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We introduce two novel procedures to test the nullity of the slope function in the functional linear model with real output. The test statistics combine multiple testing ideas and random projections of the input data through functional Principal Component Analysis. Interestingly, the procedures are completely datadriven and do not require any prior knowledge on the smoothness of the slope nor on the smoothness of the covariate functions. The levels and powers against local alternatives are assessed in a nonasymptotic setting. This allows us to prove that these procedures are minimax adaptive (up to an unavoidable log log n multiplicative term) to the unknown regularity of the slope. As a side result, the minimax separation distances of the slope are derived for a large range of regularity classes. A numerical study illustrates these theoretical results.

Introduction

Consider the following functional linear regression model where the scalar response Y is related to a square integrable random function X(.) through Y = ω + T X(t)θ(t)dt + .

(1)

Here, ω is a constant, denoting the intercept of the model, T is the domain of X(.), θ(.) is an unknown function representing the slope function, and is a centered random noise variable. In functional linear regression, much interest focuses on the nonparametric estimation of θ(.) in (1), given an i.i.d. sample (X i , Y i , ) 1≤i≤n of (X, Y ). Testing whether θ belongs to a given finite dimensional linear subspace V is a question that arises in different problems such as dimension reduction, goodness-of-fit analysis, or lack-of-effect tests of a functional variable. If the properties of estimators of θ are widely discussed in the literature, there is still a great need to have generic test procedures supported by strong theoretical properties. This is the problem addressed in the present paper.

Let us reformulate the functional model (1) as a generic linear regression model in an infinite dimensional space. The random function X is assumed to belong to some separable Hilbert space henceforth denoted H endowed with the inner product ., . . Examples of H include L 2 ([0, 1]) or Sobolev space W m 2 ([0, 1]). For the sake of clarity, we consider that ω = 0 and that X and Y are centered. Thus, assuming that θ also belongs to H, the statistical model ( 1) is rephrased as

Y = X, θ + , (2) 
where is a centered random variable independent from X with unknown variance σ 2 . In the sequel, we note X and Y the size n vectors of i.i.d. observations X i and Y i (1 ≤ i ≤ n), while stands for the size n vector of the noise.

In essence, testing a linear hypothesis of the form "θ ∈ V" is as difficult as testing "θ = 0" when a parametric estimator of θ in V is computed. Therefore we consider the problem of testing: H 0 : "θ = 0" against H 1 : "θ = 0" given an i.i.d. sample (X, Y) from model [START_REF] Baraud | Non-asymptotic rates of testing in signal detection[END_REF]. The extension to general subspaces V is developed in the discussion section.

Most testing procedures are based on ideas that have been originally developed for the estimation of θ. We briefly review the main approaches and the corresponding results in estimation.

A first class of procedures is based on the minimization of a least-square type criterion penalized by a roughness term that assesses the "plausibility" of θ. Such approaches include smoothing spline estimators [START_REF] Cardot | Spline estimators for the functional linear model[END_REF][START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF], thresholding projection estimators [START_REF] Cardot | Thresholding projection estimators in functional linear models[END_REF], or reproducing kernel Hilbert space methods [START_REF] Yuan | A reproducing kernel hilbert space approach to functional linear regression[END_REF]. A second class of procedures is based on the functional principal components analysis (PCA) of X [START_REF] Cardot | CLT in functional linear regression models[END_REF][START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF]. It consists in estimating θ in a finite dimensional space spanned by the k first eigenfunctions of the empirical covariance operator of X. The main difference with the previous class of estimators lies in the fact that the finite dimensional space is estimated from the observations of the process X. See the survey [START_REF] Cardot | Functional linear regression[END_REF] and references therein for an overview of these two approaches.

The theoretical properties of these classes of estimators have been investigated from different viewpoints: prediction [START_REF] Cardot | Spline estimators for the functional linear model[END_REF][START_REF] Cardot | CLT in functional linear regression models[END_REF][START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF][START_REF] Yuan | A reproducing kernel hilbert space approach to functional linear regression[END_REF] (estimation of X n+1 , θ where X n+1 follows the same distribution as X), pointwise prediction [START_REF] Cai | Prediction in functional linear regression[END_REF] (estimation of x, θ for a fixed x ∈ H) or the inverse problem [START_REF] Comte | Adaptive estimation in circular functional linear models[END_REF][START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF] (estimation of θ). For these three objectives, optimal rates of convergence have been derived and some of the aforementioned procedures have been shown to asymptotically achieve this rate [START_REF] Cai | Prediction in functional linear regression[END_REF][START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF][START_REF] Yuan | A reproducing kernel hilbert space approach to functional linear regression[END_REF][START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF]. Recently, some non-asymptotic results have emerged [START_REF] Comte | Adaptive estimation in circular functional linear models[END_REF][START_REF] Comte | Adaptive functional linear regression[END_REF] for estimation procedures that rely on a prescribed basis of functions (e.g. splines). Most of these estimation procedures rely on tuning parameters whose optimal value depend on quantities such as the noise variance, or the smoothness of θ. In fact, there is a longstanding gap in the literature between theory, where the variance σ 2 , the smoothness of θ and the smoothness of the covariance operator of X are generally assumed to be known, and practice where they are unknown.

The literature on tests in the functional linear model is scarce. In [START_REF] Cardot | Testing hypotheses in the functional linear model[END_REF], Cardot et al. introduced a test statistic based on the k first components of the functional PCA of X. Its limiting distribution is derived under H 0 and the power of the corresponding test is proved to converge to one under H 1 . The main drawback of the procedure is that the number k of components involved in the statistic has to be set. As for estimation, setting k is arguably a difficult problem. To bypass this calibration issue, one may apply a permutation approach [START_REF] Cardot | Testing for no effect in functional linear regression models, some computational approaches[END_REF] or use bootstrap methodologies [START_REF] Cuevas | On the bootstrap methodology for functional data[END_REF][START_REF] González-Manteiga | Bootstrap in functional linear regression[END_REF]. While the levels of the corresponding tests are asymptotically controlled, there is again no theoretical guarantee on the power.

In this paper, our objective is to introduce automatic testing procedures whose powers are optimal from a nonasymptotic viewpoint.

As a first step, we introduce in Section 3 Fisher-type non-adaptive tests, T α,k , corresponding to projections of Y on the k first principal components of X. We study their levels and powers in Sections 3 and 4. Under moment assumptions on and mild assumptions on the covariance of X, the level is smaller than α up to a log -1 (n) additional term, and a sharp control of the power is provided. Such results are comparable to state of the art results in nonparametric regression [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF][START_REF] Spokoiny | Adaptative hypothesis testing using wavelets[END_REF]. In our setting, the main difficulty in the proof is to control the randomness of the principal components of X. The arguments rely on the perturbation theory of operators. While other estimation or testing procedures based on the Karhunen-Loève expansion have only been analyzed in an asymptotic setting [START_REF] Cai | Prediction in functional linear regression[END_REF][START_REF] Cardot | Testing hypotheses in the functional linear model[END_REF][START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF], our nonasymptotic results rely on less restrictive assumptions on X than those commonly used in the literature. In Section 4, we assess the optimality of the parametric test T α,k in the minimax sense. The notion of minimaxity of a level-α test T α is related to the separation distance of T α over some class of functions Θ (e.g. a Sobolev ball). Intuitively, the power of a reasonable test T α should be large when the norm of θ is large while the power of T α is close to α when θ is close to 0. For the problem of testing H 0 : "θ = 0" against H 1,Θ : "θ ∈ Θ \ {0}", the separation distance corresponds to the smallest distance ρ such that T α rejects H 0 with probability larger than 1β for all θ ∈ Θ whose norm is larger than ρ. The smaller the separation distance, the more powerful the test T α is. The minimax separation distance over Θ is the smallest separation distance that is achieved by a level-α test. A test achieving this minimax separation distance is said to be minimax over Θ. and minimax separation distances are formalized in Section 4.2. In the nonparametric regression setting, minimax separation distances have been derived in an asymptotic [START_REF] Ingster | Asymptotically minimax hypothesis testing for nonparametric alternatives I[END_REF][START_REF] Ingster | Asymptotically minimax hypothesis testing for nonparametric alternatives II[END_REF][START_REF] Ingster | Asymptotically minimax hypothesis testing for nonparametric alternatives III[END_REF] and a nonasymptotic [START_REF] Baraud | Non-asymptotic rates of testing in signal detection[END_REF] setting. In this paper, the separation distances of our testing procedures are nonasymptotically controlled. We derive minimax separation distance in the functional model [START_REF] Baraud | Non-asymptotic rates of testing in signal detection[END_REF] for a wide class of ellipsoids. We show that the parametric test T α,k achieves the optimal rate of detection when the dimension k is suitably chosen.

In practice, the regularity of θ is unknown. However, the choice of k in T α,k depends on unknown quantities such as the regularity of X or the regularity of θ. Thus, assuming a priori that the function θ belongs to a particular smoothness class Θ and building an optimal test over Θ may lead to poor performances, for instance if θ / ∈ Θ. For this reason, a more ambitious issue is to build a minimax adaptive testing procedure, that is a procedure which is simultaneously minimax for a wide range of regularity classes Θ. Minimax adaptive testing procedures have already been studied in the nonparametric regression setting, from an asymptotic [START_REF] Spokoiny | Adaptative hypothesis testing using wavelets[END_REF] and a nonasymptotic [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF] viewpoint. As a second step, we combine the parametric tests T α,k with multiple testing techniques in the spirit of [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF]. Two such multiple testing procedures are introduced in Section 5. They are completely data-driven: no tuning parameters are required, whose optimal values depend on θ, the distribution of X or on σ. Their levels and powers are analyzed from a nonasymptotic viewpoint in Sections 5 and 6. We prove that our mulitiple testing procedures are simultaneously minimax over the class of ellipsoids aforementioned(up to an unavoidable log log n factor). As in the estimation setting [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF], the minimax separation distances involve the common regularity of θ and X.

The two multiple testing procedures are illustrated and compared by simulations in Section 7. Extensions of the approach are discussed in Section 8. Section 9 contains the main proofs while the lemmas involving perturbation theory are given in Section 10. All the technical and side results are postponed to appendices.

Preliminaries

Notations

We remind that ., . and . respectively refer to the inner product and the corresponding norm in the Hilbert H. In contrast, ., . n and . n stand for the inner product and the Euclidean norm in R n . Furthermore, ⊗ refers to the tensor product. We assume henceforth that X is centered and has a second moment that is E[ X 2 ] < ∞. The covariance operator of X is defined as the linear operator Γ defined on H as follows:

Γh = E[X ⊗ Xh] = E[ h, X X] , h ∈ H .
It is well known that Γ is a symmetric, positive trace-class hence Hilbert-Schmidt operator, which implies that Γ is diagonalizable in an orthonormal basis. We denote (λ j ) j≥1 the non-increasing sequence of eigenvalues of Γ, while the sequence (V j ) j≥1 stands for a corresponding sequence of eigenfunctions. It follows that Γ decomposes as Γ =

∞ j=1 λ j V j ⊗V j . For any integer k ≥ 1, we note Γ k = k j=1 λ j V j ⊗ V j the operator such that Γ k h = Γh for h ∈ Vect(V 1 , . . . , V k ) and Γ k h = 0 if h ∈ (V 1 , . . . , V k ) ⊥ .
In the sequel, C, C 1 ,. . . denote positive universal constants that may vary from line to line. The notation C(.) specifies the dependency on some quantities.

Karhunen-Loève expansion and functional PCA

We recall here a classical tool of functional data analysis : the Karhunen-Loève expansion, denoted KL expansion in the sequel. Definition 2.1. There exists an expansion of X in the basis (V j ) j≥1 : X = X, V j V j . The real random variables X, V j are centered (when X is centered), uncorrelated, and with variance λ j . As a consequence, there exists a collection (η (j) ) j≥1 of random variables that are centered, uncorrelated, and with unit variance such that

X = +∞ j=1 λ j η (j) V j . ( 3 
)
The decomposition is called the KL-expansion of X.

The eigenfunction V j is the j-th principal direction whose amount of variance coincides with λ j . When X is a Gaussian process, the η (j) j∈N form an i.i.d sequence with η (1) ∼ N (0, 1). If the eigenfunctions (V j ) and the eigenvalues (λ j ) are unknown in practice, they can be estimated from the data using functional principal component analysis. In the sequel, we note Γ n the empirical covariance operator defined by

Γ n h = 1 n n i=1 X i ⊗ X i h = 1 n n i=1 X i , h X i , h ∈ H .
Functional PCA allows to estimate (λ j , V j ), j ≥ 1 by diagonalizing the empirical covariance operator Γ n . These empirical counterparts of (λ j , V j ) are denoted ( λ j , V j ) in the sequel.

Functional PCA is usually applied as a dimension reduction technique. One of its appealing features relies on its ability to capture most of the variance of X by a kdimensional projection on the space Vect( V 1 , . . . , V k ). For this reason, PCA is at the core of many procedures for functional data. After the seminal paper by Dauxois et al. [START_REF] Dauxois | Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference[END_REF], the convergence of the random eigenelements ( λ j , V j ) has been assessed from an asymptotic point of view [START_REF] Hall | On properties of functional principal components analysis[END_REF][START_REF] Hall | Theory for high-order bounds in functional principal components analysis[END_REF][START_REF] Hall | Assessing extrema of empirical principal component functions[END_REF][START_REF] Mas | Perturbation approach applied to the asymptotic study of random operators[END_REF]. One issue with such a dimension reduction method is the choice of the tuning parameter k, whose optimal value usually depends on unknown quantities. Besides plugging the ( λ j , V j ) into linear estimates creates non-linearity and usually introduces stochastic dependence.

