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Stochastic Analysis of the 
Eigenvalue Problem for Mechanical 
Systems Using Polynomial Chaos 
Expansion—Application to a Finite 
Element Rotor

This paper proposes to use a polynomial chaos expansion approach to compute stochas-tic complex eigenvalues and eigenvectors of
structures including damping or gyroscopic effects. Its application to a finite element rotor model is compared to Monte Carlo simula-
tions. This lets us validate the method and emphasize its advantages. Three different uncertain configurations are studied. For each, a
stochastic Campbell diagram is proposed and interpreted and critical speeds dispersion is evaluated. Furthermore, an adaptation of
the Modal Accordance Criterion (MAC) is proposed in order to monitor the eigenvectors dispersion.
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1 Introduction

Introducing uncertainties in structures is now an acknowledged
challenge. Variability may come from the manufacturing process
leading to variations in the geometry or material properties, some
deterioration or evolution of the structure during its lifetime. Sev-
eral methods address the problem of introducing the uncertainty
and propagating it in order to statistically characterize the system
response, whether static or dynamic in case of an excitation or
even its modal properties. The reader is referred to Ibrahim [1]
and Ibrahim and Manohar [2] as well as Schuëller et al. successive
reviews papers [3–5] for an extensive review of the literature. One
may still shortly recall three of the main methods which use a
parametric description of uncertainties. First, let us mention per-
turbation methods which are based on Taylor series expansion on
a set of zero mean random variables; the series are usually trun-
cated to first or second order because of computational difficulties.
The present work relies on the second usual method that is the
polynomial chaos (PC) expansion [6]: uncertain quantities are
described by Hermite multivariate polynomials depending on
standard normal variables. Further work extended this approach to
other polynomials and is referred to as generalized Polynomial
Chaos [7,8]. The third method is the well-known Monte Carlo
(MC) simulation which consists in direct computation of the
response for a large sample that lets the statistical indicators rela-
tive to the quantities of interest be rebuilt. Finally, let us mention
another class of methods called non-parametric approaches [9]
which rely on maximization of statistical entropy.

In this paper, we will focus on the eigenvalues and eigenvectors
dispersion. The proposed method is exposed in view of an appli-
cation to rotating structures to suit the treated example but can be

applied to any linear system. This work aims at dealing with me-
chanical systems that include damping and/or gyroscopic effects.
In these cases, complex eigenvalues and eigenvectors are to be
considered and most of all, a possible separated evolution of real
and imaginary parts of each quantity. Some older and very recent
work deal with the stochastic eigenvalue problem: theoretical and
practical considerations can be found in the book by Scheidt and
Purkert [10], Ref. [11] compares performance of perturbation
method, Polynomial Chaos expansion and direct Monte Carlo
simulations for simple mass/springs systems, Ref. [12] examines
the stochastic eigenmodes of a rotor with spatial random variation
of its stiffness and density using a perturbation method, Refs.
[13,14] use a non-parametric approach to evaluate eigenmodes
dispersion of rotors, and Ref. [15] extends perturbation approach
to complex modes study. To the authors’ knowledge, there is cur-
rently no work devoted to the eigenvalue problem of complex dy-
namical systems (i.e. methods which impose no condition on the
mathematical properties of the matrices describing the structure)
relying on the Polynomial Chaos method.

The current method consists in a generalization of what was
developed in Ref. [16] where simple linear systems were
described by a mass and a stiffness matrix only. As opposed to
what is exposed in Ref. [11] the coefficients of the PC expansion
are not evaluated based on MC sampling but using a Galerkin
method on the normalized eigenvalue problem [17].

The next section is dedicated to the theoretical presentation of
the method. It includes recalls on the eigenvalue problem in the
case of rotating structures. Section 3 is devoted to the application
to a finite element model of a rotor with three discs and two bear-
ings. It details the structure and its equations as well as its deter-
ministic study. Then, three different uncertain configurations are
studied with multiple uncertain parameters in order to demonstrate
efficiency and robustness of the proposed method. An adaptation
of the Modal Accordance Criterion (MAC) to monitor the eigen-
vectors dispersion and a way to evaluate critical speeds dispersion
with no further PC coefficients computation are presented too.
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A third subsection compares the results obtained by the proposed
approach with direct MC simulations. It also addresses the issue
of computation time and ways to improve efficiency. Finally,
results on the three uncertain cases are presented and commented:
eigenvalues dispersion is rendered using stochastic Campbell dia-
grams and critical speeds histograms while stochastic eigenvec-
tors are monitored using the proposed stochastic MAC for
different rotation speeds and more simple plots at critical speeds.

