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Combinatorial study of colored Hurwitz polyzêtas

A combinatorial study discloses two surjective morphisms between generalized shuffle algebras and algebras generated by the colored Hurwitz polyzêtas. The combinatorial aspects of the products and co-products involved in these algebras will be examined.

Introduction

Classically, the Riemann zêta function is ζ(s) = n>0 n -s , the Hurwitz zêta function is ζ(s; t) = n>0 (n -t) -s and the colored zêta function is ζ s q = n>0 q s n -s , where q is a root of unit. The three previous functions are defined over Z >0 but can be generalized over any composition (sequence of positive integers) s = (s 1 , . . . , s r ), like, respectively, the Riemann polyzêta function ζ(s) = n1>...>nr>0 n -s1 1 . . . n -sr r , the Hurwitz polyzêta function ζ(s; t) = n1>...>nr>0 (n 1 -t 1 ) -s1 . . . (n r -t r ) -sr and the colored polyzêta function ζ s q i = n1>...>nr>0 q i1n1 . . . q ir nr n -s1 1 . . . n -sr r , with q a root of unit and i = (i 1 , . . . , i r ) a composition. These sums converge when s 1 > 1.

To study simultaneously these families of polyzêtas, the colored Hurwitz polyzêtas, for a composition s = (s 1 , . . . , s r ) and a tuple of complex numbers ξ = (ξ 1 , . . . , ξ r ) and a tuple of parameters in ] -∞; 1[, t = (t 1 , . . . , t r ), are defined by [START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF] Di(F ξ,t ; s) = n1>...>nr >0 ξ n1 1 . . . ξ nr r (n 1 -t 1 ) s1 . . . (n r -t r ) sr .

(

) 1 
Note that, for l = 1 . . . , r, the numbers ξ l are not necessary roots of unity q i l . We are working, in this note, with the condition

(E) ∀i, | i k=1 ξ k | ≤ 1 and t i ∈] -∞; 1[.
Hence, Di(F ξ,t ; s) converges if s 1 > 1. We note E the set of C-tuples verifying (E). These polyzêtas are obtained as special values of iterated integrals 1 over singular differential 1-forms introduced in [START_REF] Ngoc | Fonctions de Dirichlet d'ordre n et de paramètre t[END_REF]. As iterated integrals, they are encoded by words or by non commutative formal power series [START_REF] Ngoc | Fonctions de Dirichlet d'ordre n et de paramètre t[END_REF] and are used to construct bases for asymptotic expanding [START_REF] Ngoc | Algebraic Combinatoric Aspects of Asymptotic Analysis of Nonlinear Dynamical System with Singular Input[END_REF] or symbolic integrating fuchian differential equations [START_REF] Hoang | Symbolic integration of meromorphic differential systems via Dirichlet functions[END_REF] exactly or approximatively [START_REF] Hoang | Input/Output behaviour of nonlinear analytic systems : rational approximations, nilpotent structural approximations[END_REF]. The meromorphic continuation of the colored Hurwitz polyzêtas 2 is already studied in [START_REF] Enjalbert | Analytic and combinatoric aspects of Hurwitz polyzêtas[END_REF][START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF]. In our studies, we constructed an integral representation 3 of colored Hurwitz polyzêtas and a distribution treating simultanously two singularities and our methods permit to make the meromorphic continuation commutatively over the variables s 1 , . . . , s r [START_REF] Enjalbert | Analytic and combinatoric aspects of Hurwitz polyzêtas[END_REF][START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF]. Moreover, [START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF] gives another way to obtain the meromorphic continuation thanks to translation equations [START_REF] Gari | la dimorphie et l'arithmétique des multizêtas : un premier bilan[END_REF]. Our methods give the structure of multi-poles [START_REF] Enjalbert | Analytic and combinatoric aspects of Hurwitz polyzêtas[END_REF] (Theorem 4.2) and two ways to calculate algorithmically the multi-residus 4 .

In this note, in continuation with our previous works [START_REF] Ngoc | Fonctions de Dirichlet d'ordre n et de paramètre t[END_REF][START_REF] Hoang | Symbolic integration of meromorphic differential systems via Dirichlet functions[END_REF][START_REF] Hoang | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF][START_REF] Ngoc | Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series[END_REF][START_REF] Enjalbert | Analytic and combinatoric aspects of Hurwitz polyzêtas[END_REF][START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF], we are focusing on Hofp algebra, for a class of products as minusstuffle ( ), mulstuffle ( q ), . . . , and in particular for the new product duffle ( q ), obtained as "tensorial product" of q and the well known stuffle ( ), of symbolic representations of these polyzêtas (see Definition 2.1 and Proposition 2.1 bellow).