Parametric test

Definition

In the sequel, k denotes a positive integer smaller than n/2. As a first step, we consider the parametric testing problem of the hypotheses:

H 0 : "θ = 0" against H 1,k : "θ ∈ Vect[(V j ) j=1,...,k ] \ {0}" . (4) 
Given a dimension k of the Karhunen-Loève expansion, we note kKL as k ∧ Rank( Γ n ).

In order to introduce the parametric statistic, let us restate the functional linear model into a finite dimensional linear model. We consider the response vector Y of size n, the n × kKL design matrix W defined by W i,j = X i , V j for i = 1, . . . n, j = 1, . . . kKL , the parameter vector ϑ defined by ϑ j = θ, V j , j = 1, . . . kKL , and the size n noise vector ˜ defined by ˜

i = i + X i , θ -[Wϑ] i .
The functional linear model is equivalently written as

Y = Wϑ + ˜ .
Intuitively, testing "ϑ = 0" is a reasonable proxy for testing H 0 against H 1,k . For this reason, we propose a Fisher-type statistic.

Definition 3.1. In the sequel, Π k stands for the orthogonal projection in R n onto the space generated by the kKL columns of W. For any k ≤ n/2, we consider the statistic φ k (Y, X) defined by

φ k (Y, X) := Π k Y 2 n Y -Π k Y 2 n /(n -kKL ) . (5) 
The main difference with a classical Fisher statistic comes from the fact that the projection Π k is random. This projector is built using the kKL first directions ( V 1 , V 2 , . . . , V kKL ) of the empirical Karhunen-Loève expansion of X. Let us call Π k the orthogonal projector in R n onto the space spanned by ( X i , V j ) i=1,...n , j = 1, . . . , k. If we knew the basis (V j ), j ≥ 1 in advance, we would use this orthogonal projector instead of Π k . We shall prove that, under H 0 , φ k (Y, X)/ kKL behaves like a Fisher distribution with ( kKL , n -kKL ) degrees of freedom. Definition 3.2 (Parametric tests). Fix α ∈ (0, 1) We reject H 0 against H 1,k when the statistic

T α,k := φ k (Y, X) -kKL F-1 kKL ,n-kKL (α) . (6) 
is positive.

Remark 3.1 (Other interpretations of φ k (Y, X)). Consider θ k the least-squares estima- tor of θ in the space generated by V j , j = 1, . . . , kKL . It is proved in Section 9.2 that Π k Y 2 n = Γ 1/2 n θ k 2 .
Thus, the numerator of (5) corresponds to some norm of θ k . Intuitively, the larger θ k , the larger the statistic φ k (Y, X) is. Furthermore, Π k Y 2 n also expresses as the numerator of the statistic D n considered in Cardot et al. [START_REF] Cardot | Testing hypotheses in the functional linear model[END_REF] (see Section 9.2 for details). Remark 3.2. From the considerations above, we see that the transformed parameter Γ 1/2 θ naturally occurs in the definition of φ k (Y, X). In fact, hypotheses H 0 and H 1,k remain unchanged, if we replace θ by Γ 1/2 θ in (4) as soon as Γ is injective. The crucial role of this synthetic parameter is underlined in [START_REF] Meister | Asymptotic equivalence of functional linear regression and a white noise inverse problem[END_REF] where the functional linear regression model is proved to be asymptotically equivalent to a white noise model with signal Γ 1/2 θ.

Size

We study the type I error of the parametric tests T α,k . On one hand, we control exactly the size of the tests when the noise is normally distributed. On the other hand, we bound the size of the tests when the noise is only constrained to admit a fourth moment.

Gaussian noise

A.1 follows a Gaussian distribution N (0, σ 2 ) .

Proposition 3.3 (Size of T α,k under Gaussian errors). Under Assumption A.1 and if k ≤ n/2, we have for any n ≥ 2, P 0 (T α,k > 0) = α.

Observe that this control does not require any assumption on the process X.

Non-Gaussian noise

In this part, the noise is only assumed to admit a fourth order moment, but we perform additional assumptions on X and k.

B.1

sup j≥1 E[(η (j) ) 4 ] ≤ C 1 and E 4 σ 4 ≤ C 2 ,
where C 1 and C 2 are two positive constants.

B.2 For some γ > 0, jλ j ((log 1+γ j) ∨ 1) j≥1 is decreasing and KerΓ = {0} .

B.3 k ≤ n 1/4 / log 4 (n) .
Assumption B.1 is classical, since we need to control second order moments for the empirical covariance operator Γ n . This comes down to inspecting the behavior of the fourth order moments of the η (j) 's. The second part of B.2 ensures that the framework is truly functional. The first part of B.2 is mild and holds for an X that may have very irregular paths (it holds for the Brownian motion for which λ j ∝ j -2 ) and for classical examples of eigenvalue sequences: with polynomial decay, exponential decay, or even Laurent sequences such as λ j = j -δ • log -ν (j) for δ > 1 and ν ≥ 0. In fact, B.2 is less restrictive than assumptions commonly used in the literature [START_REF] Cai | Prediction in functional linear regression[END_REF][START_REF] Cardot | Testing hypotheses in the functional linear model[END_REF][START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF] since it does not require any spacing control between the eigenvalues. The restriction B.3 on the dimension of the projection is classical for the analysis of statistical procedures based on the Karhunen-Loève expansion. If we knew the eigenfunctions V k of Γ in advance, we could consider larger dimensions k. The estimation of the eigenfunctions V k becomes more difficult when k increases. By considering dimensions k that satisfy Assumption B.3, we prove in the next theorem that the random projector Π k concentrates well around its mean. It may be noticed that this assumption links k and n independently from the eigenvalues hence from any prior knowledge on the data. Theorem 3.4 (Size of T α,k ). Under Assumptions B.1 -3, there exist positive constants C(α, γ) and C 2 such that the following holds. For any n ≥ C 2 , we have

P 0 [T α,k > 0] ≤ α + C(α, γ) log(n) .
Remark 3.3. In the proof of Theorem 3.4, we show that, under H 0 , the distribution of φ k (Y, X) is close to a χ 2 distribution with k degrees of freedom. The arguments rely on perturbation theory for random operators (see Section 10).

Power and minimaxity of T α,k

Intuitively, the larger the signal-to-noise ratio E X, θ 2 /σ 2 = Γ 1/2 θ 2 /σ 2 is, the easier we can reject H 0 . For this reason, we study how large Γ 1/2 θ 2 has to be, so that the test T α,k rejects H 0 with probability larger than 1β for a prescribed positive number β. We provide such type II errors under moment assumption of . Additional controls of the power when follows a Normal distribution are stated in Appendix A. 

(T α,k > 0) ≥ 1 -β for any θ satisfying Γ 1/2 θ 2 ≥ C 1 (Γ 1/2 -Γ 1/2 k )θ 2 + C 2 σ 2 n k log 1 αβ + log 1 αβ . ( 7 
)
Remark 4.1. If we knew that θ belongs to the space spanned by the k first eigenvectors (V 1 , . . . , V k ) and if we knew these k eigenvectors in advance, then we could consider the statistic defined by

φ k (X, Y) := Π k Y 2 n Y -Π k Y 2 n -F-1 k,n-k (α) ,
where Π k is the projection in R n onto the space spanned by ( X i , V j ) i=1,...n , j = 1, . . . , k.

The corresponding test is optimal in the minimax sense and rejects H 0 with probability larger than 1β when

Γ 1/2 θ 2 ≥ C(α, β) √ kσ 2 /n . (8) 
See [START_REF] Verzelen | Goodness-of-fit tests for high-dimensional Gaussian linear models[END_REF] for a proof when X is a Gaussian process and follows a Gaussian distribution, the extension to non Gaussian processes being straightforward. In [START_REF] Cardot | Spline estimators for the functional linear model[END_REF], we recover an additional term (Γ 1/2 -Γ 1/2 k )θ 2 because we do not assume that θ belongs to the space spanned by (V 1 , . . . , V k ). The statistic φ k (Y, X) only captures the projection of θ onto span(V 1 , . . . , V k ). In fact, the test T α,k rejects with large probability when

Γ 1/2 k θ 2 = Γ 1/2 θ 2 -(Γ 1/2 -Γ 1/2 k )θ 2 is large.
Remark 4.2 (Joint regularity of Γ and θ). Looking more precisely at the bias term, we obtain

(Γ 1/2 -Γ 1/2 k )θ 2 = ∞ j=k+1 λ j θ, V j 2 .
Consequently, the bias term does not only depend on the rate of convergence of the eigenvalues of Γ, it also depends on the behavior of the sequence λ j θ, V j 2 . In other words, the joint regularity of the covariance operator Γ and of θ (in the expansion of (V j ), j ≥ 1) plays a role in the bias term. For a fixed θ, the power of T α,k is large for a tuning parameter k that achieves a trade-off between the bias term (Γ 1/2 -Γ 1/2 k )θ 2 and a variance term √ kσ 2 /n.

Minimax separation distance over an ellipsoid

In this section, we assess the optimality of the procedure T α,k . To this end, we study the optimal power of a level-α test, when θ is assumed to have a known regularity.

Definition 4.2 (Ellipsoids). Given a non increasing sequence (a i ) i≥1 and a positive number R > 0, we define the ellipsoid E a (R) by

E a (R) := θ ∈ H : +∞ k=1 θ, V k 2 a 2 k ≤ R 2 σ 2 .
The ellipsoid E a (R) contains all the elements θ ∈ H that have a given regularity in the basis (V k ), k ≥ 1. In other words, it prescribes the rate of convergence of θ, V k towards 0. The faster a k goes to zero, the more regular θ is assumed to be.

We take some positive numbers α and β such that α + β < 1. Let us consider a test T taking its values in {0, 1}. For any subset C ⊂ H × R + , β [T ; C] denotes the supremum of type II errors of the test T for all parameters (θ, σ) ∈ C:

β [T ; C] := sup (θ,σ)∈C P θ [T = 0] . The (α, β)-separation distance of an α-level test T over the ellipsoid E a (R), noted ρ[T ; E a (R)] is the minimal number ρ > 0 such that T rejects H 0 with probability larger than 1 -β for all θ ∈ E a (R) and σ > 0 such that Γ 1/2 θ 2 /σ 2 ≥ ρ 2 . Hence, ρ[T ; E a (R)] corresponds to the minimal distance such that the hypotheses {θ = 0, σ > 0} and {θ ∈ E a (R), σ > 0, Γ 1/2 θ 2 /σ 2 ≥ ρ 2 } are well separated by T . ρ[T ; E a (R)] := inf ρ > 0, β T ; θ ∈ E a (R), σ > 0, Γ 1/2 θ 2 σ 2 ≥ ρ 2 ≤ β .
By definition, T has a power larger than 1β for all θ ∈ E a (R) and σ > 0 such that

Γ 1/2 θ 2 /σ 2 ≥ ρ 2 [T, E a (R)].
Definition 4.3 (Minimax Separation distance). We consider

ρ * [α; E a (R)] := inf Tα ρ[T α ; E a (R)] , (9) 
where the infimum run over all level-α tests. This quantity is called the (α, β)-minimax separation distance over the ellipsoid E a (R).

Remark 4.3. The notion of (α, β)-minimax separation distance is a non asymptotic counterpart of the detection boundaries studied in the Gaussian sequence model [START_REF] Donoho | Higher criticism for detecting sparse heterogeneous mixtures[END_REF]. Furthermore, as the variance σ 2 is unknown, this definition of the minimax separation distance considers the power of the testing procedures for all possible values of σ 2 .

Proposition 4.4 (Minimax lower bound over an ellipsoid).

There exists a constant C(α, β) such that the following holds. Let us assume that X is a Gaussian process and that follows a Gaussian distribution. For any ellipsoid E a (R), we have

ρ * [α; E a (R)] ≥ ρ 2 a,R,n := sup k≥1 C(α, β) √ k n ∧ R 2 a 2 k λ k . ( 10 
)
In other words, for any test T α of level α, we have

β T α ; θ ∈ E a (R), σ > 0, Γ 1/2 θ 2 σ 2 ≥ ρ 2 a,R,n ≥ β .
Consequently, the (α, β) minimax-separation distance over E a (R) is lower bounded by ρ 2 a,R,n . The next proposition states the corresponding upper bound. 

k * n := inf k ≥ 1, a 2 k λ k R 2 ≤ √ k n . ( 11 
)
Assume that α ≥ e - √ n , β ≥ C(γ)/ log(n), n ≥ C 2 , and k * n ≤ n 1/4 / log 4 (n). Then, the test T α,k * n has a size smaller than α + C 3 (α, γ)/ log(n) and is minimax over E a (R): β T α,k * n ; θ ∈ E a (R), σ > 0, Γ 1/2 θ 2 σ 2 ≥ C 4 (α, β)ρ 2 a,R,n ≤ β . ( 12 
)
This corollary is a straightforward consequence of Theorem 4.1. Hence, the test T α,k * n is minimax over E a (R), that is, its (α, β)-separation distance equals (up to a multiplicative constant) the (α, β) minimax separation distance. Interestingly, the upper bound [START_REF] Comte | Adaptive estimation in circular functional linear models[END_REF] does not require the error to be normally distributed.

