \xi_{k_{j}}^{m_{j}}}{\left(m_{j}+\ldots+m_{r}-\bar{t}_{j}-\ldots-\bar{t}_{r}\right)^{s_{j}}}$, and then, by change of variables $\sum_{n_{1}>\ldots>n_{r}>0} \frac{\xi_{1}^{n_{1}} \ldots \xi_{r}^{n_{r}}}{\left(n_{1}-t_{1}\right)^{s_{1}} \ldots\left(n_{r}-t_{r}\right)^{s_{r}}}$.

Theorem 2.3 Let \mathcal{T} be the group of parameters generated by $\langle T ;+\rangle, \mathcal{C}$ be a subgroup of $\left(\mathbb{C}^{*},.\right)$ and A a sub-ring of \mathbb{C}. Put $\mathcal{C}^{\prime}=\mathcal{C}^{\mathbb{N}} \cap \mathcal{E}$ and \mathcal{T}^{\prime} the set of finite tuple with elements in \mathcal{T}. Then the A algebra generated by $\left\{\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right)\right\}_{\xi \in \mathcal{C}^{\prime}, \mathbf{t} \in \mathcal{T}^{\prime}}$ is the A modulus generated by $\left\{\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right)\right\}_{\xi \in \mathcal{C}^{\prime}, \mathbf{t} \in \mathcal{T}^{\prime}}$.

Proof. We have express the product $\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right) \operatorname{Di}\left(\mathbf{F}_{\xi^{\prime}, \mathbf{t}^{\prime}} ; \mathbf{s}^{\prime}\right)$, with $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$, $\mathbf{s}^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{r^{\prime}}^{\prime}\right), \xi, \xi^{\prime} \in \mathcal{C}^{\prime}$ and $\mathbf{t}=\left(t_{1}, \ldots, t_{r}\right), \mathbf{t}^{\prime}=\left(t_{1}^{\prime}, \ldots, t_{r}^{\prime}\right) \in \mathcal{T}^{\prime}$, as linear combination of colored Hurwitz polyzêtas. This is an iterated integral associated to $x_{0}^{s_{1}-1} x_{1, \xi, \overline{t_{1}}} \ldots x_{0}^{s_{r}-1} x_{r, \xi, \overline{t_{r}}} \amalg x_{0}^{s_{1}^{\prime}-1} x_{1, \xi^{\prime}, \overline{t_{1}^{\prime}}} \ldots x_{0}^{s_{s^{\prime}}^{\prime}-1} x_{r^{\prime}, \xi^{\prime}, \overline{t_{r^{\prime}}^{\prime}}}$ which is a sum of
terms of the form $x_{0}^{s_{1}^{\prime \prime}-1} x_{1, \xi^{(1)}, \overline{t_{(1)}}} \ldots x_{0}^{s_{i}^{\prime \prime}-1} x_{j_{i}, \xi^{(i)}, \overline{t_{(i)}}} \ldots x_{0}^{s_{r}^{\prime \prime}-1} x_{j_{r^{\prime \prime}}, \xi^{\left(r^{\prime \prime}\right)}, \overline{t_{\left(r^{\prime \prime}\right)}}}$, with $s_{i}^{\prime \prime} \in \mathbb{N}, \xi^{(i)}$ is ξ or ξ^{\prime} and $t_{(i)}$ is $t_{j_{i}}$ or $t_{j_{i}}^{\prime}$ for all i; and $r^{\prime \prime}=r+r^{\prime \prime}$. Note that