2 Stochastic Theory for Eigenmodes using Polynomial

Chaos Expansion

This section is devoted to the presentation of the method. First,
recalls on the deterministic eigenvalue problem in the context of
rotating machinery are exposed. Then, uncertain parameters are
introduced and the method providing the PC approximation coef-
ficients is detailed.

2.1 Recalls on the Deterministic Eigenvalue Problem. When
dealing with rotating machinery, the dynamic equations in the lin-
ear undamped deterministic case are written:

M€qþG _qþKq ¼ 0 (1)

q, _q and €q denote the vector of degrees of freedom (dofs) and its
first and second derivatives with respect to time. M and K are the
usual mass and stiffness matrices. They are respectively definite
symmetric positive and symmetric positive. G is the gyroscopic
matrix which reflects effects of spatially distributed mass around
rotation axis. It is skew-symmetric and proportional to the rotation
speed X. System size is denoted n.

To determine the eigenvalues and eigenvectors of this equation,
the augmented formulation

B _x� Ax ¼ 0 (2)

is generally used, where

x ¼ q

_q

� �
; A ¼ 0 K

�K �G

� �
and B ¼ K 0

0 M

� �

This augmented formulation leads to the following eigenvalue
problem

Auk ¼ kkBuk (3)

Augmented eigenvectors are normalized with respect to B:

uk
TBuk ¼ 1 (4)

This takes into account the complex nature of eigenvectors due to
skew-symmetric matrix G. This way, the 2n couples of eigenval-
ues and eigenvectors (kk, uk) are uniquely defined.

In the considered case of undamped linear rotating systems,
eigenvalues kk are purely imaginary quantities. Their imaginary
part will be denoted xk (kk¼ jxk). Eigenvectors are complex
quantities but in the undamped case, they define a planar
deformed shape.

Finally, in the field of rotating machinery, eigenvalues change
with rotation speed due to gyroscopic matrix G dependency on X.
The Campbell diagram is then drawn to depict their evolution
along rotation speed by plotting xk versus X, as it provides a
quick overview of the structure behavior [18].

2.2 Introducing Uncertainties. When some elements of the
structure are uncertain, the dynamic system in Eq. (1) is impacted
as follows

ðMþ ~MÞ€qþ ðGþ ~GÞ _qþ ðKþ ~KÞq ¼ 0 (5)

Tilde matrices denote random contributions with zero mean. They
depend on a set of random parameters denoted n. Reasoning in the
same way as in the deterministic study, the following augmented
formulation is used for the eigenvalue problem

Aþ ~A
� �

~uk ¼ ~kk Bþ ~B
� �

~uk (6)

with normalization equation

~uk
T

Bþ ~B
� �

~uk ¼ 1 (7)

~uk and ~kk respectively denote stochastic eigenvectors and
eigenvalues.

Polynomial Chaos expansion consists in decomposing uncertain
quantities on a basis of Hermite multivariate polynomials [6].
These polynomials are best suited for Gaussian stochastic proc-
esses. Non-Gaussian processes are classically decomposed on
Gaussian processes [19]. The computation of the polynomials as
well as the appropriate scalar product are recalled in Appendix A.

Matrices introducing uncertainty are then decomposed as fol-
lows, using a Karhunen-Loève decomposition or assuming them
so regarding experimental results [6]:

~X ¼
XNX

n¼2

Xnwn nð Þ (8)

where X can denote M, G or K. w1 will conventionally denote the
constant polynomial equal to 1 (associated with deterministic
component); polynomials with index greater or equal to 2 are zero
mean.

In the proposed method, stochastic eigenvalues and eigenvec-
tors of the augmented system in Eq. (6) with constraint (Eq. (7))
are decomposed on both the deterministic eigenmodes and the
PC:

~kk ¼ kk

XN

s¼1

kð Þas þ j kð Þbs

� 	
ws nð Þ (9)

~uk ¼
XP

p¼1

kð Þ~cp nð Þ þ j kð Þ~lp nð Þ
� 	

up (10)

with

kð Þ~cp nð Þ ¼
XN

n¼1

kð Þcn
pwn nð Þ and ðkÞ~lp nð Þ ¼

XN

n¼1

kð Þln
pwn nð Þ (11)

giving

~uk ¼
Xp

p¼1

XN

n¼1

kð Þcn
p þ j kð Þln

p

� 	
wn nð Þ

!
up (12)

where the coefficients ðkÞcn
p, ðkÞln

p, ðkÞas and (k)bs are real and j
denotes the imaginary unit (j2¼�1). This decomposition on P
deterministic eigenvalues and eigenvectors is a generalization of
what is proposed in Ref. [16]. It lets real and imaginary parts of
stochastic eigenvalues and eigenvectors evolve independently. In
this paper, P¼ 2n, that is all the deterministic modes are used for
projection of stochastic eigenvectors but a proper selection of
the deterministic modes retained may be of great interest (see
Sec. 3.3).