Remark 4.4. As a consequence, the (α, β)-minimax separation distance over E a (R) is of order

ρ 2 a,R,n := sup k≥1 C(α, β) √ k n ∧ R 2 a 2 k λ k .
It depends on the behavior of the non-increasing sequence (λ k a 2 k ), where the sequence of eigenvalues (λ k ) prescribes the "regularity" of the process X and the sequence (a k ) prescribes the regularity of θ. In order to grasp the quantity ρ 2 a,R,n , let us specify some examples of sequences λ k a 2 k : Corollary 4.6. Polynomial decay. If λ k a 2 k = k -s with s > 7/2, then the (α, β)minimax separation is of order R 2/(1+2s) n -2s/(1+2s) . This rate is achieved by the test

T α,k with k (R 2 n) 2/(1+2s) . Exponential decay. If λ k a 2 k = e -sk with s > 0, then the (α, β)-separation distance of T (1) α over E a (R) is of order √ log(n) √
sn . This rate is achieved by the test T α,k with k log(n)/s. Remark 4.5. The condition s > 7/2 in the polynomial regime arises because of Assumption B.3 (k ≤ n 1/4 / log 4 (n)). This restriction is related to the difficulty to reliably estimate the eigenvalues λ k and eigenfunctions V k when k is large (see Lemma 9.7 and its proof ). If the process X and the function θ are less regular (s < 7/2), our theory only allows us to take k = n 1/4 / log 4 (n) in T α,k which leads to a rate of testing of order (up to log terms) n -s/4 R 2 while the minimax lower bound is of order R 2/(1+2s) n -2s/(1+2s) . Note that similar restrictions also occur in state-of-the-art results for estimation. For instance, Condition (3.3) in Hall and Horowitz [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF] amounts to s > 3.

In conclusion, T α,k achieves the optimal rate of detection when k is suitably chosen. However, the choice of k depends on unknown quantities such as the regularity of X or the regularity of θ. Taking k too small does not allow to detect non-zero θ such that the bias (Γ 7) is too large. In contrast, taking k too large leads to a large variance term √ k/n in [START_REF] Cardot | Spline estimators for the functional linear model[END_REF]. The best k corresponds to the trade-off between the bias term and the variance term in [START_REF] Cardot | Spline estimators for the functional linear model[END_REF]. In the following, we introduce a procedure that nearly achieves this trade-off without requiring any prior knowledge of the regularity of Γ or θ.

1/2 -Γ 1/2 k )θ 2 in (

A multiple testing procedure

Definition

In the sequel, K n stands for a "dyadic" collection of dimensions defined by

K n = {2 0 , 2 1 , 2 2 , 2 3 . . . , kn } , ( 13 
)
where kn is a power of 2 that will be fixed later. As k cannot be a priori chosen, we evaluate the statistic φ k (Y, X) for all k belonging to a collection K n . This choice of the collection K n is discussed in the next section.

Definition 5.1 (KL-Test). We reject H 0 : "θ = 0" when the statistic

T α := sup k∈Kn, k≤Rank( Γn) φ k (Y, X) -kKL F-1 kKL ,n-kKL {α Kn (X)} ( 14 
)
is positive, where the weight α Kn (X) is chosen according to one of the procedures P 1 and P 2 explained below.

P 1 : (Bonferroni) α Kn (X) is equal to α/|K n |. P 2 :
Let Z be a standard Gaussian vector of size n. We take α Kn (X) = q X,α , the α-quantile of the distribution of the random variable

inf k∈Kn FkKL ,n-kKL φ k (Z, X)/ kKL (15) 
conditionally to X.

In the sequel, T

(resp. T

α ) refers to the statistic T α , defined with Procedure P 1 (resp. P 2 ). T

α corresponds to a Bonferroni multiple testing procedure. In contrast T

(2) α handles better the dependence between the statistics φ k , by using an ad-hoc quantile q X,α . We compare these two tests in Section 5.3. This multiple testing approach has already been considered in the non-parametric fixed design regression setting [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF].

Remark 5.1. [Computation of q X,α ] Let Z be a standard Gaussian random vector of size n independent of X. As is independent of X, the distribution of (15) conditionally to X is the same as the distribution of

inf k∈Kn FkKL ,n-kKL Π k Z 2 n / kKL Z -Π k Z 2 n /(n -kKL )
conditionally to X. As a consequence, one can simulate a random variable that follows the same distribution as (15) conditionally to X. Hence, the quantile q X,α is easily worked out applying a Monte-Carlo approach.

Remark 5.2. [Choice of kn ]

In practice, we advise to take kn = 2 log 2 n -1 which lies between n/4 and n/2. This choice is supported by practical experiences and results obtained in sections 5.2 and Appendix A. Nevertheless, some of the theoretical results will require to take a slightly smaller value for kn .

Size of the tests

Proposition 5.2 (Size of T

α and T

α under Gaussian errors). Under Assumption A.1 and if kn ≤ n/2, we have for any n ≥ 2, P 0 (T (1) α > 0) ≤ α , P 0 (T (2) α > 0) = α .

If the noise follows a Gaussian distribution, the size of T

(2) α is exactly α, while the size of T [START_REF] Ash | Topics in stochastic processes[END_REF] α is smaller than α because of the Bonferroni correction. Let us now control the size of T [START_REF] Ash | Topics in stochastic processes[END_REF] α assuming that admit a finite fourth moment.

B .3 kn ≤ n 1/4 / log 4 (n) .
The 

P 0 T (1) α > 0 ≤ α + C(α, γ) log(n) . 5.3. Comparison of T (1)
α and T (2) α

The test T

α is always more powerful than T

α as shown in the next proposition.

Proposition 5.4. For any parameter θ = 0, the tests T

(1) α and T

(2) α satisfy

P θ T (2) α > 0 X ≥ P θ T (1) α > 0 X X a.s. . (16) 
On one hand, the choice of Procedure P 1 is valid even for a non-Gaussian noise and avoids the computation of the quantile q X,α . On the other hand, the test

T (2)
α has a size exactly α when the error is Gaussian and is more powerful than the corresponding test with Procedure P 1 . This comparison is numerically illustrated in Section 7.

Power and adaptation of

T (1) α Since T (2)
α is always more powerful than T We prove below that this log log n term is in fact unavoidable for an adaptive procedure.

α > 0) ≥ 1 -β for any θ satisfying Γ 1/2 θ 2 ≥ inf k∈Kn C 1 (Γ 1/2 -Γ 1/2 k )θ 2 + C 2 σ 2 n k log log n αβ + log log n αβ . (17 
As for T α,k , additional controls of the power when follows a Normal distribution are stated in Appendix A. Let us now consider the power of T [START_REF] Ash | Topics in stochastic processes[END_REF] α over ellipsoids E a (R). In the sequel, . stands for the integer part, while log 2 (.) corresponds to the binary logarithm. 1. We have P θ (T

(1) α > 0) ≥ 1 -β for any θ ∈ E a (R) satisfying Γ 1/2 θ 2 σ 2 ≥ C 3 (α, β) inf k=1,2,4,..., kn λ k+1 a 2 k+1 R 2 + σ 2 n k log log n + log log n .
2. Consider k * n as in [START_REF] Cardot | Functional linear regression[END_REF].

If log log(n) ≤ k * n ≤ kn , then P θ (T (1) 
α > 0) ≥ 1 -β for any θ ∈ E a (R) satisfying Γ 1/2 θ 2 σ 2 ≥ C 4 (α, β) log log nρ 2 a,R,n ,
where ρ a,R,n is defined in [START_REF] Cardot | CLT in functional linear regression models[END_REF] This is a direct consequence of Theorem 4.1.

Remark 6.2. If we compare Corollary 6.2 with the minimax lower bound of Proposition 4.4, we observe that the separation distance only matches up to a factor of order √ log log n. As a consequence, T α,k is almost minimax over all ellipsoids E a (R) satisfying log log(n) ≤ k * n ≤ kn . Next, we prove that this log log(n) term loss is unavoidable when the ellipsoid E a (R) is unknown.

Proposition 6.3 (Minimax lower bounds over a collection of nested ellipsoids).

There exists a positive constant C(α, β) such that the following holds. Let us assume that X is a Gaussian process, that the noise follows a Gaussian distribution, and that the rank of Γ is infinite. For any ellipsoid E a (R), we set

ρ2 a,R,n := sup k≥1 C(α, β) log log(k ∨ 3) √ k n ∧ R 2 a 2 k λ k .
For any non increasing sequence (a k ) k≥1 and any test T of level α, we have

β T ; R>0 θ ∈ E a (R), σ > 0, Γ 1/2 θ 2 σ 2 ≥ ρ2 a,R,n ≥ β .
As a consequence, there is a √ log log n price to pay if we simultaneously consider a nested collection of ellipsoids. Such impossibility for perfect adaptation has already been observed for the testing problem in the classical nonparametric regression framework [START_REF] Spokoiny | Adaptative hypothesis testing using wavelets[END_REF]. Remark 6.3. In order to compare the lower and upper bounds of Proposition 6.3 and Corollary 6.2, let us specify the sequence λ k a 2 k :

• Polynomial decay. If λ k a 2 k = k -s , then the (α, β)-separation distance of T (1) α over E a (R) is of order R 2/(1+2s) log log(n) n 2s/(1+2s)
, for s > 7/2. By Proposition 6.3, this rate is optimal for adaptation.

• Exponential decay. If λ k a 2 k = e -sk , then the (α, β)-separation distance of T (1) α over E a (R) is of order log(n) log log(n) √ sn ,
for any s > 0. By Proposition 6.3, this rate is almost optimal for adaptation (up to a log log(n)/ log log log n term).

In conclusion, the procedure T

(1) α is adaptive to the unknown regularity of θ, to the unknown regularity of the eigenvalues (λ k ) k≥1 and to the unknown noise variance σ 2 . Interestingly, the minimax rate of testing depends on the decay of the non-increasing sequence (λ k a 2 k ) k≥1 .

7. Simulations

Experiments

Setting. The performances of the procedures T

(1) α and T

(2) α are illustrated for various choices of the function θ. In all experiments, the noise follows a standard Gaussian distribution with unit variance, while the process X is a Brownian motion defined on [0, 1]. The eigenfunctions and eigenvalues of the covariance operator of the Brownian motion have been computed in Ash & Gardner [START_REF] Ash | Topics in stochastic processes[END_REF]:

λ j = 1 (j -0.5) 2 π 2 and V j (t) = √ 2 sin (j -0.5)πt , t ∈ [0, 1] , j = 1, 2, . . .
In practice X(t) has been simulated using a truncated version of the Karhunen Loève expansion 100 j=1 λ j η (j) V j (t), where the η (j) j∈N form an i.i.d. sequence of standard normal variables. The function X(t) is observed on 1000 evenly spaced points in [0, 1].

Testing procedure. For each experiment, we perform the tests T

(1) α

(procedure P 1 ) and T

(2) α (procedure P 2 ) with kn = 2 log 2 n-1 . The quantile q X,α involved in P 2 is computed by Monte Carlo simulations. For each experiment, we use 1000 random simulations to estimate this quantile.

Choice of θ.

1. In the first experiment, we fix θ = 0 as a way to evaluate the sizes of the testing procedures. 2. In the second experiment, we build directly the function θ in the KL basis of X.

The set Θ KL is made of all the functions θ B,ξ with B > 0, ξ > 0, and

θ B,ξ (t) := B +∞ k=1 k -2ξ-1 100 j=1 j -ξ-0.5 V j (t) , ( 18 
)
where ξ is a smoothness parameter. Observe that B stands for the l 2 norm of the function θ B,ξ . As shown on Figure 1, the smoothness of θ B,ξ ∈ Θ KL increases with ξ. For this experiment, we have an explicit expression of the joint regularity of θ and Γ:

(Γ 1/2 -Γ 1/2 k )θ 2 = B 2 π 2 +∞ l=1 l -2ξ-1 100 j=k+1 (j -0.5) -2 j -2ξ-1 .
In practice, we fix ξ = 0.1, 0.5, 1 and B = 0.1, 0.5, 1. 3. In the third experiment, we consider the set Θ G of functions

θ B,τ (t) = B exp - (t -0.5) 2 2τ 2 1 0 exp - (x -0.5) 2 τ 2 dx -1/2
, with B > 0 and τ > 0. Here, B stands for the l 2 norm of θ B,τ and τ is a smoothness parameter. In fact, θ B,τ (t) corresponds (up to a constant) to the density of a normal variable with mean 0.5 and variance τ 2 . As τ decreases to 0, θ B,τ converges to a Dirac function centered on 0.5. In practice, we fix τ = 0.01, 0.02, 0.05 and B = 0.5, 1, 2.

Number of experiments.

We have set n = 100 and n = 500. For each set of parameters (n, B, ξ) or (n, B, τ ), 10 000 trials were run to estimate the percentages of rejection of H 0 (ie. the percentages of positive values of T

(1) α and T

(2) α with α = 5%), along with their 95% confidence intervals.

Results

The two procedures P 1 and P 2 have been implemented in R [START_REF]R: A Language and Environment for Statistical Computing[END_REF] on a 3 GHz Intel Xeon processor, with a 4000KB cache size and 8GB total physical memory. First setting. The percentages of rejection of T

(1) α and T

(2) α under H 0 with n = 100 and n = 500 are provided in Table 1. As expected, the size of T Second setting. Tables 2 and3 depict the results for θ ∈ Θ KL with n = 100 and n = 500 respectively. As expected, the power of the procedures is increasing with B as θ becomes larger. Furthermore, the power also increases with ξ. This corroborates the rates stated in Section 6, since the function θ B,ξ becomes smoother when ξ increases. In every setting the test T

(2) α with the second procedure performs better than T

α . Third setting. The results of the last experiment are provided in Tables 4 for n = 100 and 5 for n = 500. Again, the power is increasing with B, n and τ . Here, τ does not directly correspond to the rate of convergence of the sequence ( 1 0 θ B,τ V j (t)dt), j ≥ 1 as ξ does in the last example. Nevertheless, it is difficult to detect a function θ B,τ when τ decreases, that is when θ B,τ becomes close to a Dirac function.

In each setting, the test under P 2 is more powerful than the test under P 1 . Nevertheless, the procedure P 2 is slightly slower to compute as it requires the evaluations of the quantile q X,α by a Monte-Carlo method. Under P 1 , the mean computation time is 9 seconds for n = 100 and 12 seconds for n = 500. In contrast, it respectively equals 11 and 18 seconds under P 2 .