Combinatorial objects 2.1 Some products and their algebraic structures

Let X be an encoding alphabet and the free monoid over X is denoted by X * . The length of any word w ∈ X * is denoted by |w| and the unit of X * is denoted by 1 X * . For any unitary commutative algebra A, a formal power series S over X with coefficients in A can be written as the infinite sum w∈X * S|w w. The set of polynomials (resp. formal power series) over X with coefficients in A is denoted by A X (resp. A X ). The set of degree 1 monomials is AX = {ax/a ∈ A, x ∈ X}. Definition 2.1 We note P the set of products ⋆ over A X verifying the conditions :

1 They are presented as generalized Nielsen polylogarithms in [START_REF] Ngoc | Fonctions de Dirichlet d'ordre n et de paramètre t[END_REF] (Definition 2.3) and as generalized Lerch functions in [START_REF] Hoang | De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées[END_REF] (Definition 3). 2 See also references and a discussion about meromorphic continuation of Riemann polyzêtas in [START_REF] Enjalbert | Analytic and combinatoric aspects of Hurwitz polyzêtas[END_REF]. 3 This integral representation is obtained by applying successively the polylogarithmic transform [START_REF] Ngoc | Fonctions de Dirichlet d'ordre n et de paramètre t[END_REF]. It is an application of non commutative convolution as shown in [START_REF] Ngoc | Summations of Polylogarithms via Evaluation Transform[END_REF] (Section 2.4). Other integral representations can be also deduced easily by change of variables, for example t = zr and then r = e -u [START_REF] Enjalbert | Analytic and combinatoric aspects of Hurwitz polyzêtas[END_REF]. 4 Other meromorphic continuations can also be obtained by Mellin transform as already done in [START_REF] Matsumoto | Analytic properties of multiple zeta-functions in several variables[END_REF] or by classical estimation on the imaginary part [START_REF] Essouabri | Multiple zeta functions associated with linear recurrence sequences and the vectorial sum formula[END_REF] but these later work reccursively, depth by depth, and the commutativity of this process over the variables s 1 , . . . , sr must be proved. Unfortunately, the structure of multi-poles as well as multi-residus are missing in both works [START_REF] Essouabri | Multiple zeta functions associated with linear recurrence sequences and the vectorial sum formula[END_REF][START_REF] Matsumoto | Analytic properties of multiple zeta-functions in several variables[END_REF]. In [START_REF] Komori | An integral representation of multiple Hurwitz-Lerch zeta functions and generalized multiple Bernoulli numbers[END_REF], to make the meromorphic continuation (giving the expression of non positive integers multi-residus via a generalization of Bernoulli numbers -but not of all multi-residus) of the specialization at roots of unity of colored Hurwitz polyzêtas Di(F ξ,t ; s), the author bases on the integral representation, on the contours, of the multiple Hurwitz-Lerch which corresponds mutatis mutandis to the integral representation of generalized Lerch functions introduced earlier in [5] (Corollary 3.3).

(i) the map

⋆ : A X × A X → A X is bilinear, (ii) for any w ∈ X * , 1 X * ⋆ w = w ⋆ 1 X * = w, (iii) for any a, b ∈ X and u, v ∈ X * , au ⋆ bv = a(u ⋆ bv) + b(au ⋆ v) + [a, b](u ⋆ v),
where [., .] : AX × AX → AX is a function verifying :

(S1) ∀a ∈ AX, [a, 0] = 0 , (S2) ∀(a, b) ∈ (AX) 2 , [a, b] = [b, a], (S3) ∀(a, b, c) ∈ (AX) 3 , [[a, b], c] = [a, [b, c]].
Example 1 (see [START_REF] Reutenauer | Free Lie Algebras[END_REF]) Product of interated integrals. The shuffle is a bilinear product such that :

∀w ∈ X * w ⊔⊔ 1 X * = 1 X * ⊔⊔ w = w and ∀(a, b) ∈ X 2 , ∀(u, v) ∈ X * 2 , au ⊔⊔ vb = a(u ⊔⊔ bv) + b(au ⊔⊔ v).
For example, for any letter x 0 , x and x ′ in X, [START_REF] Hoffman | Quasi-shuffle products[END_REF]) Product of quasi-symmetric functions. Let X be an alphabet indexed by N. The stuffle is a bilinear product such that :

x 0 x ′ ⊔⊔ x 2 0 x = x 0 x ′ x 2 0 x + 2x 2 0 x ′ x 0 x + 3x 3 0 x ′ x + 3x 3 0 xx ′ + x 2 0 xx 0 x ′ . Example 2 (see
∀w ∈ X * , w 1 X * = 1 X * w = w and ∀(x i , x j ) ∈ X 2 , ∀(u, v) ∈ X * 2 , x i u x j v = x i (u x j v) + x j (x i u v) + x i+j (u v).
In particular, with the alphabet Y = {y 1 , y 2 , y 3 , . . .}, (y 3 y 1 ) y 2 = y 3 y 1 y 2 + y 3 y 2 y 1 + y 3 y 3 + y 2 y 3 y 1 + y 5 y 1 .