To get the final system of equations that leads to the unknowns
(k)cp

n, (k)lp
n, (k)as and (k)bs, Eqs. (6) and (7) are projected onto the

Polynomial Chaos basis wk(n), 1� k�N using the dedicated
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scalar product (Eq. (A7)). Real and imaginary parts of the subse-
quent equations are separated. This generates 2P(Pþ 1)N nonlin-
ear (quadratic) equations, that is as many as unknowns. They can
be solved through a general nonlinear solver.

3 Application to a Finite Element Rotor Model

In this section the PC expansion approach will be applied to a
finite element (FE) model of a rotor. First, the deterministic model
is exposed and characterized. Then, the three uncertain configura-
tions considered in this study and their handling are described. In
a third part, the PC expansion method is validated through a com-
parison with MC simulations and the computation cost question is
addressed. Finally, physical meanings of results are commented.

3.1 Model and Deterministic Modal Characterization. The
considered rotor consists in a shaft modeled by seven Timoshenko
beam finite elements (four dofs per node) [18,20,21]. It is sup-
ported by two linear undamped bearings; each one is modeled by
two orthogonal springs. The rotor has three rigid discs. Elements
are located as shown in Fig. 1.

Numerical characteristics of these elements are:
Shaft: external diameter D¼ 0.01 m; Young modulus

E ¼ 2 � 1011 Pa; shear coefficient G ¼ 7:7 � 1010 Pa; density
q¼ 7800 kg.m�3; length L¼ 0.7 m; it is divided into 7 elements
with length Le¼ 0.1 m.

Discs: internal diameter Di¼ 0.01 m, density q¼ 7800 kg.m�3,
outer diameter De¼ 0.2 m for disc 1 and disc 2 and De¼ 0.15 m
for disc 3.

Bearings: stiffness in each orthogonal direction k ¼ 1 � 107

N.m�1.
Equations of the system are written in the fixed frame. Contri-

butions of each element are detailed below and detailed matrices
expressions can be found in Appendix B.

The equations of motion of the shaft can be written as:

MsT þMsRð Þ€qs þGs _qs þKsqs ¼ 0 (13)

where qs defines the vector of displacements and rotations of the
shaft. MsT and MsR are the translational and rotary mass matrices.
Gs is the gyroscopic matrix relative to the shaft, skew-symmetric
and proportional to the rotation speed X and Ks is the stiffness
matrix. Each matrix size is 32� 32.

Each rigid disc n (1 � n � 3) contributes in the following way:

MdnT þMdnRð Þ€qdb þGdn _qdn ¼ 0 (14)

where qdn defines the displacements and rotations vector of disc n.
MdnT and MdnR are the translational and rotary mass matrices. Gdn

is the gyroscopic matrix, skew-symmetric and proportional to the
rotation speed. Each matrix has size 4� 4. Finally, each bearing is
represented by a stiffness matrix Kbn (with 1 � n � 2) of size
2� 2.

Assembling the matrices of the different contributions (i.e. the
shaft, the two bearings and the three discs), one gets the complete
equation of motion of the rotor system in the case of free
vibrations:

M€qþG _qþKq ¼ 0 (15)

where q defines the vector of displacements and rotations of the
complete rotor system. M and K are, respectively, mass and stiff-
ness matrices. Mass matrix includes contributions of the shaft and
the discs while stiffness matrix includes contributions of the shaft
and the bearings. These matrices are symmetric. G is the gyro-
scopic matrix, skew-symmetric and proportional to X; it includes
the contributions of the shaft elements and the three discs. As
stated in the system description, no damping is taken into account
neither in the shaft nor in the bearings. Total size of the system is
8� 4¼ 32.

Computing eigenvalues of this system for several rotation
speeds (as mentioned in Sec. 2, Eq. (3)), the classical Campbell
diagram is built and displayed in Fig. 2.

As depicted on this graphic, one will focus on the first three dou-
ble modes (denoted nF for the n-th forward whirl mode and nB for
the related n-th backward whirl mode) for frequency range [0,70]
Hz. The line x ¼ X is displayed to help the reading of critical
speeds (when an eigenvalue equals the rotation speed). The first
critical speeds in the deterministic case are then Xc1B ¼ 10:46Hz,
Xc1F¼11:98Hz, Xc2B¼23:91Hz, Xc2F¼34:12Hz, Xc3B¼ 43:54Hz
and Xc3F¼ 51:87Hz.

3.2 Uncertain Cases and Processing. In the following sec-
tion of the paper, three uncertain configurations will be tested. In
each case, uncertainties are introduced as independent real stand-
ard normal variables.