Table 2

Second simulation study: θ ∈ Θ KL , n = 100. Percentages of rejection of H 0 and 95% confidence intervals 

B = 0.1 B = 0.5 B = 1 ξ = 0.1 T (1) 

Discussion

Two multiple testing procedures of the nullity of the slope function θ have been proposed in this paper. They are completely data-driven and benefit from optimal properties assessed in a nonasymptotic setting. We address here some extensions of our results.

Although we focused on the null-hypothesis "H 0 : θ = 0", our approach easily extends to linear hypotheses H 0,V : "θ ∈ V", where V is a given finite dimensional subspace of H of dimension p < n/2. As previously, the procedure relies on parametric statistics for testing

H 0,V against H 1,k,V : "θ ∈ (Vect(V 1 , . . . , V k )+V)\V",
where k is a positive integer. We consider the n × kKL design matrix W defined by W i,j = X i , V j for i = 1, . . . n, j = 1, . . . kKL . The space generated by the kKL columns of the matrix W is denoted W kKL . Considering a basis (ξ 1 , . . . , ξ p ) of V, we define V p as the space generated by the p columns of the matrix whose (ij) th element is < X i , ξ j >. In the sequel, Π k,V stands for the orthogonal projection in R n onto V ⊥ p ∩ W kKL of dimension less or equal to kKL , while Π V stands for the orthogonal projection onto V p . Then, we consider the following parametric statistic:

φ k,V (Y, X) := Π k,V Y 2 n Y -Π k,V Y -Π V Y 2 n /[n -dim(V p + W kKL )] . (19) 
Under H 0,V , φ k,V (Y, X)/ kKL behaves like a Fisher distribution with (dim(V ⊥ p ∩W kKL ), ndim(V p + W kKL )) degrees of freedom. The proof is the same as that for φ k (Y, X). In typical situations, we have dim(

V ⊥ p ∩ W kKL ) = k and dim(V p + W kKL ) = k + p.
We reject H 0,V when the statistic

T α,V := sup k∈Kn, k≤Rank( Γn) φ k,V (Y, X) -kKL F-1 dim(V ⊥ p ∩W kKL ),n-dim(V p +W kKL ) {α Kn (X)}
is positive, where the weight α Kn (X) is chosen according to procedure P 1 (Bonferroni) or a slight variation of P 2 (Monte-Carlo). All the results stated for T

α and T

α are still valid with T α,V . The extension to affine subspaces V is also possible.

The power of T (1)

α has been analysed over the collection of ellipsoids E a (R). The considered ellipsoids describing the nonparametric alternatives are determined by the principal directions (V j ) j≥1 , which are generally unknown. In fact, for some functions θ that are well represented by a prescribed basis (as wavelet, spline or Fourier basis) and whose expansion in the eigenfunction basis decreases slowly, projecting the data onto the Karhunen-Loève expansion is not necessarily best suited. Alternatively, one can adopt a similar approach in the context of a prescribed basis (as wavelet, spline or Fourier basis) instead of the eigenfunctions basis discussed above. The size and the power of the corresponding procedures are in fact easier to derive than for a Karhunen-Loève approach as we do not have to control the randomness of the basis. We refer for instance to [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF] for such results in a fixed design regression problem. As θ is unknown, the best choice of basis (prescribed or estimated by PCA) is also unknown. A solution is to combine testing procedures based on different basis.

Main proofs

In this section, we emphasize the core of the proofs. Arguments based on perturbation theory are introduced in the next section. All the technical and side results are postponed to Appendix B-E.

Additional notations

Given any integer k < Rank(Γ), we recall that Γ k = k j=1 λ i V j ⊗ V j , where ⊗ stands for the tensor product. Similarly, Γ n,k := k j=1 λ i V j ⊗ V j denotes its empirical counterpart. For any k < Rank(Γ), we note Π k the orthogonal projection in H onto the space spanned by V j , j = 1, . . . , k, while Π k stands for the orthogonal projection onto the space spanned by V j , j = i, . . . , k ∧ Rank( Γ n ).

In order to translate the definition of the testing procedure into functional data analysis framework, we shall use ∆ = E( X, . Y ). We note ∆ n = n i=1 X i , . Y i /n its empirical counterpart. For any k ≤ Rank(Γ), we note

A k = k j=1 λ -1/2 j V j , . V j and A k = k∧Rank( Γn) j=1 λ -1/2 j V j , . V j its empirical counterpart.
Let S be a bounded linear operator on the Hilbert space H. The corresponding operator norm will be denoted • ∞ where S ∞ = sup x∈B(0,1) S (x) and B (0, 1) stands for the unit ball of H. Let T be a Hilbert-Schmidt operator. • HS denotes the Hilbert-Schmidt norm and tr stands for the classical trace (defined for trace-class operators). We recall that T 2 HS = tr (T * T ). In the sequel, we note χk (u) the probability that a χ 2 variable with k degrees of freedom is larger than u, while χ-1 k (u) denotes the 1u quantile of a χ 2 random variable.

Connection between φ k (Y, X) and the procedure of Cardot et al. [6]

In fact, the numerator of the statistic φ k is exactly the same as the test statistic

√ n A k ∆ n 2
introduced by Cardot et al. [START_REF] Cardot | Testing hypotheses in the functional linear model[END_REF], that is:

φ k (Y, X) = Π k Y 2 n Y -Π k Y 2 n /(n -kKL ) = √ n A k ∆ n 2 Y -Π k Y 2 n /(n -kKL ) . ( 20 
)
Proof of Equation [START_REF] Gohberg | Classes of linear operators[END_REF]. Consider the least-squares θ k estimator of θ in the space generated by V j , j = 1, . . . , kKL . It follows that

Π k Y 2 n = n θ k , Γ n θ k . Since θ k = Γ - n,k ∆ n where Γ - n,k is the Moore-Penrose pseudo-inverse of Γ n,k , we obtain Π k Y 2 n = n Γ - n,k ∆ n , Γ n Γ - n,k ∆ n = n A k ∆ n , A k Γ n Γ - n,k ∆ n = n A k ∆ n 2 .

Proof of the type I error bounds

We first prove Propositions 3.3 and 5.2. Afterwards, we derive Theorem 5.3. Finally, we explain how to adapt the arguments for Theorem 3.4.

Proof of Propositions 3.3 and 5.2. Let us assume that follows a Gaussian distribution and that θ = 0. Conditionally on X, the statistic φ k (Y, X)/ k defined in (5.1) follows a Fisher distribution with ( k, n -k) degrees of freedom. Hence, conditionally on X, the test T α,k has a size exactly α. Conditionally on X, T

is a Bonferroni procedure of Fisher statistics and its size is smaller than α. Reintegrating with respect to X, we derive that the size of T

(1) α is smaller than α. Let us turn to the second result. The quantity q X,α satisfies

P 0 sup k∈Kn (n -k) Π k 2 n k -Π k 2 n -F-1 k,n- k (q X,α ) > 0 X = α , which implies that P 0 (T (2) α |X) = α X a.s.
Proof of Theorem 5.3. First, we state that kKL = k with large probability. Lemma 9.1. Consider the event A n defined by

A n =    sup 1≤j≤ kn λ j -λ j min {λ j -λ j+1 , λ j-1 -λ j } ≥ 1/2    . (21) 
Under Assumptions B.2 and B.3, we have

P(A n ) ≤ C(γ) k3 n log 2 ( kn ∨ e) n ≤ C(γ) 1 log 2 (n) , ( 22 
)
where γ is a positive constant involved in Assumption B.2.

This result, proved in Appendix D, relies on the perturbation theory of random operators. Observe that under the event A n , we have kKL = k for all k ≤ kn . Consequently, we can replace kKL by k in the definition of the test statistic up to an event of probability less than C(γ)/ log(n). In the sequel, we use the alternative expression (20) of φ k and we replace kKL by k. The proof is split into three main lemmas 9.2 -9.4. The first lemma, states that √ nA k ∆ n 2 /σ 2 behaves like a χ 2 distribution. Its proof (Appendix C) relies on a multivariate Berry-Esseen theorem. The second lemma, which tells us that

√ nA k ∆ n 2 /σ 2 is close to √ n A k ∆ n 2 /σ 2 is proved below. The third lemma, proved in Appendix E, states that Y -Π k Y 2
n /n concentrates well around σ 2 . Lemma 9.2. Assume that B.1 and B .3 hold. For any k ≥ 1 and any x > 0, we have

|P √ nA k ∆ n 2 ≥ x -χk (x/σ 2 )| ≤ C k 3/2 √ n E 4 3/4 σ 3 sup 1≤j≤k E (η (j) ) 4 3/4 ≤ C log 2 (n) ,
uniformly over all k ≤ kn .

Lemma 9.3. Assume that B.1-B .3 hold. Writing x n,k = 1/(k log 2 (n)), we have for all k ≤ kn , and all n ≥ 5,

P √ n A k ∆ n 2 ≥ (1 -x n,k ) -1 √ nA k ∆ n 2 ≤ P [A n ] + C(γ) log 2 (n) + √ e log(n) k . ( 23 
)
Lemma 9.4. Uniformly over all k ≤ kn , we have

P Y -Π k Y 2 n nσ 2 -1 ≥ k log 2 (n) n + 8 log log n n ≤ C log 2 (n) + C √ n .
Let us upper bound the rejection probability due to the statistic φ k

P φ k (Y, X) ≥ k F-1 k,n-k (α/|K n |) ≤ P √ n A k ∆ n 2 Y -Π k Y 2 n /n ≥ k F-1 k,n-k (α/|K n |)
by the three following probabilities

P √ nA k ∆ n 2 (1 -x n,k )σ 2 ≥ k 1 -8 log log(n) n - k log 2 (n) n F-1 k,n-k (α/|K n |) +P √ n A k ∆ n 2 ≥ (1 -x n,k ) -1 √ nA k ∆ n 2 +P Y -Π k Y 2 n nσ 2 -1 ≥ k log 2 (n) n + 8 log log(n) n .
Gathering the above results, we obtain that this probability is upper bounded by

C(γ) log 2 (n) + √ e log(n) k + χk k 1 -8 log log n n - k log 2 (n) n -x n,k F-1 k,n-k (α/|K n |) , (24) 
uniformly over all k ≤ kn . Lemma 9.5. Writing t = 8 log log n n

+ k log 2 (n) n + 1 k log 2 (n) , we have for n larger than some numerical constant χk k(1 -t) F-1 k,n-k (α/|K n |) ≤ α |K n | 1 + C(α) log(n) .
The proof of this technical lemma is postponed to Appendix E. We conclude by combining [START_REF] Hall | Theory for high-order bounds in functional principal components analysis[END_REF] with Lemma 9.5 and taking an union bound over all k ∈ K n (recall that

|K n | ≤ log(n)).
Proof of Theorem 3.4. Define t = 8 log log n/n + k log 2 (n)/n + 1/k log 2 (n). Gathering Lemmas 9.2, 9.3, and 9.4 as in the proof of Theorem 5.3 and relying an Condition B.3, we derive an upper bound analogous to (24)

P φ k (Y, X) ≥ k F-1 k,n-k (α) ≤ χk k (1 -t) F-1 k,n-k (α) + C(γ) log(n) ,
for n large enough. Applying the following inequality (proved in Appendix E) allows us to conclude.

Lemma 9.6. For n larger than some numerical constant, we have

χk k (1 -t) F-1 k,n-k (α) ≤ α 1 + C(α) log(n) . Proof of Lemma 9.3. From b 2 -a 2 = 2 a, b -a + b -a 2 , we get b 2 -a 2 a 2 ≤ b -a a 2 + b -a a .
Since x n,k < 1 for n ≥ 3, it follows that

P √ n A k ∆ n 2 ≥ √ nA k ∆ n 2 1 -x n,k ≤ P   √ n A k -A k ∆ n √ nA k ∆ n ≥ x n,k 4   ≤ P √ n A k -A k ∆ n ≥ σ √ kx n,k 4 log(n) + P √ nA k ∆ n ≤ √ kσ log(n)
.

By Lemma 11.1 in [START_REF] Verzelen | Minimax risks for sparse regressions: Ultra-high-dimensional phenomenons[END_REF], we know that for any 0 < x < 1 and any integer d ≥ 1, P χ 2 (d) ≤ de -1 x 2/d ≤ x. We get from Lemma 9.2 and the last deviation inequality that

P √ nA k ∆ n ≤ σ √ k log(n) ≤ C log 2 (n) + √ e log(n) k ,
uniformly over all k ≤ kn . Let us turn to the other term. By Markov inequality and by definition of x n,k , the first probability

P[ √ n( A k -A k )∆ n ≥ σ √ kx n,k 4 log(n) ] is smaller than 16k log 6 (n) σ 2 E √ n A k -A k ∆ n 2 1 An + P [A n ] .
In order to conclude, we only need to bound

E[ √ n( A k -A k )∆ n 2 1 An ]. If we prove E √ n A k -A k ∆ n 2 1 An ≤ C(γ) k3 n log 2 (n) n + kn √ n , (25) 
then we get

P √ n A k -A k ∆ n ≥ σ √ kx n,k 4 log(n) ≤ C(γ) log 2 (n) + P [A n ] ,
by Assumption B .3. Thus, it only remains to prove [START_REF] Hall | Assessing extrema of empirical principal component functions[END_REF].

