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Non-parametric adaptive estimation of the drift for a jump diffusion process

In this article, we consider a jump diffusion process (Xt) t≥0 observed at discrete times t = 0, ∆, . . . , n∆. The sampling interval ∆ tends to 0 and n∆ tends to infinity. We assume that (Xt) t≥0 is ergodic, strictly stationary and exponentially β-mixing. We use a penalized least-square approach to compute two adaptive estimators of the drift function b. We provide bounds for the risks of the two estimators.

A 1. The functions b, σ and ξ are Lipschitz.

A 2.

1. The function σ is bounded from below and above:

2. The function ξ is bounded:

3. The drift function b is elastic: there exists a constant M such that, for

4. The Lévy measure ν satisfies:

, under Assumptions A1 and A2, the process (X t ) admits a unique invariant probability ̟ and satisfies the ergodic theorem: for any measurable function g such that ´|g

 ensure that a smooth transition density exists.

Introduction

We consider a general diffusion with jumps: dX t = b(X t )dt + σ(X t )dW t + ξ(X t -)dL t and X 0 = η

(1)

where L t is a centred pure jump Levy process:

dL t = ˆz∈R z (µ(dt, dz) -dtν(dz))
with µ a random Poisson measure with intensity measure ν(dz)dt such that ´z∈R z 2 ν(dz) < ∞. The compensated Poisson measure μ is defined by μ(dt, dz) = µ(dt, dz)-ν(dz)dt. The random variable η is independent of (W t , L t ) t≥0 . Moreover, (W t ) t≥0 and (L t ) t≥0 are independent. This process is observed with high frequency (at times t = 0, ∆, . . . , n∆ where, as n tends to infinity, the sampling interval ∆ → 0 and the time of observation n∆ → ∞). It is assumed to be ergodic, stationary and exponentially β-mixing (see [START_REF] Masuda | Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps[END_REF] for sufficient conditions). Our aim is to construct a non-parametric estimator of b on a compact set A.

The non-parametric estimation of b and σ for a diffusion process observed with high-frequency is well-known (see for instance [START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF] and [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF]). Diffusion processes with jumps are used in various fields, for instance in finance, for modelling the growth of a population, in hydrology, in medical science, . . ., but there exist few results for the non-parametric estimation of b and σ. [START_REF] Mai | Efficient maximum likelihood estimation for lévy-driven ornsteinuhlenbeck processes[END_REF] and [START_REF] Shimizu | Estimation of parameters for diffusion processes with jumps from discrete observations[END_REF] construct maximumlikelihood estimators of parameters of b. Their estimators reach the standard rate of convergence, √ n∆. [START_REF] Shimizu | Some remarks on estimation of diffusion coefficients for jumpdiffusions from finite samples[END_REF] and [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF] use a kernel estimator to obtain non parametric threshold estimators of σ. [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF] also construct a non-parametric truncated estimator of b, but only when L t is a compound Poisson process. To our knowledge, minimax rates of convergences for non-parametric estimators of b, σ or ξ for jump-diffusions processes are not available in the literature (see [START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF] or [START_REF] Gobet | Nonparametric estimation of scalar diffusions based on low frequency data[END_REF] for rates of convergence for diffusions processes).

In this paper, we use model selection to construct two non-parametric estimators of b under the asymptotic framework ∆ → 0 and n∆ → ∞. This method was introduced by [START_REF] Birgé | Minimum contrast estimators on sieves: exponential bounds and rates of convergence[END_REF].

First, we introduce a sequence of linear subspaces S m ⊆ L 2 (A) and, for each m, we construct an estimator bm of b by minimising on S m the contrast function:

γ n (t) = 1 n n k=1 (Y k∆ -t(X k∆ )) 2 where Y k∆ = X (k+1)∆ -X k∆ ∆ .
We obtain a collection of estimators of the drift function b and we bound their risks (Theorem 2). Then, we introduce a penalty function to select the "best" dimension m and we deduce an adaptive estimator b m. Under the assumption that ν is sub-exponential, that is if there exist two positive constants C, λ such that, for z large enough, ν([-z, z] c ) ≤ Ce -λz , the risk bound of b m is exactly the same as for a diffusion without jumps (Theorem 4) (see [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF] or [START_REF] Hoffmann | Adaptive estimation in diffusion processes[END_REF]).

In a second part, we do not assume that ν is sub-exponential and we construct a truncated estimator bm of b. We minimise the contrast function

γn (t) = 1 n n k=1 Y k∆ ½ |Y k∆ |≤C∆ -t(X k∆ ) 2 where C ∆ ∝ √ ∆ ln(n)
in order to obtain a new estimator bm . As in the first part, we introduce a penalty function to obtain an adaptive estimator b m. The risk bound of this adaptive estimator depends on the Blumenthal-Getoor index of ν (Theorems 7 and 10).

In Section 2, we present the model and its assumptions. In Sections 3 and 4, we construct the estimators and bound their risks. Some simulations are presented in Section 5. Proofs are gathered in Section 6.

Assumptions

Assumptions on the model

We consider the following assumptions: A 3.

1. The stationary measure ̟ admits a density π which is bounded from below and above on the compact interval A:

∃π 0 , π 1 , ∀x ∈ A, 0 < π 1 ≤ π(x) ≤ π 0 .
2. The process (X t ) t≥0 is stationary (η ∼ ̟(dx) = π(x)dx).

The first part of this assumption is automatically satisfied if ξ = 0 (that is if (X t ) t≥0 is a diffusion process). The following proposition is very useful for the proofs. It is derived from Result 11.

Proposition 1. Under Assumptions A1-A3, for any p ≥ 1, there exists a constant c(p) such that, if ´R z 2p ν(dz) < ∞:

E sup s∈[t,t+h] (X s -X t ) 2p ≤ c(p)h.

Assumptions on the approximation spaces

In order to construct an adaptive estimator of b, we use model selection: we compute a collection of estimators bm of b by minimising a contrast function γ n (t) on a vectorial subspace S m ⊂ L 2 (A), then we choose the best possible estimator using a penalty function pen(m). The collection of vectorial subspaces (S m ) m∈Mn has to satisfy the following assumption:

A 4.

1. The subspaces S m have finite dimension D m .

2. The sequence of vectorial subspaces (S m ) m≥0 is increasing: for any m, S m ⊆ S m+1 .

3. Norm connexion: there exists a constant φ 1 such that, for any m ≥ 0, any

t ∈ S m , t 2 ∞ ≤ φ 1 D m t 2 L 2
where . L 2 is the L 2 -norm and . ∞ is the sup-norm on A.

4.

For any m ∈ N, there exists an orthonormal basis

(ψ λ ) λ∈Λm of S m such that ∀λ, card (λ ′ , ψ λ ψ λ ′ ∞ = 0) ≤ φ 0
where φ 0 does not depend on m.

For any function t belonging to the unit ball of the

Besov space B α 2,∞ , ∃C, ∀m t -t m 2 L 2 ≤ CD -2α
m where t m is the L 2 orthogonal projection of t on S m .

The subspaces generated by piecewise polynomials, compactly supported wavelets or spline functions satisfy A4 (see [START_REF] Devore | Constructive approximation, Grundlehren der Mathematischen Wissenschaften[END_REF] and [START_REF] Meyer | Ondelettes et opérateurs. I . Actualités Mathématiques[END_REF] for instance).