Case 1: uncertain Young modulus of the shaft. E varies with
a standard deviation equal to 6% of its mean value. This
globally impacts the stiffness matrix (see elementary matrix
Eq. (B3)) leading to NK¼ 2. 99% of the occurrences belong to
range [1:64 � 1011, 2:36 � 1011] Pa.

Case 2: uncertain density of first disc. q varies according to a
Gaussian with standard deviation equal to 10% of its initial value.
This uncertainty implies a variation of both mass and gyroscopic
matrices (see Appendix Eqs. (B5), (B6) and (B7)): NM¼ 2 and
NG¼ 2

Case 3: both shaft Young modulus and first disc density inde-
pendently with respective standard deviations equal to 4% and 3%
of their mean value. This impacts the three mass, gyroscopic and
stiffness matrices. In this case, 99% of Young modulus values
rely in [1:76 � 1011, 2:24 � 1011] Pa and 99% of first disc density
values are in range [7098, 8502] kg.m�3.

The first two cases will emphasize the ability of the proposed
method to process large dispersion ranges while the third one
reflects more realistic ranges and will test its robustness and effi-
ciency when dealing with multiple uncertain parameters.

Fig. 1 FE rotor: plan and node numbers Fig. 2 FE rotor: deterministic Campbell diagram
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In order to rebuild the Campbell diagram in the different uncer-
tain cases, eigenvalues and eigenvectors are evaluated for fifteen
rotation speeds, namely X 2 [0, 5, 10, …, 65, 70] Hz: first, the six
eigenmodes PC expansions are computed as exposed in Sec. 2.
Then, 10,000 occurrences are evaluated on the same sample of n
points, using both the projections and a reference Monte Carlo
simulation.

To deal with this great amount of data, an adaptation of the
MAC (Modal Accordance Criterion) will be exposed for analysis
of results on eigenvectors. Moreover, a way to evaluate critical
speeds dispersion and corresponding eigenvectors evolution with-
out having to do further projections will be proposed. These two
points are detailed below.

3.2.1 Eigenvectors Dispersion. The Modal Accordance Crite-
rion (MAC) and similar criteria [22] are usual tools for comparing
experimental and numerical results. As stochastic modes are
decomposed along deterministic ones, as stated in Eq. (10), a way
to characterize their dispersion is to monitor ðkÞ~cpðnÞ þ jðkÞ~lpðnÞ



 

,
that is the contribution of deterministic mode p to stochastic mode
k. This monitoring is close to the one obtained with a MAC using
the scalar product defined by the mass matrix rather than the her-
mitian one. As polynomials wn are zero mean for n � 2, one has

E kð Þ~cp nð Þ þ j kð Þ~lp nð Þ


 

h i

¼ kð Þc1
p þ j kð Þl1

p




 



However, the standard deviation cannot be obtained readily
because of the modulus embracing the complex coefficients. Thus
it is rebuilt using evaluation of the coefficients on a large sample
(10,000 occurrences). Results are presented as for a MAC, by dis-
playing mean and standard deviation of deterministic modes con-
tributions for each stochastic mode studied.

Stochastic modes are placed along abscissa while contributions
of some deterministic modes are plotted along y axis. As consider-
ing every deterministic mode may not be relevant (high frequency
modes do not mix with low frequency ones), the resulting
graphics will focus on the contributions of the first twelve deter-

ministic modes and their complex conjugates which are also
eigenmodes. These quantities will be ordered as shown by Fig. 3.

3.2.2 Critical Speeds. To find the critical speed for mode n,
one has to solve xnðXÞ ¼ X. As the evolution of the eigenvalues
with X is almost linear for these first modes, it seems fair enough
to interpolate xn(X) by using a quadratic polynomial based on
three known values. In this study, it has been chosen to interpolate
the eigenvalues using rotation speeds X¼ 5 Hz, 35 Hz and 65 Hz.
For each occurrence, and for the n-th eigenvalue, an order 2 poly-
nomial xint

n ðXÞ approximates xn(X). It is then easy to solve
xint

n ðXÞ ¼ X which has two solutions, the relevant one being the
smallest here. Finally, for each uncertain case, one gets 10,000
sets of the first six critical speeds.

To get the corresponding eigenvectors, a similar interpolation is
done on each component of each eigenvector for the same rotation
speeds X (i.e. 5 Hz, 35 Hz and 65 Hz). The approximate eigenvec-
tors are then evaluated at the corresponding critical speeds (previ-
ously determined). This lets us draw the dispersion on eigen-
shapes at critical speeds.

3.3 Approximation Performance. This section is devoted to
the validation of the method by comparing the results obtained
using PC expansions of order 1 and 2 with Monte Carlo simula-
tions in terms of error quantification and time consumption.