Noticing that A k -A k only depends on the X i 's, we derive that

E A k -A k ∆ n 2 1 An = 1 n E A k -A k X 1 ε 1 2 1 An = σ 2 n E A k -A k X 1 2 1 An = σ 2 n E A k X 1 2 + A k X 1 2 -2 A k X 1 , A k X 1 1 An .
We deal with each term separately:

E A k X 1 2 1 An = E tr A k (X 1 ⊗ X 1 ) A k 1 An = E tr A k Γ n A k 1 An = E tr Π k 1 An ≤ kP A n , E A k X 1 2 1 An = E tr A k Γ n A k 1 An = E tr (A k ΓA k ) 1 An + E tr A k Γ n -Γ A k 1 An = E trΠ k 1 An -E tr A k Γ n -Γ A k 1 An ≤ kP A n + E tr 2 A k Γ n -Γ A k P [A n ] , E A k X 1 , A k X 1 1 An = E tr A k Γ n A k 1 An = E tr Γ -1/2 k Γ 1/2 n,k 1 An = kP(A n ) + E tr Γ -1/2 k Γ 1/2 n,k -Γ 1/2 k 1 An . It follows that E √ n A k -A k ∆ n 2 1 An ≤ 2σ 2 E tr Γ -1/2 k Γ 1/2 k -Γ 1/2 n,k 1 An +σ 2 E tr 2 A k Γ n -Γ A k P [A n ] . ( 26 
)
Lemma 9.7. Under Assumptions B.1 and B.2, we have for all n ≥ 1,

E tr Γ -1/2 k Γ 1/2 k -Γ 1/2 n,k 1 An ≤ C(γ) k 3 [log 2 (k) ∨ 1] n + C k √ n ( 27 
)
uniformly over all k ≤ kn .

Lemma 9.7 is the core argument to control the behavior of the statistic. Its proof relies on perturbation theory and is postponed to Section 10. Let us compute the last term

E tr 2 A k Γ n -Γ A k = E      k j=1 n i=1 [η (j) i ] 2 n -1   2    ≤ k 2 n sup j≥1 Var (η (j) ) 2 ≤ C k 2 n ,
by Assumption B.1. Combining this bound with [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF], we get

E tr 2 A k Γ n -Γ A k P [A n ] ≤ C(γ) k5/2 n log( kn ∨ e) n . (28) 
Gathering Lemma 9.7 with [START_REF] Horn | Topics in matrix analysis[END_REF], and (28) allows us to prove (25).

Proofs of the type II error bounds

Proof of Proposition 5.4. This proof follows the same steps as the proof of Proposition 3.2 in [START_REF] Verzelen | Goodness-of-fit tests for high-dimensional Gaussian linear models[END_REF].

We first derive Theorem 6.1 and then explain how to adapt the arguments for Theorem 4.1.

Proof of Theorem 6.1. Arguing as in the beginning of the proof of Theorem 5.3, we can replace kKL by k in the definition of the statistic [START_REF] Crambes | Smoothing splines estimators for functional linear regression[END_REF]. Consider some k ∈ K n and take n ≥ 8, the numerator of φ k (Y, X) (20) is lower bounded as follows

√ n A k ∆ n 2 ≥ √ nA k ∆ n 2 1 -( √ k log(n)) -1 - √ k log(n) √ n(A k -A k )∆ n 2 , since 2ab ≤ a 2 + b 2 . Observe that ∆ n = Γ n θ + ∆ n,1 , where ∆ n,1 = n i=1 X i , . i /n.
The proof is based on the two main following lemmas. Lemma 9.8. For any β ∈ (0, 1), we have

√ nA k ∆ n 2 ≥ kσ 2 + n 5 Γ 1/2 k θ 2 -2σ 2 k log 2 β -10σ 2 log 2 β ,
with probability larger than 1β/2 -C/ log(n) uniformly over all k ≤ kn .

Lemma 9.9. Assume that B.1-B .3 hold. For any n ≥ 1 we have

P √ n( A k -A k ) Γ n θ ≥ √ n Γ 1/2 θ k 1/4 log(n) ≤ C(γ) log(n) P √ n( A k -A k )∆ n,1 ≥ σ log(n) ≤ C(γ) log(n) ,
uniformly over all k ≤ kn .

Lemma 9.8 is based on a multivariate Berry-Esseen inequality and is proved in Appendix C. The second lemma proceeds from the same kind of arguments as Lemma 9.3. Thus, its proof is postponed to Appendix E. We get by gathering Lemmas 9.8 and 9.9 and since √ k log(n) ≥ 2 for n ≥ 8,

√ n A k ∆ n 2 ≥ kσ 2 -3σ 2 √ k log(n) -2n Γ 1/2 θ 2 log(n) +C 1 n Γ 1/2 k θ 2 -C 2 σ 2 k log 2 β + log 2 β ,
with probability larger than 1β/2 -C(γ)/ log(n). Next, we use a rough control of the denominator, proved in Section E.

Lemma 9.10 (Control of the denominator). We have

Y -Π k Y 2 n n -k ≤ σ 2 1 + C k n + log(n) n + C Γ 1/2 θ 2 /β , with probability larger than 1 -2/ log(n) -β/4.
Since log(2/β) ≥ 1/ log(n) and C 1 ≥ 2/ log(n) for n large enough, we derive from the previous results that with probability larger than 1 -3β/4 -C(γ)/ log(n), the statistic φ k (Y, X) is lower bounded by

kσ 2 + n Γ 1/2 k θ 2 nC 1 -C 2 σ 2 k log(1/β) + log(1/β) -2 n log(n) (Γ 1/2 -Γ 1/2 k )θ 2 σ 2 1 + C k n + log(n) n + C Γ 1/2 θ 2 /β . ( 29 
)
By Lemma 1 in [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF], we can upper bound the quantile of Fisher distribution

k F-1 k,n-k (α/|K n |) ≤ k + C k log |K n | α + log |K n | α , (30) 
since we assume that log

(|K n |/α) ≤ log(n)+log(1/α) ≤ 2 √ n.
Comparing the lower bound ( 29) with [START_REF] Laurent | Adaptive estimation of a quadratic functional by model selection[END_REF] allows us to conclude. We refer to Appendix E for the details.

Proof of Theorem 4.1. We have shown in the last proof that φ k (Y, X) is lower bounded by [START_REF] Ingster | Asymptotically minimax hypothesis testing for nonparametric alternatives III[END_REF] with probability larger than 1 -3β/4 -C(γ)/ log(n). By Lemma 1 in [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF], we upper bound the quantile of Fisher distribution

k F-1 k,n-k (α) ≤ k + C k log (1/α) + log (1/α) , since log(1/α) ≤ √ n.
Comparing these two bounds leads us to the desired result.

Arguments based on perturbation theory

Preliminary facts

Roughly speaking, several results mentioned below are based on an extension of the classical residue formula on the complex plane (see Rudin [START_REF] Rudin | Real and complex analysis[END_REF]) to analytic functions still defined on the complex plane but with values in the space of operators. We refer to Dunford and Schwartz [START_REF] Dunford | Linear operators. Part I and II. Wiley Classics Library[END_REF]Chapter VII.3] or to Gohberg et al. [START_REF] Gohberg | Classes of linear operators[END_REF][START_REF] Gohberg | Classes of linear operators[END_REF] for an introduction to functional calculus for operators related with Riesz integrals. Let us denote B j the oriented circle of the complex plane with center λ j and radius δ j /2 where δ j is defined by

δ j = min {λ j -λ j+1 , λ j-1 -λ j } . ( 31 
)
The open domain whose boundary is C k := ∪ k j=1 B j is not connected but we can apply the functional calculus for bounded operators (see Dunford and Schwartz [18, Section VII.3, Definitions 8 and 9] ). Using this formalism it is easy to prove the following formulas :

Π k = 1 2πι C k (zI -Γ) -1 dz and Γ 1/2 k = 1 2πι C k z 1/2 (zI -Γ) -1 dz.
The same is true with the random operator Γ n , but the contour C k must be replaced by its random counterpart C k = k∧Rank( Γn) j=1 B j where each B j is a random ball of the complex plane with center λ j and a radius δ j /2 = min{ λ jλ j+1 , λ j-1λ j }. We start with some lemmas. Lemma 10.1. Assume that for some γ > 0, the sequence jλ j log 1+γ (j ∨ 2) j∈N * decreases. Then, we have

j≥1,j =k λ j |λ k -λ j | ≤ C(γ)k [log k ∨ 1] .
For any positive integer j, let us define the event

E j,n := sup z∈Bj (zI -Γ) -1/2 Γ n -Γ (zI -Γ) -1/2 ∞ ≥ 1/2 .
Lemma 10.2. Suppose that Assumption B.1 -2 holds. For any j ≥ 1, We have the two following bounds

E sup z∈Bj (zI -Γ) -1/2 Γ n -Γ (zI -Γ) -1/2 2 HS ≤ C(γ) n [j(log j ∨ 1)] 2 , P (E j,n ) ≤ C(γ) n [j(log j ∨ 1)] 2 .
The proof of Lemma 10.1 (resp. 10.2) is postponed to Appendix E (D).

Proof of Lemma 9.7

In order to upper bound this expectation, we set λ j = 0 for any j > Rank( Γ n ). We have tr Γ

-1/2 k Γ 1/2 k -Γ 1/2 n,k 1 An = k1 An - k j=1 k l=1 λ j λ l V l , V j 2 1 An ≤ k1 An - k j=1 λ j λ j V j , V j 2 1 An ≤ k j=1 1 -V j , V j 2 1 An + k j=1 λ j λ j -1 1 An ≤ k j=1 1 -V j , V j 2 1 An + k j=1 | λ j -λ j | λ j 1 An ,
where the last equation follows from the upper bound | √ 1 + x -1| ≤ |x| for any x ≥ -1. Observe that under the event A n , ( λ jλ j )/λ j ≤ 1/2. Applying Lemma 10.2, we obtain the following bound

E tr Γ -1/2 k Γ 1/2 k -Γ 1/2 n,k 1 An ≤ k j=1 E 1 -V j , V j 2 1 An∩Ej,n + k j=1 E | λ j -λ j | λ j 1 An∩Ej,n + k j=1 3 2 P [E j,n ] ≤ k j=1 E 1 -V j , V j 2 1 An∩Ej,n + k j=1 E | λ j -λ j | λ j 1 An∩Ej,n + C(γ) k 3 (log 2 (k) ∨ 1) n . (32) 
In the sequel, π j stands for the orthogonal projector associated to the single jth eigenvector V j while π j refers to its empirical counterpart. Applying functional calculus tools for linear operators, we get for any 1

≤ j ≤ k 1 -V j , V j 2 = V j , V j 2 -V j , V j 2 = (π j -π j ) V j , V j = 1 2πι Bj (zI -Γ) -1 V j , V j dz - Bj zI -Γ n -1 V j , V j dz ,
which looks like the definition of Π k given in the first paragraph of Section 10.1 (note that only the contour changed). Under the event A n , λ j lies inside the circle B j . In fact, (zI -Γ n ) -1 has only one pole inside the circle B j at z = λ j . As a consequence, we have almost surely

Bj zI -Γ n -1 V j , V j dz1 An = Bj zI -Γ n -1 V j , V j dz1 An , so that 1 -V j , V j 2 1 Ej,n∩An = 1 2πι Bj (zI -Γ) -1 -zI -Γ n -1
V j , V j dz1 Ej,n∩An .

(33) Working out this integral, we get

Bj (zI -Γ) -1 -zI -Γ n -1 V j , V j dz = - Bj (zI -Γ) -1 Γ n -Γ (zI -Γ) -1 V j , V j - Bj zI -Γ n -1 Γ n -Γ (zI -Γ) -1 Γ n -Γ (zI -Γ) -1 V j , V j dz .
The first term is Bj (zλ j ) -2 ( Γ n -Γ)V j , V j dz. Thus, it is null almost surely by the Cauchy integration theorem. Define S n (z) = (zI -Γ)

1/2 (zI -Γ n ) -1 (zI -Γ) 1/2 and T n (z) = (zI -Γ) -1/2 ( Γ n -Γ) (zI -Γ) -1/2 . For any fixed z, we have S n (z) = [I -T n (z)] -1
. Thus, it comes from ( 33) that

E 1 -V j , V j 2 1 Ej,n∩An ≤ E 1 2πι Bi (zI -Γ) -1/2 S n (z) T 2 n (z) (zI -Γ) -1/2 V j , V j 1 Ej,n∩An dz ≤ Cδ j E sup z∈Bj S n (z) ∞ 1 Ej,n T n (z) 2 ∞ (zI -Γ) -1 ∞ ≤ Cδ j sup z∈Bj (zI -Γ) -1 ∞ E sup z∈Bj T n (z) 2 ∞ ≤ C(γ) j 2 (log 2 (j) ∨ 1) n , (34) 
since sup z∈Bj (zI -Γ)

-1 ∞ ≤ 2δ -1 i , sup z∈Bj S n (z) ∞ 1 Ej,n ≤ 2 and E[sup z∈Bi T n (z) 2 ∞ ] ≤ C(γ)
n j 2 (log 2 (j) ∨ 1) by Lemma 10.2. Hence, we obtain an upper bound for the first term in (32)

E     k - k j=1 V j , V j 2   1 An   ≤ C(γ) k 3 (log 2 (k) ∨ 1) n . (35) 
Turning to the second term in [START_REF] Meister | Asymptotic equivalence of functional linear regression and a white noise inverse problem[END_REF], we only provide a sketch of the proof since the approach is the same as the first term in [START_REF] Meister | Asymptotic equivalence of functional linear regression and a white noise inverse problem[END_REF]. We have

λ j -λ j = tr Γ n π j -Γπ j = tr Γ n ( π j -π j ) + tr Γ n -Γ π j , so that | λ j -λ j | λ j 1 An∩Ej,n ≤ tr Γ n ( π j -π j ) λ j 1 An∩Ej,n + tr Γ n -Γ π j λ j 1 An∩Ej,n . (36) 
The second term in this decomposition is bounded as follows

E   tr Γ n -Γ π j λ j 1 An∩Ej,n   ≤ E   Γ n -Γ V j , V j λ j   ≤ 1 √ n . (37) 
We turn to E tr Γ n ( π jπ j ) 1 An∩Ej,n and we use the same method as above for bounding (1 -V j , V j 2 ).