Estimation of the drift

By analogy with [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF], we decompose Y k∆ in the following way:

Y k∆ = X (k+1)∆ -X k∆ ∆ = b(X k∆ ) + I k∆ + Z k∆ + T k∆ (2) 
where

I k∆ = 1 ∆ ˆ(k+1)∆ k∆ (b(X s ) -b(X k∆ )) ds, Z k∆ = 1 ∆ ˆ(k+1)∆ k∆ σ(X s )dW s T k∆ = 1 ∆ ˆ(k+1)∆ k∆ ξ(X s -)dL s .
The terms Z k∆ and T k∆ are martingale increments. Let us introduce the mean square contrast function

γ n (t) = 1 n n k=1 (Y k∆ -t (X k∆ )) 2 . ( 3 
)
We can always minimise γ n (t) on S m , but the minimiser may be not unique.

That is why we introduce the empirical risk

R n (t) = E t -b A 2 n where t 2 n = 1 n n k=1
t 2 (X k∆ ) and t A = t½ A .

(4) We consider the asymptotic framework:

∆ → 0, n∆ → ∞. For any m ∈ M n = {m, D m ≤ D n } where D 2 n ≤ n∆/ ln 2 (n), we construct the regression-type estimator: bm = arg min t∈Sm γ n (t).
Theorem 2. Under Assumptions A1-A4, the risk of the estimator with fixed m satisfies:

R n ( bm ) ≤ 3π 1 b m -b A 2 L 2 + 48(σ 2 0 + ξ 2 0 ) D m n∆ + c∆
where b m is the orthogonal (L 2 ) projection of b A over the vectorial subspace S m . The constant c is independent of m, n and ∆.

Except for the constant (σ 2 0 + ξ 2 0 ) in the variance term, this is exactly the bound of the risk that [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF] found for a diffusion process without jumps.

The bias term, b m -b A

2

L 2 , decreases when the dimension D m increases whereas the variance term (σ 2 0 + ξ 2 0 )D m /(n∆) is proportional to the dimension. Under the classical assumption n∆ 2 = O(1), the remainder term ∆ is negligible. Thus we need to find a good compromise between the bias and the variance term. L 2 , and the variance term, cD m (n∆) -1 , are equal, that is for D mopt = (n∆) 1/(1+2α) . In that case, the estimator risk satisfies:

R n ( bmopt ) (n∆) -2α/(2α+1) + ∆.
Let us introduce a penalty function pen such that :

pen(m) ≥ κ(σ 2 0 + ξ 2 0 ) D m n∆
and set: m = arg min m∈Mn γ n ( bm ) + pen(m) .

We will chose κ later. We denote by b m the resulting estimator. To bound the risk of the adaptive estimator, an additional assumption is needed:

A 5.

1. The Lévy measure ν is symmetric or the function ξ is constant.

2. The Lévy measure ν is sub exponential: there exist λ, C > 0 such that, for

any |z| > 1, ν(] -z, z[ c ) ≤ Ce -λ|z| .
Theorem 4.

Under Assumptions A1-A5, there exists a constant κ (depending only on ν) such that, if

D 2 n ≤ n∆/ ln 2 (n): E b m -b A 2 n inf m∈Mn b m -b A 2 L 2 + pen(m) + ∆ + 1 n∆ .
Remark 5. We can bound κ theoretically, however, this bound is in practice too large for the simulations. In Section 5, we calibrate κ by simulations (see [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF] for instance). If σ and ξ are unknown, it is possible to replace them by rough estimators (in fact, we only need upper bounds of σ 2 0 and ξ 2 0 ). It is also possible to performe a completely data-driven calibration of the parameters of the penalty (see [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF]).

Truncated estimator of the drift

Truncated estimators are widely used for the estimation of the diffusion coefficient of a jump diffusion (see for instance [START_REF] Mancini | Threshold estimation of Markov models with jumps and interest rate modeling[END_REF], [START_REF] Shimizu | Some remarks on estimation of diffusion coefficients for jumpdiffusions from finite samples[END_REF] and [START_REF] Mai | Efficient maximum likelihood estimation for lévy-driven ornsteinuhlenbeck processes[END_REF]). Our aim is to construct an adaptive estimator of b even if Assumption A5 is not fulfilled. To this end, we cut off the big jumps. Let us introduce the set

Ω X,k = ω, X (k+1)∆ -X k∆ ≤ C ∆ where C ∆ = (b max + 3)∆ + (σ 0 + 4ξ 0 ) √ ∆ ln(n) (with b max = sup x∈A |b(x)|). Let us consider the random variables Ỹk∆ = X (k+1)∆ -X k∆ ∆ ½ Ω X,k ½ X k∆ ∈A .
We recall here the definition of the Blumenthal-Getoor index:

Definition 6.

The Blumenthal-Getoor index of a Lévy measure is

β = inf α ≥ 0, ˆ|z|≤1 |z| α ν(dz) < ∞ .
A compound Poisson process has β = 0. We assume that the following assumption is fulfilled.

A 6. 1. For |x| small, ν(dx) is absolutely continuous with respect to the Lebesgue measure (ν(dx) = n(x)dx) and:

∃β ∈ [0, 2[, ∃a 0 , ∀x ∈ [-a 0 , a 0 ], n(x) ≤ Cx -β-1 .
This implies that the Blumenthal-Getoor index is equal to β.

2. The Lévy measure ν(z) is symmetric for z small:

∃a 1 < a 0 , ∀z ∈ [-a 1 , a 1 ], n(z) = n(-z)
3. The function ξ is bounded from below: there exists ξ 1 > 0 such that, for any z ∈ R, 0 < ξ 1 ≤ ξ(z).

4. The functions σ and ξ are C 2 , ξ ′ and σ ′ are Lipschitz.

We consider the following asymptotic framework:

n∆ ln 2 (n) → ∞, ∆ 1-β/2 ln 2 (n) → 0.
The truncated estimator bm is obtained by minimising the contrast function: 

E bm -b A 2 n b m -b A 2 L 2 + (σ 2 0 + c∆ 1/2-β/4 ) D m n∆ + ∆ 1-β/2 ln 2 (n) + 1 n∆ .
The variance term is smaller than for the first estimator, but the remainder term depends on the Blumenthal-Getoor index and is larger than for the first estimator. This remainder term is due to the fact that Ỹk∆ = 0 every time

|X (k+1)∆ -X k∆ | > C ∆ : then E Ỹk∆ -b(X k∆ ) > |E (Y k∆ -b(X k∆ ))| .
If L t is a compound Poisson process, (which implies β = 0) or if ∆ is small enough (see Remark 9), we obtain a better inequality than for the non-truncated estimator.

Remark 8. If ν is not absolutely continuous, we can prove the weaker inequality:

E bm -b A 2 n b m -b A 2 L 2 + (σ 2 0 + ξ 2 0 ) D m n∆ + ∆ 1-β ln 2 (n) + 1 n∆ .
In that case, bm converges towards b A only if β < 1, which implies that ν has finite variation ( ´R |z|ν(dz) < ∞). See Remark 18.

