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Let P be a Markov kernel on a measurable space X and let V : X →[1, +∞). This paper provides explicit connections between the V -geometric ergodicity of P and that of finite-rank nonnegative sub-Markov kernels P k approximating P . A special attention is paid to obtain an efficient way to specify the convergence rate for P from that of P k and conversely. Furthermore, explicit bounds are obtained for the total variation distance between the P -invariant probability measure and the P k -invariant positive measure. The proofs are based on the Keller-Liverani perturbation theorem which requires an accurate control of the essential spectral radius of P on usual weighted supremum spaces. Such computable bounds are derived in terms of standard drift conditions. Our spectral procedure to estimate both the convergence rate and the invariant probability measure of P is applied to truncation of discrete Markov kernels on X := N.

Introduction

Throughout the paper P is a Markov kernel on a measurable space (X, X ), and { P k } k≥1 is a sequence of nonnegative sub-Markov kernels on (X, X ). For any positive measure µ on X and any µ-integrable function f : X → C, µ(f ) denotes the integral f dµ. Let V : X →[1, +∞) be a measurable function such that V (x 0 ) = 1 for some x 0 ∈ X. Let (B 1 , • 1 ) denote the weighted-supremum Banach space

B 1 := f : X → C, measurable : f 1 := sup x∈X |f (x)|V (x) -1 < ∞ . 1
In the sequel, P V /V and each P k V /V are assumed to be bounded on X, so that both P and P k are bounded linear operators on B 1 . Moreover P (resp. every P k ) is assumed to have an invariant probability measure π (resp. an invariant bounded positive measure π k ) on (X, X ) such that π(V ) < ∞ (resp. π k (V ) < ∞). We suppose that there exists a bounded measurable function φ k : X →[0, +∞) such that P k φ k = φ k and π k (φ k ) = 1. Throughout the paper, every P k is of finite rank on B 1 and the sequence { P k } k≥1 converges to P in the weak sense (C 0,1 ) below. Finally we assume that lim k → +∞ π(φ k ) = 1 and lim

k → +∞ π k (1 X ) = 1. (1) 
These two conditions are necessary for the sequence { π k } k≥1 to converge to π in total variation distance since π(φ k ) -

1 = (π -π k )(φ k ) and π k (1 X ) -1 = ( π k -π)(1 X ).
When P is a Markov kernel on X := N, a typical instance of sequence { P k } k≥1 is obtained by considering the extended sub-Markov kernel P k derived from the linear augmentation (in the last column) of the (k + 1) × (k + 1) northwest corner truncation P k of P (e.g. see [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF]). Then π k is the (extended) probability measure on N derived from the P k -invariant probability measure and φ k = 1 B k with B k := {0, . . . , k}.

In this work, the connection between the V -geometrical ergodicity of P and that of P k is investigated. These properties are defined as follows.

P (resp. P k ) is said to be V -geometrically ergodic if there exist some rate ρ ∈ (0, 1) (resp. ρ k ∈ (0, 1)) and constant C > 0 (resp. C k > 0) such that ∀n ≥ 0, sup

f ∈B 1 , f 1 ≤1 P n f -π(f )1 X 1 ≤ C ρ n (V )
respectively : ∀n ≥ 0, sup

f ∈B 1 , f 1 ≤1 P n k f -π k (f )φ k 1 ≤ C k ρ k n . (V k )
Specifically, the two following issues are studied.

(Q1) Suppose that P is V -geometrically ergodic.

(a) Is P k a V -geometrically ergodic kernel for k large enough? (b) When (ρ, C) is known in (V ), can we deduce explicit (ρ k , C k ) in (V k ) from (ρ, C)?

(c) Does the total variation distance π kπ T V go to 0 when k → +∞, and can we obtain an explicit bound for π kπ T V when (ρ, C) is known in (V )?

(Q2) Suppose that P k is V -geometrically ergodic for every k.

(a) Is P a V -geometrically ergodic kernel? (b) When (ρ k , C k ) is known in (V k ), can we deduce explicit (ρ, C) in (V ) from (ρ k , C k ), and consequently obtain a bound for π kπ T V using the last part of (Q1(c))?

A natural way to solve (Q1) is to see P k as a perturbed operator of P , and vice versa for (Q2). The standard perturbation theory requires that { P k } k≥1 converges to P in operator norm on B 1 . Unfortunately this condition may be very restrictive even if X is discrete (e.g. see [START_REF] Shardlow | A perturbation theory for ergodic Markov chains and application to numerical approximations[END_REF][START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF]): for instance, in our application to truncation of discrete kernels in Section 6, this condition never holds (see Remark 6.2). Here we use the weak perturbation theory due to Keller and Liverani [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF][START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF] (see also [START_REF] Baladi | Positive transfer operators and decay of correlations[END_REF]) which invokes the weakened convergence property P k -P 0,1 := sup

f ∈B 0 , f 0 ≤1 P k f -P f 1 -----→ k → +∞ 0, (C 0,1 )
where B 0 is the Banach space of bounded measurable C-valued functions on X equipped with its usual norm f 0 := sup x∈X |f (x)|. In the truncation context of Section 6 where X := N, Condition (C 0,1 ) holds provided that lim k V (k) = +∞. The price to pay for using (C 0,1 ) is that two functional assumptions are needed. The first one involves the Doeblin-Fortet inequalities: such dual inequalities can be derived for P and every P k from Condition (UWD) below. The second one requires to have an accurate bound of the essential spectral radius r ess (P ) of P acting on B 1 .

Issues (Q1) and (Q2) are solved in Sections 3 and 4. The question in (Q1)-(Q2) concerning π kπ T V is solved by arguments inspired by [START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF]Lem. 7.1] (see Proposition 2.1). The other questions in both (Q1)-(Q2) are addressed using [START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF]. Theorems 3.1 and 4.1 provide a positive and explicit answer to the issues (Q1) and (Q2) under Conditions (V ), (V k ), (C 0,1 ) and the following uniform weak drift condition:

∃ δ ∈ (0, 1), ∃L > 0, ∀k ∈ N * ∪ {∞}, P k V ≤ δV + L 1 X (UWD)
where by convention P ∞ := P . The notion of essential spectral radius and the material on quasi-compactness used for bounding r ess (P ) are reported in Section 5. Our results are applied in Section 6 to truncation of discrete Markov kernels. Some useful theoretical complements on the weak perturbation theory are postponed to Section 7.

The estimates of Theorems 3.1 and 4.1 are all the more precise that the real number δ in (UWD) and the bound for r ess (P ) are accurate. The weak drift inequality used in (UWD) is a simple and well-known condition introduced in [START_REF] Meyn | Markov chains and stochastic stability[END_REF] for studying V -geometric ergodicity. Managing r ess (P ) is more delicate, even in discrete case. To that effect, it is important not to confuse r ess (P ) with ρ in (V ). Actually Inequality (V ) gives1 r ess (P ) ≤ ρ, but this bound may be very inaccurate since there exist Markov kernels P such that ρr ess (P ) is close to one (see Definition 5.1). Moreover note that no precise rate ρ in (V ) is known a priori in Issue (Q2). Accordingly, our study requires to obtain a specific control of the essential spectral radius r ess (P ) of a general Markov kernel P acting on B 1 . This study, which has its own interest, is presented in Section 5 where the two following results are presented.

(i) If P satisfies some classical drift/minorization conditions, then r ess (P ) can be bounded in terms of the constants of these drift/minorization conditions (see Theorem 5.2).

(ii) If P V ≤ δV + L 1 X for some δ ∈ (0, 1) and L > 0, and if P : B 0 → B 1 is compact, then r ess (P ) ≤ δ (see Proposition 5.4).

To the best of our knowledge, the general result (i) is not known in the literature. Result (ii) is a simplified version of [START_REF] Wu | Essential spectral radius for Markov semigroups. I. Discrete time case[END_REF]Th. 3.11]. For convenience we present a direct and short proof using [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF]Cor. 1]. The bound r ess (P ) ≤ δ obtained in (ii) is more precise than that obtained in (i) (and sometimes is optimal). The compactness property in (ii) must not be confused with that of P : B 1 → B 1 or P : B 0 → B 0 , which are much stronger conditions. If P is an infinite matrix (X := N), then P : B 0 → B 1 is compact when lim k V (k) = +∞, while in general P is compact neither on B 1 nor on B 0 .

Let us give a brief review of previous works related to Issues (Q1) or (Q2). Various probabilistic methods have been developed to derive explicit rate and constant (ρ, C) in Inequality (V ) from the constants of drift conditions (see [START_REF] Meyn | Computable bounds for geometric convergence rates of Markov chains[END_REF][START_REF] Lund | Geometric convergence rates for stochastically ordered Markov chains[END_REF][START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF] and the references therein). To the best of our knowledge, these methods, which are not concerned with approximation issues, provide a computable rate ρ which is often unsatisfactory, except for reversible or stochastically monotone P . Convergence of { π k } k≥1 to π has been studied in [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF] for truncation approximations of V -geometrically ergodic Markov kernels with discrete X. Specifically it is proved that sup |f |≤V | π k (f )-π(f )| goes to 0 when k → +∞. In particular π k -π T V goes to 0. In the special case when P is stochastically monotone, the following rate of convergence is obtained [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF]Th. 4.2,(46)]

∀k ∈ N * , π k -π T V = O ln V (k) V (k) . (2) 
In this estimate, explicit constants only depending on constants involved in drift/minorization conditions are also provided. A similar result has been obtained for polynomially ergodic Markov chains in [START_REF] Liu | Augmented truncation approximations of discrete-time Markov chains[END_REF]. A bound of type ( 2) is provided by Theorems 3.1 and 4.1 under Conditions (V ), (V k ), (C 0,1 ) and (UWD). This result is new even for discrete truncation approximation since the stochastic monotonicity is not required in our work. Questions related to Issue (Q2) have been investigated in [START_REF] Rosenthal | Markov chain convergence: from finite to infinite[END_REF] for discrete reversible Markov kernels. The main result in [START_REF] Rosenthal | Markov chain convergence: from finite to infinite[END_REF]Cor. 3] is that µP nπ T V ≤ c β n for some explicit positive constant c, provided that lim inf β k ≤ β, where β k denotes the so-called second eigenvalue of the k-th truncated kernels augmented on the diagonal. However, except in special cases (see [START_REF] Rosenthal | Markov chain convergence: from finite to infinite[END_REF]), finding a nontrivial upper bound β of lim inf β k is a difficult problem. Note that our Theorem 4.1 only needs to compute the second eigenvalue of P k for some suitable k. Finally mention that perturbations bounds have been obtained in [START_REF] Mitrophanov | Sensitivity and convergence of uniformly ergodic Markov chains[END_REF] by a different way for uniformly ergodic Markov chains (i.e. V ≡ 1 in (V )).