1 λ j tr Γ n ( π j -π j ) 1 An∩Ej,n = 1 λ j 2πι tr Bj Γ n zI -Γ n -1 Γ n -Γ (zI -Γ) -1 dz 1 An∩Ej,n = 1 λ j 2πι tr Bj Γ n zI -Γ n -1 -Γ (zI -Γ) -1 Γ n -Γ (zI -Γ) -1 dz 1 An∩Ej,n = 1 λ j 2πι tr Bj z zI -Γ n -1 Γ n -Γ (zI -Γ) -1 Γ n -Γ (zI -Γ) -1 dz 1 An∩Ej,n = 1 λ j 2πι tr Bj z (zI -Γ) -1/2 S n (z) T 2 n (z) (zI -Γ) -1/2 dz 1 An∩Ej,n .
From the upper bound

tr (zI -Γ) -1/2 S n (z) T 2 n (z) (zI -Γ) -1/2 ≤ (zI -Γ) -1/2 S n T n HS T n (zI -Γ) -1/2 HS ≤ (zI -Γ) -1 ∞ S n ∞ T n 2 HS ,
we derive as in the proof of ( 35)

1 λ j E tr Γ n ( π j -π j ) 1 An∩Ej,n ≤ C λ j E Bj |z| (zI -Γ) -1 ∞ S n (z) ∞ T n (z) 2 HS dz1 Ej,n ≤ CE sup z∈Bj T n (z) 2 HS 1 Ej,n ≤ C(γ) j 2 (log 2 j ∨ 1) n .
Gathering [START_REF] Verzelen | Minimax risks for sparse regressions: Ultra-high-dimensional phenomenons[END_REF] and [START_REF] Verzelen | Goodness-of-fit tests for high-dimensional Gaussian linear models[END_REF] with this last bound, we get

k j=1 E λ j -λ j λ j 1 An∩Ej,n ≤ C(γ) k 3 (log 2 (k) ∨ 1) n + C k √ n ,
Combining this last bound with [START_REF] Meister | Asymptotic equivalence of functional linear regression and a white noise inverse problem[END_REF] and [START_REF] Spokoiny | Adaptative hypothesis testing using wavelets[END_REF] allows us to conclude.

Let us fix some k ∈ K n . We have θ, Π ⊥ kKL Γ n θ 2 ≤ θ 2 λ kKL +1 . Observe that kKL +1 < k + 1 only if λ kKL +1 = 0. Consequently, we also have θ, Π ⊥ kKL Γ n θ ≤ θ 2 λ k+1 . To conclude it is sufficient to provide an upper bound of λ k+1 with high probability. By definition of λ k+1 , we have

λ k+1 = inf W, Codim(W)=k sup z∈W ⊥ , z =1 z, Γ n z ≤ sup z∈Vect(V k+1 ,...), z =1 z, Γ n z , implying that λ k+1 ≤ Π ⊥ k Γ n Π ⊥ k ∞ ≤ λ k+1 + Π ⊥ k (Γ -Γ n )Π ⊥ k ∞ ≤ λ k+1 + Π ⊥ k (Γ -Γ n )Π ⊥ k HS .
Hence, it is sufficient to bound the Hilbert Schmidt norm

Π ⊥ k (Γ-Γ n )Π ⊥ k HS in probabil- ity. By Jensen's inequality, we have E[ Π ⊥ k (Γ -Γ n )Π ⊥ k HS ] ≤ E[ Π ⊥ k (Γ -Γ n )Π ⊥ k 2
HS ] 1/2 and simple calculations lead to

E[ Π ⊥ k (Γ -Γ n )Π ⊥ k 2 HS ] = 1 n E[ Π ⊥ k ΓΠ ⊥ k -(Π ⊥ k X) ⊗ (Π ⊥ k X)] 2 HS ] .
By Assumption B.1, we conclude that

E[ Π ⊥ k ΓΠ ⊥ k -(Π ⊥ k X) ⊗ (Π ⊥ k X)] 2 HS ] ≤ E[ Π ⊥ k X 4 ] ≤ C( j≥k+1 λ j ) 2 .
By Markov inequality, we conclude that

λ k+1 ≤ λ k + C(β) j≥k+1 λj √
n with probability larger than 1β/4. Gathering this probability bound with (A.2) and (A.3), we derive that P θ (T

α > 0) ≥ 1 -β if θ satisfies for some k ∈ K n , Γ 1/2 θ 2 ≥ C 1 n θ 2   λ k + C(β) j≥k+1 λ j / √ n   +C 2 σ 2 n k log 2 log n αβ + log 2 log n αβ . (1) 
Proof of Proposition A.1. As in the previous proof, we apply Theorem 1 in [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF] except that there is now only one test (instead of |K n | tests). We have

P θ (T α,k > 0) ≥ 1 -β/2 if θ satisfies n θ, Γ n θ ≥ C 1 θ, Π ⊥ kKL Γ n θ + C 2 kKL log 2 log n αβ σ 2 + C 3 log 2 log n αβ σ 2 .
Furthermore, we have shown that

θ, Γ n θ ≥ E[ X, θ 2 ]/2 θ, Π ⊥ kKL Γ n θ ≤ θ 2   λ k + C(β) j≥k+1 λ j √ n   .
with probability larger than 1β/2. Gathering these three bounds leads to the desired result.

Appendix B: Proofs of the minimax lower bounds

Proof of Proposition 4.4. For any dimension k ≥ 1, we define r 2 k = C(α, β)

√ k n ∧ λ k a 2 k R 2
, where the constant C(α, β) will be fixed later. For any

θ ∈ Vect(V 1 , . . . , V k ) such that Γ 1/2 θ 2 /σ 2 ≤ r 2 k , we have k j=1 θ, V j 2 a 2 j ≤ 1 λ k a 2 k k j=1 θ, V j 2 λ i ≤ r 2 k σ 2 a 2 k λ k ≤ R 2 σ 2 since r 2 k ≤ λ k a 2 k R 2
and since the λ j a 2 j 's are non increasing. As a consequence,

θ ∈ Vect(V 1 , . . . , V k ), Γ 1/2 θ 2 /σ 2 = r 2 k ⊂ θ ∈ E a (R), Γ 1/2 θ 2 /σ 2 ≥ r 2 k .
Since X is a centered Gaussian process, ( X, V 1 , . . . , X, V k ) is a centered Gaussian vector. Assuming that θ belongs to Vect(V 1 , . . . , V k ) and that (V 1 , . . . , V k ) is known, the functional linear model translates as a linear Gaussian model with Gaussian design as studied in [START_REF] Verzelen | Goodness-of-fit tests for high-dimensional Gaussian linear models[END_REF]:

Y = k j=1 X, V j θ, V j + .
By Proposition 4.2 in [START_REF] Verzelen | Goodness-of-fit tests for high-dimensional Gaussian linear models[END_REF], there exists a constant C(α, β), such that for any test T of level α, we have

β T ; θ ∈ Vect(V 1 , . . . , V k ), σ > 0, Γ 1/2 θ 2 ≥ C(α, β) √ k n σ 2 ≥ β .
Gathering this last bound for all k ≥ 1 allows us to conclude.

Proof of Proposition 6.3. As in the last proof, we shall adapt results for the Gaussian linear regression model with Gaussian design. Let k * n (R) ∈ N * be an integer that achieves the supremum of r2 k = C(α, β) k log log(k ∨ 3)/n ∧ R 2 a 2 k λ k . We note as in the last proof that for any R > 0 and k

* n (R) in N * , θ ∈ Vect(V 1 , . . . , V k * n (R) ), Γ 1/2 θ 2 σ 2 = r2 k * n (R) ⊂ θ ∈ E a (R), Γ 1/2 θ 2 σ 2 ≥ r2 k * n (R) .
Thus, we obtain

k≥1 θ ∈ Vect(V 1 , . . . , V k ), θ 2 Var(Y ) -θ 2 = C(α, β) k log log(k ∨ 3)/n ⊂ R>0 θ ∈ Vect(V 1 , . . . , V k * n (R) ) Γ 1/2 θ 2 σ 2 = r 2 k * n (R) ⊂ R>0 θ ∈ E a (R), Γ 1/2 θ 2 σ 2 ≥ r 2 D * (R)
.

Hence, we only have to provide a minimax lower bound for simultaneously testing over a family of nesting linear spaces. Letting p go to infinity in Proposition 5.5 in [START_REF] Verzelen | Goodness-of-fit tests for high-dimensional Gaussian linear models[END_REF], we obtain that

β   k≥1 θ ∈ Vect(V 1 , . . . , V k ) , Γ 1/2 θ 2 Var(Y ) -Γ 1/2 θ 2 = C(α, β) k log log(k ∨ 3)/n   ≥ β ,
which allows us to conclude.

Appendix C: Proofs based on Berry-Esseen type inequalities

Proof of Lemma 9.2. Let us fix some k > 0. For any 1 ≤ j ≤ k, we have

√ n ∆ n , A k V j = 1 √ n n i=1 X i , V j λ j i = 1 √ n n i=1 η (j) i i
For any 1 ≤ j 1 < j 2 ≤ k and 1 ≤ i ≤ j, the random variables η (j1) i i and η (j2) i i are uncorrelated. By the central limit theorem, we conclude that √ nA k ∆ n 2 /σ 2 converges in distribution towards a χ 2 (k) random variable, at least when k is fixed.

In order to precisely control the tails of √ nA k ∆ n 2 , the central limit theorem is not sufficient. We need a Berry-Esseen type inequality. Let us call W i the vector of size k whose j-th component is η (j) i i . We note W i k its Euclidean norm. By Assumption B.1, we have

E W i 3 k ≤ k 3/2 E 4 3/4 sup 1≤j≤k E (η (j) ) 4 3/4 .
Applying the second part of Theorem 1.1 in Bentkus [START_REF] Bentkus | On the dependence of the Berry-Esseen bound on dimension[END_REF], we obtain

sup x>0 P √ nA k ∆ n 2 ≥ x -χk (x/σ 2 ) ≤ C k 3/2 √ n E 4 3/4 σ 3 sup 1≤j≤k E (η (j) ) 4 3/4 .
We conclude by applying Assumption B .3.

Proof of Lemma 9.8. As explained in the proof of Lemma 9.2, √ n/σA k ∆ n,1 converges to a Gaussian process whose covariance operator Σ k is defined by Σ k = k j=1 V j , . V j . For j = 1, . . . , k, we define ξ j = (λ

1/2 j
Var([η (j) ] 2 ) θ, V j ) -1 if θ, V j 2 = 0 and ξ j = 0 else.

Consider the operator D k = k j=1 ξ j V j , . V j . For any j = 1, . . . , k such that ξ j = 0, we have

√ n D k A k Γ n θ, V j - n Var([η (j) ] 2 ) = n i=1 [η (j) i ] 2 -1 nVar([η (j) ] 2 ) . As a consequence, √ n(D k A k Γ n θ -D k Γ 1/2
k θ) converges in distribution towards a Gaussian process whose covariance operator Σ k is defined by Σ k = k j=1 V j , . V j 1 ξj =0 . Furthermore, the processes

√ n/σA k ∆ n,1 and √ n(D k A k Γ n θ -D k Γ 1/2
k θ) are asymptotically independent. Let us consider the random vector Z of size k := k + #{j ∈ {1, . . . , k} :

ξ j = 0} such that Z j = /ση (j) if j = 1, . . . , k and Z j = ([η (j) ] 2 -1)/ Var([η (j) ] 2 ) if j > k. Let us upper bound E[ Z 3 k ] E[ Z 3 k ] ≤ Ck 3/2 E[ 4 ] 3/4 σ 3 max 1≤j≤k E (η (j) ) 4 3/4 ∨ max 1≤j≤k E (η (j) ) 8 3/4 .
We note Z 1 , . . . , Z n the n observations of the vector Z, based on η (j) i and i for i = 1, . . . , n. By Assumptions B.1 and B.4, we can apply the Berry-Esseen type inequality of Bentkus (Theorem 1.1 in [START_REF] Bentkus | On the dependence of the Berry-Esseen bound on dimension[END_REF]) in dimension k . For any convex set A, we obtain

P n i=1 Z i √ n ∈ A -P [N k (0, I k ) ∈ A] ≤ C k 7/4 √ n × E[ 4 ] 3/4 σ 3 max 1≤j≤k E (η (j) ) 4 3/4 ∨ max 1≤j≤k E (η (j) ) 8 3/4 .
Moreover, this last quantity is smaller than Cn -1/16 log -7 (n) uniformly over all k ≤ kn by Assumption B .3. Consider a standard Gaussian vector (u 1 , . . . , u 2k ). We define the random vector W by

W = k j=1 nλ j θ, V j + λ j θ, V j Var([η (j) ] 2 )u j + σu j+k 2 .
We derive from the definition of W and the previous Berry-Esseen inequality that

sup x>0 P √ nA k,n Γ n θ + ∆ n,1 2 ≥ x -P(W ≥ x) ≤ C log 7 (n)
.

