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ABSTRACT

Correlations of random seismic noise are now widely used to retrieve the Green’s function

between two points. Whereas this technique provides useful results in tomography and

monitoring studies, it is mainly limited by an uneven distribution of noise sources. In that

case, theoretical requirements are not completely fulfilled and we may wonder how reliable

the signals are reconstructed, in particular for the purpose of estimating traveltime from

correlations. We present in this study a way to quantify effects of a non-isotropic noise
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field by estimating the arrival time error due to a particular non-isotropic distribution of

recorded wave intensity. Our study is based on a theoretical prediction of this bias and we

successfully test the theory by comparing the theoretical expectation to real measurements

from seismic-prospecting data. In particular, we distinguish between the effects of source

distribution and effects of medium heterogeneity between the sources and the region of

receivers. We find relative errors in the order of a percent which may affect monitoring

results especially where smaller relative velocity variations (smaller than 10−3 for some

applications) are investigated. Finally we see that correlation of coda waves helps mitigate

the effects of a non-isotropic field, hence making the estimation of traveltime quite stable

irrespective of the source distribution.
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INTRODUCTION

The Green’s function of a medium between two points A and B represents the signal recorded

at B if we would apply an impulse source at A: therefore the Green’s function between any

two given points A and B corresponds to the earth response between them. It has been

demonstrated that with the crosscorrelation of random seismic wavefields, it is possible to

retrieve the Green’s function between two points.

Two acoustic experiments have initially demonstrated the possibility to reconstruct

the Green’s function by correlating diffuse wavefields (Weaver and Lobkis, 2001; Lobkis

and Weaver, 2001). Afterwards, different theoretical approaches have formalised the link

between correlation of random diffuse fields and Green’s function retrieval (Weaver and

Lobkis, 2001; Lobkis and Weaver, 2001; Derode et al., 2003a,b; van Tiggelen, 2003; Wape-

naar, 2004; Snieder, 2004; Roux et al., 2005). The crosscorrelation technique has been used

successfully in many applications in helioseismology (Duvall et al., 1993; Gilles et al., 1997),

acoustics (Weaver and Lobkis, 2001; Lobkis and Weaver, 2001; Larose et al., 2004), oceanog-

raphy (Roux and Kuperman, 2004; Sabra et al., 2005c), active seismic experiments (Bakulin

and Calvert, 2006; Mehta et al., 2007) and seismology with the correlation of seismic coda

(Campillo and Paul, 2003) or seismic noise (Shapiro and Campillo, 2004).

In seismology, it has been demonstrated that the correlation converges towards the

Green’s function as long as the different components of the elastic field follow the equipar-

tition condition (Sanchez-Sesma et al., 2006, 2008). Practically, this corresponds to a self-

averaging process provided by randomization of the noise sources when considering long time

series as well as scattering (Campillo, 2006; Larose et al., 2006; Gouédard et al., 2008b).

Even though correlations of seismic noise have provided useful information in tomo-
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graphic imaging (Shapiro et al. (2005); Sabra et al. (2005a) and recently Draganov et al.

(2009) in which body wave reflections are retrieved) and monitoring studies (Brenguier

et al., 2008a,b; Sens-Schonfelder and Wegler, 2006; Wegler and Sens-Schonfelder, 2007), the

seismic noise is usually not perfectly diffuse and the conditions of the theory are not com-

pletely fulfilled. In that case, we may wonder how reliable the signals are reconstructed by

the correlation especially for the purpose of estimating traveltimes: how does a non-isotropic

distribution of sources affect the traveltime estimated from these noise correlations ?

Tomographic studies based on noise correlations use the traveltime of reconstructed

Rayleigh waves to compute surface wave dispersion curves. Therefore, errors in traveltime

lead to errors in tomographic results. Concerning monitoring studies, the evolution of

traveltimes gives information about changes in the medium. But a change of noise sources

may imply a change in traveltimes estimated from correlations which is not representative

to a physical variation of the medium. Recent studies based on noise-based monitoring,

have detected relative temporal changes of velocity smaller than 10−3 (Brenguier et al.,

2008a,b) and further work is done to improve the accuracy of noise-based measurements.

Considering such tiny variations, the influence of source distribution might be significant

and should be quantified to correct it from measurements.

