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1 Introduction

When a fluid is in contact with another fluid, or with a gas, a portion of the
total free energy of the system is proportional to the area of the surface of
contact, and to a coefficient, the surface tension, which is specific for each
pair of substances. Equilibrium will accordingly be obtained when the free
energy of the surfaces in contact is a minimum.

Suppose that we have a drop of some fluid, b, over a flat substrate, w,
while both are exposed to air, a. We have then three different surfaces
of contact, and the total free energy of the system consists of three parts,
associated to these three surfaces. A drop of fluid b, will exist provided its
own two surface tensions exceed the surface tension between the substrate w
and the air, i.e., provided that

wa + 7_ba > Fwa

If equality is attained, then a film of fluid b is formed, a situation which is
known as perfect, or complete wetting.

When one of the substances involved is anisotropic, such as a crystal, the
contribution to the total free energy of each element of area depends on its
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2 S. Miracle-Solé

orientation. The minimum surface free energy for a given volume determines
then the ideal form of the crystal in equilibrium.

It is only in recent times that equilibrium crystals have been produced
in the laboratory, first, in negative crystals (vapor bubbles) of organic sub-
stances. Most crystals grow under non-equilibrium conditions and is a sub-
sequent relaxation of the macroscopic crystal that restores the equilibrium.

a
b
w

a
b
w

Figure 1. Partial and complete wetting

An interesting phenomenon that can be observed on these crystals is the
roughening transition, characterized by the disappearance of the facets of a
given orientation, when the temperature attains a certain particular value.
The best observations have been made on helium crystals, in equilibrium
with superfluid helium, since then the transport of matter and heat is ex-
tremely fast. Crystals grow to size of 1-5 mm and relaxation times vary from
milliseconds to minutes. Roughening transitions for three different types of
facets have been observed (see, for instance, Wolf et al., 1983).

These are some classical examples among a variety of interesting phe-
nomena connected with the behavior of the interface between two phases in
a physical system. The study of the nature and properties of the interfaces,
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at least for some simple systems in statistical mechanics, is also an inter-
esting subject of mathematical physics. Some aspects of this study will be
discussed in the present article.

We assume that the interatomic forces can be modelled by a lattice gas,
and consider, as a simple example, the ferromagnetic Ising model. In a
typical two-phase equilibrium state there is a dense component, which can
be interpreted as a solid or liquid phase, and a dilute phase, which can be
interpreted as the vapor phase. Considering certain particular cases of such
situations, we first introduce a precise definition of the surface tension and
then proceed on the mathematical analysis of some preliminary properties of
the corresponding interfaces. The next topic concerns the wetting properties
of the system, and the final section is devoted to the associated equilibrium
crystal.

2 Pure phases and surface tension

The Ising model is defined on the cubic lattice £ = Z*, with configuration
space Q0 = {—1,1}£. If o € Q, the value o(i) = —1 or 1 is the spin at the
site © = (i1,19,13) € L, and corresponds to an empty or an occupied site in
the lattice gas version of the model. The system is first considered in a finite
box A C L, with fixed values of the spins outside.

In order to simplify the exposition we shall mainly consider the three-
dimensional Ising model, though some of the results to be discussed hold in
any dimension d > 2. We shall also, sometimes, refer to the two-dimensional
model, being then understood that the definitions have been adapted in the
obvious way. We assume that the box A is a parallelepiped, centered at the
origin of L, of sides Ly, Lo, L3, parallel to the axes.

A configuration of spins on A (0(i),i € A), denoted o, has an energy
defined by the hamiltonian

Hy(oa|o)=—=J > ol(i)o(j), (1)

(1,4)NA#D

where J is a positive constant (ferromagnetic or attractive interaction). The
sum runs over all nearest neighbor pairs (i, j) C L, such that at least one
of the sites belongs to A, and one takes o(i) = (i) when i ¢ A, the config-
uration ¢ € €2 being the given boundary condition. The probability of the
configuration oy, at the inverse temperature § = 1/kT, is given by the Gibbs
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measure i
palon | 0) = Z7(A) " exp (— BHa(0a | 9)), (2)
where Z7(A) is the partition function,
Zexp — BHx(oa | 9)). (3)

Local properties at equilibrium can be described by the correlation functions
between the spins on finite sets of sites,

Z pa(on | @) I o(i (4)
€A

The measures (2) determine (by the DLR equations) the set of Gibbs
states of the infinite system, as measures on the set 2 of all configurations.
If a Gibbs state happens to be equal to lim pua(- | &), when Ly, Ly, Ly —
oo, under a fixed boundary condition &, we shall call it the Gibbs state
associated to the boundary condition . One says also that this state exists
in the thermodynamic limit. Then, equivalently, the correlation functions
(4) converge to the corresponding expectation values in this state.