Remark 9. Assume that b A belongs to the Besov space B α 2,∞ and that b

A B α 2,∞ ≤ 1. The bias-variance compromise b m -b A 2 L 2 +D m /n∆ is minimal when m = log 2 (n∆)/(1 + 2α
), and the risk satisfies:

E bm -b A 2 n (n∆) -2α/(1+2α) + ∆ 1-β/2 ln 2 (n)
Let us set ∆ ∼ n -γ with γ > 0. We have the following convergence rates:

γ first estimator truncated estimator 0 < γ ≤ 2α 4α+1 ≤ 1 2 ∆ ∆ 1-β/2 ln 2 (n) 2α 4α+1 ≤ γ ≤ 2α 4α+1-βα-β/2 ≤ 1 2(1-β/4) (n∆) -2α/(2α+1) ∆ 1-β/2 ln 2 (n) 2α+1 4α+1-βα-β/2 ≤ γ < 1 (n∆) -2α/(2α+1) (n∆) 
-2α/(2α+1)

If we have sufficiently high frequency data (n∆ 2(1-β/4) = O(1)), then the rate of convergence is (n∆) 2α/(2α+1 for the two estimators. The estimator of [START_REF] Mai | Efficient maximum likelihood estimation for lévy-driven ornsteinuhlenbeck processes[END_REF] converges with the corresponding parametric rate, n∆, if n∆ 3/2-γ = o(1) for γ ∈]0, 1/2[.

To construct the adaptive estimator, we use the same penalty function as in the previous section: Theorem 10 : Risk of the adaptive truncated estimator. If Assumptions A1-A4 and A6 are satisfied, then there exists κ such that, if

D 2 n ≤ n∆/ ln 2 (n): E b m -b A 2 n min m∈Mn b m -b A 2 n + pen(m) + ∆ 1-β/2 ln 2 (n) + 1 n∆ .
The adaptive estimator b m automatically realises the bias/variance compromise.

Numerical simulations and examples

Models

We consider the stochastic differential equation:

dX t = b(X t )dt + σ(X t )dW t + ξ(X t -)dL t
where L t is a compound Poisson process of intensity 1: L t = Nt j=1 ζ i , with N t a Poisson process of intensity 1 and (ζ 1 , . . . , ζ n ) are independent and identically distributed random variables independent of (N t ). We denote by f the probability law of ζ i .

Model 1: b(x) = -2x, σ(x) = ξ(x) = 1 and f (dz) = ν(dz) = 1 2 δ 1 + 1 2 δ -1 . Model 2: b(x) = -(x -1/4) 3 -(x + 1/4) 3 , σ(x) = ξ(x) = 1 and f (dz) = ν(dz) = e -λ|z| dz 2 .
We can remark that the function b is not Lipschitz and therefore does not satisfy Assumption A1.

Model 3:

We consider the stochastic process of parameters

b(x) = -2x + sin(3x), σ(x) = ξ(x) = 3 + x 2 1 + x 2 and f (dz) = ν(dz) = 1 4 √ 24 |z| e - √ √ 24|z| dz.
Let us remark that ν = f is not sub-exponential and does not satisfy A5. Nevertheless, this model satisfies all the assumptions of Theorem 10.

Model 4:

In this model, the Lévy process is not a compound Poisson process. We set

ν(dz) = ∞ k=0 2 k+2 (δ 1/2 k + δ -1/2 k ), b(x) = -2x and σ(x) = ξ(x) = 1.
The Blumenthal-Getoor index of this process is such that β > 1.

Simulation algorithm (Compound Poisson case)

We estimate b on the compact interval A = [-1, 1].

1. Simulate random variables (X 0 , X ∆ , . . . , X n∆ ) thanks to a Euler scheme with sampling interval δ = ∆/5. To this end, we use the same simulation scheme as [START_REF] Rubenthaler | Probabilités : aspects théoriques et applications en filtrage non linéaire, systèmes de particules et processus stochastiques[END_REF]. We simulate the times of the jumps (τ 1 , . . . , τ N , τ N +1 ) with τ N < n∆ ≤ τ N +1 and we fix X 0 = 0.

If δ < τ 1 , we compute X δ = δb(X 0 ) + √ δσ(X 0 )N with N ∼ N (0, 1).
If τ 1 < δ, we first compute

X τ1 = τ 1 b(X 0 ) + √ τ 1 σ(X 0 )N + ξ(X 0 )ζ 1 with N ∼ N (0, 1) and ζ 1 ∼ f is independent of N . If δ < τ 2 , we compute X δ = (δ -τ 1 )b(X τ1 ) + δ -τ 1 σ(X τ1 )N ′
else we compute

X τ2 = (τ 2 -τ 1 )b(X τ1 ) + √ τ 2 -τ 1 σ(X τ1 )N ′ + ξ(X τ1 )ζ 2
where N ′ ∼ N (0, 1) and ζ 2 has distribution f . N , N ′ , ζ 1 and ζ 2 are independent.

Construct the random variables

Y k∆ = X (k+1)∆ -X k∆ ∆ and Ỹk∆ = X (k+1)∆ -X k∆ ∆ ½ Ω X,k ½ X k∆ ∈A .
3. We consider the vectorial subspaces S m,r generated by the spline functions of degree r (see for instance [START_REF] Schmisser | Penalized nonparametric drift estimation for a multidimensional diffusion process[END_REF]). In that case D m,r = dim(S m,r ) = 2 m + r. For r ∈ {1, 2, 3} and m ∈ M n (r) = {m, D m,r ≤ D n }, we compute the estimators bm,r and bm,r by minimising the contrast functions γ n and γn on the vectorial subspaces S m,r .

4. For the estimation algorithm, we make a selection of m and r as follows.

Using the penalty function pen(m, r) := pen(m) = κ(σ 2 0 +ξ 2 0 )(2 m +r)/n∆, we select the adaptive estimators b m,r and b m,r , and then choose the best r by minimizing γ n ( b m,r ) + pen( m, r) and γn ( b m,r ) + pen( m, r).

To calibrate κ, we run a various number of simulations for a model with known parameters and let κ vary. When κ is too small, the value of m selected by the estimation procedure is in general very high (often maximal). When κ is too big, the estimator is always linear even if the true function is not. We used the true value of σ 2 0 and ξ 2 0 .

Results

In Figures 1234, we simulate 5 times the process (X 0 , . . . , X n∆ ) for ∆ = 10 -1 and n = 10 4 and draw the obtained estimators. The two adaptive estimators are nearly superposed, moreover, they are close to the true function.

In Tables 1234, for each value of (n, ∆), we simulate 50 trajectories of (X 0 , X ∆ , . . . , X n∆ ). For each path, we construct the two adaptive estimators b m,r and b m,r and we compute the empirical errors:

err 1 = b m,r -b A 2 n and err 2 = b m,r -b A 2 n .
In order to check that our algorithm is adaptive, we also compute the minimal errors

emin 1 = min m,r bm,r -b A 2 n and emin 2 = min m,r bm,r -b A 2 n
and the oracles oracle i = err i /emin i . We give the means ma , ra , ma and ra of the selected values m, r, m and r. The value risk i is the mean of err i over the 50 simulations and or i is the mean of oracle i . The computation time for one adaptive estimator varies from 0.1 second (∆ = 10 -1 , n = 10 3 ) to 30 seconds (∆ = 10 -1 , n = 10 4 ). The empirical risk is decreasing when the product n∆ is increasing, which is coherent with the theoretical model. For Model 1, the two estimators are equivalent. When the tails of ν become larger (Models 2 and 3), the truncated estimator is better. The improvement is also more significant when the discretization distance is smaller. As on the first three models, the processes L t are compound Poisson processes, these results were expected. The truncated estimator seems also more robust: we do not observe aberrant values (like for the first estimator in Table 2). Those aberrant values may be due to the fact that b is not Lipschitz and then b(X k∆ ) may be quite large, and to the non-exact simulation by an Euler scheme. For Model 4, the results are slightly better for the first estimator when ∆ = 0.1, which is due to the fact that the remainder term is greater for the truncated estimator. When ∆ = 10 -2 , the risk of the truncated estimator is lower than for the first estimator.