Previous studies have examined bias caused by non-isotropic source distribution in cor-

relations. In an exploration application, van der Neut and Bakulin (2009) studied the

amplitude distortions in correlations caused by an imperfect source illumination and pro-

posed a method to correct results from this bias. Besides, Tsai (2009) and Yao and van der

Hilst (2009) have shown that an uneven distribution of source intensity and medium het-

erogeneities can produce traveltime bias in noise-based measurements. From a tomographic

point of view, Yao and van der Hilst (2009) develop an iterative procedure to correct tomo-
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graphic results for this bias. We adopt a somewhat different approach as we consider the

forward problem and focus on the study of a direct formulation of this bias. In the next

section, we illustrate the variability of apparent traveltime in correlations through results

of a passive seismic noise study in the Parkfield area, California. Thereafter we present a

theoretical expression for the error in arrival time due to a particular non-isotropic distri-

bution of noise sources. In the last section, we compare the theoretical prediction to the

real measurements on seismic prospecting data. In particular, we examine the effects of

wave propagation in a heterogeneous medium surrounding the receivers and we discuss the

advantages to correlate coda waves to mitigate effects of non-isotropy.

ON THE STABILITY OF APPARENT TRAVELTIME IN NOISE

CORRELATIONS AT THE SAN ANDREAS FAULT, PARKFIELD

Between July 2001 and October 2002, 30 broadband stations located in an 11-km square,

recorded continuous seismic noise in the Parkfield area, California. Plane wave beamforming

is performed in [0.1-0.2 Hz] to determine the direction of the seismic noise received by the

Parkfield network. Figure 1 presents results of this beamforming analysis done on the

entire network. In particular Figure 1(b) shows that the noise field is very directive, with

a direction of about 55◦ (North is 0◦, positive rotation is clockwise). This direction is

consistent with a noise origin in the Pacific Ocean (Sabra et al., 2005b; Stehly et al., 2006).

Figure 1(a) shows the evolution of the beamformer outputs for 1-h data segments over 31

consecutive Julian Days (JD). This figure indicates daily fluctuations confirming that the

seismic noise direction is highly time-dependent.

Consider two particular days (JD18 and JD22) for which the difference in noise direction
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is about 20◦ (see Figure 1(a)): how does this azimuthal difference affect the traveltime in

noise correlations ? We compute the 1-day averaged noise correlation function for two

receiver pairs. The first pair (stations 8-27) is mostly aligned with the noise direction. By

contrast, the second pair orientation (stations 13-30) is nearly orthogonal to the direction

of energy flux (see Figure 2(a)). Figures 2(b) and 2(c) show results of the two daily-

correlations of interest (JD18 and JD22) for both station pairs. Whereas the time shift due

to the variation in noise direction is negligible for pair 8-27, the effect on the 13-30 receiver

pair is significant since there is a relative time shift of about 30% for this case of extreme

directive noise.

This particular extreme example shows that variability of apparent traveltime in correla-

tions due to changes of a non-isotropic noise field may be significant. In order to get correct

traveltime values, we must be able to quantify the effects of non-isotropy on traveltime

estimates.

THEORETICAL ERROR ON APPARENT TRAVELTIME DUE TO A

NON ISOTROPIC DISTRIBUTION OF INTENSITY

Weaver et al. (2009) derived a theoretical expression of the error in apparent arrival time

in correlations due to a non-isotropic specific distribution of intensity. They consider (i)

sources in far-field, (ii) the ballistic case and (iii) a homogeneous medium. The error is then

evaluated in an asymptotic limit of large receiver-receiver separation. Results presented in

this section correspond to this work.

Weaver et al. (2009) first show that in a fully asymptotic limit in which the two receivers

are separated by a distance long compared to a wavelength (x/λ −→ ∞), non-isotropy does
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not impair estimation of traveltime. However they go further by investigating the effects

of smooth but non-isotropic intensity on traveltime estimates, at finite receiver separation

(away from the full asymptotic limit).

We select two receivers, at positions −x/2 and x/2 around the origin (see Figure 3).

We consider incoherent impulsive sources over an annular region, at large distance from the

receivers. Since attention is confined to the two-dimensional case the field at the receivers

may be viewed as a superposition of plane waves.