3.3.1 PC Approximation Error. For all the results of the three
uncertain cases studied, both eigenvalues and eigenvectors are
examined. For eigenvalues, the relative error on imaginary part x
histogram is computed for each mode and each rotation speed.
The absolute relative error formula used is:

Fig. 3 MAC-like plot arrangement

Fig. 4 Case 1: relative error on eigenvalues (%); (a) mean and (b) standard deviation;
light blue, order 1 PC and dark red, order 2 PC. Each group of values is relative to a
mode. For one mode, each bar represents a different speed X = 0, 5, . . ., 70 Hz. (Please
check the online version for color figures)

Fig. 5 Case 2: relative error on eigenvalues (%); (a) mean and
(b) standard deviation. Light blue, order 1 PC and dark red,
order 2 PC. Each group of values is relative to a mode. For one
mode, each bar represents a different speed X = 0, 5, . . ., 70 Hz.
(Please check the online version for color figures)
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exk;j
¼

xMC
k;j � xPC

k;j

xMC
k;j












� 100 (16)

where xMC
k;j denotes the k-th eigenvalue computed directly for the

j-th point nj while xPC
k;j is the one evaluated using Eq. (9) for PC

expansions of order 1 or order 2.

Fig. 6 Case 3: relative error on eigenvalues (%); (a) mean and
(b) standard deviation. Light blue, order 1 PC and dark red,
order 2 PC. Each group of values is relative to a mode. For one
mode, each bar represents a different speed X = 0, 5, . . ., 70 Hz.
(Please check the online version for color figures)

Fig. 7 Case 1: relative error on eigenvectors (%); (a) mean and
(b) standard deviation. Light blue, order 1 PC and dark red,
order 2 PC. Each group of values is relative to a mode. For one
mode, each bar represents a different speed X = 0, 5, . . ., 70 Hz.
(Please check the online version for color figures)

Fig. 8 Case 2: relative error on eigenvectors (%); (a) mean and
(b) standard deviation. Light blue, order 1 PC and dark red,
order 2 PC. Each group of values is relative to a mode. For one
mode, each bar represents a different speed X = 0,5, . . ., 70 Hz.
(Please check the online version for color figures)

Fig. 9 Case 3: relative error on eigenvectors (%); (a) mean and
(b) standard deviation; light blue, order 1 PC and dark red, order
2 PC. Each group of values is relative to a mode. For one mode,
each bar represents a different speed X = 0,5, . . ., 70 Hz. (Please
check the online version for color figures)

Table 1 Computation times (cpu s) for Polynomial Chaos
approximation of order 1 and 2 and Monte Carlo simulations
(MC)

Case Order 1 PC Order 2 PC MC
tfitþ tshoot = ttot tfitþ tshoot = ttot

1 5þ 3 = 8 10þ 3 = 13 467
2 5þ 3 = 8 12þ 3 = 15 462
3 13þ 3 = 16 82þ 3 = 85 476

Table 2 Number of polynomials involved (N) and system size
for case 1 and case 2

Order 1 PC Order 2 PC
approximation approximation

N 2 3
Syst. size 260 390

Fig. 10 Stochastic Campbell diagrams for (a) case 1, (b) case 2
and (c) case 3; (x.1): histograms, colorbar indicates the number
of occurrences; (x.2): mean value (—) and mean value
63 3 standard deviation (light blue patch) (Please check the
online version for color figures)
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Comparing eigenvectors is a little bit more difficult as they are
not scalar quantities; one then has to define a way to sum up the
information, and as they may not be all in phase: given no excita-

tion, pairs of backward and forward modes eigenvectors are
orthogonal but they may define different orthogonal planes for
t¼ 0 for example. To overcome this problem, for each mode

Fig. 11 Critical speeds dispersion: number of occurrences versus critical speed value (Hz) for (a) case 1, (b)
case 2 and (c) case 3
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occurrence uPC
k;j (k-th mode for j-th realization set nj using PC for-

mula Eq. (12)), the component l with maximum amplitude is used
to computed an angle h:

h ¼ tan�1
Im uPC

k;j;l

� 	
Re uPC

k;j;l

� 	
0
@

1
A (17)

This angle is used to rotate uPC
k;j by multiplying it by cos(�h)þ j

sin(�h). Then the same l component is used to compute the
angle h0 for the equivalent eigenvector obtained during the Monte
Carlo simulation uMC

k;j . This eigenvector is also rotated with �h0

angle in the complex plane. Finally components relative to trans-
lational dofs, l 2 T , and rotational dofs, l 2 R, are separated to
get the following absolute relative error for the j-th realization of
mode k:

euk;j
¼ max

maxl2T uPC
k;j;l � uMC

k;j;l




 


� 	
maxl2T uMC

k;j;l




 


� 	 ;
maxl2R uPC

k;j;l � uMC
k;j;l




 


� 	
maxl2R uMC

k;j;l




 


� 	
0
B@

1
CA

� 100 (18)

Histograms representing the mean value and the standard devia-
tion of the error per mode and for each rotating speed can then be
built.