The weak perturbation results of [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF][START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF] have been fully used in the framework of dynamical systems (e.g. see [START_REF] Bahsoun | Rigorous numerical approximation of escape rates[END_REF][START_REF] Demers | Stability of statistical properties in two-dimensional piecewise hyperbolic maps[END_REF][START_REF] Bahsoun | Quasi-invariant measures, escape rates and the effect of the hole[END_REF][START_REF] Bahsoun | Invariant densities and escape rates: rigorous and computable approximations in the L ∞ -norm[END_REF][START_REF] Zheng | Stochastic perturbations of fat solenoidal attractors[END_REF]). There, Markov kernels and their invariant probability measure are replaced by Perron-Frobenius operators and their so-called SRB measure. In the context of V -geometrically ergodic Markov kernels, the Keller-Liverani theorem has been already used in [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF] to study general perturbation issues. When applied to our context, [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF]Th. 1] gives a positive answer to (Q1)(a) and the convergence of π kπ T V to 0. The others questions in (Q1)-(Q2) are not addressed in [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF]. In the present work, the duality arguments introduced in [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF] are applied together with the explicit bounds of [START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF].

Notations and preliminary results

Let us first introduce notations used in the paper. Let ⌊•⌋ denote the integer part function. We denote by (L(B 0 , B 1 ), • 0,1 ) the space of all the bounded linear maps from B 0 to B 1 , equipped with its usual norm:

T 0,1 = sup T f 1 , f ∈ B 0 , f 0 ≤ 1 .
We write L(B 1 ) for L(B 1 , B 1 ) and T 1 for T 1,1 . Let (B ′ 1 , • 1 ) be the dual space of B 1 . Note that we make a slight abuse of notation in writing again • 1 for the operator and dual norms on B 1 . Recall that the total variation distance between π k and π is defined by

π k -π T V := sup f 0 ≤1 | π k (f ) -π(f )|.
The next proposition is relevant to estimate π kπ T V . Proposition 2.1 Assume that Condition (UWD) holds. Set ∆ k := P k -P 0,1 and

A := 1 + L 1 -δ . ( 3 
) (a) If, for some k ≥ 1, P k is V -geometrically ergodic with rate and constant (ρ k , C k ) in (V k ), then π k -π T V ≤ π k (1 X ) |1 -π(φ k )| + L 1 -δ 2C k ρ k + A ln(ρ k -1 ) | ln ∆ k | ∆ k . (4) 
(b) If P is V -geometrically ergodic with rate and constant (ρ, C) in (V ), then

∀n ≥ 1, π n -π T V ≤ |1 -π n (1 X )| + L 1 -δ 2C ρ + A ln ρ -1 | ln ∆ n | ∆ n . (5) 
From Assumption (1), we know that the first term in the right-hand side of both (4) and ( 5) converges to 0. When applied to truncation of discrete kernels in Section 6, the first term in the right-hand side of (4) (resp. of ( 5)) is O(∆ k ) (resp. zero).

Inequality ( 4) is interesting since rate and constant (ρ k , C k ) in (V k ) are expected to be computable. However further properties on the ρ k 's and the C k 's are required to deduce lim k π kπ T V = 0 from (4). They are derived from (V ) in Theorem 3.1. By contrast, Inequality [START_REF] Bahsoun | Invariant densities and escape rates: rigorous and computable approximations in the L ∞ -norm[END_REF] 5) is only computable when some explicit rate and constant (ρ, C) are known in (V ). Such explicit (ρ, C) is derived from (V k ) in Theorem 4.1.

gives lim n π n -π T V = 0 when P n -P 0,1 → 0. But the bound π n -π T V = O(| ln ∆ n |∆ n ) provided by (
Proof of Proposition 2.1. In a first step, we prove that we have with A n := max 0≤j≤n-1 P j

1 π k -π T V ≤ π k (1 X ) |1 -π(φ k )| + L 1 -δ 2C k ρ k n + nA n ∆ k . (6) 
Observe that, for any n ≥ 0, we can write

P n -P n k 0,1 ≤ nA n P -P k 0,1 .
This inequality follows from P k 0 ≤ 1 and an easy induction based on

P n -P n k = P n-1 (P -P k ) + (P n-1 -P n-1 k ) P k .
Using the triangle inequality, we obtain for any f ∈ B 0 such that f 0 ≤ 1

| π k (f ) -π(f )| = π k ( P n k f ) -π(P n f ) ≤ ( π k -π)( P n k f ) + π P n k f -P n f ≤ π k (|f |) ( π k -π)(φ k ) + ( π k -π)( P n k f -π k (f )φ k ) + π 1 P n k -P n 0,1 ≤ π k (1 X ) |π(φ k ) -1| + π k -π 1 P n k f -π k (f )φ k 1 + π(V ) nA n ∆ k ≤ π k (1 X ) |π(φ k ) -1| + π k (V ) + π(V ) C k ρ n k f 1 + π(V ) nA n ∆ k . Note that max π(V ), π k (V ) ≤ L/(1 -δ) (7) 
from (UWD) since π (resp. π k ) is P -invariant (resp. P k -invariant). Inequality (6) then follows from [START_REF] Baladi | Positive transfer operators and decay of correlations[END_REF] allows us to derive Inequality (4).

f 1 ≤ f 0 . Now observe that A n ≤ A from P j V ≤ δ j V + L j-1 i=0 δ i ≤ A V . Setting n := max 0 , ⌊(ln ρ k ) -1 ln ∆ k ⌋ in
The proof of ( 5) is similar by exchanging the role of P and P k . Now we prove that Condition (UWD) of Introduction provides some uniform dual Doeblin-Fortet inequalities for the family {P, P k , k ≥ 1}. For any Q ∈ L(B 1 ), we denote by Q ′ its adjoint operator. Define the following auxiliary semi-norm on B ′ 1 :

∀f ′ ∈ B ′ 1 , f ′ 0 := sup |f ′ (f )|, f ∈ B 0 , f 0 ≤ 1 . ( 8 
)
Lemma 2.2 Let Q be any non-negative linear operator on the space B 1 satisfying

∃ δ ∈ (0, 1), ∃L > 0, QV ≤ δV + L 1 X . Then: ∀f ′ ∈ B ′ 1 , Q ′ f ′ 1 ≤ δ f ′ 1 + L f ′ 0 .
For a Markov kernel Q, the proof of this lemma is given in [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF]. Since only the non-negativity of the operator Q plays a role in this proof, the details are omitted. From Lemma 2.2 we obtain the following statement.

Lemma 2.3 If Condition (UWD) holds with parameters (δ, L), then the kernels Q := P and Q := P k for k ≥ 1 satisfy the following uniform Doeblin-Fortet inequality on B ′ 1 :

∀f ′ ∈ B ′ 1 , Q ′ f ′ 1 ≤ δ f ′ 1 + L f ′ 0 .
3 From P to P k : solution to (Q1)

For any (a, θ) ∈ C × (0, +∞), let us define D(a, θ) := {z ∈ C : |z -a| < θ} and D(a, θ) := {z ∈ C : |z -a| ≤ θ}. For any T ∈ L(B 1 ), the spectrum of T is denoted by σ(T ), and for any (r, ϑ) ∈ (0, 1) 2 , we introduce the following subsets of the complex plan

V(r, ϑ, T ) := z ∈ C : |z| ≤ r or d(z, σ(T )) ≤ ϑ and V(r, ϑ, T ) c := C \ V(r, ϑ, T ),
where d(z, σ(T )) := inf{|z -λ|, λ ∈ σ(T )}. Below P is assumed to be V -geometrically ergodic. In particular P is quasi-compact on B 1 , that is: r ess (P ) < 1 (see Section 5). Under the additional Condition (UWD), we set α := max r ess (P ), δ .

Lemma 2.3 ensures that Q := P and Q := P k for k ≥ 1 satisfy the following Doeblin-Fortet inequalities on B ′ 1 (use the fact that P and P k are contraction on B 0 ):

∀n ∈ N * , ∀f ′ ∈ B ′ 1 , Q ′ n f ′ 1 ≤ αn f ′ 1 + B f ′ 0 with B := L 1 - α . ( 10 
)
For any r > α and ϑ > 0, we set:

H ≡ H(r, ϑ, P ) := sup z∈V(r,ϑ,P ) c (zI -P ) -1 1 (11a) n 1 ≡ n 1 (r) := ln 2 ln(r/α) + 1 n 2 ≡ n 2 (r, ϑ, P ) := ln 8B(B + 3) r -n 1 H ln(r/α) + 1 ε 1 ≡ ε 1 (r, ϑ, P ) := r n 1 +n 2 8B HB + (1 -r) -1 . (11b) 
Theorem 3.1 Let P be a V -geometrically ergodic Markov kernel with rate ρ ∈ (0, 1) in (V ).

Assume that Conditions (C 0,1 ) and (UWD) hold. Let (r, ϑ) ∈ (0, 1) 2 be such that

max(α, ρ) + ϑ < r < 1 -ϑ. (12) 
Then, for any k ∈ N * such that the convergence condition (C 0,1 ) holds at rate ε 1 that is

P k -P 0,1 ≤ ε 1 , (E 0,1 )
and such that (V k ) holds with some rate ρ k satisfying ρ k < 1ϑ, the following inequalities are valid.