This model presents, at low temperatures, that is, for 5 > (., where [, is
the critical inverse temperature, two different thermodynamic pure phases, a
dense and a dilute phase in the lattice gas language (called here the positive
and the negative phase). This means two extremal translation invariant
Gibbs states, u* and u~, obtained as the Gibbs states associated with the
boundary conditions &, respectively equal to the ground configurations & (i) =
1 and o(i) = —1, for all i € L. The spontaneous magnetization,

m*(B8) = u*(o(i)) = —p~(a(i)), (5)

is then strictly positive. On the other hand, if § < ., then the Gibbs state
is unique and m* = 0.

Each configuration inside A can be described in a geometric way by spec-
ifying the set of Peierls contours which indicate the boundaries between the
regions of spin 1 and the regions of spin —1. Unit square faces are placed
midway between the pairs of nearest-neighbor sites ¢ and j, perpendicularly
to these bonds, whenever o(i)o(j) = —1. The connected components of this
set of faces are the Peierls contours. Under the boundary conditions (+)
and (—), the contours form a set of closed surfaces. They describe the de-
fects of the considered configuration with respect to the ground states of the
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system (the constant configurations 1 and —1), and are a basic tool for the
investigation of the model at low temperatures.

In order to study the interface between the two pure phases one needs
to construct a state describing the coexistence of these phases. This can be
done by means of a new boundary condition. Let n = (ny,n,n3) be a unit
vector in R3, such that ns > 0, and introduce the mixed boundary condition

(£, n), for which

iy 1 if 7-n>0,

0<Z>_{—1 if i-n<0. (6)
This boundary condition forces the system to produce a defect going trans-
versally through the box A, a big Peierls contour that can be interpreted as
the microscopic interface (also called a domain wall). The other defects that
appear above and below the interface can be described by closed contours
inside the pure phases.

The free energy, per unit area, due to the presence of the interface, is the

surface tension. It is defined by

o - n3 Z=(A)
T<n) o Ll,lll/?loo nggnoo _/8L1L2 n Z+<A) <7)

In this expression the volume contributions proportional to the free energy
of the coexisting phases, as well as the boundary effects, cancel, and only the
contributions to the free energy due to the interface are left. The existence
of such a quantity indicates that the macroscopic interface, separating the
regions occupied by the pure phases in a large volume A, has a microscopic
thickness and can therefore be regarded as a surface in a thermodynamic
approach.

Theorem 1 The interfacial free energy per unit area, T(n), exists, is boun-
ded, and its extension by positive homogeneity, f(x) = |x|7(x/|x]), is a
convex function on R3. Moreover, T(n) is strictly positive for 8 > B., and
vanishes if 5 < B,.

The existence of 7(n) and also the last statement were proved by Lebowitz
and Pfister (1981), in the particular case n = (0,0, 1), with the help of
correlation inequalities. A complete proof of the theorem was given later
with similar arguments. The convexity of f is equivalent to the fact that the
surface tension 7 satisfies a thermodynamic stability condition known as the
pyramidal inequality (see Messager et al., 1992).
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3 Gibbs states and interfaces

In this section we consider the (£, ng) boundary condition, also simply de-
noted (+£), associated to the vertical direction ny = (0,0, 1),

g(i)=1ifiz >0, a(i)=—-1ifiz<D0. (8)
The corresponding surface tension is 7% = 7(ng). We shall first recall some
classical results which concern the Gibbs states and interfaces at low tem-
peratures.
According to the geometrical description of the configurations introduced
in Section 2, we observe that

ZEMN)/ZH(N) = z;exp (= 28J[Al = Un(N)), (9)

where the sum runs over all microscopic interfaces A compatible with the
boundary condition and |A| is the number of faces of A (inside A). The
term Up () equals —In ZF (X, A)/Z*(A), the sum in the partition function
Z* (A, A) being extended to all configurations whose associated contours do
not intersect A. Each term in sum (9) gives a weight proportional to the
probability of the corresponding microscopic interface.