$$
\begin{aligned}
& \alpha_{0}^{z}\left(x_{i, \xi, \overline{t_{i}}} x_{0}^{s-1} x_{j, \xi^{\prime}, \overline{t_{j}}}\right) \\
& =\int_{0}^{z} \sum_{m>0} \prod_{k=1}^{i} \xi_{k}^{m} z_{1}^{m-\overline{t_{i}}-1} d z_{1} \int_{0}^{z_{1}} \frac{d z_{2}}{z_{2}} \ldots \int_{0}^{z_{s+1}} \sum_{n>0} \prod_{k=1}^{i} \xi_{k}^{\prime n} z_{s+1}^{n-\overline{t_{j}^{\prime}}-1} d z_{s+1} \\
& =\sum_{m, n>0} \frac{\left(\xi_{1} \ldots \xi_{i}\right)^{m}\left(\xi_{1}^{\prime} \ldots \xi_{j}^{\prime}\right)^{n}}{\left(m+n-\overline{t_{i}}-\overline{t_{j}^{\prime}}\right)\left(n-\overline{t_{j}^{\prime}}\right)^{s}} z^{n+m}, \\
& \alpha_{0}^{1}\left(x_{0}^{s_{1}^{\prime \prime}-1} x_{1, \xi^{(1)}, \overline{t_{(1)}} \ldots x_{0}^{s_{i}^{\prime \prime}-1} x_{j_{i}, \xi^{(i)}, \overline{t_{(i)}} \ldots x_{0}^{s_{r}^{\prime \prime}-1} x_{\left.j_{r^{\prime \prime}}, \xi^{\left(r^{\prime \prime}\right)}, \overline{t_{\left(r^{\prime \prime}\right)}}\right)}}^{=\sum_{m_{1}, \ldots, m_{r^{\prime \prime}}>0} \prod_{i=1}^{r^{\prime \prime}} \frac{\left(\xi_{1}^{(i)} \ldots \xi_{j_{i}}^{(i)}\right)^{m_{i}}}{\left(m_{i}+\ldots+m_{r^{\prime \prime}}-\overline{t_{(i)}}-\ldots-\overline{t_{\left(r^{\prime \prime}\right)}}\right)^{s_{i}^{\prime \prime}}}}}^{=\sum_{n_{1}>\ldots>n_{r^{\prime \prime}}>0} \prod_{i=1}^{r^{\prime \prime}} \frac{\xi_{i}^{\prime \prime n_{i}}}{\left(n_{i}-t_{i}^{\prime \prime}\right)^{s_{i}^{\prime \prime}}}}\right.
\end{aligned}
$$

with $n_{i}=m_{i}+\ldots+m_{r^{\prime \prime}}, t_{i}^{\prime \prime}=\overline{t_{(i)}}+\ldots+\overline{t_{\left(r^{\prime \prime}\right)}}$ for all i, so $\mathbf{t}^{\prime \prime} \in \mathcal{T} ; \xi_{1}^{\prime \prime}=\xi_{1}^{(1)}$ and $\xi_{i}^{\prime \prime}=\frac{\xi_{1}^{(i)} \ldots \xi_{j_{i}}^{(i)}}{\xi_{1}^{(i-1)} \ldots \xi_{j_{i-1}}^{(i-1)}}$ for $i>1$ so $\xi^{\prime \prime} \in \mathcal{C}$: we can express each term of the shuffle product as $\operatorname{Di}\left(\mathbf{F}_{\xi^{\prime \prime}, \mathbf{t}^{\prime \prime}} ; \mathbf{s}^{\prime \prime}\right)$.
Note that the shuffle product over two words of $X^{*} X^{\prime}$ acts separately over ($\left.\mathcal{C}^{\prime},.\right)$, $\left(\mathcal{T}^{\prime},+\right)$ and the convergent compositions. We can describe the situation with the shuffle algebra ${ }^{5}$:

Theorem 2.4 Let \mathcal{H} be the \mathbb{Q}-algebra generated by the colored Hurwitz polyzêtas. The $\operatorname{map} \zeta:\left(\mathbb{Q}\left\langle\left(x_{0}^{*} x_{i, \xi, t}\right)^{*}\right\rangle, ш\right) \rightarrow(\mathcal{H},),. x_{0}^{s_{1}} x_{1, \xi, \overline{t_{1}}} \ldots x_{0}^{s_{r}} x_{r, \xi, \overline{t_{r}}} \mapsto \operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}+1\right)$ is a surjective algebra morphism.