Example 3 ([3]

) Product of large multiple harmonic sums.

Let X be an alphabet indexed by N.

The minus-stuffle is a bilinear product such that :

∀w ∈ X * , w 1 X * = 1 X * w = w and ∀(x i , x j ) ∈ X 2 , ∀(u, v) ∈ X * 2 , x i u x j v = x i (u x j v) + x j (x i u v) -x i+j (u v). Example 4 ([6]) Product of colored sums.
Let X be an alphabet indexed by a monoid (I, ×).

The mulstuffle is a bilinear product such that :

∀w ∈ X * w q 1 X * = 1 X * q w = w and ∀(x i , x j ) ∈ X 2 , ∀(u, v) ∈ X * 2 , x i u q x j v = x i (u q x j v) + x j (x i u q v) + x i×j (u q v).
For example, with X indexed by

Q * , x 2 3 x -1 q x 1 2 = x 2 3 x -1 x 1 2 + x 2 3 x 1 2 x -1 + x 2 3 x -1 2 + x 1 2 x 2 3 x -1 + x 1 3 x -1 .
Remark 2.1 Thanks to the one-to-one correspondence (i 1 , . . . , i r ) → x i1 . . . x ir between tuples of I and word over X, the calculus of x 2 3 x -1 q x 1 2 can be written as 

2 3 , -1 q 1 2 = 2 3 , -1, 1 2 + 2 3 , 1 2 , -1 + 2 3 , -1 2 + 1 2 , 2 3 , -1 + 1 3 , -1 .
1 A * = (1 Y * , 1 E * ). If Y is indexed by N and E by a monoid (I, ×), the duffle is a bilinear product such that ∀w ∈ A * , w q 1 A * = 1 A * q w = w, ∀(y i , y j ) ∈ Y 2 , ∀(e l , e k ) ∈ E 2 , ∀(u, v) ∈ A * 2
, (y i , e l ).u q (y j , e k ).v = (y i , e l ).

(u q (y j , e k ).v) + (y j , e k ). ((y i , e l ).u q v) + (y i+j , e l×k ).(u q v).

Proposition 2.1 The shuffle, the stuffle, the minus-stuffle and the mulstuffle are elements of P, with respectively,

[x i , x j ] = 0, [x i , x j ] = x i+j , [x i , x j ] = -x i+j , [x i , x j ] =
x i×j for any letters x i and x j of X.

The duffle is in P, with [(y i , e l ), (y j , e k )] = (y i+j , e l×k ) for all y i , y j in Y , e l , e k in E.

Proposition 2.2 Let ⋆ ∈ P, then (A X , ⋆) is a commutative algebra.

Proof. We just have to show the commutativity and the associativity of ⋆.

To obtain w 1 ⋆ w 2 = w 2 ⋆ w 1 for all w 1 , w 2 in X * , we use an induction on

|w 1 | + |w 2 |. It is true when |w 1 | + |w 2 | ≤ 1 thanks to (i) since w 1 or w 2 is 1 X * .
The equality (iii), the condition (S2) and the commutative of + give the induction. In the same way, an induction on

|w 1 | + |w 2 | + |w 3 | gives w 1 ⋆ (w 2 ⋆ w 3 ) = (w 1 ⋆ w 2 ) ⋆ w 3 thanks to (iii)
and (S3). ✷ If we associate to each letter of X an integer number called weight, the weight of a word is the sum of the weight of its letters. In this case X is graduated. In [START_REF] Hoffman | Quasi-shuffle products[END_REF], Hoffman works over X = X ∪ {0} with [., .] : X × X → X and call quasiproduct any product in P with the additional condition : Example 6 1. The shuffle is a quasi-product.

2. Let X be an alphabet indexed by N and define the weight of x i , i ∈ N, by i . Then the stuffle is a quasi-product.

Theorem 2.1 ( [START_REF] Hoffman | Quasi-shuffle products[END_REF]) If X is graduated and has a quasi-product ⋆, then (A X , ⋆) is a commutative graduated A-algebra..