At low (positive) temperatures, we expect the microscopic interface cor-
responding to this boundary condition, which at zero temperature coincides
with the plane i3 = —1/2, to be modified by small deformations. Each mi-
croscopic interface A\ can then be described by its defects, with respect to
the interface at 3 = oo. To this end one introduces some objects, called
walls, which form the boundaries between the horizontal plane portions of
the microscopic interface, also called the ceilings of the interface.

More precisely, one says that a face of A is a ceiling face if it is horizontal
and such that the vertical line passing through its center does not have other
intersections with A. Otherwise, one says that it is a wall face. The set of wall
faces splits into maximal connected components. The set of walls, associated
to A, is the set of these components, each component being identified by its
geometric form and its projection on the plane i3 = —1/2. Every wall w, with
projection 7(w), increases the energy of the interface by a quantity 2.J||w||,
where ||w|| = |w| — |7(w)|, and two walls are compatible if their projections
do not intersect. In this way the microscopic interfaces may be interpreted
as a “gas of walls” on the two-dimensional lattice.
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Dobrushin, who developed the above analysis, proved also the dilute char-
acter of this “gas” at low temperatures. This implies that the microscopic
interface is essentially flat, or rigid. One can understand this fact by noticing
first, that the probability of a wall is less than exp(—25.J||w||), and second,
that in order to create a ceiling in A, which is not in the plane i3 = —1/2,
one needs to surround it by a wall, that one has to grow when the ceiling is
made over a larger area.

Using correlation inequalities one proves that the Gibbs state u*, associ-
ated to the (£) boundary conditions, always exists, and that it is invariant
under horizontal translations of the lattice, i.e., u=(0(A+a)) = p*(c(A)) for
all a = (a1, a9,0). It is also an extremal Gibbs state. Let m(z) be the mag-
netization p*((0(z)) at the site z = (0,0, z). The function m(z) is monotone
increasing and satisfies the symmetry property m(—z) = —m(z + 1). Some
consequences of Dobrushin’s work are the following properties.

Theorem 2 If the temperature is low enough, i.e., if BJ > c1, where ¢1 is a
given constant, then

m*(0) is strictly positive, (10)
m*(z) — m*, when z — oo, exponentially fast. (11)

Equation (10) is just another way of saying that the interface is rigid
and that the state u* is non-translation invariant (in the vertical direction).
Then, the correlation functions p*(o(A)) describe the local properties, or
local structure, of the macroscopic interface. In particular, the function m(z)
represents the magnetization profile. Then statement (11), together with the
symmetry property, tells us that the thickness of this interface is finite, with
respect to the unit lattice spacing.

The statistics of interfaces has been rewritten in terms of a gas of walls
and this system may further be studied by cluster expansion techniques.
There is an interaction between the walls, coming from the term Uy () in
equation (9), but a convenient mathematical description of this interaction
can be obtained by applying the standard low temperature cluster expansion,
in terms of contours, to the regions above and below the interface.

This method was introduced by Gallavotti in his study, mentioned below,
of the two-dimensional Ising model. It has been applied by Bricmont et al.,
to examine the interface structure in the present case. As a consequence, it
follows that the surface tension, more exactly 37%(/3), and also the correlation
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functions, are analytic functions at low temperature. They can be obtained
as explicit convergent series in the variable ¢ = e=2%7.

The same analysis applied to the two-dimensional model shows a very
different behavior at low temperatures. In this case, the microscopic interface
A is a polygonal line and the walls belong to the one-dimensional lattice. One
can then increase the size of a ceiling without modifying the walls attached
to it.

Indeed, Gallavotti turned this observation into a proof that the Gibbs
state uF is now translation invariant. The line A undergoes large fluctuations
of order \/L,, and disappears from any finite region of the lattice, in the
thermodynamic limit. In particular, we have then u* = (1/2)(u* + p7), a
result that extends to all boundary conditions (4, n).

Using these results Bricmont et al. studied also the local structure of
the interface at low temperatures and showed that its intrinsic thickness is
finite. To study the global fluctuations one can compute the magnetization
profile by introducing, before taking the thermodynamic limit, a change of
scale: pi(o(zL3)), with § = 1/2 or near to this value. This is an exact
computation that has been done by Abraham and Reed.

Let us come back to the three-dimensional Ising model where we know
that the interface orthogonal to a lattice axis is rigid at low temperatures.