Example 7 Since $\operatorname{Di}\left(\mathbf{F}_{\xi, t} ; 3\right)=\alpha_{0}^{1}\left(x_{0}^{2} x_{1, \xi, t}\right)$ and $\operatorname{Di}\left(\mathbf{F}_{\xi^{\prime}, t^{\prime}} ; 2\right)=\alpha_{0}^{1}\left(x_{0} x_{1, \xi^{\prime}, t^{\prime}}\right)$ then $\operatorname{Di}\left(\mathbf{F}_{x i, t} ; 3\right) \operatorname{Di}\left(\mathbf{F}_{x i^{\prime}, t^{\prime}} ; 2\right)=\alpha_{0}^{1}\left(x_{0} x_{1, \xi^{\prime}, t^{\prime}} \boldsymbol{w}^{2} x_{0}^{2} x_{1, \xi, t}\right)$. Example 1 with $x=x_{1, \xi, t}$ and $x^{\prime}=x_{1, \xi^{\prime}, t^{\prime}}$ gives the expression of $x_{0} x_{1, \xi^{\prime}, t^{\prime}} \sqcup x_{0}^{2} x_{1, \xi, t}$. But the first term obtained is

$$
\begin{aligned}
& \alpha_{0}^{1}\left(x_{0} x_{1, \xi^{\prime}, t^{\prime}} x_{0}^{2} x_{1, \xi, t}\right) \\
& =\int_{0}^{1} \frac{d z_{1}}{z_{1}} \int_{0}^{z_{1}} \sum_{m>0} \xi^{\prime m} z_{2}^{m-t^{\prime}-1} d z_{2} \int_{0}^{z_{2}} \frac{d z_{3}}{z_{3}} \int_{0}^{z_{3}} \frac{d z_{4}}{z_{4}} \int_{0}^{z_{4}} \sum_{n>0} \xi^{n} z_{5}^{n-t-1} d z_{5} \\
& =\sum_{n, m>0} \frac{\xi^{\prime m} \xi^{n}}{\left(m+n-t^{\prime}-t\right)^{2}(n-t)^{3}} \\
& =\sum_{n_{1}>n_{2}>0} \frac{\left(\xi^{\prime}\right)^{n_{1}}\left(\xi / \xi^{\prime}\right)^{n_{2}}}{\left(n_{1}-t^{\prime}-t\right)^{2}\left(n_{2}-t\right)^{3}} \\
& =\operatorname{Di}\left(\mathbf{F}_{\left(\xi, \xi / \xi^{\prime}\right) ;\left(t+t^{\prime}, t\right)} ;(2,3)\right) .
\end{aligned}
$$

[^1]We can make similar calculus for the other terms and find :

$$
\begin{aligned}
& \operatorname{Di}\left(\mathbf{F}_{\xi, t} ; 3\right) \operatorname{Di}\left(\mathbf{F}_{\xi^{\prime}, t^{\prime}} ; 2\right) \\
& =\operatorname{Di}\left(\mathbf{F}_{\left(\xi^{\prime}, \xi / \xi^{\prime}\right) ;\left(t+t^{\prime}, t\right)} ;(2,3)\right)+2 \operatorname{Di}\left(\mathbf{F}_{\left(\xi^{\prime}, \xi / \xi^{\prime}\right) ;\left(t+t^{\prime}, t\right)} ;(3,2)\right) \\
& \quad+3 \operatorname{Di}\left(\mathbf{F}_{\left(\xi^{\prime}, \xi / \xi / \xi^{\prime}\right) ;\left(t+t^{\prime}, t\right)} ;(4,1)\right)+3 \operatorname{Di}\left(\mathbf{F}_{\left(\xi, \xi^{\prime} / \xi\right) ;\left(t+t^{\prime}, t^{\prime}\right)} ;(4,1)\right) \\
& \quad+\operatorname{Di}\left(\mathbf{F}_{\left(\xi, \xi^{\prime} / \xi\right) ;\left(t+t^{\prime}, t^{\prime}\right)} ;(3,2)\right) .
\end{aligned}
$$

2.3.2 Second encoding for colored Hurwitz polyzêtas

For the Hurwitz polyzêtas, we can obtain an encoding indexed by a finite alphabet. Let the alphabet $X=\left\{x_{0} ; x_{1}\right\}$ and associate to x_{0} the form $\omega_{0}(z)=z^{-1} d z$ and at x_{1} the form $\omega_{1}(z)=(1-z)^{-1} d z$.