We can define (i) a comultiplication

∆ : A X → A X ⊗ A X , (ii) a counit ǫ : A X → A, by : ∀w ∈ X * , ∆w = uv=w u ⊗ v and ǫ(w) = 1 if w = 1 X * 0 otherwise. The coproduct ∆ is coassociative so (A X , ∆, ǫ) is a coalgebra. Lemma 2.1 For any w ∈ X * and x ∈ X, (x ⊗ 1 X * )∆w + 1 X * ⊗ xw = ∆xw. Proof. ∀w ∈ X * , ∀x ∈ X, ∆xw = uv=xw u ⊗ v = u ′ v=w xu ′ ⊗ v + 1 X * ⊗ xw so ∆xw = x ⊗ 1 X * u ′ v=w u ′ ⊗ v + 1 X * ⊗ xw = (x ⊗ 1 X * )∆w + 1 X * ⊗ xw. ✷ Proposition 2.3 If ⋆ ∈ P, then (A X , ⋆, ∆, ǫ) is a bialgebra. Remember that ⋆ acts over A X ⊗ A X by (u ⊗ v) ⋆ (u ′ ⊗ v ′ ) = (u ⋆ u ′ ) ⊗ (v ⋆ v ′ ).
Proof. ǫ is obviously a ⋆-homomorphism. It still has to be show ∆(w 1 ) ⋆ ∆(w 2 ) = ∆(w 1 ⋆ w 2 ) over X * . This equality is true if w 1 or w 2 is equal to 1 X * . Assume now that ∆(u)⋆∆(v) = ∆(u⋆v) for any word u and v such that |u|+|v| ≤ n, n ∈ N, and let w 1 and w 2 be in X * with |w 1 | + |w 2 | = n + 1. We note w 1 = au and w 2 = bv, with a and b two letters of X, u and v two words of X * . Thus, by definition,

∆w 1 = u1u2=u au 1 ⊗ u 2 + 1 X * ⊗ au and ∆w 2 = v1v2=v bv 1 ⊗ v 2 + 1 X * ⊗ bv. ∆(w 1 ) ⋆ ∆(w 2 ) = u1u2=u,v1v2=v (au 1 ⋆ bv 1 ) ⊗ (u 2 ⋆ v 2 ) + u1u2=u (au 1 ) ⊗ (u 2 ⋆ bv) + v1v2=v (bv 1 ) ⊗ (au ⋆ v 2 ) + 1 X * ⊗ (au ⋆ bv) = u1u2=u,v1v2=v (a(u 1 ⋆ bv 1 ) ⊗ (u 2 ⋆ v 2 ) + b(au 1 ⋆ v 1 ) ⊗ (u 2 ⋆ v 2 ) +([a, b](u 1 ⋆ v 1 )) ⊗ (u 2 ⋆ v 2 )) + u1u2=u (au 1 ) ⊗ (u 2 ⋆ bv) + v1v2=v (bv 1 ) ⊗ (au ⋆ v 2 ) + 1 X * ⊗ a(u ⋆ bv) +1 X * ⊗ b(au ⋆ v) + 1 X * ⊗ [a, b](u ⋆ v) = u1u2=u,v1v2=v a(u 1 ⋆ bv 1 ) ⊗ (u 2 ⋆ v 2 ) + u1u2=u (au 1 ) ⊗ (u 2 ⋆ bv) + u1u2=u,v1v2=v b(au 1 ⋆ v 1 ) ⊗ (u 2 ⋆ v 2 ) + v1v2=v (bv 1 ) ⊗ (au ⋆ v 2 ) +[a, b] ⊗ 1 X * u 1 u 2 =u v1v2=v (u 1 ⊗ u 2 ) ⋆ (v 1 ⊗ v 2 ) +(1 X * ⊗ a(u ⋆ bv) + 1 X * ⊗ b(au ⋆ v) + 1 X * ⊗ [a, b](u ⋆ v)) = (a ⊗ 1 X * )(∆(u) ⋆ ∆(w 2 )) + 1 X * ⊗ a(u ⋆ bv) + (b ⊗ 1 X * )(∆(w 1 ) ⋆ ∆(v)) +1 X * ⊗ b(au ⋆ v) + ([a, b] ⊗ 1 X * )(∆(u) ⋆ ∆(v)) + 1 X * ⊗ [a, b](u ⋆ v).
Using the induction hypothesis then the lemma 2.1 (since [a, b] ∈ AX) gives

∆(w 1 ) ⋆ ∆(w 2 ) = ∆(a(u ⋆ w 2 )) + ∆(b(w 1 ⋆ v)) + ∆([a, b](u ⋆ v)) = ∆(a(u ⋆ w 2 ) + b(w 1 ⋆ v) + [a, b](u ⋆ v)) = ∆(w 1 ⋆ w 2 ). ✷ Remark 2.2
In particular, ∆ is a ⊔⊔ -homomorphism, a -homomorphism and a qhomomorphism.