1. Inequality (V k ) holds with rate r, more precisely

∀n ≥ 0, P n k -π k (•)φ k 1 ≤ c r n+1 with c ≡ c(r, ϑ, P ) := 4(B + 1) r n 1 (1 -r) + 1 2 ε 1 . (13) 
2. We have, with A defined in (3) and

∆ k := P k -P 0,1 , π k -π T V ≤ π k (1 X ) |1 -π(φ k )| + L 1 -δ 2c + A ln r -1 | ln ∆ k | ∆ k . ( 14 
)
Under Conditions (V ), (C 0,1 ) and (UWD), the conclusions ( 13)-( 14) hold true for k large enough, so that Issue (Q1) is solved. Indeed, the fact that Condition (E 0,1 ) is fulfilled for k large enough follows from (C 0,1 ). That (V k ) holds with some rate ρ k < 1ϑ for k large enough is more difficult to establish. This follows from Proposition 7.1 which ensures that a sufficient condition for such a property to hold is that k ≥ k 0 , with k 0 defined in (43). However in practice we do not need to use k 0 since Property (V k ) with ρ k < 1ϑ may be fulfilled for k << k 0 . This explains why k 0 is not introduced in Theorem 3.1. Actually, under Conditions (V ), (C 0,1 ) and (UWD), the results [21, Prop. 3.1] and the spectral rank-stability property [START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF]Cor. 3.1] directly provide Property [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels, applications to Markov chains[END_REF] when Condition (E 0,1 ) is replaced with P k -P 0,1 ≤ ε 0 with ε 0 ≡ ε 0 (r, ϑ, P ) defined in (42). In this case the assumption (V k ) with ρ k < 1ϑ can be dropped in Theorem 4.1. When ε 0 is strictly less than ε 1 given in (11b), using Conditions (E 0,1 ) and ρ k < 1ϑ invokes smaller k.

In fact Theorem 3.1 is only relevant when the rate ρ and the bound C in (V ) are known. That ρ must be known is necessary to choose (r, ϑ) in [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF]. Constant C must be known for an effective computation of an upper bound of H ≡ H(r, ϑ, P ) in (11a) (see Remark 3.2). Note that H is involved in the definition of ε 1 (r, ϑ, P ), thus in the computation of the bound c(r, ϑ, P ) in [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels, applications to Markov chains[END_REF]. Furthermore note that, although Inequality ( 14) is interesting from a theoretical point of view since it provides lim k π kπ T V = 0, the bound in ( 14) is only computable when some explicit rate and constant in (V ) are known. Another way for obtaining a computable bound for π kπ T V is presented in Theorem 4.1 Remark 3.2 When P is V -geometrically ergodic with some rate and constant (ρ, C) in (V ), we have for any (r, ϑ) ∈ (0, 1)

2 such that ρ + ϑ < r < 1 -ϑ: H(r, ϑ, P ) = sup z∈D(0,r) c ∩D(1,ϑ) c (zI -P ) -1 1 ≤ π(V ) ϑ + C r -ρ ≤ π(V ) + C ϑ .
These properties are derived by writing g ∈ B 1 as g = π(g)1 X + h with h := gπ(g)1 X . Using (V ) first implies that (zI -P ) -1 is well-defined in L(B 1 ) for any z ∈ C such that |z| > ρ and z = 1, with: (zI -P ) -1 (g) = π(g)(zI -P ) -1 1 X + (zI -P ) -1 (h). The first term is (π(g)/(z -1))1 X . The second one can be bounded in norm • 1 by using Neumann series. Since π may be unknown, note that π(V ) ≤ L/(1δ) under (UWD) (see [START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF]).

Using Conditions (E 0,1 ) and ( 10) together with the condition ρ k < 1ϑ allow us to derive Theorem 3.1 from the first part of [START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF]Prop. 3.1] as follows.

Proof. For any T ∈ L(B 1 ), recall that T ′ 1 = T 1 and σ(T ) = σ(T ′ ). Given any real numbers r > α and ϑ > 0, we use the quantities introduced in (11a)-(11b). Note that H in (11a) may be equivalently defined with P ′ in place of P since the resolvents of P and P ′ have the same norm in L(B 1 ) and L(B ′ 1 ) respectively and V(r, ϑ, P ) = V(r, ϑ, P ′ ).

The first assertion of Theorem 3.1 is proved in two steps. In a first step, using (V ), ( 10) and (E 0,1 ) for some k ∈ N * , we show that we have with c(r, ϑ, P ) given in ( 13)

σ( P k ) ⊂ V(r, ϑ, P ) and sup z∈V(r,ϑ,P ) c (zI -P k ) -1 1 ≤ c(r, ϑ, P ). ( 15 
)
Clearly [START_REF] Hervé | Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks[END_REF] will hold true if we establish that the following properties are valid:

σ( P k ′ ) ⊂ V(r, ϑ, P ) and sup z∈V(r,ϑ,P ) c (zI -P k ′ ) -1 1 ≤ c(r, ϑ, P ). ( 16 
)
In fact we prove that [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF], so [START_REF] Hervé | Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks[END_REF], hold for any ϑ > 0 and r > α. To that effect, the Keller-Liverani perturbation theorem [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF] is applied to the adjoint operators of P and P k acting on B ′ 1 . The auxiliary semi-norm • 0 on B ′ 1 has been introduced in (8). We have that

∀f ′ ∈ B ′ 1 , f ′ 0 ≤ f ′ 1 . Moreover we have for any f ′ ∈ B ′ 1 P ′ f ′ 0 ≤ f ′ 0 and ∀k ≥ 1, P k ′ f ′ 0 ≤ f ′ 0 .
Indeed, for K := P and K := P k , we obtain Kf 0 ≤ f 0 from the positivity of K and K1 X ≤ 1 X , so that we have for any

f ′ ∈ B ′ 1 and f ∈ B 0 , f 0 ≤ 1: |(K ′ f ′ )(f )| = |f ′ (Kf )| ≤ f ′ 0 Kf 0 ≤ f ′ 0 .
Next, using (UWD), we know from Lemma 2.3 that P ′ and P k ′ (for every k ≥ 1) satisfy the uniform Doeblin-Fortet inequalities (10) on B ′ 1 . Moreover we obtain by duality and from Inequality (E 0,1 )

P k ′ -P ′ 1,0 := sup f ′ ∈B ′ 1 , f ′ B ′ 1 ≤1 P k ′ f ′ -P ′ f ′ 0 = P k -P 0,1 ≤ ε 1 .
Finally we know that P ′ is quasi-compact on B ′ 1 with essential spectral radius less than α, and that the essential spectral radius of P k ′ is zero since P k is of finite rank. The previous facts and the first part of [21, Prop. 3.1] then give [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF].

In a second step, we prove that Inequality (13) holds under the assumptions of Theorem 3.1. Since P is V -geometrically ergodic, we have σ(P ) ⊂ D(0, ρ) ∪ {1}. Thus, it follows from [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF] and the first inclusion in (15) that σ( P k ) ⊂ D(0, r) ∪ D(1, ϑ). Moreover, since P k is assumed to be V -geometrically ergodic with rate ρ k < 1ϑ, we obtain that

σ( P k ) ⊂ D(0, r) ∪ {1} and that (1/2iπ) |z-1|=ϑ (zI -P k ) -1 dz = π k (•) φ k from standard spectral theory. Thus we have for any κ ∈ (r, 1 -ϑ) ∀n ≥ 1, P n k = 1 2iπ |z-1|=ϑ (zI -P k ) -1 dz + 1 2iπ |z|=κ z n (zI -P k ) -1 dz = π k (•)φ k + 1 2iπ |z|=κ z n (zI -P k ) -1 dz.
Finally it follows from (15

) that P n k -π k (•)φ k 1 ≤ c(r, ϑ, P ) κ n+1 . Since κ ∈ (r, 1 -ϑ)
is arbitrary, this inequality holds with r in place of κ, and it gives [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels, applications to Markov chains[END_REF].

Using [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels, applications to Markov chains[END_REF], the second assertion of Theorem 3.1 follows from Inequality (4) of Proposition 2.1. The proof of Theorem 3.1 is complete. [START_REF] Bahsoun | Quasi-invariant measures, escape rates and the effect of the hole[END_REF] From P k to P : solution to (Q2)

Let ρ V (P ) denote the spectral gap of P , that is the infimum bound of the rates ρ in Inequality (V ). Recall that ρ V (P ) is unknown in general and that, even when it is known, finding an explicit constant C associated with ρ > ρ V (P ) in (V ) is a difficult question. As mentioned in Introduction, there exist various methods [START_REF] Meyn | Computable bounds for geometric convergence rates of Markov chains[END_REF][START_REF] Lund | Geometric convergence rates for stochastically ordered Markov chains[END_REF][START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF] providing rates and constants (ρ, C) in Inequality (V ), but they yield a rate ρ which is much far from ρ V (P ) except in specific cases. The first purpose of Theorem 4.1 below is to derive a rate r k in (V ) from ρ k in (V k ), which is all the more close to ρ V (P ) that k is large and ρ k in (V k ) is close to the so-called second eigenvalue of the finite-rank operator P k . The second purpose of Theorem 4.1 is to provide an explicit constant c k ≡ c(r k ) associated with rate r k in (V ). Then Proposition 2.1 can be applied to derive a bound for π kπ T V .