Question 1 At higher temperatures, but before reaching the critical temper-
ature, do the fluctuations of this interface become unbounded, in the thermo-
dynamic limit, so that the corresponding Gibbs state is translation invariant?

One says then that the interface is rough, and it is believed that, effec-
tively, the interface becomes rough when the temperature is raised, undergo-
ing a roughening transition at an inverse temperature Sz > f,.

It is known that Sr < 8972, the critical inverse temperature of the two-
dimensional Ising model, since van Beijeren proved using correlation inequali-
ties, that above this value, the state ¥ is not translation invariant. Recalling
that the rigid interface may be viewed as a two-dimensional system, the sys-
tem of walls, a representation that would become inappropriate for a rough
interface, one might think that the phase transition of the two-dimensional
Ising model is relevant for the roughening transition, and that S is some-
where near $9=2. Indeed, approximate methods, used by Weeks et al., give
some evidence for the existence of such a Sr and suggest a value slightly
smaller than 392, as shown in Table 1. To this day, however, it appears to
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be no proof of the fact that g > f., i.e., that the roughening transition for
the three-dimensional Ising model really occurs.

Table 1. Some temperature values.

d=3 p.J ~0.22 approximate critical temperature
d=3 prJ ~0.41 conjectured roughening temperature
d=2 [.J=0.44 exact critical temperature

At present one is able to study rigorously the roughening transition only
for some simplified models with a restricted set of admissible microscopic
interfaces. Moreover, the closed contours, describing the defects above and
below A, are neglected, so that these two regions have the constant configu-
rations 1 or —1, and one has Uj(A) = 0 in equation (9).

The best known of these models is the classic SOS (solid-on-solid) model
in which the interfaces A\ have the property of being cut only once by all
vertical lines of the lattice. This means that A is the graph of a function
that can equivalently be used to define the possible configurations of A\. If
A contains the horizontal face with center (iy,1is,i3 — 1/2), then the value at
(i1,142) of the associated function is ¢(iy, i) = 3.

The proof that the SOS model with the boundary condition (%) has
a roughening transition is a highly non-trivial result due to Frohlich and
Spencer. When £ is small enough, the fluctuations of A are of order vIn L
(in a cubic box of side L).

Moreover, other interface models, with additional conditions on the al-
lowed microscopic interfaces, are exactly solvable. The BCSOS (body-cen-
tered solid-on-solid) model, introduced by van Beijeren, belongs to this class.
It is, in fact, the first model for which the existence of a roughening tran-
sition has been proved. More recently, also the TISOS (triangular Ising
solid-on-solid) model, introduced by Bléte and Hilhorst and further studied
by Nienhuis et al., has been considered in this context.

The interested reader can find more information and references, concern-
ing the subject of this section, in the review article by Abraham (1986).



10 S. Miracle-Solé

4 Wetting phenomena

Next we consider the Ising model over a plane horizontal substrate (also
called a wall) and study the difference of surface tensions which governs the
wetting properties of this system.

We first describe the approach developed by Froéhlich and Pfister (1987)
and briefly report some results of their study. We consider the model on the
semi-infinite lattice

L ={ieZ: iy>0}. (12)

A magnetic field, K > 0, is added on the boundary sites, i3 = 0, which
describes the interaction with the substrate, supposed to occupy the comple-
mentary region £\L'.

We constrain the model in the finite box A’ = AN L', with A as above,
and impose the value of the spins outside. The hamiltonian becomes

Hyon |5) == Y olio()—K Y ofi).  (13)

(4,5)NA'#0 i€A/ iz=0

Here o/ represents the configuration inside A’, the pairs (i, j) are contained
in £, and o(i) = &(¢) when @ ¢ A’, the configuration & being the given
boundary condition. The corresponding partition function is denoted by
ZW& (A/) .

Since there are two pure phases in the model we must consider two surface
free energies, or surfaces tensions, 7+ and 7V, between the wall and the
positive or negative phase present in the bulk. They are defined through the
choice of the boundary condition, (i) = 1 or (i) = —1, for all i € £L'. Let
us consider first the case of the (—) boundary condition.