Let C n be the set of positive integer sequences (i 1 , . . . , i k ) such that i 1 + . . .

+ i k = n.
Theorem 2.2 Define a ⋆ by, for all x 1 , . . . , x n in X,

a ⋆ (x 1 . . . x n ) = (i1,...,i k )∈Cn (-1) k x 1 . . . x i1 ⋆ x i1+1 . . . x i1+i2 ⋆ . . . ⋆ x i1+...+i k-1 +1 . . . x n then, if ⋆ ∈ P, (A X , ⋆, ∆, ǫ, a ⋆ ) is a Hopf algebra.
Proof. With the applications :

µ : A → A X λ → λ 1 X * and m : A X ⊗ A X → A X u ⊗ v → u ⋆ v , the antipode must verify m • (a ⋆ ⊗ Id) • ∆ = µ • ǫ, or, in equivalent terms uv=w a ⋆ (u) ⋆ v = w|1 X * 1 X * . i.e. a ⋆ (1 X * ) = 1 X * n ∀x ∈ X, a ⋆ (x) = -x and, if w = x 1 . . . x n with n ≥ 2, x 1 , . . . , x n ∈ X, a ⋆ (w) = - n-1 k=1 a ⋆ (x 1 . . . x k ) ⋆ x k+1 . . . x n .
An induction over the length n shows that a ⋆ defined in theorem verifies these equalities, and, in the same way,

a ⋆ verifies m • (Id ⊗ a ⋆ ) • ∆ = µ • ǫ. ✷ Corollary 2.
1 If ⋆ is ⊔⊔ or or q or q , then this construction gives an Hopf algebra. Moreover, for ⊔⊔ or , we obtain a graduated Hopf algebra.

Iterated integral

Let us associate to each letter x i in X a 1-differential form ω i , defined in some connected open subset U of C. For all paths z 0 z in U, the Chen iterated integral associated to w = x i1 • • • x i k along z 0 z, noted is defined recursively as follows

α z z0 (w) = z0 z ω i1 (z 1 )α z1 z0 (x i2 • • • x i k ) and α z z0 (1 X * ) = 1, (2) 
verifying the rule of integration by parts [START_REF] Chen | Iterated path integrals[END_REF] :

α z z0 (u ⊔⊔ v) = α z z0 (u)α z z0 (v). (3) 
We extended this definition over A X (resp. A X ) by

α z z0 (S) = w∈X * S|w α z z0 (w). ( 4 
)

Shuffle relations 2.3.1 First encoding for colored Hurwitz polyzêtas

Let ξ = (ξ n ) be a sequence of complex numbers and T a family of parameters. Put X ′ an alphabet indexed over N * × C N × T and X = {x 0 } ∪ X ′ . To each x in X we associate the differential form :

       ω 0 (z) = dz z si x = x 0 ω i,ξ,t (z) = i k=1 ξ k 1 - i k=1 ξ k z × dz z t if x = x i,ξ,t with i 1.
(

) 5 
For any T -tuple t = (t 1 , . . . , t r ) we associate the T -tuple t = (t 1 , . . . , t r ) given by

           t 1 = t 1 -t 2 , t 2 = t 2 -t 3 , . . . t r = t r-1 -t r in this way            t 1 = t 1 + t 2 + . . . + t n , t 2 = t 2 + . . . + t n , . . . t r = t r (6) 
We choose the sequence ξ and the family t such that the condition (E) is satisfied.