Indicators relative to eigenvalues are plotted on Figs. 4, 5
and 6. For each mode, the 15 rotation speeds (i.e. X¼ 0,5,…,
70 Hz) are used to draw a bar of the histogram representing the
mean or the standard deviation of the absolute relative error. As
one can see, the error is negligible (far less than 1%) and PC
expansion of order 2 generally gives better results than order 1 PC
expansion.

As the proposed method lets real part of eigenvalues evolve in-
dependently from the imaginary part, it has been verified that for

the studied examples the fitted real part were negligible (less than
1 � 10�12).

Figures 7 and 8 and Fig. 9 display results relative to eigenvec-
tors. These plots demonstrate a very good accordance between
Monte Carlo simulations and PC expansions with a better per-
formance observed for order 2 PC expansion than for order 1 PC
expansion.

Globally, Monte Carlo simulations and Polynomial Chaos
based results are in very good agreement for the three processed
cases which lets us conclude that the method returns very accurate
results.

3.3.2 Time Consumption. The main interest of the methodol-
ogy using the Polynomial Chaos expansion is to be faster than the
Monte Carlo simulations. Computational durations are given
in Table 1. Computations were performed on an Intel Q6700
(3 GHz) with 8 Go of RAM; being a 4 core and most of calculus
taking advantage of it, real time is approximately a fourth of the
cpu times given in the table. Durations relative to PC approxima-
tion correspond to the computation of the first six modes. The
sizes of systems solved for each mode are given in Table 2. As
can be seen in these tables, getting the PC approximation coeffi-
cients is the most consuming step of the method (variable tfit in
Table 1) while evaluating the 10,000 occurrences is really quick
(variable tshoot in Table 1). Then, it is obvious that PC coefficient
evaluation is advantageous when a great number of occurrences
has to be computed. This approach also allows the test of different
inputs as soon as they respect the decomposition form (Eq. (8))
for which PC coefficients have been computed once for all: differ-
ent configurations can then be tested with more or less dispersion
on input variables corresponding to a lesser or greater improve-
ment and cost on the fabrication stage for example. Moreover, the
fitting cost can be heavily decreased by selecting a set of deter-
ministic modes instead of all; pertinence of this selection will be
addressed in Sec. 3.4. Finally it is worth noting that the proposed
method allows fitting for the k-th mode only, k being as great as
wanted, limited only by the refinement of the model.

Fig. 12 Eigenvectors dispersion: (a) mean and (b) standard deviation of stochastic weights of deterministic modes 1 to
12 and conjugates for PC expansion of order 2 for uncertain case 1
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3.4 Physical Comments on Results. First, results on eigen-
values are exposed: stochastic Campbell diagrams and critical
speeds dispersion are drawn and commented. In a second time,

impact of uncertainty on eigenvectors is discussed using the MAC
type indicator to monitor its evolution with rotation speed and the
drawing of standard deviations of deformed shapes at critical speeds.

Fig. 14 Eigenvectors dispersion: (a) mean and (b) standard deviation of stochastic weights of deterministic modes 1 to
12 and conjugates for PC expansion of order 2 for uncertain case 3

Fig. 13 Eigenvectors dispersion: (a) mean and (b) standard deviation of stochastic weights of deterministic modes 1 to
12 and conjugates for PC expansion of order 2 for uncertain case 2

8



3.4.1 Eigenvalues Dispersion. Figure 10 exposes the stochas-
tic Campbell diagrams for the three uncertain cases. Left panes
(set 1 of Fig. 10(a), 10(b), 10(c)) represent histograms giving a

precise information about eigenvalues repartition while right
panes (set 2 of Fig. 10(a), 10(b), 10(c)) give a more synthetic
view by displaying the mean value for each mode (black line) and

Fig. 15 Critical modeshapes dispersion: — mean shape (interpolated), | mean
63 3 standard deviation at nodes; (a) case 1, (b) case 2 and (c) case 3
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a blue patch covering the mean plus or minus three times the
standard deviation which gives a good approximation of the loca-
tion of most of the occurrences.

Dispersion is important and constant with rotation speed in case
1 both for eigenvalues (set 1 of Fig. 10(a) and set 2 of 10(a)) and
critical speeds (Fig. 11(a)). This can be explained by very small
variations of mode shapes with rotation speed. As uncertainty
affects shaft stiffness, dispersion is more or less the same what-
ever the rotation speed may be.