For each $x \in X$ and $\lambda \in \mathbb{C}$, we note $(\lambda x)^{*}=\sum_{k \geq 0}(\lambda x)^{k}$. Then, (see [10], [11]), $\alpha_{0}^{1}\left(x_{0}^{s_{1}-1}\left(t_{1} x_{0}\right)^{* s_{1}} x_{1} \ldots x_{0}^{s_{r}-1}\left(t_{r} x_{0}\right)^{* s_{r}} x_{1}\right)=\zeta(\mathbf{s} ; \mathbf{t})$.

Theorem 2.5 Let \mathcal{H}^{\prime} be the \mathbb{Q}-algebra generated by the Hurwitz polyzêtas and \mathcal{X} the \mathbb{Q}-algebra generated by $\left(t_{1} x_{0}\right)^{* s_{1}} x_{1} \ldots\left(t_{r} x_{0}\right)^{* s_{r}} x_{r}$. Then, $\zeta:(\mathcal{X}, ш) \rightarrow\left(\mathcal{H}^{\prime},.\right)$ is a surjective morphism of algebras.

Note that we can apply the idea of encoding of "simple" colored Hurwitz zetas functions (with depth one : $r=1$). Let $\xi=\left(\xi_{n}\right)$ be a sequence of complex numbers in the unit ball $\mathcal{B}(0 ; 1)$ and T a family of parameters. Let $X=\left\{x_{0}, x_{1}, \ldots\right\}$ be a alphabet indexed by \mathbb{N}. Associate to x_{0} the differential form $\omega_{0}(z)=z^{-1} d z$ and to $x_{i}, i \geq 1$, the differential form $\omega_{i}(z)=\xi_{i}\left(1-\xi_{i} z\right)^{-1} d z$.

Proposition 2.5 With this notation, $\alpha_{0}^{1}\left(\left(\left(t x_{0}\right)^{*} x_{0}\right)^{s-1}\left(t x_{0}\right)^{*} x_{i}\right)=\sum_{n>0} \frac{\xi_{i}^{n}}{(n-t)^{s}}$.
Proof. Since $\frac{\xi_{i} d z_{0}}{1-\xi_{i} z_{0}}=\xi_{i} \sum_{n \geq 0}\left(\xi_{i} z_{0}\right)^{n} d z_{0}$, we can write

$$
\alpha_{0}^{z}\left(\left(t x_{0}\right)^{k} x_{i}\right)=t^{k} \int_{0}^{z} \frac{d z_{k}}{z_{k}} \int_{0}^{z_{k}} \cdots \int_{0}^{z_{1}} \xi_{i} \sum_{n \geq 0}\left(\xi_{i} z_{0}\right)^{n} d z_{0}=\sum_{n>0} t^{k} \frac{\xi_{i}^{n} z^{n}}{n^{k+1}}
$$

for $z \in \mathcal{B}(0 ; 1)$ and for $k \in \mathbb{N}$. Thanks to the absolute convergence,

$$
\alpha_{0}^{z}\left(\left(t x_{0}\right)^{*} x_{i}\right)=\sum_{n>0} \frac{\xi_{i}^{n} z^{n}}{n} \sum_{k \geq 0}\left(\frac{t}{n}\right)^{k}=\sum_{n>0} \frac{\xi_{i}^{n} z^{n}}{n-t} .
$$

In the same way, if $z \in \mathcal{B}(0 ; 1)$:

$$
\begin{array}{ll}
\forall k \in \mathbb{N}, \quad \alpha_{0}^{z}\left(\left(t x_{0}\right)^{k} x_{0}\left(t x_{0}\right)^{*} x_{i}\right)=\sum_{n>0} t^{k} \frac{\xi_{i}^{n}}{n-t} \frac{z^{n}}{n^{k+1}}, \\
\text { so } \quad \alpha_{0}^{z}\left(\left(t x_{0}\right)^{*} x_{0}\left(t x_{0}\right)^{*} x_{i}\right)=\sum_{n>0} \frac{\xi_{i}^{n} z^{n}}{(n-t)^{2}}
\end{array}
$$

$$
\alpha_{0}^{z}\left(\left(\left(t x_{0}\right)^{*} x_{0}\right)^{s-1}\left(t x_{0}\right)^{*} x_{i}\right)=\sum_{n>0} \frac{\xi_{i}^{n} z^{n}}{(n-t)^{s}}
$$