The surface free energy contribution, per unit area, due to the presence
of the wall, when we have the negative phase in the bulk, is

1 ZV(N)

(14)

The division by Z~(A)2 allows us to subtract from the total free energy,
In Z%~(A’), the bulk term and all boundary terms which are not related to
the presence of the wall. The existence of limit (14) follows from correlation
inequalities, and we have 7%~ > 0.
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Figure 2. Boundary conditions for the cubic lattice. Above, the box A with
the (£) and (step) boundary conditions. Below, the box A" and the wall W

with the (w—) boundary conditions.

One can prove, as well, the existence of the Gibbs state u"~ of the semi-
infinite system, associated to the (—) boundary condition. This state is the
limit of the finite volume Gibbs measures pa/(op | (—)) defined by hamil-
tonian (13). It describes the local equilibrium properties of the system near
the wall, when deep inside the bulk the system is in the negative phase.



12 S. Miracle-Solé

Similar definitions give the surface tension 7% and the Gibbs state p%™,
corresponding to the boundary condition &(i) = 1, for all i € A’.

We remark that the states ¥ and p¥~ are invariant by translations
parallel to the plane i3 = 0, and introduce the magnetizations, m"~(z) =
pV~(o(z)), where z denotes the site (0,0, z), m“~ = m"“~(0), and similarly
m¥*(z) and m™*. Their connection with the surface free energies is given
by the formula

P ) ) = [ (B~ (eds. (1)

We mention in the following theorem some results of Frohlich and Pfister’s
study. Here 7% is, as before, the usual surface tension between the two pure
phases of the system, for a horizontal interface.

Theorem 3 With the above definitions, we have

(B, K) = (B, K)
m* (B, K) = m" (8, K)

< 75(B), (16)
> 0, (17)
and the difference in (17) is a monotone decreasing function of the parameter
K. Moreover, if m™* = m"»~, then the Gibbs states u™+ and ¥~ coincide.

The proof is a subtle application of correlation inequalities. Since, from
Theorem 3, the integrand in equation (15) is a positive and decreasing func-
tion, the difference A7 = 7%~ — 7%" is a monotone increasing and concave
(and hence continuous) function of the parameter K. On the other hand,
one can prove that A7 = 7% if K > J. This justifies the following definition

K.u(8) = min{ K : Ar(8,K) = 7~ (8)}. (18)

In the thermodynamic description of wetting, the partial wetting regime
is characterized by the strict inequality in equation (16). Equivalently, by
K < K,(8). We must have then m™* # m™~, because of equation (15).
This shows that, in the case of partial wetting, u** and ¥~ are different
Gibbs states.

The complete wetting regime is characterized by the equality in equation
(16), that is, by K > K,(8). Then, we have m™" = m¥~ and taking
into account the last statement in Theorem 3, also pu¥* = p¥~. This last
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result implies that there is only one Gibbs state. Thus complete wetting
corresponds to unicity of the Gibbs state.

In this case, we also have lim m"“~(z) = m*, when z — oo, because this
is always true for m™*(z). This indicates that we are in the positive phase
of the system although we have used the (—) boundary condition, so that
the bulk negative phase cannot reach anymore the wall. The film of positive
phase, which wets the wall completely, has an infinite thickness with respect
to the unit lattice spacing, in the thermodynamic limit.

When 5 = oo only few particular ground configurations contribute to the
partition functions, such as the configuration o(i) = —1 for the partition
function Z%~, etc., and we obtain A7 = 2K and 7& = 2J. For non zero
but low temperatures the small perturbations of these ground states have
to be considered, a problem that can be treated by the method of cluster
expansions. In fact, the corresponding defects can be described by closed
contours as in the case of pure phases.

Theorem 4 For K < J, the functions BV (8, K) and BTV (8,K) are
analytic at low temperatures, i.e., provided that B (J — K) > ¢y, where ¢y is
a given constant. Moreover, m™*(z) and m“~ (z) tend, respectively, to m*
and to —m*, when z — oo, exponentially fast.

The last statement in Theorem 4 tells us that the wall affects only a layer
of finite thickness (with respect to the lattice spacing). From a macroscopic
point of view the negative phase reaches the wall, and we are in the partial
wetting regime. Indeed, a strict inequality holds in equation (16).

Thus, for K < J there is always partial wetting at low temperatures.
Then the following question arises:

Question 2 Is there a situation of complete wetting at higher temperatures ?
It is understood here that K takes a fized value, characteristic of the substrate,
such that 0 < K < J.