We consider the case that the recorded wavefield intensity distribution corresponds to

the source intensity distribution which is controlled by an angular source weighting B(θ) (θ

is defined relative to the strike line connecting the receivers, (see Figure 3)). We consider

smooth distributions by writing B as a Fourier series:

B(θ) = B0 + B1cos(θ) + B2cos(2θ) + B3cos(3θ) + ... (1)

Only cosines are used, by symmetry, as the receiver correlation does not distinguish

between positive and negative θ. This means that any distribution may be written as a

symmetric distribution.

Considering that the time derivative of field correlation between both receivers (C ′

x =

d
dt

Cx(t)) converges to the Green’s function (Gouédard et al., 2008b), C ′

x gives an estimate

of the traveltime t between the two points. The predicted error in this apparent traveltime,

due to non-isotropy is then (Weaver et al., 2009):

δt ∼
B′′(0)

2tω2
0
B(0)

for positive correlation time, (2a)
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δt ∼
B′′(180)

2tω2
0
B(180)

for negative correlation time, (2b)

with ω0 the central angular frequency of the correlation waveform and angles expressed

in degree. A positive error means an apparent arrival time earlier than the true arrival time

by an amount of δt.

Equation 2 suggests that the error in apparent traveltime due to a non-isotropic distri-

bution of intensity B(θ) decreases for high frequency and large receiver separation which is

consistent with results by Tsai (2009) and Yao and van der Hilst (2009). Furthermore, we

note that this expression gives an error proportional to the second derivative of the intensity

B evaluated in the receiver pair direction (θ = 0◦ for positive correlation time). The sta-

tionary phase theorem helps in interpreting the physics aspect of this observation. Snieder

(2004), Roux et al. (2005) explain the reconstruction of the Green’s function by correlation

techniques in the case of a homogeneous body, by using the stationary phase theorem: only

sources in the alignment of the receivers contribute to reconstruction. End-fire lobes repre-

sent areas where those coherent sources are located. The aperture of this zone depends on

the square root of the ratio between wavelength and distance between receivers: the higher

the frequency, the narrower the end-fire lobes (Roux and Kuperman, 2004; Larose, 2005;

Spetzler and Snieder, 2004). In the asymptotic limit considered, coherent reconstruction

is then controlled by θ approaching 0 (for positive correlation time). But as we have seen

before, we consider the case away from the full asymptotic limit. In that case the intensity

near θ = 0◦ may be written as B(θ)θ→0 = B(0)+ 1

2
B′′(0)θ2 introducing a higher order term

in the problem (the symmetry leads to B′(0) = 0). Since this term illustrates the difference

with the full asymptotic case (and no error), it makes sense that it controls the traveltime
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error. For simplicity, we have only discussed the positive correlation time, but the argument

is the same for negative time.

ESTIMATION OF THE TRAVELTIME ERROR ON

SEISMIC-PROSPECTING DATA

Acquisition geometry and data selection

Petroleum Development Oman (PDO) recorded a high-resolution survey in northern Oman.

The acquisition grid consists of 1600 25-m-spaced receivers covering a 1×1-km area. The

sources (vibrators) are located on a similar square grid shifted with respect to the receiver

grid by 12.5 m in both directions. The complete data set then consists of 1600 × 1600

time-domain signals.

For this study, two receivers at the center of the array are selected. They are separated

by a distance of 155 m, corresponding to a surface wave traveltime of about 0.13 s at 15

Hz (wavelength ∼ 80 m). We consider 240 sources in a 300-m-inner-radius, 70-m-thick ring

centered on the receivers (see Figure 4(a)).

Estimation of the error with respect to an isotropic distribution of sources

In order to test the theoretical expression derived by Weaver et al. (2009), we compare

the above predictions with measurements on these experimental data. Real measurements

consist in estimating the time shift in the non-isotropic case with respect to a reference

traveltime. In this section, the reference traveltime stems from the reference waveform

obtained for an isotropic distribution of sources around receivers (B(θ) = constant).
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Signals from the 240 sources are (i) filtered between 10 and 20 Hz, (ii) windowed into

the range 0 to 1.5 seconds to emphasize ballistic waves (see Figure 4(b)) and (iii) cor-

related between both receivers. Results are then summed over sources with an angular

weighting B(θ). The waveform obtained is thus the correlation between receivers of interest

for the specific source distribution B(θ). Time shift δt (that is, the traveltime error) due

to non-isotropy of source distribution is then obtained by cross correlating the arrivals as

constructed with B(θ) = constant and B(θ) of interest. To give relative time shifts, we

estimate the arrival time t by the maximum of the reference wavelet envelope. Finally, to

enhance the quality of results, we azimuthally average these measurements. We thus con-

sider 17 other pairs of receivers in the same region, oriented in two main directions (about

–130◦ and –40◦) and spaced by distance between 150 and 158 m (θ is redefined for the dif-

ferent pair orientations). Theoretical predictions result from equation 2 using a frequency

of 15 Hz and a traveltime of 0.13 s.