Proofs

Let us introduce the filtration

F t = σ η, (W s ) 0≤s≤t , (L s ) 0≤s≤t .
The following result is very useful. It comes from [START_REF] Dellacherie | Probabilités et potentiel. Chapitres V à VIII[END_REF] (Theorem 92 Chapter VII) and [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF], Theorem 4.4.23 p265 (Kunita's first inequality).

Result 11 (Burkholder-Davis-Gundy inequality). We have that, for any p ≥ 2,

E sup s∈[t,t+h] ˆs t σ(X u )dW u p F t ≤ C p   E   ˆt+h t σ 2 (X u )du p/2 F t     and, if ´R |z| p ν(dz) < ∞, as ´R z 2 ν(dz) = 1: E sup s∈[t,t+h] ˆs t ξ(X u -)dL u p F t ≤ C p E   ˆt+h t ξ 2 (X u )du p/2 F t   + C p E ˆt+h t |ξ(X u )| p du F t ˆR |z| p ν(dz).

Proof of Theorem 2

By (3) and ( 4), we get:

γ n (t) = 1 n n k=1 (Y k∆ -t(X k∆ )) 2 = 1 n n k=1 (Y k∆ -b(X k∆ )) 2 + b -t 2 n + 2 n n k=1 (Y k∆ -b(X k∆ )) (b(X k∆ ) -t(X k∆ )) .
As, by definition,

γ n ( bm ) ≤ γ n (b m ), we obtain: bm -b 2 n ≤ b m -b 2 n + 2 n n k=1 (Y k∆ -b(X k∆ )) bm (X k∆ ) -b m (X k∆ ) .
By (2), and as bm and b m are supported by A,

bm -b A 2 n ≤ b m -b A 2 n + 2 n n k=1 (I k∆ + Z k∆ + T k∆ ) bm (X k∆ ) -b m (X k∆ ) .
Let us introduce the unit ball

B m = {t ∈ S m , t ̟ ≤ 1} where t 2 ̟ = ˆA t 2 (x)̟(dx)
and the englobing space S n = m∈Mn S m . Let us consider the set

Ω n = ω, ∀t ∈ S n , t 2 n t 2 ̟ -1 ≤ 1 2
where the norms . ̟ and . n are equivalent.

Step 1: bound of the risk on Ω n Thanks to the Cauchy-Schwartz inequality, we obtain that, on

Ω n : bm -b A 2 n ≤ b m -b A 2 n + 1 12 bm -b m 2 n +12 n k=1 I 2 k∆ + 1 12 bm -b m 2 ̟ +12 sup t∈Bm ν 2 n (t)
where

ν n (t) = 1 n n k=1 (Z k∆ + T k∆ )t(X k∆ ). (5) 
On Ω n , by definition, we have:

bm -b m 2 n ≤ 2 bm -b A 2 n +2 b m -b A 2 n and bm -b m 2 ̟ ≤ 2 bm -b m 2 n .
Thus we obtain:

bm -b A 2 n ≤ 3 b m -b A 2 n + 24 n k=1 I 2 k∆ + 24 sup t∈Bm ν 2 n (t).
The following lemma is very useful. It is derived from Proposition 1 and Result 11.

Lemma 12. 1. 

E I 2 k∆ ≤ c∆ and E I 4 k∆ ≤ c∆. 2. E ( Z k∆ | F k∆ ) = 0, E Z 2 k∆ F k∆ ≤ σ 2 0 /∆ and E Z 4 k∆ F k∆ ≤ c/∆ 2 . 3. E ( T k∆ | F k∆ ) = 0, E T 2 k∆ F k∆ ≤ ξ 2 0 /∆ and E T 4 k∆ F k∆ ≤ c/∆ 3 .
sup t∈Bm ν 2 n (t) = sup λ a 2 λ ≤1 λ∈Λm a λ ν n (ϕ λ ) 2 ≤ sup λ a 2 λ ≤1 λ∈Λm a 2 λ λ∈Λm ν 2 n (ϕ λ ) = λ∈Λm ν 2 n (ϕ λ ) .
It remains to bound E ν 2 n (ϕ λ ) . By ( 5),

E ν 2 n (ϕ λ ) = 1 n 2 n k=1 E ϕ 2 λ (X k∆ )E (Z k∆ + T k∆ ) 2 F k∆ + 2 n 2 n k<l E [(Z k∆ + T k∆ )ϕ λ (X k∆ )ϕ λ (X l∆ )E [ Z l∆ + T l∆ | F l∆ ]]
Thanks to Lemma 12, the second term of this inequality is null and we obtain, as ´R ϕ 2 λ (x)̟(dx) = 1:

E ν 2 n (ϕ λ ) ≤ 2(σ 2 0 + ξ 2 0 ) n 2 ∆ n k=1 E ϕ 2 λ (X k∆ ) = 2(σ 2 0 + ξ 2 0 ) n∆ .
Therefore:

E bm -b A 2 n ½ Ωn ≤ 3 b m -b A 2 n + 48(σ 2 0 + ξ 2 0 ) D m n∆ + C∆.
Step 2: bound of the risk on Ω c n . The process (X t ) t≥0 is exponentially βmixing, π is bounded from below and above and n∆ → ∞. The following result is proved for ξ = 0 for instance in [START_REF] Comte | Penalized nonparametric mean square estimation of the coefficients of diffusion processes[END_REF] for diffusion processes, but as it relies only on the β-mixing property, we can apply it.

Result 13. P [Ω c n ] ≤ 1 n 3 .
Let us set e = (e ∆ , . . . , e n∆ )

* where

e k∆ := Y k∆ -b(X k∆ ) = I k∆ +Z k∆ +T k∆ and Π m Y = Π m (Y ∆ , . . . , Y n∆ ) * = bm (X 0 ), . . . , bm (X n∆ ) *
where Π m is the Euclidean orthogonal projection over S m . Then

bm -b A 2 n = Π m Y -b A 2 n = Π m b A -b A 2 n + Π m Y -Π m b A 2 n ≤ b A 2 n + e 2 n .
According to Lemma 12, Result 13 and the Cauchy-Schwarz inequality,

E e 2 n ½ Ω c n ≤ E e 4 n 1/2 (P (Ω c n )) 1/2 ≤ C (∆ 3 n 3 ) 1/2 ≤ C n∆
and, as b is bounded on the compact set A,

E b A 2 n ½ Ω c n ≤ E b A 4 n P (Ω c n ) 1/2 1 n 3/2 .
Collecting the results, we get:

E bm -b A 2 n ½ Ω c n 1 n∆
which ends the proof of Theorem 2.