Case 2 shows an interesting evolution of dispersion along with
rotation speed. Uncertainty being about the first disc density,
it impacts gyroscopic effects that depend on rotation speed X.
This implies that consequences of this uncertainty on eigenmodes
evolve with the rotation speed. Sets 1 and 2 of Figure 10(b)
show that it creates an obvious decrease of dispersion on mode 3B
along with an increase on mode 2F when the rotation speed
increases.

Finally, the more realistic case 3 with lower uncertainties on
inputs also presents great eigenvalue variations (sets 1 and 2 of
Fig. 10(c)), displaying up to 10 Hz between the lowest and the
highest evaluated critical speed for the third forward mode
(Fig. 11(c)) that is up to 20% of the deterministic value. This
emphasizes the need for being able to conduct studies for uncer-
tain structure dimensioning.

This set of results points out two things: first, comparison of the
first and second cases brings to the fore that variation of the uncer-
tainty impact with respect to rotation speed highly differs depend-
ing on the uncertainty location. Different evolutions can be
observed for each studied case for eigenvalues and subsequently,
for critical speeds. Second, the third processed case shows that
slight modifications of the structure can lead to great variations of
its modal properties which are key to dimensioning. This empha-
sizes the usefulness of methods providing propagation of input
uncertainties to modal quantities and the ability of PC expansion
to do so.

3.4.2 Eigenvectors Dispersion. Figures 12, 13, and 14 expose
the MAC-like representation (detailed in Sec. 3.2.1) of eigenvec-
tors dispersion in case of a PC approximation of order 2: the first
six stochastic modes studied are compared to the first 12 deter-
ministic modes denoted 1,…,12 and their complex conjugates,
denoted �1;…; 12:. This information is given for four different
rotation speeds, X¼ 0, 20, 45, 70 Hz. Each time, Figs. 12(a),
13(a), and 14(a) refer to the mean of the stochastic indicator while
Fig. 12(b), 13(b), and 14(b) refer to its standard deviation.

Figure 15 represents the mean of deformed shapes at critical
speed (blue line) and the mean plus or minus three times the
standard deviation at each nodes.

As a general observation, one can say that for every case and
every rotation speed, the mean of the deterministic mode match-
ing the studied stochastic mode is close to 1 which is not surpris-
ing as eigenvectors are known not to vary a lot. Breaking of the
diagonal at speed X¼ 70 Hz comes from the mode crossing that
occurs between mode 2F and 3B around X¼ 67 Hz. As determin-
istic modes are ordered following their eigenfrequencies, mode 2F
switches from deterministic mode 4 to mode 5 while mode 3B
switches from deterministic mode 5 to mode 4 for X> 67 Hz.

Then, comparing case 1 and case 2 standard deviations
(Fig. 12(b) and Fig. 13(b)), one can see that it mostly involves the
underlying deterministic mode in the first case while in the second
one, the dispersion is more diffuse and spread over several deter-
ministic modes. Combining uncertainty on both shaft stiffness and
first disc density, one gets a higher dispersion on eigenvectors
(Fig. 14(b)) as several deterministic modes are involved in the sto-
chastic modes decomposition with non-negligible contributions.

Finally, many of the considered deterministic modes have a
negligible contribution to the decomposition of a given stochastic
eigenvector. This observation is in favor of the selection of a few
deterministic modes only to project stochastic eigenvectors onto,

as mentioned in Sec. 3.3. This would drastically decrease the sys-
tem size and hence the computation cost.

4 Conclusion

A method for computing stochastic eigenvalues and eigenvec-
tors has been presented. It is based on a Polynomial Chaos expan-
sion with complex weights. This method then lets real and
imaginary parts of eigenmodes evolve independently when uncer-
tainty is introduced in the system. It was applied successfully to a
finite element rotor model when considering three uncertain con-
figurations. Comparison with direct Monte Carlo simulations
showed that the proposed approach returns very accurate results
even in the case of multiple uncertain parameters and has a great
efficiency in terms of computation time. Moreover, this applica-
tion demonstrated that depending on the organ which undergoes
uncertainty, eigenmodes dispersion evolution along with rotation
speed can be very different and needs to be taken into account for
proper structure dimensioning.
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Appendix A: Hermite Multivariate Polynomials

Hermite polynomials (one dimension) can be defined using a
derivative

hn nð Þ ¼ �1ð Þnen2=2 dne�n2=2

dnn (A1)

or recursively (formula from Ref. [23, Sec. 3.2]):

h0 nð Þ ¼ 1 (A2)

dhn nð Þ
dn

¼ nhn�1 nð Þ (A3)

hn 0ð Þ ¼
0 if n is odd

�1ð Þn=2 n!