Results obtained for two different kinds of distribution (see Figures 5(a) and 5(c)) are

presented in Figure 5. We can see that theoretical predictions fit the data measurements

well for both examples. The asymptotic theory seems to describe successfully the appar-

ent time shifts in real data, provided an intensity distribution sufficiently smooth (precise

quantitative assessment of ”sufficient smooth” is an asymptotic issue and has not yet been

studied) and despite (i) simplifying assumptions behind equation 2 (plane waves in homoge-

neous medium) and (ii) receiver separation as small as two wavelengths. It is worth noting

that the case presented in Figure 2(c) for the Parkfield region, may be explained by this

theory considering a steep distribution of the form B(θ) = 1 + B2cos(2θ) shown in Figure

5(c). In that case, the theoretical time shift obtained with equation 2 using values involved

in the Parkfield case (we take t = 3 s and ω0 = 2π × 0.15 = 0.94 rad/s ) and B2 = −0.6
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corresponds to the very large time shift observed (about 30%).

However, these results are based on the hypothesis that an isotropic distribution of

sources correspond to a perfect isotropic illumination. But the medium between the sources

and the region of receivers is heterogeneous (Gouédard, 2008) and some propagation effects

may modify the wavefield making the effective intensity distribution in the vicinity of re-

ceivers non-isotropic despite the isotropic source distribution. In that case, the reference

taken in these results does not correspond to the actual isotropic case and the previous

estimated time shift is not the over-all error.

Effective distribution of intensity for an isotropic distribution of sources

The goal of this section is to determine the effective intensity distribution received at re-

ceivers for an isotropic distribution of sources. By doing so, we will be able to highlight and

quantify possible propagation effects on traveltime estimates. The analysis is done under

assumption of homogeneity between the receivers.

Plane-wave beamforming is performed to get directional features of the wavefield. We

use 37 stations of the network centered on the same position as the center of the receiver

positions considered before, and the same 240 sources as used previously. The geometry is

shown in Figure 7(a). Beamforming is computed for each of the 240 different sources on the

entire sub-array formed by the 37 receivers. The total distribution may then be seen as the

sum of all source contributions. Processing consists in considering [0-1.5 s] whitened signals

(i.e., the temporal window corresponding to the ballistic waves) and summing incoherently

beamformer outputs over 6 frequencies between 10 and 15 Hz.

Figure 6(a) shows an example of beamformer output for a single source whose location
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is indicated in Figure 7(a). In order to highlight some propagation effects, we compare the

angular position of the source with the angular direction of incoming energy. The difference

observed indicates that energy has been deflected during the propagation into the medium

between the sources and the region of receivers (about 10◦ for this particular source). This

change in direction is due to velocity variations in the medium. Such deflections (10◦)

may be caused by realistic relative velocity heterogeneities of about 10% (see Figure 7(a)).

The deflection is different for the different sources (see Figure 6(b)) suggesting complicated

wavefields at receivers.

Assuming that the sum of beamforming results over sources represents the actual energy

pattern at the center of the network, we can define the effective intensity distribution at

receivers as the total of maximum energy at every angle (see Figure 7(b) for an isotropic

distribution of sources). To get closer to theory conditions, we smooth the distribution by

averaging intensity in a sliding 40◦-wide angular window (40◦ corresponding to the size of

the end-fire lobe for the frequency considered).

These results show that isotropic distribution of sources does not necessarily lead to

isotropic distribution of intensity and thus does not correspond to the ideal isotropic illu-

mination. These observations mean that intensity distribution is partly controlled by wave

propagation in the heterogeneous medium surrounding the receiver region. The next sec-

tion is devoted to quantify the propagation effects on traveltime estimates to take them into

account in the determination of a total error.
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Incorporation of propagation effects in the estimation of the error in trav-

eltime

The previous section has allowed us to determine the contribution of propagation to the

intensity distribution. For the sake of simplicity, this contribution (displayed in Figure 7(b))

will be called Bp(θ).