Remark 2.3 Note that, with the same notation,

$$
\begin{aligned}
\alpha_{0}^{z}\left(x_{1}\left(\left(t_{2} x_{0}\right)^{*} x_{0}\right)^{s-1}\left(t_{2} x_{0}\right)^{*} x_{2}\right) & =\sum_{n, m>0} \frac{\xi_{2}^{n} \xi_{1}^{m} z^{n+m}}{\left(n-t_{2}\right)^{s}(m+n)} \\
& =\sum_{n_{1}>n_{2}>0} \frac{\xi_{2}^{n_{2}} \xi_{1}^{n_{1}-n_{2}} z^{n_{1}}}{n_{1}\left(n_{2}-t_{2}\right)^{s}}
\end{aligned}
$$

In other words, this encoding appears to be widespread only as couples of the type $\xi=\left(1,1, \ldots, 1, \xi_{r}\right):$ with $\xi_{1}=1$ and $\omega_{1}=(1-z)^{-1} d z$,

$$
\begin{aligned}
& \alpha_{0}^{1}\left(x_{0}^{s_{1}-1}\left(t_{1} x_{0}\right)^{* s_{1}} x_{1} \ldots x_{0}^{s_{r-1}-1}\left(t_{r-1} x_{0}\right)^{* s_{r-1}} x_{r-1} x_{0}^{s_{r}-1}\left(t_{r} x_{0}\right)^{* s_{r}} x_{r}\right) \\
& =\sum_{n_{1}>\ldots>n_{r}} \frac{\xi_{r}^{n_{r}}}{\left(n_{1}-t_{1}\right)^{s_{1}} \ldots\left(n_{r}-t_{r}\right)^{s_{r}}} .
\end{aligned}
$$

2.4 Duffle relations

Let $\lambda=\left(\lambda_{n}\right)$ be a set of parameters, $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$ a composition, $\xi \in \mathbb{C}^{r}$. Then

$$
\begin{equation*}
\forall n \in \mathbb{Z}_{>0}, \quad M_{\mathbf{s}, \xi}^{n}(\lambda)=\sum_{n>n_{1}>\ldots>n_{r}>0} \prod_{i=1}^{r} \xi_{i}^{n_{i}} \lambda_{n_{i}}^{s_{i}} \quad \text { and } \quad M_{(),()}^{n}(\lambda)=1 \tag{7}
\end{equation*}
$$

We can export the duffle over the tuples $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{Z}_{>0}^{r}$ and $\xi \in \mathbb{C}^{r}$ with :

$$
\begin{align*}
& (\mathbf{s}, \xi)+\mathbb{H} \cdot((), 1)=((), 1)+\mathbb{H} \cdot(\mathbf{s}, \xi)=(\mathbf{s}, \xi) \quad \text { and } \\
& \left(s_{1}, \mathbf{s} ; \xi_{1}, \xi\right)+\mathbb{\bullet} \cdot\left(r_{1}, \mathbf{r} ; \rho_{1}, \rho\right) \\
& =\left(s_{1} ; \xi_{1}\right) \cdot\left((\mathbf{s} ; \xi)+\mathbb{+ \bullet \cdot}\left(r_{1}, \mathbf{r} ; \rho_{1}, \rho\right)\right)+\left(r_{1} ; \rho_{1}\right) \cdot\left(\left(s_{1}, \mathbf{s} ; \rho_{1}, \xi\right)+\mathbb{H}(\mathbf{r} ; \rho)\right) \\
& \quad+\left(s_{1}+r_{1} ; \xi_{1} \rho_{1}\right) \cdot((\mathbf{s} ; \xi)+\mathbb{\bullet}(\mathbf{r} ; \rho)) \tag{8}
\end{align*}
$$

Proposition 2.6 Let $\mathbf{s}=\left(s_{1}, \ldots, s_{l}\right)$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right)$ be two compositions, $\xi \in$ $\mathbb{C}^{l}, \rho \in \mathbb{C}^{k}$. Then

$$
\forall n \in \mathbb{N}, \quad M_{\mathbf{s}, \xi}^{n}(\lambda) M_{\mathbf{r}, \rho}^{n}(\lambda)=M_{(\mathbf{s}, \xi)}^{n}|+|\cdot|(\mathbf{r}, \rho)(\lambda)
$$