Let us briefly explain why the passage from the V -geometric ergodicity of P k to that of P is theoretically more difficult than the converse one studied in Section 3. Assume that Conditions (V ), (C 0,1 ) and (UWD) hold. Let r > α with α given in ( 9) and let ϑ > 0. With ε 1 (r, ϑ, P ) defined in (11b), Property (15) reads as follows

P k -P 0,1 ≤ ε 1 (r, ϑ, P ) =⇒ σ( P k ) ⊂ V(r, ϑ, P ), sup z∈V(r,ϑ,P ) c (zI -P k ) -1 1 < ∞. ( 17 
)
Next, for any fixed k ∈ N * , exchanging the role of P and P k in [START_REF] Hervé | Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks[END_REF] gives the following implication:

P -P k 0,1 ≤ ε 1 (r, ϑ, P k ) =⇒ σ(P ) ⊂ V(r, ϑ, P k ), sup z∈V(r,ϑ, P k ) c (zI -P ) -1 1 < ∞. (18) 
There is a significant difference between the implications ( 17) and ( 18) since the inequality P k -P 0,1 ≤ ε 1 (r, ϑ, P ) in ( 17) is satisfied for k large enough from Condition (C 0,1 ), while the inequality P -P k 0,1 ≤ ε 1 (r, ϑ, P k ) in [START_REF] Kontoyiannis | Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes[END_REF] could fail for every k. Fortunately, such a failure cannot occur when Conditions (V ), (C 0,1 ) and (UWD) hold (see Proposition 7.4). Now we introduce the material used in Theorem 4.1. Under Condition (UWD), we define the following constants for any ϑ > 0, k ∈ N * and r k ∈ (0, 1), with B defined in [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF]:

ε 1 (k) ≡ ε 1 (r k , ϑ, P k ) := r k n 1 (k)+n 2 (k) 8B H k B + (1 -r k ) -1 (19a) with H k ≡ H(r k , ϑ, P k ) := sup z∈V(r k ,ϑ, P k ) c (zI -P k ) -1 1 (19b) n 1 (k) := ln 2 ln(r k /α) + 1, n 2 (k) ≡ n 2 (r k , ϑ, P k ) := ln 8B(B + 3) r k -n 1 (k) H k ln(r k /α) + 1. ( 19c 
)
To apply Theorem 4.1, some preliminary (possibly poor) rate ρ in (V ) is assumed to be available. But it is worth noticing that no constant associated with ρ in (V ) is required. Inequality [START_REF] Meyn | Markov chains and stochastic stability[END_REF] then provides a new rate r k in (V ) with an explicit associated constant c k .

Theorem 4.1 Assume that P is V -geometrically ergodic with some rate ρ ∈ (0, 1) and that Conditions (C 0,1 ) and (UWD) hold. Let ϑ be such that

0 < ϑ < min 1 - α 3 , 1 -ρ 3 ( 20 
)
and let I ϑ denote the following subset of integers:

I ϑ := k ∈ N * : P k satisfies (V k ) with some rate ρ k < 1 -2ϑ . (21) 
Then, for any k ∈ I ϑ and for any r k such that

max(α, ρ k ) + ϑ < r k < 1 -ϑ, (22) 
the estimates in (a) and (b) below are valid provided that the convergence condition (C 0,1 ) holds at rate ε 1 (k), that is

P -P k 0,1 ≤ ε 1 (k). (E 0,1 (k)) (a)
The iterates of P converge to π(•)1 X with the following explicit rate of convergence:

∀n ≥ 0, P n -π(•)1 X 1 ≤ c k r k n+1 with c k ≡ c k (r k , ϑ) := 4(B + 1) r k n 1 (k) (1 -r k ) + 1 2 ε 1 (k) . (23) 
(b) We have, with A defined in (3) and ∆ n := P n -P 0,1 , Under the assumptions of Theorem 4.1, the conclusions ( 23) and ( 24) are valid for k large enough, so that Issue (Q2) is solved. Indeed, first Proposition 7.1 ensures that a sufficient condition for k to belong to I ϑ is that P k -P 0,1 ≤ ε 0 with ε 0 ≡ ε 0 (r, ϑ, P ) defined in (42) (use that max(α, ρ) + ϑ < 1 -2ϑ from [START_REF] Liu | Augmented truncation approximations of discrete-time Markov chains[END_REF]). Second Proposition 7.4 ensures that a sufficient condition for the convergence property (E 0,1 (k)) to hold is that k ∈ [ k, +∞) ∩ I ϑ for some integer k (greater than k 0 ). Since integer k ∈ I ϑ satisfying (E 0,1 (k)) may exist for k < max( k, k 0 ), an effective application of Theorem 4.1 needs to find such a k with a value as small as possible. This can be done in testing the validity of both properties k ∈ I ϑ and (E 0,1 (k)) for increasing values of k. Finally note that the bound H k in (19b) can be bounded under Condition (V k ) following the lines of Remark 3.2 with P k in place of P (see Lemma 6.3 for discrete Markov kernels). An algorithm based on Theorem 4.1 is proposed in Subsection 6.2 for truncating discrete Markov kernels. Numerical results for random walks on X := N are reported in Subsection 6.3.

∀n ≥ 1, π n -π T V ≤ |1 -π n (1 X )| + L 1 -δ 2c k + A ln r k -1 | ln ∆ n | ∆ n . (24) 
The whole results of [START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF], applied with P k and P viewed as unperturbed and perturbed operators respectively, directly provide Property [START_REF] Meyn | Markov chains and stochastic stability[END_REF] when Condition (E 0,1 (k)) is replaced with P k -P 0,1 ≤ ε 0 (k), where ε 0 (k) ≡ ε 0 (r k , ϑ, P k ) is defined as in (42) with r k , H k in place of r, H. In this case no preliminary bound ρ in (V ) is required in Theorem 4.1, and Condition ( 20) is : 0 < ϑ < (1α)/3 (in fact the V -geometric ergodicity assumption in Theorem 4.1 may be replaced by the quasi-compactness of P on B 1 ). When ε 0 (k) is strictly less than ε 1 (k) given in (19a) and a preliminary bound ρ in (V ) is known, the alternative Assertion (a) in Theorem 4.1 is of interest since it involves smaller integers k. Note that the second eigenvalue of P k will be all the more tractable that k is small since the rank of P k is expected to increase with respect to k.

When r k gets closer to ρ V (P ), the constant c k associated with r k in [START_REF] Meyn | Markov chains and stochastic stability[END_REF] goes to +∞. Numerical evidence of this fact is provided by Table 1. More generally, an efficient use of Theorem 4.1 needs to make a trade-off between the rate r k and the constant c k in [START_REF] Meyn | Markov chains and stochastic stability[END_REF] since the choice of (ϑ, r k ) greatly affects the bound H k in (19b), thus the constant c k .

Remark 4.2 Property (24) provides a bound π n -π T V = O(∆ n | ln ∆ n |)
with computable constants since r k and c k are deduced from computations involving the finite-rank operator P k for some k. Consequently, given some error term ε > 0, this bound can be used to find an integer n ≡ n(ε) ≥ 1 such that π nπ T V ≤ ε. However, as illustrated in Section 6, applying Inequality (4) for larger and larger k to test the previous property is more efficient since the constant C k in (V k ) is much smaller than the constant c k in [START_REF] Meyn | Markov chains and stochastic stability[END_REF], which in practice is derived from C k (see the above comments on H k ).

5 Bounds on the essential spectral radius of quasi-compact kernels on B 1

From the definition of α in ( 9), the new rates in (V k ) provided by Theorem 3.1, or in (V ) by Theorem 4.1, are all the more interesting that an accurate bound of r ess (P ) is known (e.g. see Condition [START_REF] Lund | Geometric convergence rates for stochastically ordered Markov chains[END_REF] for the new rate in (V )). Estimates of r ess (P ) are provided under two different kind of assumptions on the Markov kernel P . The first bound for r ess (P ) (Theorem 5.2) is derived from a result on positive operators [START_REF] Schaefer | Topological vector spaces[END_REF]. The second one (Proposition 5.4) is obtained by duality from the quasi-compactness criterion of [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF].

First we recall some basic facts on quasi-compactness and on the essential spectral radius of a linear bounded operator T with positive spectral radius on a complex Banach space (B, • ). Its spectral radius r(T ) := lim n T n 1/n , where • also stands for the operator norm on B, is assumed to be 1 (if not, replace T with r(T ) -1 T ). We denote by I the identity operator on B. The next definitions of quasi-compactness and essential spectral radius are from [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF] (to be compared with the reduction of matrices or compact operators). Additional materials are developed in [START_REF] Neveu | Bases mathématiques du calcul des probabilités[END_REF][START_REF] Krengel | Ergodic Theorems[END_REF][START_REF] Arendt | One-parameter semigroups of positive operators[END_REF]. Definition 5.1 T is quasi-compact on B if there exist r 0 ∈ (0, 1), m ∈ N * and (λ i , p i ) ∈ C × N * for i = 1, . . . , m such that:

B = m ⊕ i=1 Ker(T -λ i I) p i ⊕ H, (25a) 
where the λ i 's are such that

|λ i | ≥ r 0 and 1 ≤ dim Ker(T -λ i I) p i < ∞, (25b) 
and H is a closed T -invariant subspace such that

inf n≥1 sup h∈H, h ≤1 T n h 1/n < r 0 . ( 25c 
)
Then the essential spectral radius of T , denoted by r ess (T ), is given by r ess (T ) = inf r 0 ∈ (0, 1) such that we have (25a), (25b), (25c) .

Note that the infimum bound in the left-hand side of (25c) is nothing else but the spectral radius of the restriction of T to H. It is well-known that the essential spectral radius of T is usually defined by r ess (T ) := lim n (inf T n -K ) 1/n , where the infimum is taken over the ideal of compact operators K on B. Consequently, T is quasi-compact if and only if there exist some n 0 ∈ N * and some compact operator K 0 on B such that r(T n 0 -K 0 ) < 1. Under the previous condition we have

r ess (T ) ≤ (r(T n 0 -K 0 )) 1/n 0 . ( 27 
)
Finally recall that r ess (T ) = r ess (T p ) 1/p for every p ≥ 1 since lim n (inf

T n -K ) 1/n = lim k (inf T pk -K ) 1/(pk) .

Bounds on r ess (P ) under drift/minorization conditions

In the next theorem, a simple bound of r ess (P ) is given in terms of the parameters of the drift/minorization conditions (28a)-(28b) below (note that no irreducibility/aperiodicity condition is assumed).