Proof of Theorem 4

The bound of the risk on Ω c n is done exactly in the same way as for the non adaptive estimator. It remains thus to bound the risk on Ω n . As in the previous proof, we get:

b m -b A 2 n ½ Ωn ≤ 3 b m -b A 2 n + 24 n n k=1 I 2 k∆ + 2pen(m) -2pen( m) + 24 sup t∈B m, m ν 2 n (t)
where B m,m ′ is the unit ball (for the

L 2 ̟ -norm) of the subspace S m + S m ′ : B m,m ′ = {t ∈ S m + S m ′ , t ̟ ≤ 1}. Let us introduce a function p(m, m ′ ) such that 12p(m, m ′ ) = pen(m) + pen(m ′ ). We obtain that, on Ω n , for any m ∈ M n : b m -b A 2 n ≤ 3 b m -b A 2 n + 24 n n k=1 I 2 k∆ + 4pen(m) + 24 sup t∈B m, m ν 2 n (t) -p(m, m) .

It remains to bound

E sup t∈B m, m ν 2 n (t) -p(m, m) ≤ m ′ E sup t∈B m,m ′ ν 2 n (t) -p(m, m ′ ) + .
For this purpose, we use the following proposition proved in Applebaum (2004) (Corollary 5.2.2 ).

Proposition 14 : exponential martingale.

Let (Y t ) t≥0 satisfy:

Y t = ˆt 0 F s dW s + ˆt 0 K s dL s - ˆt 0 F 2 s 2 + ˆR e Ksz -1 -K s z ν(dz) ds
where F s and K s are locally integrable and predictable processes. If for any t > 0,

E ˆt 0 ˆ|z|>1 e Ksz -1 ν(dz)ds < ∞, then e Yt is a G t -local martingale where G t = σ(W s , L s , 0 ≤ s ≤ t).
For any ε ≤ ε 1 := (λ ∧ 1)/(2 t ∞ ξ 0 ) where λ is defined in Assumption A5, for any t ≥ 0

ˆt 0 ˆ|z|≥1 (exp(εt(X k∆ )ξ(X s )z) -1) ν(dz)½ s∈]k∆,(k+1)∆] ds < ∞.
Let us introduce the two Markov processes

A ε,t := ε 2 n k=0 t 2 (X k∆ ) ˆt 0 σ 2 (X s )½ s∈]k∆,(k+1)∆] ds and B ε,t := n k=0 ˆt 0 ˆR (exp (εt(X k∆ )ξ(X s )z) -εt(X k∆ )ξ(X s )z -1) ½ s∈]k∆,(k+1)∆] ν(dz)ds
and the following martingale:

M t = ˆt 0 n k=0 ½ s∈]k∆,(k+1)∆] t(X k∆ -) (σ(X s )dW s + ξ(X s -)dL s ) .
By Proposition 14,

Y ε,s := εM s -A ε,s -B ε,s
is such that e Yε,s is a local martingale.

Bound of A ε,s and B ε,s . We obtain easily that A ε,s ≤ A ε,(n+1)∆ ≤ ε 2 n∆ t 2 n σ 2 0 . Under Assumption A5, ξ is constant or ν is symmetric, and therefore

B ε,s ≤ B ε,(n+1)∆ ≤ ∆ n k=0 ˆR (exp (εt(X k∆ )ξ 0 z) -εt(X k∆ -)ξ 0 z -1) ν(dz).
As ´R z 2 ν(dz) = 1, for any α ≤ 1,

ˆ1 -1 (exp (αz) -αz -1) ν(dz) ≤ α 2 ˆ1 -1 z 2 ν(dz) ≤ α 2 .
Moreover, by integration by parts, for any α

≤ (1 ∧ λ)/2, ˆ[-1,1] c (exp (αz) -αz -1) ν(dz) ≤ (e α -α -1) ν([1, +∞[) + e -α + α -1 ν(] -∞, -1]) + ˆ+∞ 1 α (e αz -1) ν([-z, z] c )dz
By assumption A5, ν([-z, z] c ) ≤ Ce -λz and then

ˆ[-1,1] c (exp (αz) -αz -1) ν(dz) ≤ 2α 2 ν ([-1, 1] c )+Ce -λ α λ e α 1 -α/λ -1 ≤ C ′ α 2 . Then B ε,s n∆ε 2 ξ 2 0 t 2 n .
There exists a constant c such that, for any ε < ε 1 ,

A ε,s + B ε,s ≤ c n∆ε 2 σ 2 0 + ξ 2 0 t 2 n (1 -ε/ε 1 ) . Bound of P ν n (t) ≥ η, t 2 n ≤ ζ 2 . The process exp(Y ε,t
) is a local martingale, then there exists an increasing sequence (τ N ) of stopping times such that lim N →∞ τ N = ∞ and exp(Y ε,t∧τN ) is a F t -martingale. For any ε < ε 1 , and all N ,

E := P M (n+1)∆∧τN ≥ n∆η, t 2 n ≤ ζ 2 ≤ P M (n+1)∆∧τN ≥ n∆η, A (n+1)∆∧τN + B (n+1)∆∧τN ≤ cn∆ε 2 σ 2 0 + ξ 2 0 ζ 2 (1 -ε/ε 1 ) ≤ E exp(Y ε,(n+1)∆∧τN ) exp -n∆ηε + cn∆ε 2 ξ 2 0 + σ 2 0 ζ 2 (1 -ε/ε 1 )
.

As exp(Y ε,t∧τN ) is a martingale, E (exp(Y ε,t∧τN )) = 1 and

E ≤ exp -n∆ηε + cn∆ε 2 ξ 2 0 + σ 2 0 ζ 2 (1 -ε/ε 1 )
.

Letting N tend to infinity, by dominated convergence, and as ν n (t) = n∆M (n+1)∆ , we obtain that

P ν n (t) ≥ η, t 2 n ≤ ζ 2 ≤ exp -n∆ηε + cn∆ε 2 ξ 2 0 + σ 2 0 ζ 2 (1 -ε/ε 1 )
.

It remains to minimise this inequality in ε. Let us set

ε = η 2c (σ 2 0 + ξ 2 0 ) ζ 2 /∆ + η/ε 1 < ε 1 .
We get:

P ν n (t) ≥ η, t 2 n ≤ ζ 2 ≤ exp - η 2 n∆ 4c ((σ 2 0 + ξ 2 0 ) ζ 2 + c ′ ηξ 0 t ∞ )
.

The following lemma concludes the proof. It is proved thanks to a L 2 ̟ -L ∞ chaining technique. See [START_REF] Comte | Adaptive estimation of the spectrum of a stationary gaussian sequence[END_REF], proof of Proposition 4, and Schmisser (2010), Appendix D.3.

Lemma 15.

There exists a constant κ such that:

E sup t∈B m,m ′ ν 2 n (t) -p(m, m ′ ) κ(ξ 2 0 + σ 2 0 ) D 3/2 n∆ e - √ D
where D = dim(S m + S m ′ ).