Proof. Put the compositions $\mathbf{s}^{\prime}=\left(s_{2}, \ldots, s_{l}\right), \mathbf{r}^{\prime}=\left(r_{2}, \ldots, r_{k}\right)$, the tuples of complex numbers $\xi^{\prime}=\left(\xi_{2}, \ldots, \xi_{l}\right)$ and $\rho^{\prime}=\left(\rho_{2}, \ldots, \rho_{k}\right)$, then

$$
\begin{aligned}
& M_{\mathbf{s}, \xi}^{n}(\lambda) M_{\mathbf{r}, \rho}^{n}(\lambda) \\
& =\sum_{n>n_{1}, n>n_{1}^{\prime}} \xi_{1}^{n_{1}} \lambda_{n_{1}}^{s_{1}} M_{\mathbf{s}^{\prime}, \xi^{\prime}}^{n_{1}}(\lambda) \rho_{1}^{n_{1}^{\prime}{ }_{1}} \lambda_{n^{\prime} 1}^{r_{1}} M_{\mathbf{r}^{\prime}, \rho^{\prime}}^{n^{\prime}}{ }^{n^{\prime}}(\lambda) \\
& =\sum_{n>n_{1}} \xi_{1}^{n_{1}} \lambda_{n_{1}}^{s_{1}} M_{\mathbf{s}^{\prime}, \xi^{\prime}}^{n_{1}}(\lambda) M_{\mathbf{r}, \rho}^{n_{1}}(\lambda)+\sum_{n>n^{\prime}{ }_{1}} \rho_{1}^{n_{1}{ }_{1}} \lambda_{n^{\prime} 1}^{r_{1}} M_{\mathbf{s}, \xi}^{n^{\prime}{ }_{1}}(\lambda) M_{\mathbf{r}^{\prime}, \rho^{\prime}}^{n^{\prime}{ }_{1}}(\lambda)
\end{aligned}
$$

$$
+\sum_{n>m}\left(\xi_{1} \rho_{1}\right)^{m} \lambda_{m}^{s_{1}+r_{1}} M_{\mathbf{s}^{\prime}, \xi^{\prime}}^{m}(\lambda) M_{\mathbf{r}^{\prime}, \rho^{\prime}}^{m}(\lambda) .
$$

A recurrence ended the demonstration.

Theorem 2.6 Let $\mathbf{s}=\left(s_{1}, \ldots, s_{l}\right)$ and $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right)$ be two compositions, ξ a l tuple and ρ a k-tuple of $\mathcal{E}, \mathbf{t}=(t, \ldots, t)$ a l-tuple and $\mathbf{t}^{\prime}=(t, \ldots, t)$ a k-tuple, both formed by the same parameter t diagonally. Then

$$
\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right) \operatorname{Di}\left(\mathbf{F}_{\xi^{\prime}, \mathbf{t}^{\prime}} ; \mathbf{s}^{\prime}\right)=\operatorname{Di}\left(\mathbf{F}_{\xi^{\prime \prime},(t, \ldots, t)} ; \mathbf{s}^{\prime \prime}\right)
$$

with $\left(\mathbf{s}^{\prime \prime} ; \xi^{\prime \prime}\right)=(\mathbf{s} ; \xi)+\bullet^{\prime}\left(\mathbf{s}^{\prime} ; \xi^{\prime}\right)$.
Proof. With $\lambda_{n}=\frac{1}{n-t}$ for all $n \in \mathbb{N}, \quad M_{\mathbf{s}, \xi}^{n}(\lambda)=\sum_{n>n_{1}>\ldots>n_{r}} \prod_{i=1}^{r} \frac{\xi_{i}^{n_{i}}}{\left(n_{i}-t\right)^{s_{i}}}$. So $\lim _{n \rightarrow \infty} M_{\mathbf{s}, \xi}^{n}(\lambda)=\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right)$ and taking the limit of Proposition 2.6 gives the result.