Conditionally to (u 1 , . . . , u k ), W/σ 2 follows a non-central χ 2 distribution with k degrees of freedom and non-centrality parameter

V := k j=1 nλ j θ, V j + λ j θ, V j Var([η (j) ] 2 )u j 2 /σ 2 .
By a deviation inequality on non-central χ 2 distributions (e.g. Eq.18 in [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF]), we derive that, conditionally to (u 1 , . . . , u k ),

W ≥ kσ 2 + 4 5 V σ 2 -2σ 2 k log(2/β) -10σ 2 log(2/β) ,
with probability larger than 1-β/2. The non-centrality parameter V is a polynomial function of independent normal variables. Applying a deviation inequality for normal variables, we derive that V ≥ n/4 Γ The second bound straightforwardly follows from the first bound by Markov inequality. Fix z ∈ B j . We have

(zI -Γ) -1/2 Γ n -Γ (zI -Γ) -1/2 2 HS = +∞ l=1 +∞ k=1 (zI -Γ) -1/2 Γ n -Γ (zI -Γ) -1/2 V l , V k 2 = +∞ l,k=1 Γ n -Γ V l , V k 2 |z -λ l | |z -λ k | . Since for z = λ j + δj 2 e ιθ ∈ B j and i = j |z -λ i | = λ j -λ i + δ j 2 e ιθ ≥ |λ j -λ i | - δ j 2 ≥ |λ j -λ i | /2, we have +∞ l,k=1 Γ n -Γ V l , V k 2 |z -λ l | |z -λ k | ≤ 4 +∞ l,k=1, l,k =j Γ n -Γ V l , V k 2 |λ j -λ l | |λ j -λ k | + 2 +∞ k=1, k =j Γ n -Γ V j , V k 2 δ j |λ j -λ k | + Γ n -Γ V j , V j 2 δ 2 j . Applying Assumption B.1, we derive E    +∞ l,k=1 Γ n -Γ V l , V k 2 |z -λ l | |z -λ k |    ≤ C n     +∞ l,k=1, l,k =j λ k λ l |λ j -λ k |)(|λ j -λ k |) + +∞ k=1, k =j λ k λ j δ j |λ j -λ k | + λ 2 j δ 2 j     ≤ C n      ∞ k≥1, k =j λ k |λ k -λ j |   2 + λ 2 j |λ j -λ j+1 | 2 + λ 2 j |λ j-1 -λ j | 2    .
Applying Lemma 10.1 and Assumption B.2 allows us to conclude.

D.2. Proof of Lemma 9.1

For any 2 ≤ j ≤ kn , we define δ j := max(λ j -λ j+1 , λ j-1 -λ j ). Then, we build an oriented circle B j on the complex plane of radius (δ jδ j )/4 in such a way that any real number between (λ j + λ j+1 )/2 and (λ j + λ j-1 )/2 is either inside B j or B j . See Figure 2 for an example of B j and B j .

λ j+1 λ j B ′ j B j λ j-1 (δ ′ j -δ j )/2 δ j /2 λ j +λ j-1 2 
λ j +λ j-1 2 
Figure 2. Contours B j B j Lemma 9.1 is a straightforward consequence of the two following lemmas. Let us define

T n (z) = (zI -Γ) -1/2 ( Γ n -Γ)(zI -Γ) -1/2 and S n (z) = (zI -Γ) 1/2 (zI -Γ n ) -1 (zI -Γ) 1/2 . Lemma D.1. We have A n ⊂ E n ∪ E n ∪ λ 1 ≥ 3λ1-λ2 2
, where

E n := sup 1≤j≤ kn sup z∈Bj T n (z) ∞ ≥ 0.5 , E n := sup 2≤j≤ kn sup z∈B j T n (z) ∞ ≥ 0.5 .
Lemma D.2. Under Assumptions B.1 and B.2, we have

P (E n ) ≤ C 1 (γ) k3 n log 2 ( kn ∨ e) n , P (E n ) ≤ C 2 (γ) k3 n log 2 ( kn ∨ e) n , P λ 1 ≥ 3λ 1 -λ 2 2 ≤ C 3 (γ) n .
Proof of Lemma D.1. Suppose that the four following events hold: 1) Γ n has no eigenvalue on all the contours B j and B j . 2) For each 1 ≤ j ≤ kn , Γ n has exactly one eigenvalue inside the circle B j . 3) For each 2 ≤ j ≤ kn , Γ n has no eigenvalue inside the circle B j . 4) λ 1 < (3λ 1λ 2 )/2. In such a case, the event A n is true. As a consequence, A n is included in the union of the four following events denoted D 1 , D 2 , D 3 and D 4 .

• For some 1 ≤ j ≤ kn , Γ n has an eigenvalue that lies on the contours B j and B j .

• For some 1 ≤ j ≤ kn , Γ n has either 0 or more than 2 eigenvalues inside the circle B j . • For some 2 ≤ j ≤ kn , Γ n has at least 1 eigenvalue inside the circle B j .

• λ 1 ≥ (3λ 1 -λ 2 )/2. We shall prove that D 1 ⊂ E n ∪ E n , that D 2 \ D 1 ⊂ E n and that D 3 \ D 1 ⊂ E n .
Event D 1 . Assume that an eigenvalue of Γ n lies exactly on some contour B j ∪ B j . Let us call λ such an eigenvalue and V a corresponding eigenvector. We have

T n ( λ)( λI -Γ) 1/2 V = ( λI -Γ) -1/2 ( Γ n -Γ) V = ( λI -Γ) -1/2 ( λI -Γ) V = ( λI -Γ) 1/2 V . Since λ is not an eigenvalue of Γ, we have ( λI-Γ) 1/2 V = 0 so that sup z∈Bj ∪B j T n (z) ∞ ≥ 1. Hence, D 1 ⊂ E n ∪ E n . Event D 2 \ D 1 . Assume that D 2 \ D 1 is true. It follows that for some 1 ≤ j * ≤ kn the operator (2πι) -1 B j * (zI -Γ n ) -1
dz is an orthogonal projector π W j * on a space W j * of dimension different from one. In contrast, (2πι) -1 B j * (zI -Γ) -1 dz is the orthogonal projector π j * on V j * . Consider

1 2πι B j * zI -Γ n -1 -(zI -Γ) -1 dz = π W j * -π j * . If dim( W j * ) = 0, then π W j * -π j * ∞ = 1. If dim( W j * ) ≥ 2,
then there exists a vector V in W j * such that π j * V = 0. As a consequence, we have π W j *π j * ∞ ≥ 1. For any z ∈ B j * , S n (z) is well defined since no eigenvalue of Γ n lies on B j * . It follows that

1 ≤ 1 2π B j * zI -Γ n -1 Γ n -Γ (zI -Γ) -1 ∞ dz ≤ 1 2π B j * zI -Γ n -1 (zI -Γ) 1/2 T n (z) (zI -Γ) -1/2 ∞ dz ≤ 1 2π B j * (zI -Γ) 1/2 zI -Γ n -1 (zI -Γ) 1/2 ∞ T n (z) ∞ (zI -Γ) -1/2 2 ∞ dz ≤ sup z∈B j * S n (z) ∞ T n (z) ∞ , (D.1) since (zI -Γ) -1
∞ ≤ 2/δ j . Moreover, we have S n (z) (I -T n (z)) = I. We can assume that sup z∈B j * T n (z) ∞ < 0.9, otherwise E n is true. Then, we have S n (z) ∞ ≤ (1 -T n (z) ∞ ) -1 . Gathering this bound with (D.1) leads to sup z∈B j * T n (z) ∞ ≥ 0.5, which allows us to conclude that D 2 \ D 1 ⊂ E n .

Event D 3 \ D 1 . Assume that D 3 \ D 1 is true. Arguing as for D 2 , we derive that for some 2 ≤ j * ≤ kn , we have δ j * > δ j * and

1 2π B j * zI -Γ n -1 Γ n -Γ (zI -Γ) -1 dz ∞ ≥ 1 . (D.2)
We have proved above that

(zI -Γ n ) -1 ( Γ n -Γ)(zI -Γ) -1 = (zI -Γ) -1/2 S n (z)T n (z)(zI -Γ) -1/2 dz ,
where S n (z) = (I -T n (z)) -1 is well defined for any z ∈ B j * . By a straightforward induction, we get for any positive integer p

B j * zI -Γ n -1 Γ n -Γ (zI -Γ) -1 dz = p k=1 B j * (zI -Γ) -1/2 T k n (z)(zI -Γ) -1/2 dz + B j * (zI -Γ) -1/2 S n (z)T p n (z)(zI -Γ) -1/2 dz .
Observe that each integral B j * (zI -Γ) -1/2 T k n (z)(zI -Γ) -1/2 dz is zero since the operator (zI -Γ) -1/2 has no pole inside B j * . Assume that the event E n does not hold. Then, we can bound S n (z) ∞ by (1 -T n (z) ∞ ) -1 as above. As a consequence, we obtain that for any positive integer p ,

1 2π B j * zI -Γ n -1 Γ n -Γ (zI -Γ) -1 dz ∞ ≤ 1 2π B j * (zI -Γ) -1/2 2 ∞ T n (z) p ∞ 1 -T n (z) ∞ dz ≤ δ j -δ j 2 p δ j .
Taking p large enough in this last upper bound contradicts (D.2). Thus, (D 

| λ 1 -λ 1 | ≤ Γ n -Γ ∞ so that P λ 1 ≥ 3λ 1 -λ 2 2 ≤ P | λ 1 -λ 1 | ≥ λ 1 -λ 2 2 ≤ P Γ n -Γ ∞ ≥ λ 1 -λ 2 2 ≤ P Γ n -Γ HS ≥ λ 1 -λ 2 2 ≤ 4 (λ 1 -λ 2 ) 2 E Γ n -Γ 2 HS .
We have 

E Γ n -Γ 2 HS = ∞ k,l=1 E ( Γ n -Γ)V k , V l 2 ≤ C n ∞ k=1 λ k 2 ,
P λ 1 ≥ 3λ 1 -λ 2 2 ≤ C n ∞ k=1 λ k λ 1 2 ≤ C(γ) n .

Appendix E: Proofs of technical details

Proof of Lemma 9.4. We have

Y -Π k Y 2 n = Y 2 n -Π k Y 2 n .
By the Central limit Theorem, the classical Berry-Esseen inequality, and a classical deviation inequality of χ 2 random variables (e.g. Lemma 1 in [START_REF] Laurent | Adaptive estimation of a quadratic functional by model selection[END_REF]), we get

P Y 2 n nσ 2 -1 ≥ 2 log(1/x) n + 2 log(1/x) n ≤ 2x + C E(| | 3 ) σ 3 √ n , (E.1) for any x > 0. Let us compute the expectation of Π k Y 2 n . E Π k Y 2 n = E E Π k Y 2 n |X = E E tr[Y * Π k Y]|X = σ 2 E tr Π k ≤ σ 2 k
Applying Markov inequality to Π k Y 2 n and gathering this deviation inequality with (E.1), we conclude that

P Y -Π k Y 2 n nσ 2 -1 ≥ k log 2 (n) n + 8 log log n n ≤ 3 log 2 (n) + C √ n ,
uniformly over all k ≤ kn .

Details of the proof of Theorem 6.1. Here, we provide some details on the comparison between the lower bound (29) and the quantile [START_REF] Laurent | Adaptive estimation of a quadratic functional by model selection[END_REF]. By Assumption B .3, we derive that φ k (Y, X)k F-1 k,n-k (α/|K n |) is positive with probability larger than 1 -3β/4 -C(γ) log -1 (n) if

C 1 n Γ 1/2 k θ 2 -C 2 σ 2 k log(1/β) + log(1/β) - 2n log(n) (Γ 1/2 -Γ 1/2 k )θ 2 ≥ C 3 σ 2 k log |K n | α + log |K n | α + k 2 n + k log(n) n + C 4 β Γ 1/2 θ 2 k ∨ log |K n | α .
Since log(|K n |/α) ≤ 2 √ n, k ≤ n 1/4 and β ≥ C(γ)/ log(n), we derive that for n larger than a numerical quantity, φ k (Y, X)k F-1 k,n-k (α/|K n |) is positive with probability larger than 1 -3β/4 -C(γ) log -1 (n) if

Γ 1/2 θ 2 ≥ C 1 (Γ 1/2 -Γ 1/2 k )θ 2 + σ 2 C 2 n k log |K n | αβ + log |K n | βα .
Proof of Lemma 9.9. We have shown in the proof of Lemma 9.3 that

E √ n A k -A k ∆ n,1 2 
1 An ≤ C(γ) k3 n log 2 (n) n + kn √ n ,
Gathering this bound with Markov inequality and Assumptions B .3 allows us to derive the second lower bound of Lemma 9.9. Focusing on the first bound, we shall prove the following stronger result. For any x > 0, k ≤ kn and any n ≥ 1, 

P √ n( A k -A k ) Γ n θ ≥ x ≤ P[A n ] + C log(n) +C(γ) n log(n) x 2 Γ 1/
:= { Γ 1/2 n θ 2 > log(n) Γ 1/2 θ 2 }. Since E Γ 1/2 n θ 2 = 1 n E n i=1 X i , θ 2 = Γ 1/2 θ 2 ,
we derive

P [U n ] ≤ 1 log(n) . (E.3)
We bound P[ ( A k -A k ) Γ n θ ≥ x] as follows

P A k -A k Γ n θ ≥ x ≤ P A k -A k Γ n θ ≥ x ∩ U n ∩ A n + P [U n ∪ A n ] ≤ 1 x 2 E A k -A k Γ n θ 2 1 Un∩An + P [U n ∪ A n ] ≤ 1 x 2 E A k -A k Γ 1/2 n 2 HS Γ 1/2 n θ 2 1 Un∩An + P [U n ∪ A n ] ≤ log(n) x 2 Γ 1/2 θ 2 E A k -A k Γ 1/2 n 2 HS 1 An + P [U n ∪ A n ] .
As a consequence, we have to investigate

A k -A k Γ 1/2 n 2 HS = tr A k -A k Γ n A k -A k = tr A k Γ n A k -tr A k Γ n A k -trA k Γ n A k + trA k Γ n A k .
Arguing as in the proof of Lemma 9.3, we take the expectation

E A k -A k Γ 1/2 n 2 HS 1 An = E tr Π k 1 An + E trΠ k 1 An + E tr A k ( Γ n -Γ)A k 1 An -2E tr Γ 1/2 n,k Γ -1/2 k 1 An ≤ 2E k -tr Γ 1/2 n,k Γ -1/2 k 1 An + E tr 2 A k ( Γ n -Γ)A k P[A n ] ≤ 2E tr Γ -1/2 k Γ 1/2 k -Γ 1/2 n,k 1 An + E tr 2 A k ( Γ n -Γ)A k P[A n ] .
These expectations have already been upper bounded in ( 27) and [START_REF] Ingster | Asymptotically minimax hypothesis testing for nonparametric alternatives II[END_REF]. Thus, we derive . First, we use the following bound that will be proved at the end of the proof: Since for any 0 < u < 1 and any integer k ≥ 1, we have χ-1 k (u) ≤ k + 2 log(1/u)k + 2 log(1/u) (e.g. Lemma 1 in [START_REF] Laurent | Adaptive estimation of a quadratic functional by model selection[END_REF]), it follows from Assumption B .3 that (1t) χ-1

E A k -A k Γ 1/
k α |Kn| + 1 n 1 + 4 log(n) n ≥ χ-1 k α |K n | + 1 n -C(α) [k ∨ log(n)] log(n) n ∨ k log 2 (n) n ∨ 1 k log 2 (n) ≥ χ-1 k α |K n | + 1 n - C(α) log(n) .
Let us note f χ k (x) the density at x of a χ 2 random variable with k degrees of freedom. Consider some positive numbers x and u such that x ≥ u.