As D D 3/2 e - √ D ≤ +∞ k=0 k 3/2 e - √ k < ∞, we obtain that E sup t∈B m, m ν 2 n (t) -p(m, m) ≤ m ′ ∈Mn E sup t∈B m,m ′ ν 2 n (t) -p(m, m ′ ) κ ξ 2 0 + σ 2 0 n∆ .

Proof of Theorem 7

We recall that

Ω X,k = ω, X (k+1)∆ -X k∆ ≤ C ∆ = (b max + 3) ∆ + (σ 0 + 4ξ 0 ) √ ∆ ln(n) .
Let us introduce the set

Ω N,k = ω, N ′ k∆ = 0
where N ′ k∆ is the number of jumps of size larger than ∆ 1/4 occurring in the time interval ]k∆, (k + 1)∆]:

N ′ k∆ = µ ]k∆, (k + 1)∆] , -∆ 1/4 , ∆ 1/4 c .
We have that

Ỹk∆ = Y k∆ ½ Ω X,k ½ X k∆ ∈A = b A (X k∆ ) -b A (X k∆ )½ Ω c X,k ∩(X k∆ ∈A) + I k∆ ½ Ω X,k ∩(X k∆ ∈A) + Zk∆ + Tk∆ + (Z k∆ + T k∆ ) ½ Ω X,k ∩Ω c N,k ∩(X k∆ ∈A) + E (Z k∆ + T k∆ ) ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A) F k∆ . where Zk∆ = Z k∆ ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A) -E Z k∆ ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A) F k∆ and Tk∆ = T k∆ ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A) -E T k∆ ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A) F k∆ .
As previously, we only bound the risk on Ω n . Let us set

νn (t) := 1 n n k=1 t(X k∆ ) Zk∆ + Tk∆ . We have that bm -b A 2 n ½ Ωn ≤ 3 b m -b A 2 n + 24 sup t∈Bm ν2 n (t) + 224 n n k=1 I 2 k∆ + b 2 A (X k∆ )½ Ω c X,k + 224 n n k=1 Z 2 k∆ + T 2 k∆ ½ Ω X,k ∩Ω c N,k ∩(X k∆ ∈A) + 224 n n k=1 E (Z k∆ + T k∆ ) ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A) F k∆ 2 .
The following lemma is proved later.

Lemma 16.

1. P(Ω c X,k ∩ (X k∆ ∈ A)) ∆ 1-β/2 . 2. P(Ω X,k ∩ Ω c N,k ∩ (X k∆ ∈ A)) ∆ 2-β/2 . 3. E (Z k∆ + T k∆ ) ½ Ω N,k ∩Ω X,k ∩(X k∆ ∈A) F k∆ 2 ln 2 (n)∆ 1-β/2 . According to Lemma 12, E(I 2 k∆ ) ≤ ∆. As b is bounded on the compact set A, E b 2 A (X k∆ )½ Ω c X,k P(Ω c X,k ) ∆ 1-β/2 . Moreover, on Ω X,k , (Z k∆ + T k∆ ) 2 ½ Ω X,k ∩(X k∆ ∈A) = X (k+1)∆ -X k∆ ∆ -b A (X k∆ ) -I k∆ 2 ½ Ω X,k ½ X k∆ ∈A ln 2 (n) ∆ + b 2 A (X k∆ ) + I 2 k∆
and then

E := E (Z k∆ + T k∆ ) 2 ½ Ω X,k ∩Ω c N,k ∩(X k∆ ∈A) ln 2 (n) ∆ + b 2 max P Ω X,k ∩ Ω c N,k ∩ (X k∆ ∈ A) + E I 2 k∆ ln 2 (n)∆ 1-β/2 .
It remains to bound E sup t∈Bm ν2 n (t) . In the same way as in Subsection 6.1, we get:

E sup t∈Bm ν2 n (t) ≤ λ∈Λm E ν2 n (ϕ λ ) ≤ 2D m n E Z2 ∆ + T 2 ∆ ≤ 2D m n E Z 2 ∆ + T 2 ∆ ≤ 2 σ 2 0 + ξ 2 0 D m n∆ .
We have that 1)).

E Z2 ∆ ≤ E Z 2 ∆ ≤ σ 2 0 ∆ . Moreover, E T 2 k∆ E T 2 k∆ ½ Ω X,k ∩Ω N,k -E T k∆ ½ Ω X,k ∩Ω N,k 2 E T 2 k∆ ½ Ω N,k + ln 2 (n)∆ 1-β/2 ∆ 1/2-β/4 . Then E sup t∈Bm ν2 n (t) ≤ (n∆) -1 D m (σ 2 0 + o(

Proof of Lemma 16

Result 17. Let β be the Blumenthal-Getoor index of L t . Then:

ν([-z, z] c ) z -β , ˆ|x|≤z∧a0 x 2 ν(dx) z 2-β and ˆ|x|≤z∧a0 x 4 ν(dx) z 4-β .
The constant a 0 is defined in A6.

Bound of P(Ω c X,k ∩ (X k∆ ∈ A)). We have:

P Ω c X,k ∩ (X k∆ ∈ A) = P X (k+1)∆ -X k∆ > C ∆ ∩ (X k∆ ∈ A) .
We know that X (k+1)∆ -X k∆ = b(X k∆ ) + I k∆ + Z k∆ + T k∆ . Then

P Ω c X,k ∩ (X k∆ ∈ A) ≤ P (|∆I k∆ | ≥ ∆) + P |∆Z k∆ | ≥ σ 0 √ ∆ ln(n) + P |∆T k∆ | ≥ ξ 0 √ ∆ ln(n) .
By a Markov inequality and Lemma 12, we obtain:

P (|∆I k∆ | ≥ ∆) ≤ E ∆ 2 I 2 k∆ ∆ 2 ∆. ( 6 
)
By Proposition 14, the process exp c ´t 0 σ(X s -)dW s -c 2 ´t 0 σ 2 (X s )ds is a local martingale (as σ is bounded, it is in fact a martingale, see Liptser and Shiryaev (2001), pp 229-232). Then, by a Markov inequality:

P |∆Z k∆ | ≥ σ 0 √ ∆ ln(n) ≤ 2 n E exp √ ∆Z k∆ σ 0 1 n . ( 7 
)
To bound inequality ( 6), it remains to bound

P |∆T k∆ | ≥ ξ 0 ∆ ln(n) . Let us set T k∆ = T (1) k∆ + T (2) k∆ + T (3) k∆
where

T (i) k∆ = 1 ∆ ˆ(k+1)∆ k∆ ξ(X s -)dL (i) s with L (1) t = ˆt 0 ˆ[- √ ∆, √ ∆]
z μ(ds, dz), L

(2)

t = ˆt 0 ˆ[-∆ 1/4 ,- √ ∆]∪[ √ ∆,∆ 1/4 ] z μ(ds, dz) L (3) t = ˆt 0 ˆ[-∆ 1/4 ,∆ 1/4 ] c z μ(ds, dz). Let us set N ′′ k∆ = µ ]k∆, (k + 1)∆], - √ ∆, √ ∆ c
. By Result 17, we have:

P T (2) k∆ + T (3) k∆ > 0 = P N ′′ k∆ ≥ 1 ∆ν - √ ∆, √ ∆ c ∆ 1-β/2 .