This is known to be the case in dimension d = 2, where the exact value
of K,(5) can be obtained from Abraham’s solution of the model:

cosh 28K, = cosh 26J — e~/ sinh 23.J.

Then complete wetting occurs for 5 in the interval g, < < 5, (K), where .
is the critical inverse temperature and f,,(K) is the solution of K, (8) = K.
The case d = 2 has been reviewed in Abraham (1986).
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To our knowledge, the above question remains an open problem for the
Ising model in dimension d = 3. The problem has however been solved for
the simpler case of a SOS interface model. In this case, a nice and rather
brief proof has been given by Chalker (1982) of the following result: One has
m"t = m"“~, and hence complete wetting, if

26(J — K) < —In(1 — e~ %),

It is very plausible that a similar statement is valid for the semi-infinite
Ising model and, also, that Chalker’s method could play a role for extending
the proof to this case, provided an additional assumption is made. Namely,
that [ is sufficiently large, and hence J — K small enough, in order to insure
the convergence of the cluster expansions and to be able to use them.

5 Equilibrium crystals

The shape of an equilibrium crystal is obtained, according to thermody-
namics, by minimizing the surface free energy between the crystal and the
medium, for a fixed volume of the crystal phase. Given the orientation de-
pendent surface tension 7(n), the solution to this variational problem, known
under the name of Wulff construction, is the following set:

W={x€R?:x-n < 7(n) for all n}. (19)

Notice that the problem is scale invariant, so that if we solve it for a given
volume of the crystal, we get the solution for other volumes by an appropriate
scaling. We notice also that the symmetry 7(n) = 7(—n) is not required for
the validity of formula (19). In the present case 7(n) is obviously a symmetric
function, but non-symmetric situations are also physically interesting and
appear, for instance, in the case of a drop on a wall discussed in Section 4.

The surface tension in the Ising model, between the positive and negative
phases, has been defined in equation (7). In the two-dimensional case, this
function 7(n) has (as shown by Abraham) an exact expression in terms of
some Onsager’s function. It follows (as explained in Miracle-Sole, 1999) that
the Wulff shape W, in the plane (x1, z3), is give by

cosh B, + cosh By < cosh®23.J/sinh 23.J.

This shape reduces to the empty set for § < f,, since the critical (. satisfies
sinh 2J5. = 1. For g > 3., it is a strictly convex set with smooth boundary.
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Figure 3. Cubic equilibrium crystal shown in a projection parallel to the
(1,1,1) direction. The three regions 1), 2) and 3) indicate the facets and the

remaining area represents a curved part of the crystal surface.

In the three-dimensional case, only certain interface models can be ex-
actly solved (see Section 3). Consider the Ising model at zero temperature.
The ground configurations have only one defect, the microscopic interface A,
imposed by the boundary condition (4, n). Then, from equation (9), we may
write

)= lm -2
W= Ll,ngrLOO LyLs

(Bx(n) — 67 Na(m)) (20)
where E) = 2J|A| is the energy (all A have the same minimal area) and
Nj the number of the ground states. Every such A\ has the property of
being cut only once by all straight lines orthogonal to the diagonal plane
11 + o + 173 = 0, provided that n, > 0, for £ = 1,2,3. Each A\ can then be
described by an integer function defined on a triangular plane lattice, the
projection of the cubic lattice £ on the diagonal plane. The model defined
by this set of admissible microscopic interfaces is precisely the TISOS model.
A similar definition can be given for the BCSOS model that describes the
ground configurations on the body-centered cubic lattice.

From a macroscopic point of view, the roughness or the rigidity of an
interface should be apparent when considering the shape of the equilibrium
crystal associated with the system. A typical equilibrium crystal at low
temperatures has smooth plane facets linked by rounded edges and corners.
The area of a particular facet decreases as the temperature is raised and
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the facet finally disappears at a temperature characteristic of its orientation.
It can be argued that the disappearance of the facet corresponds to the
roughening transition of the interface whose orientation is the same as that
of the considered facet.

The exactly solvable interface models mentioned above, for which the
function 7(n) has been computed, are interesting examples of this behav-
ior, and provide a valuable information on several aspects of the roughening
transition. This subject has been reviewed by Abraham (1986), van Beijeren
and Nolden (1987), and Kotecky (1989).

For example, we show in figure 2 the shape predicted by the TISOS
model (one eighth of the shape because of the condition n; > 0). In this
model the interfaces orthogonal to the three coordinate axes are rigid at low
temperatures.