Example 8 The use of examples 2 and 4 gives

$$
\begin{aligned}
& \operatorname{Di}\left(\mathbf{F}_{\left(\frac{2}{3},-1\right), \mathbf{t}} ;(3,1)\right) \operatorname{Di}\left(\mathbf{F}_{\left(\frac{1}{2}\right),(t)} ;(2)\right) \\
& =\operatorname{Di}\left(\mathbf{F}_{\left(\frac{2}{3},-1, \frac{1}{2}\right),(t, t, t)} ;(3,1,2)\right)+\operatorname{Di}\left(\mathbf{F}_{\left(\frac{2}{3}, \frac{1}{2},-1\right),(t, t, t)} ;(3,2,1)\right) \\
& +\operatorname{Di}\left(\mathbf{F}_{\left(\frac{2}{3},-\frac{1}{2}\right), \mathbf{t}} ;(3,3)\right)+\operatorname{Di}\left(\mathbf{F}_{\left(\frac{1}{2}, \frac{2}{3},-1\right),(t, t, t)} ;(2,3,1)\right)+\operatorname{Di}\left(\mathbf{F}_{\left(\frac{1}{3},-1\right), \mathbf{t}} ;(5,1)\right)
\end{aligned}
$$

Remark 2.4 Extend the duffle product to triplets $(\mathbf{s}, \mathbf{t}, \xi) \in \cup_{r \in \mathbb{N}^{*}} \mathbb{N}^{r} \times\{t\}^{r} \times \mathbb{C}^{r}$ by

$$
\begin{aligned}
\left(s_{1}, \mathbf{s} ; t, \mathbf{t} ; \xi_{1}, \xi\right)+\bullet \cdot\left(r_{1}, \mathbf{r} ; t, \mathbf{t}^{\prime} ; \rho_{1}, \rho\right) & =\left(s_{1} ; t ; \xi_{1}\right) \cdot\left((\mathbf{s} ; \mathbf{t} ; \xi)+\mathbb{l}\left(r_{1}, \mathbf{r} ; t, \mathbf{t}^{\prime} ; \rho_{1}, \rho\right)\right) \\
& +\left(r_{1} ; t ; \rho_{1}\right) \cdot\left(\left(s_{1}, \mathbf{s} ; t, \mathbf{t} ; \rho_{1}, \xi\right)+\uplus \cdot\left(\mathbf{r} ; \mathbf{t}^{\prime} ; \rho\right)\right) \\
& +\left(s_{1}+r_{1} ; t ; \xi_{1} \rho_{1}\right) \cdot\left((\mathbf{s} ; \mathbf{t} ; \xi) \notin \cdot\left(\mathbf{r} ; \mathbf{t}^{\prime} ; \rho\right)\right),
\end{aligned}
$$

and define the function F over $\mathcal{I}=\cup_{r \in \mathbb{N}^{*}} \mathbb{N}^{r} \times\{t\}^{r} \times \mathbb{C}^{r}$ by $F(\mathbf{s}, \mathbf{t}, \xi)=\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right)$. Then, by Theorem 2.6, the function $F:(\mathcal{I}, \notin \cdot \bullet) \rightarrow(\mathbb{C},$.$) is morphism of algebras.$