χk (xu) χk (x) = 1 + P xu ≤ χ 2 (k) ≤ x χk (x) ≤ 1 + u sup t∈[x-u;x] f χ k (t) χk (x) ≤ 1 + ue u/2 f χ k (x) χk (x) , since f χ k (x) = x k/2-1 e -x/2 /[2 k/2 Γ(k/2)]. By integration by part, one observes that f χ k (x)/ χk (x) ≤ 1/2. As a consequence, we have χk (xu) ≤ χk (x)[1 + u/2e u/2 ] for any u ≤ x. This upper bound also holds when u > x.

χk χ-1 k α |K n | + 1 n - C(α) log(n) ≤ χk χ-1 k α |K n | + 1 n 1 + C 2 (α) log(n) ≤ α |K n | 1 + C 3 (α) log(n) ,
which allows us to derive the desired result.

To finish the proof, we need to prove (E.4). Let X k and X n-k respectively denote two independent random variables that follow a χ 2 distribution with k and nk degrees of freedom. Moreover we define F k,n-k as X k (nk)/(X n-k k). Since χ-1 k (u) ≤ k + 2 log(1/u)k + 2 log(1/u), we have Proof of Lemma 10.1. Since (jλ j ) j∈N is a decreasing sequence jλ j ≥ kλ k for k > j.

α |K n | = P X k ≥ χ-1 k α |K n | + 1 n - 1 n ≤ P   kF k,n-k ≥ χ-1 k α |Kn| 1 + 4 log(n) n   + P X n-k n -k ≥ 1 + 4 log(n) n - 1 n ≤ P   kF k,n-k ≥ χ-1 k α |Kn|
Hence, we get

k-1 j=1 λ j λ j -λ k ≤ k k-1 j=1 (k -j) -1 = k k-1 j=1 j -1 .
Similarly 2k j=k+1 λ j / (λ kλ j ) ≤ k 2k j=k+1 (jk) -1 = k k j=1 j -1 . Now we focus on j≥2k+1 λ j / (λ kλ j ). The assumption on the eigenvalues implies that for j ≥ k, k log 1+γ (k ∨ 2) (λ kλ j ) ≥ j log 1+γ jk log 1+γ (k ∨ 2) λ j .

Thus, we get λ j λ kλ j ≤ j log 1+γ j/k log 1+γ (k ∨ 2) -1 dx .

For x ≥ 2k, we have

x log 1+γ x k log 1+γ (k ∨ 2) ≥ 2k log 1+γ 2k k log 1+γ (k ∨ 2) ≥ 2 , so that x log 1+γ x k log 1+γ (k ∨ 2) -1 ≥ 1 2
x log 1+γ x k log 1+γ (k ∨ 2) . All in all, we conclude that 

It follows that

Corollary 4 . 5 (

 45 Minimax upper bound). Under B.1, 2, 4, there exists positive constants C(γ), C 2 , C 3 (α, γ), and C 4 (α, β) such that the following holds. Given an ellipsoid E a (R), we define

( 1 )

 1 α , we only consider the power and the minimax optimality of T (1) α . Theorem 6.1 (Power under non-Gaussian errors). Let α and β be fixed. Under B.1 -2, B .3, B.4, there exist positive constants C(γ), C 1 , C 2 , and C 3 such that the following holds. Assume that α ≥ e - √ n , β ≥ C(γ)/ log(n), and that n ≥ C 3 . Then, P θ (T (1)

Corollary 6 . 2 (

 62 Power of T (1) α over ellipsoids). Under B.1, B.2, and B.4, there exist positive constants C(γ), C 1 , C 2 , C 3 (α, β), and C 4 (α, β) such that the following holds. Assume that α ≥ e - √ n , that β ≥ C(γ)/ log(n), and n ≥ C 2 . Consider the test T (1) α with kn = 2 log 2 [n 1/4 / log 4 (n)] . Fix any ellipsoid E a (R).

Figure 1 .

 1 Figure 1. Three functions θ in Θ KL when B = 1.

  increases because we pay a price for the Bonferroni correction. The size of T (2) α remains close to the nominal level α = 5%.

1 / 2 k θ 2 /σ 2 2 n 2 ≥ kσ 2 + n 5 Γ 1 / 2 k θ 2 -

 1222225122 with probability larger than 1-k j=1 exp -nVar([η (j) ] 2 )/8 . All in all, we conclude that √ nA k,n Γ n θ + ∆ 2σ 2 k log(2/β) -10σ 2 log(2/β) , with probability larger than 1β/2 -C/ log 7 (n)n exp[-C n]. Appendix D: Remaining proofs based on perturbation theory D.1. Proof of Lemma 10.2

k F- 1 k

 1 ,n-k (α/|K n |) ≥ χ-1

  (n)/n ≥ 2 log(n)/(nk) + 2 log(n)/(nk) for k ≤ n/2 and n large enough. We conclude that k F-1 k,n-k (α/|K n |) ≥ χ-1 k α |Kn| + 1 n / 1 + 4 log(n) n for k ≤ n/2 and n large enough.Proof of Lemma 9.6. Arguing as above, we getk F-1 k,n-k (α) ≥ χ-1 Applying the inequality χ-1 k (u) ≤ k + 2 log(1/u)k + 2 log(1/u) for any 0 < u < 1 and Condition B.3, we get χk k (1t) F-1 k,n-k (α) ≤ χk χused χk (xu) ≤ χk (x)[1 + u/2e u/2] in the last inequality.

x 1 - 1 dx

 11 log 1+γ x k log 1+γ (k ∨ 2) -≤ 2k log 1+γ (k ∨ 2) +∞ 2k dx x log 1+γ x ≤ 2k log 1+γ (k ∨ 2) γ log γ 2k ≤ 2k log(k ∨ 2) γ .

  assumption B .3 is the counterpart of B.3 for a multiple testing procedure. Next, we state the counterpart of Theorem 3.4 for T Under Assumptions B.1, B.2, and B .3, there exist positive constants C(α, γ) and C 2 such that the following holds. For any n ≥ C 2 , we have

		(1) α .
	Theorem 5.3 (Size of T	(1)

α ).

)

  Remark 6.1. Comparing Theorems 4.1 and 6.1, we observe that the rejection region T

					(1)
					α
	almost contains all the rejection regions of the tests T α,k for all k ∈ K n . The price to pay for this feature is an additional √ log log n in the variance term of (17):
	σ 2 n	k log	log n αβ	+ log	log n αβ
	This log log(n) term corresponds to the quantity log(|K

n |). If we had used a collection of the form {1, . . . , kn } instead of K n the log log(n) would have been replaced by a log(n).

Table 1

 1 First simulation study: Null hypothesis is true. Percentages of rejection of H 0 and 95% confidence intervals

		n = 100	n = 500
	T α (1)	3.47 (± 0.36)	2.61 (± 0.31)
	T α (2)	4.97 (± 0.43)	5.26 (± 0.44)

Table 3

 3 Second simulation study: θ ∈ Θ KL , n = 500. Percentages of rejection of H 0 and 95% confidence intervals

			B = 0.1	B = 0.5	B = 1
		T α (1)	5.17	(± 0.43) 86.98 (± 0.66)	100 (± 0)
	ξ = 0.1	T α (2)	8.48	(± 0.55) 90.89 (± 0.56)	100 (± 0)
	ξ = 0.5	T α (1) T (2) α	8.81 13.07 (± 0.66) 99.88 (± 0.07) (± 0.56) 99.85 (± 0.08)	100 (± 0) 100 (± 0)
	ξ = 1	T α (1) T (2) α	11.38 (± 0.62) 99.99 (± 0.02) 16.13 (± 0.72) 100 (± 0)	100 (± 0) 100 (± 0)

Table 4

 4 Third simulation study: θ ∈ Θ G , n = 100. Percentage of rejection of H 0 and 95% confidence interval

			B = 0.5	B = 1	B = 2
	τ = 0.01	T α (1) T (2) α	4.94 7.25	(± 0.42) 11.85 (± 0.63) 46.69 (± 0.98) (± 0.51) 15.49 (± 0.71) 53.56 (± 0.98)
	τ = 0.02	T α (1) T (2) α	7.33 10	(± 0.51) 23.09 (± 0.83) 80.26 (± 0.78) (± 0.59) 28.54 (± 0.89) 84.04 (± 0.72)
	τ = 0.05	T α (1) T (2) α	13.85 (± 0.68) 56.51 (± 0.97) 99.48 (± 0.14) 18.13 (± 0.76) 63.09 (± 0.95) 99.65 (± 0.12)

Table 5

 5 Third simulation study: θ ∈ Θ G , n = 500. Percentage of rejection of H 0 and 95% confidence interval

			B = 0.5	B = 1		B = 2
	τ = 0.01	T α (1) T (2) α	12.41 (± 0.65) 17.99 (± 0.75) 63.16 (± 0.95) 99.98 (± 0.07) 54.6 (± 0.98) 99.75 (± 0.1)
	τ = 0.02	T α (1) T (2) α	26.11 (± 0.86) 88.91 (± 0.62) 33.95 (± 0.93) 92.62 (± 0.51)	100 100	(± 0) (± 0)
	τ = 0.05	T α (1) T (2) α	65.38 (± 0.93) 99.95 (± 0.04) 72.74 (± 0.87) 99.99 (± 0.02)	100 100	(± 0) (± 0)

  by Assumption B.1. By Assumption B.2, 2λ 2 ≤ λ 1 . Applying Lemma 10.1, we get

  2 θ 2 k 3 log 2 (k ∨ e) If we take x = Γ 1/2 θ √ n/(k 1/4 log(n))in this inequality and if we combine it with Lemma 9.1 and Assumption B .3, we recover the conclusion of Lemma 9.9.Define the event U n

	n	∨	k √ n	∨	k5/2 n log( kn ∨ e) n	.(E.2)

  Proof of Lemma 9.10. Observe that Y -Π k Y 2 n ≤ Y 2 n = , θ 2 . By Assumption B.1 and Tchebychev inequality, 2 n ≤ σ 2 (n+C n log(n)) with probability larger than 1-1/ log(n). Tchebychev inequality also tells us thatn i=1 i X i , θ ≤ n log(n)(σ 2 + Γ 1/2 θ 2) with probability larger than 1-1/ log(n). Furthermore, we apply Markov inequality to derive thatn i=1 X i , θ 2 ≤ 4n Γ 1/2 θ 2 /β with probability larger than 1β/4. Since k ≤ n/2, we conclude that Y -Π k Y 2 Γ 1/2 θ 2 /β , with probability larger than 1 -2/ log(n)β/4.Proof of Lemma 9.5. Define t = 8 log log n

	n	2	2 HS	1 An ≤ C(γ)		k 3 log 2 (k ∨ e) n	∨	k √ n	∨	k5/2 n log( kn ∨ e) n	.
	Gathering this last bound with (E.3) and (E.4) allows us derive the desired inequality
	(E.2).									
	n i=1 X i n n -k	≤ σ 2 1 + C	k n	+	log(n) n	+ C	2 n + 2	n i=1 i X i , θ +

n + k log 2 (n) n + 1 k log 2 (n)
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Appendix A: Power under Gaussian Noise

A.1. Power of T α,k

Proposition A.1 (Power under Gaussian errors). There exists positive constants C, C 1 (β), and C 2 such that the following holds. Suppose that α ≥ exp(-n/20), β ≥ C/n and that Assumptions B.1 and A.1 are true. Then, P θ (T α,k > 0) ≥ 1β for any θ satisfying

(A.1)

Remark A.1. If this result requires very weak assumptions on the process X (only a fourth moment assumption), the bound (A.1) is slightly looser than (7) in Theorem 4.1 because

A.2. Power of T (1)

α A similar result holds for T

α . Proposition A.2. There exists positive constants C, C 1 (β), and C 2 such that the following holds. Suppose that α ≥ exp(-n/20), β ≥ C/n and that Assumptions B.1 and A.1 are true. Then, P θ (T

A.3. Proofs of Propositions A.1 and A.2

We first prove Proposition A.2 and then adapt the arguments to Proposition A.1.

Proof of Proposition A.2. Let us first work conditionally to X. In this case, the design X and the projection Π k are considered as fixed. Thus, the statistic T

α is analogous to the procedure of Baraud et al. [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF]. By Theorem 1 in [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF], we have P θ (T

Applying Chebychev's inequality, we have θ, Γ n θ ≥ E[ X, θ 2 ]/2, with probability larger than 1-β/4 as long as β ≥ C/n . (A. [START_REF] Baraud | Adaptive tests of linear hypotheses by model selection[END_REF]