In order to quantify the relation between propagation effects and traveltime estimates,

we apply the theoretical expression given by equation 2 with Bp(θ). Note again that our

analysis is done under the assumption of a local homogeneity of the medium in the vicinity of

the paths between the receivers. As Bp(θ) varies azimuthally, effects on apparent traveltimes

will depend on the angular orientation of receiver pairs. We found that relative time shifts

may reach 1% for some particular receiver pair orientations (the larger errors are observed

for directions of lower intensity in Figure 7(b)). In other words, raypath deflections due to

medium heterogeneities may cause an error in the traveltime estimate that is not negligible

with respect to errors due to a non-isotropic source distribution as seen in Figure 5. From the

estimate of the part of the error due to propagation, how could we estimate the cumulative

effect of medium heterogeneity and non-isotropy of sources on apparent traveltime ?

We present here a simple analysis leading to an expression of the total bias. Consider a

non-isotropic source distribution (Bs(θ) 6= constant); the actual intensity distribution may

be written in first approximation as:

B(θ) = Bs(θ) × Bp(θ) (3)

leading to an error of the form

δt = δts + δtp. (4)
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Intermediate steps are detailed in Appendix A. A prediction of the actual error in traveltime

due to non-isotropy could thus be obtained by summing the predicted time shift due to (i)

non-isotropy in source distribution, δts (estimated in Figure 5) and (ii) propagation effects,

δtp.

In order to control the reliability of our analysis, we would like to compare this bias

estimate to reference traveltimes. The presence of active sources near receivers, allows

us to directly acquire Green’s functions between receivers of interest. These signals may

thus be used to obtain reference measurements of traveltimes. The question is to know if

the apparent traveltimes from correlations and corrected with δt (given by equation 4) are

consistent with this measurement. Since both arrays are shifted by 12.5 m in both directions,

we use the closest sources to the receivers considered and we apply a correction on the time

axis to correct for this distance difference. However, at the scale of precision considered

here, direct measurements are much less stable than correlation measurements, making any

comparison difficult. Different causes can explain the instability of direct estimates. First,

the sources used in this case, are vibrators producing source signals with a 1-m-side plate.

Considering receivers separated by about 150 m, the spatial precision of the source location

corresponds to the order of precision of the traveltime that we investigate (a few percent).

Furthermore, receivers consist of clusters of 12 geophones adding possible imprecisions.

Finally, some spectral aspects may make comparisons difficult between the active signal

and the correlation function since the spectra of both signals are quite different and time

estimates are strongly sensitive to spectral contents.
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Mitigation of the effects of non-isotropy: correlation of coda waves

Coda waves correspond to waves scattered from the heterogeneities in the earth (e.g., Aki

and Chouet (1975)). Scattering tends to make the wavefield more isotropic depending on

the distribution of the scatterers in the medium and the lapse time considered in the coda

(Paul et al., 2005). Even if the field is not completely isotropic, the distribution of incoming

energy should no longer be controlled exclusively by the source distribution but also by the

scatterer distribution in the medium.

In order to study the influence of the source distribution when using coda waves, we

investigate how time shifts on correlations of coda waves depend on the source distribution.

We can note that in case of perfect isotropic coda wavefield, the expected bias will be zero

(B′′(θ) = 0 in equation 2). The idea is the same as with previous time shift measurements

(see Figure 5), but instead of correlating direct waves, we select a later part of the signal

corresponding to coda waves (see Figure (4(b)). The diffuse regime is indicated by the

linear energy decay in decibel scale in this window: to cancel this decay, the decrease of

recorded amplitudes in this time window is compensated. As previously, the reference

waveform corresponds to the correlation function (here of coda waves) obtained for an

isotropic distribution of sources and we compare time shift measurements to the ballistic

theory.

However, the signal-to-noise ratio is much lower for correlation of coda waves (Gouédard

et al., 2008a). In order to get accurate time measurements, we need to average correlations.

Thus, in this section we measure time shifts on correlation functions averaged over the 18

receiver pairs of different orientations considered before.