It remains to bound P ∆T

(1)

k∆ ≥ 2ξ 0 √ ∆ ln(n) .
We have that:

P ∆T (1) k∆ ≥ 2ξ 0 √ ∆ ln(n) ≤ 2P exp ε ˆ(k+1)∆ k∆ ξ(X s -)dL (1) s ≥ n 2εξ0 √ ∆ .
By Proposition 14, for any ε,

D t := exp ε ˆt k∆ ξ(X s -)dL (1) s - ˆt k∆ ˆ|z|≤ √ ∆ (exp(εzξ(X s -) -1 -εzξ(X s -)) ν(dz)
is a local martingale. Let us set ε = 1/(2ξ 0 ∆ 1/2 ). There exists an increasing sequence of stopping times τ N such that, for any N ,

F := P exp 1 2ξ 0 ∆ 1/2 ˆ(k+1)∆∧τN k∆ ξ(X s -)dL (1) s ≥ n ≤ n -1 E exp ˆ(k+1)∆∧τN k∆ ˆ|z|≤ √ ∆ exp zξ(X s -) 2ξ 0 ∆ 1/2 -1 - zξ(X s -) 2ξ 0 ∆ 1/2 ν(dz) ≤ n -1 exp 2∆ ˆ|z|≤ √ ∆ ξ 2 0 z 2 4ξ 2 0 ∆ ν(dz) ≤ n -1 exp ˆR z 2 ν(dz) ≤ n -1 .
When N → ∞, by dominated convergence, we obtain:

P ∆T (1) k∆ ≥ ξ 0 √ ∆ ln(n) n -1 . (8) Bound of P Ω X,k ∩ Ω c N,k ∩ (X k∆ ∈ A) .
We recall that

N ′ k∆ = µ ]k∆, (k + 1)∆], [-∆ 1/4 , ∆ 1/4 ] c .
We have:

Ω c N,k = N ′ k∆ = 1 ∪ N ′ k∆ ≥ 2 with P N ′ k∆ = 1 ∆ 1-β/4 and P N ′ k∆ ≥ 2 ∆ 2-β/2 . Then P Ω c N,k ∩ N ′ k∆ ≥ 2 ∆ 2-β/2
. We can write:

G := P Ω X,k ∩ (X k∆ ∈ A) ∩ (N ′ k∆ = 1) ≤ P N ′ k∆ = 1 P ∆T (2) k∆ + ∆T (3) k∆ ≤ 2C ∆ N ′ k∆ = 1 + P N ′ k∆ = 1 P ∆T (2) k∆ + ∆T (3) k∆ ≥ 2C ∆ N ′ k∆ = 1 ∩ Ω X,k ∩ (X k∆ ∈ A) .
By ( 6), ( 7) and ( 8), we obtain:

H := P ∆T (2) k∆ + ∆T (3) k∆ ≥ 2C ∆ N ′ k∆ = 1 ∩ Ω X,k ∩ (X k∆ ∈ A) ≤ P ∆ b A (X k∆ ) + I k∆ + Z k∆ + T (1) k∆ > C ∆ ∆ + n -1 . It remains to bound J := P ∆T (2) k∆ + ∆T (3) k∆ ≤ 2C ∆ | N ′ k∆ = 1 . If N ′ k∆ = 1, then ∆T (3) k∆ = | ´(k+1)∆ k∆ ξ(X s -)dL (3) s | ≥ ξ 1 ∆ 1/4 . Then J ≤ P ∆ T (2) k∆ ≥ ξ 1 ∆ 1/4 -2C ∆ .
Let us set n 0 = 1 1-β/2 and a = (ξ 0 n 0 ) -1 ξ 1 ∆ 1/4 -2C ∆ . We have:

J ≤ P [µ(]k∆, (k + 1)∆], [-a, a] c ) ≥ 1] + P µ(]k∆, (k + 1)∆], [-a, -∆ 1/2 ] ∪ [∆ 1/2 , a]) ≥ n 0 ≤ ∆ν([-a, a] c ) + ∆ n0 ν([-∆ 1/2 , ∆ 1/2 ] c ) n0 ∆ 1-β/4 + ∆. Then P(Ω X,k ∩ Ω c N,k ) ≤ P(N ′ k∆ = 1)∆ 1-β/4 + P(N ′ k∆ = 2) ∆ 2-β/2 . Bound of E (Z k∆ + T k∆ ) ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A) F k∆ 2 .
If σ and ξ are constants. Let us set

E := E (Z k∆ + T k∆ ) ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A) F k∆ 2
and

Ω I,k = ω, |I k∆ | ≤ 1, ∩ |∆Z k∆ | ≤ σ 0 √ ∆ ln(n), ∩ ∆T (1) k∆ ≤ 2ξ 0 √ ∆ ln(n) .
By ( 6), ( 7) and ( 8), P Ω c I,k ≤ ∆ + n -1 . Then, by a Markov inequality:

E ∆ ln 2 (n) + E (Z k∆ + T k∆ ) ½ Ω X,k ∩Ω N,k ∩Ω I,k ∩(X k∆ ∈A) F k∆ 2 . Let us introduce the set Ω ZT,k := ω, |Z k∆ + T k∆ | ≤ C ∆ ∆ -1 -b max -1 . On Ω I,k , |I k∆ | ≤ 1 and therefore: Ω ZT,k ∩ Ω I,k ⊆ Ω X,k ∩ Ω I,k ⊆ ω, |Z k∆ + T k∆ | ≤ C ∆ ∆ -1 + b max + 1 ∩ Ω I,k . Then E ∆ ln 2 (n) + F 2 + G 2 where F = E (Z k∆ + T k∆ ) ½ Ω ZT ,k ∩Ω N,k ∩Ω I,k ∩(X k∆ ∈A) F k∆ and G = E (Z k∆ + T k∆ ) ½ Ω c ZT ,k ∩Ω X,k ∩Ω N,k ∩Ω I,k ∩(X k∆ ∈A) F k∆ .
As σ and ξ are constants, the terms

Z k∆ = σ 0 ∆ ˆ(k+1)∆ k∆ dW s and T k∆ = ξ 0 ∆ ˆ(k+1)∆ k∆ dL s
are centred and independent. Then F = 0. Moreover, on Ω N,k , T

k∆ = 0. Then |G| E Z k∆ + T (1) k∆ + T (2) k∆ ½ Ω X,k ∩Ω c ZT ,k ∩Ω N,k ∩Ω I,k ∩(X k∆ ∈A) F k∆ . Let us set c b = b max + 1. On Ω I,k ∩ Ω X,k , Z k∆ + T (1) k∆ + T (2) k∆ ln(n)∆ -1/2 (3) 
, and

|G| ln(n) √ ∆ P Z k∆ + T (1) k∆ + T (2) k∆ ∈ C ∆ ∆ -1 -c b , C ∆ ∆ -1 + c b ½ Ω I,k = 2 ln(n) √ ∆ ˆR P T (2) k∆ ∈ C ∆ ∆ -1 -c b -x, C ∆ ∆ -1 + c b -x ½ Ω I,k × P Z k∆ + T (1) k∆ ∈ dx T (2) k∆ ∈ C ∆ ∆ -1 -c b -x, C ∆ ∆ -1 + c b -x ½ Ω I,k .
On Ω I,k , Z k∆ + T