2n=2
n

2

� 	
!

if n is even

8><
>: (A4)

The general formula for multi-dimensional Hermite polynomials
is

wm ni1 ;…nin

� �
¼ �1ð Þne

1
2
nTn @ne�

1
2
nTn

@ni1 ;…@nin

(A5)

but the formula used in practice to compute the multivariate Her-
mite polynomials is the one found in Ref. [23, Chap. 3, Sec. 3.1]:
for Q random variables, the multi-variate Hermite polynomials of
order d can be expressed as:

wa ¼
YQ
i¼1

hai
nið Þ (A6)

with a¼ (a1, …, aQ)2 {0, …, d}Q such that
PQ

i¼1ai¼ d.
There are exactly

d þ Q� 1ð Þ!
d! Q� 1ð Þ!

polynomials with degree d. That is, for Q random variables, there
are N polynomials with degree less than or equal to D:
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N ¼ Dþ Qð Þ!
D!Q!

These polynomials are orthogonal with respect to the following
scalar product

hf ; gi ¼ 1ffiffiffiffiffiffi
2p
p Q

ðþ1
n1¼�1

…

ðþ1
nQ¼�1

f n1;…nQ

� �
� g n1;…nQ

� �
e�nTn=2dn1;…nQ

(A7)

Appendix B: Finite Element Rotor Matrices

Matrices are given for the following degrees of freedom
order per each node [v, w, h, w]T with v and w defining displace-
ments in y and z directions respectively and h ¼ @v=@x and
w ¼ �@w=@x defining rotations about z and y axis.

B.1 Elementary Matrices for a Shaft Beam Finite
Element. These matrices are given for one beam constituting the
shaft. The shaft matrices MsT, MsR, Gs and Ks are obtained by
assembling the elementary matrices for the seven beam elements:

Me
sT ¼

qSLe

420
�

156 0 0 �22Le 54 0 0 13Le

156 22Le 0 0 54 �13Le 0

4L2
e 0 0 13Le �3L2

e 0

4L2
e �13Le 0 0 �3L2

e

156 0 0 22Le

156 �22Le 0

Sym: 4L2
e 0

4L2
e

2
666666666666664

3
777777777777775

(B1)

Me
sR ¼

qI

30Le
�

36 0 0 �3Le �36 0 0 �3Le

36 3Le 0 0 �36 3Le 0

4L2
e 0 0 �3Le �L2

e 0

4L2
e 3Le 0 0 �L2

e

36 0 0 3Le

36 �3Le 0

Sym: 4L2
e 0

4L2
e

2
666666666666664

3
777777777777775

(B2)

Ke
5 ¼

EI

ð1þ bÞL3
e

�

12 0 0 �6Le �12 0 0 �6Le

12 6Le 0 0 �12 6Le 0

ð4þ bÞL2
e 0 0 �6Le ð2� bÞL2

e 0

ð4þ bÞL2
e 6Le 0 0 ð2� bÞL2

e

12 0 0 6Le

12 �6Le 0

sym: ð4þ bÞL2
e 0

ð4þ bÞL2
e

2
666666666666664

3
777777777777775

(B3)

where S is the area of the cross section, I is the second moment of area about any axis perpendicular to the rotor axis and b is the shear
modulus b¼ 12EI/(GSrLe

2), Sr being the reduced area of the cross section.

Ge
s ¼

qIX
15Le

�

0 �36 �3Le 0 0 36 �3Le 0

0 0 �3Le �36 0 0 �3Le

0 �4L2
e �3Le 0 0 L2

e

0 0 �3Le �L2
e 0

0 �36 3Le 0

0 0 3Le

skew� sym: 0 �4L2
e

0

2
666666666666664

3
777777777777775

(B4)
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B.2 Matrices for Disc n.

MdnT ¼

mdn 0 0 0

0 mdn 0 0

0 0 0 0

0 0 0 0

2
664

3
775 (B5)

MdnR ¼

0 0 0 0

0 0 0 0

0 0 Id
dn 0

0 0 0 Id
dn

2
664

3
775 (B6)

Gdn ¼ X

0 0 0 0

0 0 0 0

0 0 0 �Ip
dn

0 0 Ip
dn 0

2
664

3
775 (B7)

where mdn denotes the mass of the n-th disc while Ip
dn and Id

dn
define its polar moments of inertia about the rotor axis and about
any axis perpendicular to the rotor axis, respectively.

B.3 Stiffness Matrix for Bearing n.

Kbn ¼

k 0 0 0

0 k 0 0

0 0 0 0

0 0 0 0

2
664

3
775 (B8)
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