Theorem 5.2 Assume that P satisfies the following drift/minorization conditions: there exist a bounded set S ∈ X and a positive measure ν on (X, X ) such that ∃δ ∈ (0, 1), ∃L > 0,

P V ≤ δ V + L 1 S , (28a) ∀x ∈ X, ∀A ∈ X , P (x, A) ≥ ν(1 A ) 1 S (x). ( 28b 
)
Then P is a power-bounded quasi-compact operator on B 1 with

r ess (P ) ≤ δ ν(1 X ) + τ ν(1 X ) + τ where τ := max(0, L -ν(V )). ( 29 
)
In the long version [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels, applications to Markov chains[END_REF] of [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels[END_REF], the quasi-compactness of P on B 1 is proved under the assumptions of Theorem 5.2. The bound obtained for r ess (P ) in [13, Th. IV.2] is less tractable than (29) since it is expressed in terms of the hitting time for S. Also mention that, in the unpublished paper [START_REF] Delyon | Geometric convergence of Markov chains through a local Doeblin condition[END_REF], the quasi-compactness of Markov kernels is obtained on the subspace of continuous functions of B 1 under some drift/minorization conditions. No bound on the essential spectral radius is presented in [START_REF] Delyon | Geometric convergence of Markov chains through a local Doeblin condition[END_REF].

The short proof of Theorem 5.2 illuminates the role of the drift and minorization conditions to obtain good spectral properties of P on B 1 . In particular, using [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels, applications to Markov chains[END_REF]Cor. IV.3], this provides a simple proof of the fact that under the assumptions of Theorem 5.2, together with irreducibility and aperiodicity assumptions, P is V -geometrically ergodic. This fact is well-known (e.g. see [START_REF] Meyn | Markov chains and stochastic stability[END_REF]).

Proof. Condition (28a) implies that P V ≤ δ V + L 1 X , thus

sup n≥0 P n 1 ≤ 1 -δ + L 1 -δ (30) 
so that P is power-bounded on B 1 . Then, from P 1 X = 1 X and 1 ∈ B 1 , we have r(P ) = 1. Moreover, since P V 1 < ∞, we deduce from (28b) that ν(V ) < ∞. Thus we can define the following rank-one operator on B 1 : T f := ν(f ) 1 S . Set R := P -T . From T ≥ 0 and from (28b), it follows that 0 ≤ R ≤ P , so r(R) ≤ 1. Set r := r(R). If r = 0, then P is quasicompact with r ess (P ) = 0 from [START_REF] Nummelin | General irreducible Markov chains and nonnegative operators[END_REF]. Now assume that r ∈ (0, 1]. Then, we know from [30, Appendix, Cor.2.6] that there exists a nontrivial non-negative η ∈ B ′ 1 such that η • R = r η.

From P = T + R, we have η • P = η • T + r η, thus η(P 1 X ) = η(1 X ) = η(T 1 X ) + r η(1 X ). Hence η(T 1 X ) = (1 -r)η(1 X ), from which we deduce that η(1 S ) = (1 -r)η(1 X ) ν(1 X ) ≤ (1 -r)η(V ) ν(1 X ) .
Next, we have

RV = P V -T V = P V -ν(V )1 S ≤ δ V + (L -ν(V )) 1 S .
Hence, setting τ := max(0, Lν(V )) ≥ 0, we obtain

r η(V ) = η(RV ) ≤ δ η(V ) + τ η(1 S ) ≤ δ η(V ) + τ (1 -r)η(V ) ν(1 X ) . (31) 
Since η = 0, we have η(V ) > 0, and since δ ∈ (0, 1), we cannot have r = 1. Thus r ∈ (0, 1), and P is quasi-compact from [START_REF] Nummelin | General irreducible Markov chains and nonnegative operators[END_REF] with r ess (P ) ≤ r(P -T ) = r. Then [START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF] gives [START_REF] Rosenthal | Markov chain convergence: from finite to infinite[END_REF].

Remark 5.3 Recall that A ∈ X is said to be an atom for P if P (a, •) = P (a ′ , •) for any (a, a ′ ) ∈ A 2 . Any Markov model having a regenerative structure is concerned with such a property (e.g. see [START_REF] Nummelin | General irreducible Markov chains and nonnegative operators[END_REF][START_REF] Asmussen | Applied probability and queues[END_REF]). If P satisfies (28a) with S := A, then r ess (P ) ≤ δ. Indeed, note that P satisfies the minorization condition (28b) with A and ν(1

• ) := P (a 0 , •) for any a 0 ∈ A. Choose L := sup x∈A (P V )(x) in (28a). Since A is an atom, we have L = (P V )(a 0 ) = ν(V ) so that τ = 0 in (29).

Bound on r ess (P ) under a weak drift condition

The key idea to obtain quasi-compactness in Proposition 5.4 below is to use the dual Doeblin-Fortet inequality obtained in Lemma 2.2. Despite its great simplicity, this duality approach seems to be unknown in the literature. In particular it allows us to greatly simplify the arguments used in [START_REF] Wu | Essential spectral radius for Markov semigroups. I. Discrete time case[END_REF] since the well known statement [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF]Cor. 1] gives the bound r ess (P ) ≤ δ provided that P ℓ is compact from B 0 to B 1 for some ℓ ≥ 1. This compactness condition is much simpler than the assumptions of [START_REF] Wu | Essential spectral radius for Markov semigroups. I. Discrete time case[END_REF] based on sophisticated parameters β w (P ) and β τ (P ) as measure of non-compactness of P . Precise comparisons with [START_REF] Wu | Essential spectral radius for Markov semigroups. I. Discrete time case[END_REF] and complements are presented in [START_REF] Guibourg | Quasi-compactness of Markov kernels on weighted-supremum spaces and geometrical ergodicity[END_REF]Sect. 2.3]. Simple sufficient conditions for this compactness property are presented in [START_REF] Guibourg | Quasi-compactness of Markov kernels on weighted-supremum spaces and geometrical ergodicity[END_REF]. For instance, this holds for any discrete Markov chains or for functional autoregressive models on X := R q with absolutely continuous noise with respect to the Lebesgue measure. Finally note that Equality r ess (P ) = δ holds in several cases (see [START_REF] Guibourg | Quasi-compactness of Markov kernels on weighted-supremum spaces and geometrical ergodicity[END_REF]).

Proposition 5.4 Assume that P satisfies the following condition

∃ δ ∈ (0, 1), ∃L > 0, P V ≤ δV + L 1 X (WD)
and that P ℓ : B 0 → B 1 is compact for some ℓ ≥ 1. Then P is a power-bounded quasi-compact operator on B 1 , with r ess (P ) ≤ δ.

Proof. Iterating (WD) ensures that P is power-bounded on B 1 (see [START_REF] Schaefer | Topological vector spaces[END_REF]). Since we have r ess (P ) = (r ess (P ℓ )) 1/ℓ , we only consider the case ℓ := 1, that is P :

B 0 → B 1 is compact. Let B ′
1 and B ′ 0 denote the dual spaces of B 1 and B 0 respectively. Let P ′ denote the adjoint operator of P on B ′ 1 . In fact, we prove that P ′ is a quasi-compact operator on B ′ 1 with r ess (P ′ ) ≤ δ, so that P satisfies the same properties on B 1 . Since the operator P : B 0 → B 1 is assumed to be compact, so is

P ′ : B ′ 1 → B ′ 0 .
Then we deduce from the Doeblin-Fortet inequality of Lemma 2.2 and from [12, Cor. 1] that P ′ is a quasi-compact operator on B ′ 1 with r ess (P ′ ) ≤ δ. 

(P N ) 1/N ≤ δ N ν N (1 X ) + τ N ν N (1 X ) + τ N 1/N
where τ N := max(0, L Nν N (V )).

Similarly Proposition 5.4 still holds when (WD) is replaced by the following condition ∃δ ∈ (0, 1), ∃N ∈ N * , ∃L > 0,

P N V ≤ δ N V + L 1 X .
Indeed the dual Doeblin-Fortet inequality of Lemma 2.2 extends by replacing P ′ , δ by P ′ N and δ N respectively.

Application to truncation of discrete Markov kernels

In this section we assume that P := (P (i, j)) (i,j)∈N 2 is a Markov kernel on X := N. Let B k := {0, . . . ; k} for any k ≥ 1. We consider the k-th truncated (and augmented) matrix P k :

∀(i, j) ∈ B k 2 , P k (i, j) := P (i, j) if (i, j) ∈ B k × B k-1 ℓ≥k P (i, ℓ) if (i, j) ∈ B k × {k}.
If lim k P -P k 1 = 0, then lim k sup i / ∈B k (P V )(i)/V (i) = 0 which cannot hold from the hypothesis. Actually using this strong convergence condition leads to difficulties or restrictions in other approximation questions. For instance in [START_REF] Kontoyiannis | Large deviations asymptotics and the spectral theory of multiplicatively regular Markov processes[END_REF], some iterate P N of the Markov kernel P is approached by finite rank kernels in operator norm on B 1 (for other purpose than truncation issue). Thus P N is compact on B 1 . Consequently this property in operator norm

• 1 leads to suppose that r ess (P ) = 0 which is restrictive for V -geometrically ergodic kernel P since r ess (P ) < 1 but r ess (P ) = 0 in general. Proof of 6.1. Assertion (i) follows from Proposition 5.4 since the injection from B 0 into B 1 is compact from Cantor's diagonal argument and lim j V (j) = +∞. Next let i ∈ B k . Then we obtain using V (j) ≥ V (k) for j ≥ k

( P k V )(i) = k-1 j=0 P (i, j)V (j) + V (k) j≥k P (i, j) ≤ P V (i) so ( P k V )(i) ≤ δV (i) + L from (WD). If i / ∈ B k , then ( P k V )(i) = 0.
This proves (ii). To derive (iii), consider any f ∈ B 0 such that f 0 ≤ 1. First, we obtain for every i ∈ B k :

(P f )(i) -( P k f )(i) = j≥k P (i, j)(f (j) -f (k)) ≤ 2 j≥k P (i, j) = 2 j≥k P (i, j)V (j) 1 V (j) ≤ 2(P V )(i) V (k) ≤ 2(δ + L) V (k) V (i) (since P V ≤ (δ + L) V from (WD)). Second let i / ∈ B k . Then ( P k f )(i) = 0, so that |(P f )(i) -( P k f )(i)| ≤ j∈N P (i, j)|f (j)| ≤ 1.

This gives (32) in (iii).