Proposition 2.4 For any s = (s 1 , . . . , s r ) with

s 1 > 1 if ξ = (ξ 1 , . . . , ξ r ) ∈ E r and t = (t 1 , . . . , t r ) ∈ T r , then Di(F ξ,t ; s) = α 1 0 (x s1-1 0 x 1,ξ,t1 . . . x sr -1 0 x r,ξ,tr ).
Proof. Since ω i,ξ,t (z) = 

(F ξ,t ; s)} ξ∈C ′ ,t∈T ′ is the A modulus generated by {Di(F ξ,t ; s)} ξ∈C ′ ,t∈T ′ .
Proof. We have express the product Di(F ξ,t ; s) Di(F ξ ′ ,t ′ ; s ′ ), with s = (s 1 , . . . , s r ),

s ′ = (s ′ 1 , . . . , s ′ r ′ ), ξ, ξ ′ ∈ C ′ and t = (t 1 , . . . , t r ), t ′ = (t ′ 1 , . . . , t ′ r ) ∈ T ′ ,
as linear combination of colored Hurwitz polyzêtas. This is an iterated integral associated

to x s1-1 0 x 1,ξ,t1 . . . x sr -1 0 x r,ξ,tr ⊔⊔ x s ′ 1 -1 0 x 1,ξ ′ ,t ′ 1 . . . x s ′ r ′ -1 0 x r ′ ,ξ ′ ,t ′ r ′
which is a sum of terms of the form x

s ′′ 1 -1 0 x 1,ξ (1) ,t (1) . . . x s ′′ i -1 0 x ji,ξ (i) ,t (i) . . . x s ′′ r -1 0
x j r ′′ ,ξ (r ′′ ) ,t (r ′′ ) , with

s ′′ i ∈ N, ξ (i)
is ξ or ξ ′ and t (i) is t ji or t ′ ji for all i; and r ′′ = r + r ′′ . Note that

α z 0 (x i,ξ,ti x s-1 0 x j,ξ ′ ,tj ) = z 0 m>0 i k=1 ξ m k z m-ti-1 1 dz 1 z1 0 dz 2 z 2 ... zs+1 0 n>0 i k=1 ξ ′n k z n-t ′ j -1 s+1 dz s+1 = m,n>0 (ξ 1 . . . ξ i ) m ξ ′ 1 . . . ξ ′ j n (m + n -t i -t ′ j )(n -t ′ j ) s z n+m , α 1 0 x s ′′ 1 -1 0 x 1,ξ (1) ,t (1) 
. . . x

s ′′ i -1 0 x ji,ξ (i) ,t (i) . . . x s ′′ r -1 0 x j r ′′ ,ξ (r ′′ ) ,t (r ′′ ) = m1,...,m r ′′ >0 r ′′ i=1 (ξ (i) 1 . . . ξ (i) ji ) mi (m i + . . . + m r ′′ -t (i) -. . . -t (r ′′ ) ) s ′′ i = n1>...>n r ′′ >0 r ′′ i=1 ξ ′′ ni i (n i -t ′′ i ) s ′′ i with n i = m i + . . . + m r ′′ , t ′′ i = t (i) + . . . + t (r ′′ ) for all i, so t ′′ ∈ T ; ξ ′′ 1 = ξ (1) 1 and ξ ′′ i = ξ (i) 1 ...ξ (i) j i ξ (i-1) 1 ...ξ (i-1) j i-1
for i > 1 so ξ ′′ ∈ C : we can express each term of the shuffle product as Di(F ξ ′′ ,t ′′ ; s ′′ ). ✷ Note that the shuffle product over two words of X * X ′ acts separately over (C ′ , .), (T ′ , +) and the convergent compositions. We can describe the situation with the shuffle algebra 5 : Theorem 2.4 Let H be the Q-algebra generated by the colored Hurwitz polyzêtas. The map ζ : (Q (x * 0 x i,ξ,t ) * , ⊔⊔ ) ։ (H, .), x s1 0 x 1,ξ,t1 . . . x sr 0 x r,ξ,tr → Di(F ξ,t ; s + 1) is a surjective algebra morphism.

Example 7 Since Di(F ξ,t ; 3) = α 1 0 (x 2 0 x 1,ξ,t ) and Di(F ξ ′ ,t ′ ; 2) = α 1 0 (x 0 x 1,ξ ′ ,t ′ ) then Di(F xi,t ; 3) Di(F xi ′ ,t ′ ; 2) = α 1 0 (x 0 x 1,ξ ′ ,t ′ ⊔⊔ x 2 0 x 1,ξ,t ). Example 1 with x = x 1,ξ,t and x ′ = x 1,ξ ′ ,t ′ gives the expression of x 0 x 1,ξ ′ ,t ′ ⊔⊔ x 2 0 x 1,ξ,t . But the first term obtained is

α 1 0 (x 0 x 1,ξ ′ ,t ′ x 2 0 x 1,ξ,t ) = 1 0 dz 1 z 1 z1 0 m>0 ξ ′ m z m-t ′ -1 2 dz 2 z2 0 dz 3 z 3 z3 0 dz 4 z 4 z4 0 n>0 ξ n z n-t-1 5 dz 5 = n,m>0 ξ ′ m ξ n (m + n -t ′ -t) 2 (n -t) 3 = n1>n2>0 (ξ ′ ) n1 (ξ/ξ ′ ) n2 (n 1 -t ′ -t) 2 (n 2 -t) 3
= Di(F (ξ,ξ/ξ ′ );(t+t ′ ,t) ; (2, 3)). 5 Working in Q x * 0 x i,ξ,t * implies working in the graduated Hopf algebra (Q X * , ⊔⊔ , ∆, ǫ, a ⊔⊔ ).