Results presented in Figure 8 show that the time shift with respect to the reference is
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always about zero suggesting that arrival time does not highly depend anymore on source

distribution. As in Figure 5, this result does not correspond to a total error, but even if

this error is not zero (the scattered field may be still anisotropic) this time shift is almost

independent of the distribution of sources. This can be related intuitively to equation 2

by considering that coda waves make the intensity distribution smoother (see Figures 6(a)

and 6(c)). This leads to lower values of B′′(θ) and thus smaller traveltime bias. This result

confirms the interest of using coda waves in many applications involving uneven source

distribution since Figure 8 shows that we mitigate the traveltime bias due to non-isotropic

source distributions by a factor of 10.

CONCLUSION

We have shown a way to estimate the error made in traveltime estimated from correlations

due to non-isotropic recorded energy provided that the azimuthal distribution is sufficiently

smooth.

Non-isotropy in source distribution is one of the main causes of non-isotropic energy.

But in the case of a heterogeneous medium between sources and the region of receivers,

propagation may modify the wavefield and make it more complicated, producing an addi-

tional error in traveltime. We have seen in this study that this effect is not negligible as

compared to the effect of a non-isotropic source distribution. This means that in the case of

a very heterogeneous medium, propagation effects should be taken into account in the error

estimation. The method proposed in this paper provides a means to estimate the traveltime

error taking into account both effects and allows us to predict errors smaller than 1%.

We observe errors in the order of one percent. The influence of this error highly depends
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on applications: whereas this amount will not introduce misinterpretation in tomographic

studies (recently confirmed by results from Yao and van der Hilst (2009)), it may affect

strongly monitoring results since we investigate much smaller relative velocity variations

(smaller than 10−3). Therefore, this work highlights the interest to estimate the effect

of non-isotropic distribution of energy to allow to correct noise-based measurements in

monitoring studies for this effect.

Finally, we have seen that scattering may play a useful role in reducing this error since

correlating coda waves instead of ballistic waves, allows us to mitigate strongly the influence

of source distribution in traveltime estimates.
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APPENDIX A

ACTUAL INTENSITY DISTRIBUTION FORMULATION AND

ASSOCIATED TRAVELTIME ERROR

The actual intensity distribution taking into account both source and propagation effects is

written in the form

B(θ) =

∫
2π

0

B∗

p(θ′, θ) Bs(θ
′)dθ′ (A-1)
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where B∗

p(θ′, θ) describes the contribution of unit sources located in θ′ to intensity in θ.

In first approximation we write:

B∗

p(θ′, θ) = Bp(θ) f(θ − θ′) (A-2)

and we assume

f(θ − θ′) ∼ δ(θ − θ′). (A-3)

By making this approximation, we neglect multipathing considering that all energy in the

direction θ, i.e. Bp(θ), comes from a single source located in θ.

Equation A-1 then simplifies as:

B(θ) =

∫
2π

0

Bp(θ) δ(θ − θ′) Bs(θ
′)dθ′, (A-4)

B(θ) = Bp(θ) × Bs(θ). (A-5)

The approximation used here is particularly valid in moderately heterogeneous media or

when sources are not too far from receivers (in the case considered, source-receiver sepa-

ration is approximately 4λ). Such values make this approximation usable in longer period

seismology, for example in the primary and secondary microseism band (5-15 s) and station

distances in the order of 50-150 km (Shapiro et al., 2005).

From equation A-5, we derive:

B′′(θ) = B′′

s (θ) × Bp(θ) + 2 × B′

s(θ) × B′

p(θ) + Bs(θ) × B′′

p (θ). (A-6)

Since the correlation function does not distinguish between positive and negative θ, we can

write any distribution as a symmetric distribution. That’s why we write Bs in a Fourier

series of cos(θ) and for θ0 = 0◦ or θ0 = 180◦, B′

s(θ0) = 0.
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Then,

B′′(θ0) = B′′

s (θ0) × Bp(θ0) + Bs(θ0) × B′′

p (θ0), (A-7)

B′′(θ0)

B(θ0)
=

B′′

s (θ0)

Bs(θ0)
+

B′′

p (θ0)

Bp(θ0)
, (A-8)

and from equation 2:

δt = δts + δtp. (A-9)
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LIST OF FIGURES

1 (a) Results of plane wave beamforming on the Parkfield network showing the varia-

tion of seismic noise direction between 0.1 Hz and 0.2 Hz, for 31 consecutive days. Direction

is represented by angle in degree (North is 0◦, positive rotation is clockwise). The color scale

corresponds to the maximum values of the beamformer, 1 corresponding to a perfect match

between the data and the plane wave model. (b) Angular distribution of speed of incoming

noise on Parkfield network for one day (North is 0◦, positive rotation is clockwise). The

color scale corresponds to the agreement between the data and the plane wave model (1

corresponding to a perfect match). The angular spot width matches the expected angular

diffraction spot size of the network.