To conclude this subsection we present two lemmas. The first one provides a useful bound for the constants C k in (V k ) and H k in (19b). It is convenient to consider P k as an endomorphism on the finite dimensional space of functions h : B k → C equipped with the following norm (still denoted by • 1 for the sake of simplicity) defined by: h 1 := sup i∈B k |h(i)|/V (i). The associated operator norm is also denoted by • 1 . Lemma 6.3 The matrix P k is assumed to be V -geometrically ergodic, that is 1 is a simple eigenvalue of the stochastic matrix P k and is the unique eigenvalue of modulus one. Suppose that an explicit upper bound ρ k ∈ (0, 1) of the second eigenvalue of P k is known. Let any ρ k be such that

ρ k < ρ k < 1 ( 33 
)
and define s ≡ s(ρ k ) ∈ N * as the smallest integer such that

P k s -π k (•)1 B k 1 ≤ ρ k s . (34) 
Then, we obtain the following estimate

∀n ≥ 0, P n k -π k (•)1 B k 1 ≤ C k ρ k n ≤ C k ρ k n with C k := max 0≤r≤s-1 P k r -π k (•)1 B k 1 ρ k s-1 C k := 1 -δ + 2L (1 -δ)ρ s-1 k . (35) 
Moreover, for any (r k , ϑ) ∈ (0, 1) 2 such that ρ k + ϑ < r k < 1ϑ, the following bounds hold for H k defined in (19b):

H k ≤ H k := max L + C k (1 -δ) ϑ(1 -δ) , 1 ϑ ≤ H k ′ := max L + C k (1 -δ) ϑ(1 -δ) , 1 ϑ . (36) 
Proof. Let n ≥ 0. Writing n = sm + r with r ∈ {0, . . . , s -1} we deduce from (34) that

P k n -π k (•)1 B k 1 = P k r -π k (•)1 B k • P k sm -π k (•)1 B k 1 ≤ max 0≤r≤s-1 P k r -π k (•)1 B k 1 P k s -π k (•)1 B k 1 m ≤ C k ρ k n .
with C k given in [START_REF] Zhao | The censored Markov chain and the best augmentation[END_REF]. [START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF]). The first assertion of Lemma 6.3 is proved. Now let (r, ϑ) ∈ (0, 1) 2 be such that

Inequality C k ≤ C k follows from ∀r = 0, . . . , s -1, P k r -π k (•)1 B k 1 ≤ P k r 1 + π k (•)1 B k 1 ≤ 1 + 2L 1 -δ since Lemma 6.1(ii) gives: first P k r V |B k ≤ δ r V |B k + L(1 -δ r )/(1 -δ), thus P k r 1 ≤ 1 + L/(1 -δ); second π k (V |B k ) ≤ L/(1 -δ) (see
ρ k + ϑ < r k < 1 -ϑ. Since r k > ρ k , we obtain V r k , ϑ, P k c = D(0, r k ) c ∩ D(1, ϑ) c .
Then Remark 3.2 applied to P k (with rate ρ k and bound C k ) gives sup

z∈V(r k ,ϑ,P k ) c (zI -P k ) -1 1 = sup z∈D(0,r k ) c ∩D(1,ϑ) c (zI -P k ) -1 1 ≤ π k (V |B k ) + C k ϑ . (37) 
Moreover observe that we have for any z ∈ C * \ σ(P k ),

∀g ∈ B 1 , ∀i ∈ N, (zI -P k ) -1 g (i) := (zI k -P k ) -1 g B k (i) if i ∈ B k g(i)/z if i / ∈ B k . (38) 
If z ∈ V(r k , ϑ, P k ) c , then |z| > r k > ϑ, so that (37) and (38) give

H k = sup z∈V(r k ,ϑ, P k ) c (zI -P k ) -1 1 ≤ max π k (V B k ) + C k , 1 ϑ .
Then the bounds on H k in (36) are deduced from [START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF] and

C k ≤ C k .
The results for truncation of discrete Markov kernels on X := N deduced from Theorem 4.1 are gathered in the following lemma. This is the basic material for the algorithm proposed in the next subsection. Lemma 6.4 Let P be a V -geometrically ergodic Markov kernel on N with some rate ρ ∈ (0, 1) and satisfying Condition (WD) with parameters (δ, L). The k-th truncated matrix P k is supposed to satisfy the assumptions of Lemma 6.3. Pick ρ k as in [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF]. Let ϑ be such that

0 < ϑ < min 1 -δ 3 , 1 -ρ 3 , 1 -ρ k 2 . ( 39 
)
Let r k ∈ (0, 1) be such that max(δ,

ρ k ) + ϑ < r k < 1 -ϑ. If k is such that V (k) ≥ K/ε 1 (k)
with ε 1 (k), K defined in (19a) and (32) respectively, then we have the following estimates

∀n ≥ 0, P n -π(•)1 N 1 ≤ c k r k n+1 (40a) ∀n ≥ n K , π n -π T V ≤ L K 1 -δ 2c k + A ln V (n) ln(r k -1 ) 1 V (n) (40b)
where

n K := min{n ∈ N * , V (n) ≥ K}, A is introduced in (3) and c k in (23).
To derive the final form (40b) of ( 24), note that, for n ≥ n K , we have 1

≥ ∆ n ≥ P 1 N - P n 1 N 1 = 1 N\Bn 1 = 1/V (n) so that | ln ∆ n | ≤ ln V (n).
Recall that, if no rate ρ in (V ) is known, then Lemma 6.4 applies provided that k ≥ k 0 , with k 0 defined as in (43) where ε 0 is replaced by ε 0 (k) given as in (42) using (r k , H k ) in place of (r, H) (see the comments after Theorem 4.1). In this case, delete (1ρ)/3 in (39). Property (40b) provides a bound π nπ T V = O(ln(V (n))/V (n)) with computable constants since r k and c k are deduced from calculations involving the matrix P k for some k. Consequently, given some error term ε > 0, this bound can be used to find an integer n ≡ n(ε) ≥ 1 such that π nπ T V ≤ ε (see for an illustration). However, as mentioned in Remark 4.2, using the direct Inequality ( 4) is the best way to estimate the total variation distance between π and π k . This point is illustrated in Subsection 6.3 (see Table 2). To specify (4), observe that the first term of the bounds satisfies from φ k := 1 B k and ( 7)

π k (1 N ) |1 -π(φ k )| ≤ j / ∈B k π(j) ≤ 1 V (k) j / ∈B k π(j)V (j) ≤ π(V ) V (k) ≤ L (1 -δ)V (k)
so that Inequality (4) reads as follows

π k -π T V ≤ L 1 -δ 1 + 2KC k ρ k + AK ln(ρ k -1 ) ln V (k) 1 V (k)
.

(41)

Algorithm for assessing the bounds

Let P be a V -geometrically ergodic Markov kernel on X := N with some rate ρ ∈ (0, 1) and satisfying Condition (WD) with parameters (δ, L). Assume that, for any k ≥ 1, 1 is a simple eigenvalue of the stochastic matrix P k and is the unique eigenvalue of modulus one. Lemma 6.4 is used to propose the following generic algorithm which allows us to assess the bounds ( 23) and ( 24) provided by Theorem 4.1 for P n -π(•)1 N 1 and π-π k T V respectively. Numerical illustrations are proposed in the next subsection.

First compute the constants in (3), (40b), ( 9) and ( 10):

A := 1 + L 1 -δ K := max 2(δ + L), 1 α = max(δ, r ess (P )) = δ, B := L 1 - α .
1. Pick a (small) k ∈ N * .

2. Compute the second eigenvalue ρ k of P k .

3. Pick ρ k ∈ (max(α, ρ k ), 1).

4. Compute the invariant probability measure π k of P k and the matrix [START_REF] Wu | Essential spectral radius for Markov semigroups. I. Discrete time case[END_REF]).

G k := P k -π k (•)1 B k . 5. Compute s := inf{n ∈ N * : G k n 1 ≤ ρ k n } (see

Compute C

k := max{ G k r 1 /ρ k s-1 : 0 ≤ r ≤ s -1 }.

7.

Compute the bound for ππ k T V in (41).

8. Pick ϑ and r k such that 0 < ϑ < min 1-ρ k 2 , 1-ρ 3 , 1-δ 3 and ρ k + ϑ < r k < 1ϑ.

9. Compute n 1 (k) := ln 2 ln(r k /δ) +1, n 2 (k) := ln 8B(B+3) r k -n 1 (k) H k ln(r k /δ) +1, H k := L+C k (1-δ) ϑ(1-δ)
and

ε 1 (k) := r k n 1 (k)+n 2 (k) 8B(H k B + (1 -r k ) -1 ) k 1 ≡ k 1 (k) := min n : V (n) ≥ K/ε 1 (k) .
10. Check Condition (E 0,1 (k)), that is: 

if k < k 1 then

A numerical example

Let us consider an instance of random walk on X := N with identically distributed bounded increments, that is a Markov chain with transition kernel P defined, for some c, g, d ∈ N * , by ∀i ∈ {0, . . . , g -1},

c j=0 P (i, j) = 1; ∀i ≥ g, ∀j ∈ N, P (i, j) = a j-i if i -g ≤ j ≤ i + d 0 if not
where (a -g , . . . , a d ) ∈ [0, 1] g+d+1 satisfies d k=-g a k = 1 for all i ≥ g. This kind of kernels arises, for instance, from time-discretization of Markovian queuing models. Under the negative mean increment condition d k=-g k a k < 0 the following properties are known:

1. there exists γ > 1 such that φ( γ) := d k=-g a k γ k = min γ>1 φ(γ) < 1. Let V ≡ { γ n } n∈N .

2. P satisfies (WD) with δ = φ( γ) and L = max(0, c j=0 P (i, j) γ jφ( γ) : i = 1, . . . , g -1). Moreover, r ess (P ) = δ (see [START_REF] Hervé | Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks[END_REF]).

3. P is V -geometrically ergodic with an invariant probability measure π such that π(V ) < ∞.

A general procedure to estimate the infimum bound ρ V (P ) of the rates ρ in Inequality (V ) for such models is given in [START_REF] Hervé | Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks[END_REF]. But the assessment of the constant is not addressed. The next tables give such constants as well as explicit bounds for the total variation distance ππ k T V . To the best of our knowledge, such results are not known for this kind of models.