We can make similar calculus for the other terms and find : 

Di(F ξ,t ; 3) Di(F ξ ′ ,t ′ ; 2) = Di(F (ξ ′ ,ξ/ξ ′ );(t+t ′ ,

Second encoding for colored Hurwitz polyzêtas

For the Hurwitz polyzêtas, we can obtain an encoding indexed by a finite alphabet. Let the alphabet X = {x 0 ; x 1 } and associate to x 0 the form ω 0 (z) = z -1 dz and at x 1 the form ω 1 (z) = (1 -z) -1 dz.

For each x ∈ X and λ ∈ C, we note (λx) * = k≥0 (λx) k . Then, (see [START_REF] Ngoc | Fonctions de Dirichlet d'ordre n et de paramètre t[END_REF], [START_REF] Hoang | Symbolic integration of meromorphic differential systems via Dirichlet functions[END_REF]),

α 1 0 x s1-1 0 (t 1 x 0 ) * s1 x 1 . . . x sr -1 0 (t r x 0 ) * sr x 1 = ζ(s; t).
Theorem 2.5 Let H ′ be the Q-algebra generated by the Hurwitz polyzêtas and X the Q-algebra generated by (t 1 x 0 ) * s1 x 1 . . . (t r x 0 ) * sr x r . Then, ζ : (X , ⊔⊔ ) ։ (H ′ , .) is a surjective morphism of algebras.

Note that we can apply the idea of encoding of "simple" colored Hurwitz zetas functions (with depth one : r = 1). Let ξ = (ξ n ) be a sequence of complex numbers in the unit ball B(0; 1) and T a family of parameters. Let X = {x 0 , x 1 , . . .} be a alphabet indexed by N. Associate to x 0 the differential form ω 0 (z) = z -1 dz and to

x i , i ≥ 1, the differential form ω i (z) = ξ i (1 -ξ i z) -1 dz. Proposition 2.5 With this notation, α 1 0 ((tx 0 ) * x 0 ) s-1 (tx 0 ) * x i = n>0 ξ n i (n -t) s . Proof. Since ξ i dz 0 1 -ξ i z 0 = ξ i n≥0
(ξ i z 0 ) n dz 0 , we can write

α z 0 (tx 0 ) k x i = t k z 0 dz k z k z k 0 . . . z1 0 ξ i n≥0 (ξ i z 0 ) n dz 0 = n>0 t k ξ n i z n n k+1 ,
for z ∈ B(0; 1) and for k ∈ N. Thanks to the absolute convergence,

α z 0 ((tx 0 ) * x i ) = n>0 ξ n i z n n k≥0 t n k = n>0 ξ n i z n n -t .
In the same way, if z ∈ B(0; 1) :

∀k ∈ N, α z 0 (tx 0 ) k x 0 (tx 0 ) * x i = n>0 t k ξ n i n -t z n n k+1 , so α z 0 ((tx 0 ) * x 0 (tx 0 ) * x i ) = n>0 ξ n i z n (n -t) 2
and α z 0 ((tx 0 ) * x 0 ) s-1 (tx 0 ) * x i = n>0 ξ n i z n (n -t) s . ✷ Remark 2.3 Note that, with the same notation,

α z 0 x 1 ((t 2 x 0 ) * x 0 ) s-1 (t 2 x 0 ) * x 2 = n,m>0 ξ n 2 ξ m 1 z n+m (n -t 2 ) s (m + n) = n1>n2>0 ξ n2 2 ξ n1-n2 1 z n1 n 1 (n 2 -t 2 ) s .
In other words, this encoding appears to be widespread only as couples of the type ξ = (1, 1, . . . , 1, ξ r ) : with ξ 1 = 1 and ω 1 = (1 -z) -1 dz, We can export the duffle over the tuples s = (s 1 , . . . , s r ) ∈ Z r >0 and ξ ∈ C r with :

(s, ξ) q ((), 1) = ((), 1) q (s, ξ) = (s, ξ) and (s 1 , s; ξ 1 , ξ) q (r 1 , r; ρ 1 , ρ) = (s 1 ; ξ 1 ). ((s; , ξ) q (r 1 , r; ρ 1 , ρ)) + (r 1 ; ρ 1 ). ((s 1 , s; ρ 1 , ξ) q (r; ρ)) +(s 1 + r 1 ; ξ 1 ρ 1 ). ((s; ξ) q (r; ρ))

Proposition 2.6 Let s = (s 1 , . . . , s l ) and r = (r 1 , . . . , r k ) be two compositions, ξ ∈ C l , ρ ∈ C k . Then ∀n ∈ N, M n s,ξ (λ) M n r,ρ (λ) = M n (s,ξ) q (r,ρ) (λ).