2 (a) Station map of the Parkfield Network. The black arrow shows the average

seismic noise direction (∼ 55◦) indicating that the noise is coming from the Pacific Ocean.

Station pairs of interest are indicated by black lines. (b) and (c) 1-day averaged correlation

function for two particular days, JD18 (gray line) and JD22 (black dashed line). Two dif-

ferent pairs are considered: the pair 8-27 (b) mostly aligned with the noise direction and,

contrariwise, the pair 13-30 (c) perpendicular to the noise direction.

3 Geometry considered. Two receivers at the center of the network are separated

by a distance x. Sources are located in an annular region of large radius (compared to the

wavelength of interest) centered on receivers. Each source s is located by an angle θ defined

relative to the line connecting the receivers (positive rotation is anti-clockwise).

4 (a) Experimental geometry. 240 sources are selected and located in an annulus of

inner radius 300 m and thickness 70 m, surrounding two receivers separated by 155 m. (b)

Example of intensity (decibel scale) at receivers averaged over the 240 sources selected. The

thin black line represents the boundary between both temporal windows considered in this
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work: direct waves between 0 and 1.5 s and coda waves between 1.5 and 3 s.

5 Measured (cross) and predicted (dashed line) relative time shifts for two different

kinds of source distribution. Theoretical values result from equation 2. Error bars cor-

respond to standard deviation of the 18 pair measurements. The first case corresponds

to a distribution of the form B(θ) = 1 + B1cos(θ). Figure (a) shows the shape of the

distribution for B1 = 0 (isotropic source distribution) and B1 = −0.6 for which most of

the energy comes from the direction θ = 180◦. Different values of B1 then correspond to

different source intensity distribution. Results of relative time shifts are presented in (b) for

B1 evolving from 0 to –0.6 and for positive (above) and negative (below) correlation time.

The reference traveltime corresponds to the correlation function obtained for an isotropic

distribution of sources. A second case is presented in (c) and (d). The source distribution

is of the form B(θ) = 1 + B2cos(2θ) where energy direction is mainly perpendicular to the

receiver line. Relative errors on traveltimes reach 2%, with a large variance, for the case of

a steep distribution (example of B2 = −0.6 in case 2).

6 (a) Angular distribution of speed of incoming energy of ballistic waves, resulting

from plane wave beamforming applied on a single source whose location is indicated in

Figure 7(a). The black line corresponds to the angular position of the source. The an-

gular coordinate system in (a), (b) and (c) is the same as the one displayed in Figure 7.

The azimuthal difference between the source position and the direction of incoming energy

shows a deflection in the medium during propagation between the sources and the region

of receivers. Figure (b) presents values of the deflection versus the azimuthal position of

sources, for the 240 sources considered. (c) Same as (a) except that we have considered the

coda part of the signal (i.e., between 1.5 and 3 s) in the beamforming analysis instead of

ballistic waves. We can note that considering the coda part of the signal makes the intensity

26



distribution smoother.

7 (a) Group-speed map of 12.5-Hz-period Rayleigh waves obtained from active data.

Color represents the value of group velocity in m/s (from Gouédard (2008)). Gray dots and

black triangles represent respectively the 240 sources and 37 receivers considered for the

beamforming analysis. The black circle indicates the source corresponding to Figures 6(a)

and 6(c). (b) Polar representation of the effective intensity distribution at receivers (gray

line) for an isotropic distribution of sources (black dashed line); (a) and (b) have the same

orientations.

8 Comparison between relative time shift measurements on coda waves correlations

(cross) and expectation from ballistic theory given by equation 2 (dashed line) for positive

(above) and negative (below) correlation time. We consider a source distribution of the form

B(θ) = 1+B2cos(2θ) (same as Figure 5(c)). By contrast to Figure 5(d), measurements are

based on coda waves correlations. The reference traveltime corresponds to the correlation

function of coda waves, obtained for an isotropic distribution of sources.
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