In the present context, the integer k 1 of Step 9 has the following form

k 1 := 1 ln γ ln 8BK + ln H k B + (1 -r k ) -1 + n 1 (k) + n 2 (k) ln(r -1 k ) + 1.
As a matter of example, we take c := 2, g := 2, d := 1 with a -2 , a 1 > 0 and boundary probabilities P (0, 0) = a ∈ (0, 1), P (0, 1) = 1a, P (1, 0) = b ∈ (0, 1), P (1, 2) = 1b.

It is easily seen that P and {P k } k≥1 are irreducible and aperiodic. Since P (2, 0) = a -2 > 0 and P (0, 2) = 0, P is not reversible. The form of boundary probabilities is chosen for convenience. Other (finitely many) boundary probabilities could be considered provided that P and P k k ≥ 1 are irreducible and aperiodic. In order to provide numerical evidence for the effectiveness of the algorithm, we also specify the values a -2 := 1/2, a -1 := 1/3, a 0 := 0, a 1 := 1/6. We obtain γ ≈ 2.18 and δ ≈ 0.621. Moreover, using the procedure in [START_REF] Hervé | Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks[END_REF], we can obtain a numerical approximation of ρ V (P ), so that any bound on this estimate gives the required initial value of ρ in (V ) to use Theorem 4.1. Note that P is stochastically monotone iff a ≥ b ≥ 5/6. We report in Table 2 and Table 3-(a) the value of the different bounds (40a)-(40b) for (a, b) := (1/2, 1/2) which gives a kernel P which has no eigenvalue in the annulus {z ∈ C : δ < |z| < 1} so that ρ V (P ) = δ ≈ 0.621 (see [START_REF] Hervé | Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks[END_REF] for details). P is not reversible and not stochastically monotone. Therefore the results of [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF][START_REF] Roberts | Bounds on regeneration times and convergence rates for Markov chains[END_REF][START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF] are not relevant since the bound for π kπ T V in [START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF] is only obtained for stochastically monotone Markov kernels, and the rate ρ in (V ) obtained in [START_REF] Roberts | Bounds on regeneration times and convergence rates for Markov chains[END_REF][START_REF] Baxendale | Renewal theory and computable convergence rates for geometrically ergodic Markov chains[END_REF] is very close to 1 (and far from the best rate) in the non reversible case. We also report in Table 2 the results obtained from the direct Inequality (41). These results are in agreement with the expected fact that Inequality (41) gives better bounds for π kπ T V than (40b). We also report in Table 3-(b) the value of n(ε) such that π nπ T V ≤ ε using (40b). Remark 6.5 Note that the assumptions for using the algorithm (see Lemma 6.4) are not sensitive to approximate values of γ and δ since properties as r ess (P ) = δ = φ(γ) < 1 and V -geometric ergodicity are valid for any γ ∈ (1, γ 0 ) with γ 0 = 5.541. Table 1: Improvement of the rate vs degradation of the constant using Theorem 4.1 • if P satisfies (V ), then P k is V -geometrically ergodic with explicit rates for k large enough. See Proposition 7.1.

(a, b) = (1/2, 1/2) k | ρ k | ρ k s C k (41) ϑ r k k 1 c k ( 
• There exists an integer k such that, for every k ≥ k, the condition P -P k 0,1 ≤ ε 1 (k) holds, where ε 1 (k) is defined in (19a). See Proposition 7.4.

As discussed in Sections 3 and 4, the previous properties may be valid for k much smaller than the integers k 0 and k provided in this section. It is the reason why these two integers are not introduced in Theorems 3.1 and 4.1. However, since the V k -geometric ergodicity of P k is required for some k in these two theorems, as well as the condition P -P k 0,1 ≤ ε 1 (k) in the second theorem, obtaining the theoretical existence of k 0 and k is important.

Complements on Theorem 3.1

We use the notations introduced for Theorem 3.1. For any r ∈ (0, 1), set η ≡ η(r) := 1ln r/ ln α ∈ (0, 1), and with ε 1 ≡ ε 1 (r, ϑ, P ) defined in (11b)

ε 2 ≡ ε 2 (r, ϑ, P ) := r n 1 4B H(2B + 3) + 2(1 + B) + (1 -r) -1 1/η
, and ε 0 ≡ ε 0 (r, ϑ, P ) := min(ε 1 , ε 2 ).

(42)

From (C 0,1 ) there exists a positive integer k 0 ≡ k 0 (r, ϑ, P ) such that Lemma 7.2 Assume that P is quasi-compact on B 1 and that Conditions (C 0,1 ) and (UWD) hold. Let r > α and ϑ > 0. For every k ≥ k 0 the spectral projections of P ′ and P ′ k associated with any connected component of V(r, ϑ, P ) (not containing 0) have the same rank.

∀k ≥ k 0 , P k -P 0,1 ≤ ε 0 . (43) 
Proof of Proposition 7.1. From the V -geometrical ergodicity of P , we have σ(P ′ ) = σ(P ) ⊂ D(0, ρ) ∪ {1}. Thus it follows from ( 16) that σ( P ′ k ) ⊂ D(0, r) ∪ D(1, ϑ). Next, from P k -P 0,1 ≤ ε 0 and Lemma 7.2, we obtain that σ( P k ′ ) ∩ D(1, ϑ) = {λ} for some eigenvalue λ ∈ C of P k ′ and that there exists an associated rank-one projection Π ′ k,λ on B ′ 1 such that we have for any κ ∈ (r, 1ϑ):

∀n ≥ 1, P ′ n k -λ n Π ′ k,λ = 1 2iπ |z|=κ z n (zI -P k ′ ) -1 dz.
It follows from ( 16) that

∀n ≥ 1, P ′ n k -λ n Π ′ k,λ 1 ≤ c(r, ϑ, P ) κ n+1 . ( 44 
)
Since κ is arbitrarily close to r, this gives the expected conclusion in Proposition 7.1 using duality and the next lemma.

Lemma 7.3 The eigenvalue λ in (44) is equal to 1. Moreover there exists a P k -invariant positive measure π k on (X, X ) such that π k (V ) < ∞, and the rank-one projection Π ′ k,λ is the adjoint of the following rank-one projection Π k on B 1 :

∀f ∈ B 1 , Π k f := π k (f ) φ k .
Proof. Since |λ| > κ, we deduce from P k φ k = φ k and (44) that, for any f ′ ∈ B ′ 1 , we have lim n λ -n f ′ (φ k ) = lim n λ -n ( P From the definition of V(r, ϑ, P k ), we have: z ∈ V(r, ϑ, P k ) c ⇒ d(z, σ( P k )) > ϑ. Thus, the following constant is well-defined for every k ≥ 1:

H k := sup
z∈V(r,ϑ, P k ) c

(zI -P k ) -1 1 .

Lemma 7.7 The sequence { H k } k≥1 is bounded.

Proof. Let ε 1 (r, ϑ/4, P ) be defined as in (11b). From (C 0,1 ) there exists k 1 ≡ k 1 (r, ϑ) ∈ N * such that ∀k ≥ k 1 , P k -P 0,1 ≤ ε 1 (r, ϑ/4, P ).

It follows from Lemma 7.6 that ∀k ≥ k 0 , V(r, ϑ, P k ) c ⊂ V(r, ϑ/4, P ) c so that, for every k ≥ max( k 0 , k 1 ) we have from [START_REF] Hervé | Spectral analysis of Markov kernels and application to the convergence rate of discrete random walks[END_REF] with r := r and ϑ/4 in place of ϑ (note that, from [START_REF] Keller | Stability of the spectrum for transfer operators[END_REF], Property (15) holds for any r > α and ϑ > 0 under Conditions (C 0,1 ), (UWD) and r ess (P ) < 1): sup z∈V(r,ϑ, P k ) c

(zI -P k ) -1 1 ≤ sup z∈V(r,ϑ/4,P ) c

(zI -P k ) -1 1 ≤ c(r, ϑ/4, P ) < ∞.

This gives the expected assertion.

Proof of Proposition 7.4. Let k ∈ I ϑ and H k ≡ H(r k , ϑ, P k ) be defined by ( 21) and (19b) respectively. Then H k ≤ H k . Indeed we have V(r k , ϑ, P k ) c ⊂ V(r, ϑ, P k ) c since (use ( 22)) r = α + ϑ 2 ≤ max(α, ρ k ) + ϑ < r k .

It follows from Lemma 7.7 that {H k } k≥1 is bounded. Then, the sequences {n 1 (k)} k≥1 and {n 2 (k)} k≥1 given in (19c) are bounded since α + ϑ < r k < 1ϑ. Therefore, the sequence {ε 1 (k)} k≥1 in (19a) is uniformly bounded away from zero, that is α 1 := inf k≥1 ε 1 (k) > 0.

Finally, from (C 0,1 ) there exists k ∈ N such that: ∀k ≥ k, P k -P 0,1 ≤ α 1 . Thus, for every k ≥ k, P k -P 0,1 ≤ ε 1 (k).

Conclusion

In all the cases where the probabilistic works cited in Introduction do not provide a satisfactory rate ρ in (V ), Theorem 4.1 can be applied to obtain a new rate r k and constant c k in (V ) derived from (ρ k , C k ) in (V k ) for some k large enough (see [START_REF] Meyn | Markov chains and stochastic stability[END_REF]). This new pair (r k , c k ) will be all the more interesting that 1. the pair (ρ k , C k ) in (V k ) is precise;

2. the bound on the essential spectral radius r ess (P ) is accurate.

The estimate π nπ T V = O(∆ n | ln ∆ n |) provided by [START_REF] Meyn | Computable bounds for geometric convergence rates of Markov chains[END_REF] then involves a computable constant depending on (r k , c k ). As mentioned in Remark 4.2 and illustrated in Section 6, the direct Inequality (4) provides the best estimate of the total variation distance between π and π k when the C k 's are accurately computed.