References

[1] E. Abe.- Hopf algebra, Cambridge, 1980.
[2] K.T. Chen.- Iterated path integrals, Bull. Amer. Math. Soc., vol 83, 1977, pp. 831-879.
[3] C. Costermans, Hoang Ngoc Minh.- Noncommutative algebra, multiple harmonic sums and applications in discrete probability J. Symb. Comput. 44(7): 801-817 (2009).
[4] J. Ecalle.- ARI/GARI, la dimorphie et l'arithmétique des multizêtas : un premier bilan, J. de Théorie des Nombres de Bordeaux, 15, n2 (2003), pp 711-478.
[5] J-Y. Enjalbert, Hoang Ngoc Minh.- Analytic and combinatoric aspects of Hurwitz polyzêtas, J. de Théorie des Nombres de Bordeaux, 19, n3 (2007), pp 595-640.
[6] J-Y. Enjalbert, Hoang Ngoc Minh.- Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues, J. de Théorie des Nombres de Bordeaux, 23, n2 (2011), pp 353-386.
[7] D. Essouabri, K. Matsumoto, H. Tsumura.-Multiple zeta functions associated with linear recurrence sequences and the vectorial sum formula, Canadian Journal of mathematics, nol 63 n2, pp 241-276, (2011).
[8] Hoang Ngoc Minh, Jacob G., N.E. Oussous.- Input/Output behaviour of nonlinear analytic systems : rational approximations, nilpotent structural approximations, "Analysis of controlled dynamical systems", Birkhaüser, Boston, pp. 255262, 1991.
[9] Hoang Ngoc Minh.- Summations of Polylogarithms via Evaluation Transform, in Mathematics and Computers in Simulations, 42, 4-6, 1996, pp. 707-728.
[10] Hoang Ngoc Minh.- Fonctions de Dirichlet d'ordre n et de paramètre t, Discrete Math., 180, 1998, pp. 221-241.
[11] Hoang Ngoc Minh, Jacob G. Symbolic integration of meromorphic differential systems via Dirichlet functions, Discrete Math., 210, 2000, pp. 87-116.
[12] Hoang Ngoc Minh, G Jacob, N.E. Oussous, M. Petitot.- De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées, journal electronique du Séminaire Lotharingien de Combinatoire B44e, (2001).
[13] Hoang Ngoc Minh.- Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series, in the proceeding of $4^{\text {th }}$ International Conference on Words, pp. 232-250, Sept., 10-13, 2003 Turku, Finland.
[14] Hoang Ngoc Minh.- Algebraic Combinatoric Aspects of Asymptotic Analysis of Nonlinear Dynamical System with Singular Input, Acta Academiae Aboensis, Ser. B, Vol. 67, no. 2, (2007), p. 117-126.
[15] M. Hoffman.- Quasi-shuffle products, J. of Algebra 194 (1997), pp. 477-495.
[16] Y. Komori.- An integral representation of multiple Hurwitz-Lerch zeta functions and generalized multiple Bernoulli numbers, Q.J. of Math. 61 (2010), pp.437-496.
[17] K. Matsumoto.- Analytic properties of multiple zeta-functions in several variables, in "Number Theory : Tradition and Modernization", W. Zhang and Y... Tanigawa (eds.), Springer, 2006, pp 153-173.
[18] C. Reutenauer.- Free Lie Algebras, Lon. Math. Soc. Mono., New Series-7, Oxford Science Publications, 1993.

[^0]: ${ }^{1}$ They are presented as generalized Nielsen polylogarithms in [10] (Definition 2.3) and as generalized Lerch functions in [12] (Definition 3).
 ${ }^{2}$ See also references and a discussion about meromorphic continuation of Riemann polyzêtas in [5].
 ${ }^{3}$ This integral representation is obtained by applying successively the polylogarithmic transform [10]. It is an application of non commutative convolution as shown in [9] (Section 2.4). Other integral representations can be also deduced easily by change of variables, for example $t=z r$ and then $r=e^{-u}$ [5].
 ${ }^{4}$ Other meromorphic continuations can also be obtained by Mellin transform as already done in [17] or by classical estimation on the imaginary part [7] but these later work reccursively, depth by depth, and the commutativity of this process over the variables s_{1}, \ldots, s_{r} must be proved. Unfortunately, the structure of multi-poles as well as multi-residus are missing in both works [7, 17]. In [16], to make the meromorphic continuation (giving the expression of non positive integers multi-residus via a generalization of Bernoulli numbers - but not of all multi-residus) of the specialization at roots of unity of colored Hurwitz polyzêtas $\operatorname{Di}\left(\mathbf{F}_{\xi, \mathbf{t}} ; \mathbf{s}\right)$, the author bases on the integral representation, on the contours, of the multiple Hurwitz-Lerch which corresponds mutatis mutandis to the integral representation of generalized Lerch functions introduced earlier in [5] (Corollary 3.3).

[^1]: ${ }^{5}$ Working in $\mathbb{Q}\left\langle\left(x_{0}^{*} x_{i, \xi, t}\right)^{*}\right\rangle$ implies working in the graduated Hopf algebra $\left(\mathbb{Q}\left\langle X^{*}\right\rangle, \amalg, \Delta, \epsilon, a_{\amalg}\right)$.