For the three-dimensional Ising model at positive temperatures, the de-
scription of the microscopic interface, for any orientation n, appears as a
very difficult problem. It has been possible, however, to analyze the in-
terfaces which are very near to the particular orientations ng, discussed in
Section 3. This analysis allows us to determine the shape of the facets in a
rigorous way.

We first observe that the appearance of a facet in the equilibrium crystal
shape is related, according to the Wulff construction, to the existence of
a discontinuity in the derivative of the surface tension with respect to the
orientation. More precisely, assume that the surface tension satisfies the
convexity condition of Theorem 1, and let this function 7(n) = 7(0,¢) be
expressed in terms of the spherical coordinates of n, the vector ng being
taken as the x3 axis. A facet orthogonal to ny appears in the Wulff shape if,
and only if, the derivative 97(0, ¢)/06 is discontinuous at the point 6§ = 0,
for all ¢. The facet F C OV consists of the points x € R? belonging to the
plane x3 = 7(np) and such that, for all ¢ between 0 and 2,

21 €08 ¢+ xosin ¢ < IT(0, ¢)/00 | g—o+ (21)

The step free energy is expected to play an important role in the facet
formation. It is defined as the free energy associated with the introduction of
a step of height 1 on the interface, and can be regarded as an order parameter
for the roughening transition. Let A be a parallelepiped as in Section 2, and
introduce the (step, m) boundary conditions, associated to the unit vectors
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m = (cos ¢, sin ¢) € R?, by

o(z’):{l if >0 orif i3=0 and iymq + iamo > 0,

22
—1 otherwise. (22)

Then, the step free energy, per unit length, for a step orthogonal to m (with
mg > 0) on the horizontal interface, is

Zstep,m A
TStep(@ = lim lim lim —COS(b (A)

L1~>OO LQ*)OO L3~>OO /8L1 n Z:l:,l’lo (A) (23>

A first result concerning this point, was obtained by Bricmont et al., by
proving a correlation inequality which establish 75°P(0) as a lower bound to
the one-sided derivative 97(0,0)/00 at § = 0" (the inequality extends also
to ¢ # 0). Thus when 75" > ( a facet is expected.

Using the perturbation theory of the horizontal interface, it is possible to
study also the microscopic interfaces associated with the (step, m) boundary
conditions. When considering these configurations, the step may be viewed
as an additional defect on the rigid interface described in Section 2. It is, in
fact, a long wall going from one side to the other side of the box A. The step
structure at low temperatures can then be analyzed with the help of a new
cluster expansion. As a consequence of this analysis we have the following
theorem.

Theorem 5 If the temperature is low enough, i.e., if BJ > c3, where c3 is a
given constant, then the step free energy, T'°P(¢), exists, is strictly positive,
and extends by positive homogeneity to a strictly convex function. More-
over, BTSP(¢) is an analytic function of ( = e~2#, for which an explicit
convergent series expansion can be found.

Using the above results on the step structure, similar methods allow us
to evaluate the increment in surface tension of an interface titled by a very
small angle 6 with respect to the rigid horizontal interface. This increment
can be expressed in terms of the step free energy and one obtains the following
relation.

Theorem 6 For $J > c3, we have

O1(0,0)/90 | g—o+ = TP (9). (24)
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This relation, together with equation (21), implies that one obtains the
shape of the facet by means of the two-dimensional Wulff construction applied
to the step free energy. The reader will find a detailed discussion on these
points, as well as the proofs of Theorems 5 and 6, in Miracle-Sole (1995).

From the properties of 75%P stated in Theorem 5, it follows that the
Waulff equilibrium crystal presents well defined boundary lines, smooth and
without straight segments, between a rounded part of the crystal surface and
the facets parallel to the three main lattice planes.

It is expected, but not proved, that at a higher temperature, but be-
fore reaching the critical temperature, the facets associated with the Ising
model undergo a roughening transition. It is then natural to believe that the
equality (24) is true for any [ larger than fg, allowing us to determine the
facet shape from equations (21) and (24), and that for 5 < fg, both sides
in this equality vanish, and thus, the disappearance of the facet is involved.
However, the condition that the temperature is low enough is needed in the
proofs of Theorems 5 and 6.

See also: Gibbs states. Ising model. Phase transitions. Wulff droplets.
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