The point 1. above is of computational nature (see Section 6 for discrete X). The point 2. is addressed in Theorem 5.2 and Proposition 5.4. Note that r ess (P ) is less than the contractive coefficient δ of (WD) in Proposition 5.4 and in atomic case (see Remark 5.3). It would be of interest to know whether inequality r ess (P ) ≤ δ extends to other situations, and more generally whether the general bound in Theorem 5.2 can be improved.

  Assertion (a) of Theorem 4.1 can be established as in Theorem 3.1 by exchanging the role of P and P k . Assertion (b) follows from (23) and Inequality (5) of Proposition 2.1.

Remark 5 . 5

 55 If Conditions (28a)-(28b) are fulfilled for some iterate P N in place of P (with parameters δ N < 1, L N > 0 and positive measure ν N (•)), then the conclusions of Theorem 5.2 are valid with (29) replaced by r ess (P ) = r ess

  × 10 7 4.610 × 10 11 1.348 × 10 14

9 ε 10 Table 3 :Proposition 7 . 1

 910371 b) = (1/2, 1/2) with r 35 := 0.(a): bound (40a) for P 300π(•)1 N 1 and (b): π n(ε)π T V ≤ ε from (40b) Assume that P is V -geometrically ergodic with rate ρ and that Conditions (C 0,1 ) and (UWD) hold. Let ϑ > 0 be such that max(α, ρ) < 1 -2ϑ and r such that max(α, ρ) + ϑ < r < 1ϑ. Then, for every k ≥ k 0 , Inequality (V k ) holds with ρ k := r.Using duality as in the proof of Theorems 3.1, Proposition 7.1 is based on the next lemma which follows from the rank-stability property of spectral projections[21, cor. 3.1].

2 . 7 . 6 ϑ 4 .

 2764 )(φ k ) = ( Π ′ k,λ f ′ )(φ k ). Since there exists f ′ ∈ B ′ 1 such that f ′ (φ k ) = 0, {λ -n } n∈N converges in C. Thus either λ = 1, or |λ| > 1. Moreover the sequence { P n k } n∈N is bounded in L(B 1 ) (proceed as in (30)). Thus { P ′ n k } n∈N is bounded in L(B ′ 1 ), so that Inequality (44) implies that {λ n } n∈N is bounded in C. Therefore λ = 1. thus d(z, D(0, R)) > ϑ. Next, let z ′ ∈ σ(P ) be such that |z ′ | > R. Then z ′ ∈ D R . If z ′ = λ then |z ′ -z| = |λ -z| = θ ′ > ϑ. If z ′ = λ then, using the triangle inequality |z ′ -λ| ≤ |z ′ -z| + |z -λ|, we obtain |zz ′ | ≥ bθ ′ > bθ > θ > ϑ. We have proved that d(z, σ(P )) > ϑ. Finally we have |z| > r since R > r (use r = α + θ < α + a = α + Rα = R).Thus z ∈ V(r, ϑ, P ) c . Now, the spectral projectionsΠ ′ λ := 1 2iπ C(λ,θ ′ ) (zI -P ′ ) -1 dz and Π ′ k,λ := 1 2iπ C(λ,θ ′ ) (zI -P ′ k ) -1 dzhave the same rank from k ≥ k 0 and Lemma 7.2. Since Π ′ λ has a nonzero rank from λ ∈ σ(P ′ ), so is Π ′ k,λ . Thus we have D(λ, θ ′ ) ∩ σ( P k ) = ∅. Now, to prove Proposition 7.4, we consider any ϑ ∈ (0, (1α)/2) and we set r := α + ϑ/Lemma There exists k 0 ≡ k 0 (r, ϑ) ∈ N * such that ∀k ≥ k 0 , V(r, ϑ/4, P ) ⊂ V(r, ϑ, P k ). Proof. Let u ∈ V(r, ϑ/4, P ). Thus |u| ≤ r or d(u, σ(P )) ≤ ϑ/4. If |u| ≤ r, then u ∈ V(r, ϑ, P k ). Now assume that |u| > r and d(u, σ(P )) ≤ ϑ/4. Since σ(P ) is compact, there exists λ ∈ σ(P ) such that |u -λ| ≤ ϑ/4. We have |λ| > α + ϑ/4 from |λ| ≥ |u| -Then it follows from Lemma 7.5 with R := α + ϑ/4 and θ := ϑ/4 that there exists k 0 ≡ k 0 (R, θ) ∈ N * such that, for every k ≥ k 0 , the disk D(λ, ϑ/4) contains an eigenvalue of P k , say λ k . We obtain d(u, σ( P k )) ≤ ϑ since |uλ k | ≤ |u -λ| + |λλ k | ≤ ϑ/2. Thus u ∈ V(r, ϑ, P k ).

  go to Step 1 setting k := k + 1; else compute constant c k in (23) and use bounds in (40a)-(40b) with (c k , r k ).You can use C k in (35) in place of C k in Step 6, so that C k , H k are replaced by C k , H k ′ inthe sequel of the algorithm.

Table 2 :

 2 Bounds for ππ k T V using (40b) /(41)In this section, we assume that P is quasi-compact on B 1 and that Conditions (C 0,1 ) and (UWD) hold. We use the second part of[START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF] Prop. 3.1] and the spectral rank-stability property[START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF] Cor. 3.1] to prove the two following properties:

	7 Complements on Theorems 3.1 and 4.1

(See e.g.[START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF] or apply Definition 5.1 with H := {f ∈ B1 : π(f ) = 0}.)
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Such a matrix is generally called a linear augmentation (in the last column here) of the (k + 1) × (k + 1) northwest corner truncation of P . Other kinds of augmentation, as the censored Markov chain [START_REF] Zhao | The censored Markov chain and the best augmentation[END_REF], could be considered. Truncation approximation of an infinite stochastic matrix has a long story (e.g. see [START_REF] Seneta | Nonnegative matrices and Markov chains[END_REF][START_REF] Tweedie | Truncation approximations of invariant measures for Markov chains[END_REF][START_REF] Liu | Augmented truncation approximations of discrete-time Markov chains[END_REF] and the references therein).

The associated (extended) sub-Markov kernel P k on N is defined by:

Theorem 4.1 for truncation of discrete Markov kernels

Consider any unbounded increasing sequence

and the associated weighted space (B 1 , • 1 ) given by

The following lemma helps us to check the assumptions of Theorems 3.1 and 4.1.

Lemma 6.1 Assume that P satisfies Condition (WD) with parameters (δ, L). Then the following assertions hold.

(i) P is a power-bounded quasi-compact operator on B 1 with r ess (P ) ≤ δ.

(ii) Condition (UWD) is fulfilled, that is: ∀k ∈ N * ∪ {∞}, P k V ≤ δV + L 1 N .

(iii) Property (C 0,1 ), that is lim k P k -P 0,1 = 0, holds true since

If the stochastic matrix P k has an invariant probability measure π k , then π k is the probability measure on N defined by

Remark 6.2 Assume that lim sup i (P V )(i)/V (i) > 0 and that P satisfies (WD), so that the infimum of δ such that (WD) holds is non zero (these assumptions are satisfied in almost all V -geometrically ergodic models). Then the strong convergence property lim k P -P k 1 = 0 required in the standard perturbation theory does not hold. Indeed, using

Now we omit λ in Π ′ k,λ . We can prove as in [10, proof of Th. 1] that Π ′ k is the adjoint of the rank-one projection Π k defined on B 1 by

for some non-negative element e k ′ ∈ B ′ 1 and the function φ k of the Introduction. Let x 0 ∈ X such that φ k (x 0 ) = 0. Then we obtain from the previous facts: ∀A ∈ X , lim n P n k (x 0 , A) = e k ′ (1 A ) φ k (x 0 ). Since P n k (x 0 , •) is a positive measure on (X, X ), it follows from the Vitali-Hahn-Saks theorem that, for all A ∈ X e k ′ (1 A ) = π k (1 A ), where π k is the positive measure on (X, X ) of Introduction. Proceeding as in [START_REF] Ferré | Regular perturbation of V -geometrically ergodic Markov chains[END_REF], we can prove that π k (V ) < ∞ and that e k ′ coincide with π k on B 1 .

Complements on Theorem 4.1

We use the notations introduced before Theorem 4.1.

Proposition 7.4 Assume that P is quasi-compact on B 1 and that Conditions (C 0,1 ) and (UWD) hold. Let ϑ ∈ (0, (1α)/2). There exists k ≡ k(ϑ) ∈ N * such that, for every k ∈ [ k, +∞) ∩ I ϑ , the property (E 0,1 (k)) holds.

This proposition is inspired from [START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF]Lem. 4.2]. Since the proof in [START_REF] Liverani | Rigorous numerical investigation of the statistical properties of piecewise expanding maps. A feasibility study[END_REF] is only sketched and the choice of r k (involved in (19a)) must be carefully examined, the derivation of Proposition 7.4 is detailed in this subsection. First note that, from Definition 5.1 and quasi-compactness of P , all the spectral values of P strictly larger than α are eigenvalues since α ≥ r ess (P ). More precisely, for any R > α, the operator P has a finite number of eigenvalues of modulus larger than R. The same property holds for every P k since P k is of finite rank (thus r ess ( P k ) = 0). 

Without loss of generality we can suppose that θ < min(a, b/2, c/2). Let ϑ ∈ (0, θ) and r := α + θ. Let k 0 be the smallest integer such that: ∀k ≥ k 0 , P k -P 0,1 ≤ ε 0 , with ε 0 ≡ ε 0 (r, ϑ, P ) given in (42). Note that assumptions of Lemma 7.2 are satisfied.

Next, consider any k ≥ k 0 and any λ ∈ D R . Let θ ′ ∈ (ϑ, θ) be such that (zI -P k ) -1 is well-defined in L(B 1 ) for every z ∈ C(λ, θ ′ ) := {z ∈ C : |z -λ| = θ ′ }. Such θ ′ exists from the quasi-compactness of P k . Note that (zI -P ) -1 is also well-defined in L(B 1 ) for every z ∈ C(λ, θ ′ ), more precisely: C(λ, θ ′ ) ⊂ V(r, ϑ, P ) c . Indeed let z ∈ C(λ, θ ′ ). Then