Proof. Put the compositions s ′ = (s 2 , . . . , s l ), r ′ = (r 2 , . . . , r k ), the tuples of complex numbers ξ ′ = (ξ 2 , . . . , ξ l ) and ρ ′ = (ρ 2 , . . . , ρ k ), then

M n s,ξ (λ) M n r,ρ (λ) = n>n1,n>n ′ 1 ξ n1 1 λ s1 n1 M n1 s ′ ,ξ ′ (λ) ρ n ′ 1 1 λ r1 n ′ 1 M n ′ 1 r ′ ,ρ ′ (λ) = n>n1 ξ n1 1 λ s1 n1 M n1 s ′ ,ξ ′ (λ) M n1 r,ρ (λ) + n>n ′ 1 ρ n ′ 1 1 λ r1 n ′ 1 M n ′ 1 s,ξ (λ) M n ′ 1 r ′ ,ρ ′ (λ)

Example 5 (

 5 [START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF]) Product of colored Hurwitz polyzêtas. Let Y and E be two alphabets and consider the alphabet A = Y × E with the concatenation defined recursively by (y, e).(w Y , w E ) = (yw Y , ew E ) for any letters y ∈ Y , e ∈ E, and any word w Y ∈ Y * , w E ∈ E * . The unit of the monoide A * is given by

(

  S4) Either [a, b] = 0 for all a, b in X; or the weight of [a, b] is the sum of the weight of a and the weight of b for all a, b in X.

1 0x 1 1 0

 111 tr (n -t r ) sr . Hence, α 1 0 (x s1-,ξ,t1 . . . x sr -+ . . . + m r -t j -. . . -t r ) sj , and then, by change of variables, n1>...>nr >0 ξ n1 1 . . . ξ nr r (n 1 -t 1 ) s1 . . . (n r -t r ) sr . ✷ Theorem 2.3 Let T be the group of parameters generated by T ; + , C be a subgroup of (C * , .) and A a sub-ring of C. Put C ′ = C N ∩ E and T ′ the set of finite tuple with elements in T . Then the A algebra generated by {Di

α 1 0 x s1- 1 0(t 1 2 . 4

 1124 x 0 ) * s1 x 1 . . . x sr-1-1 0 (t r-1 x 0 ) * sr-1 x r-1 x sr -1 0 (t r x 0 ) * sr x r = n1>...>nr ξ nr r (n 1 -t 1 ) s1 . . . (n r -t r ) sr . Duffle relations Let λ = (λ n ) be a set of parameters, s = (s 1 , . . . , s r ) a composition, ξ ∈ C r . Then ∀n ∈ Z >0 , M n s,ξ (λ) =

A recurrence ended the demonstration. ✷ Theorem 2.6 Let s = (s 1 , . . . , s l ) and r = (r 1 , . . . , r k ) be two compositions, ξ a ltuple and ρ a k-tuple of E, t = (t, . . . , t) a l-tuple and t ′ = (t, . . . , t) a k-tuple, both formed by the same parameter t diagonally. Then 

Remark 2.4 Extend the duffle product to triplets (s, t, ξ) ∈ ∪ r∈N * N r × {t} r × C r by (s 1 , s; t, t; ξ 1 , ξ) q (r 1 , r; t, t ′ ; ρ 1 , ρ) = (s 1 ; t; ξ 1 ). ((s; t; ξ) q (r 1 , r; t, t ′ ; ρ 1 , ρ)) + (r 1 ; t; ρ 1 ). ((s 1 , s; t, t; ρ 1 , ξ) q (r; t ′ ; ρ)) + (s 1 + r 1 ; t; ξ 1 ρ 1 ). ((s; t; ξ) q (r; t ′ ; ρ)) , and define the function F over I = ∪ r∈N * N r × {t} r × C r by F (s, t, ξ) = Di(F ξ,t ; s). Then, by Theorem 2.6, the function F : (I, q ) → (C, .) is morphism of algebras.