(1)

k∆ ≤ (σ 0 + 2ξ 0 ) ln(n)∆ -1/2 . Then |G| ln(n) √ ∆ sup C≥ξ0 ln(n)∆ -1/2 P T (2) k∆ ∈ [C, C + 2c b ] . (9) 
We recall that L

(2) t is a compound Poisson process in which all the jumps are greater than √ ∆ and smaller than ∆ 1/4 . Let us denote by τ i the times of the jumps of size in [ √ ∆, ∆ 1/4 ] and by ζ i the size of the jumps. We set

a j = ξ -1 0 C∆ - j-1 i=1 ζ i and c := ξ -1 0 (2b max + 2).
Then, as ξ is constant equal to ξ 0 :

H := P T (2) k∆ ∈ [C, C + 2b max + 2] ≤ ∞ j=1 P j jumps ≥ √ ∆, last jump ∈ [a j , a j + c∆] 2 sup a≥ √ ∆ P (1 jump ∈ [a, a + c∆]) = 2∆ sup a≥ √ ∆ ν ([a, a + c∆]) .
By A6,

H ∆ sup a≥ √ ∆ 1 a β - 1 (a + c∆) β √ ∆∆ 1-β/2 (10) 
and, by ( 9) and ( 10),

E ∆ ln 2 (n) + ln 2 (n) ∆ ∆∆ 2-β ∆ ln 2 (n) + ∆ 2-β ln 2 (n).
Remark 18. If ν is not absolutely continuous, inequality 10 is not valid. We obtain:

H 2∆ sup a≥ √ ∆ ν([a, a + c∆]) ∆ 1-β/2 Therefore E ≤ ∆ ln 2 (n) + G 2 ∆ ln 2 (n) + ∆ 1-β ln 2 (n).
If σ or ξ are not constants.

The problem is that Z k∆ and T k∆ are not symmetric and we can't apply directly the previous method. We replace them by two centred terms. The following lemma is very useful.

Lemma 19.

Let f be a C 2 function such that f and f ′ are Lipschitz. Let us set, for any t ∈]k∆, (k + 1)∆]:

ψ f (X k∆ , t) = f ′ (X k∆ ) σ(X k∆ ) ˆt k∆ dW s + ξ(X k∆ ) ˆt k∆ z μ(ds, dz) .
We have:

E (f (X t ) -f (X k∆ ) -ψ f (X k∆ , t)) 2 ½ Ω N,k ½ X k∆ ∈A ∆ 2-β/4 .
Lemma 4 is proved below. Let us set

Zk∆ = 1 ∆ ˆ(k+1)∆ k∆ (σ(X k∆ ) + ψ σ (X k∆,s )) dW s , T (i) k∆ = 1 ∆ ˆ(k+1)∆ k∆ (ξ(X k∆ ) + ψ ξ (X k∆,s )) dL (i) s and Tk∆ = T (1) k∆ + T (2) k∆ + T (3) k∆ .
The terms Zk∆ and Tk∆ are symmetric. By lemma 19,

E Zk∆ -Z k∆ 2 ½ Ω N,k ½ X k∆ ∈A = 1 ∆ 2 E ˆ(k+1)∆ k∆ (σ(X s ) -σ(X k∆ ) -ψ σ (X k∆,s )) 2 ds ∆ 1-β/4 . (11) 
We prove in the same way that

E Tk∆ -T k∆ 2 ½ Ω N,k ½ X k∆ ∈A ≤ ∆ 1-β/4 . (12) 
Let us set

U k∆ = ∆ -1 ξ(X k∆ -) ´(k+1)∆ k∆ dL (2) 
s . By Result 11 and Proposition 1,

E ∆ 2 T (2) k∆ -U k∆ 2 = E ˆ(k+1)∆ k∆ ˆR (ψ ξ (X k∆,s )) 2 z 2 ν(dz)ds ≤ ∆ 2-β/4 . (13) Let us introduce the set ΩI,k = ω, |I k∆ | + Z k∆ -Zk∆ + T k∆ -Tk∆ ≤ 3 ∆ Zk∆ ≤ σ 0 √ ∆ ln(n) + ∆, ∆ T (1) k∆ ≤ 2ξ 0 √ ∆ ln(n) + ∆ ∆( T (2) k∆ -U k∆ ) ≤ ξ 0 √ ∆ .
By ( 6), ( 7), ( 8), ( 11), ( 12), ( 13) and Markov inequalities, we obtain:

P Ωc I,k ∆ 1-β/4 + 1 n . (14) 
Then

E := E (Z k∆ + T k∆ ) ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A) F k∆ 2 (15) ∆ 1-β/2 ln 2 (n) + E Zk∆ + Tk∆ ½ Ω X,k ∩Ω N,k ∩(X k∆ ∈A)∩ ΩI,k F k∆ 2 .
Let us introduce the set:

ΩZT,k := ω, Zk∆ + Tk∆ ≤ C ∆ ∆ -1 -b max -3 .
We have that

ΩZT,k ∩ ΩI,k ⊆ Ω X,k ∩ ΩI,k ⊆ ω, Zk∆ + Tk∆ ≤ C ∆ ∆ -1 + b max + 3 ∩ ΩI,k .
Given the filtration F k∆ , the sum Zk∆ + Tk∆ is symmetric. Then

E Zk∆ + Tk∆ ½Ω ZT ,k ∩Ω N,k ∩(X k∆ ∈A) F k∆ = 0.
Moreover, on Ω N,k , T (3) k∆ = 0. Then, by ( 15),

E ∆ 1-β/2 ln 2 (n) + G 2 + H 2 where G := E Zk∆ + T (1) k∆ + T (2) k∆ ½ Ω X,k ∩Ω c ZT ,k ∩Ω N,k ∩Ω I,k ∩(X k∆ ∈A) F k∆ and H := E Zk∆ + T (1) k∆ + T (2) k∆ ½ Ω X,k ∩Ω ZT ,k ∩Ω N,k ∩Ω c I,k ∩(X k∆ ∈A) F k∆ . We have that H 2 ∆ -1 ln 2 (n)P 2 (Ω c I,k ) ∆ 1-β/2 ln 2 (n).
The end of the proof is the same as in the case of σ and ξ constants. We obtain that

|G| ln(n) √ ∆ sup C≥κ0 ln(n)∆ -1/2 P (U k∆ ∈ [C, C + 2b max + 6]) √ ∆∆ 1-β/2 .

Proof of Lemma 19

According to the Itô formula (see for instance [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF], Theorem 4.4.7 p251), we have that

f (X t ) -f (X k∆ ) = I 1 + I 2 + I 3 + I 4
where

I 1 = ˆt k∆ f ′ (X s )σ(X s )dW s , I 2 = ˆt k∆ ˆR (f (X s -+ zξ(X s -)) -f (X s -)) μ(ds, dz) I 3 = ˆt k∆ ˆz∈R [f (X s + zξ(X s )) -f (X s ) -zξ(X s )f ′ (X s )] ν(dz)ds I 4 = ˆt k∆ f ′ (X s )b(X s ) + f ′′ (X s )σ 2 (X s )/2 ds.
By Proposition 1, for any t ≤ (k + 1)∆, we have:

Q := E I 1 -f ′ (X k∆ )σ(X k∆ ) ˆt k∆ dW s 2 = E ˆt k∆ (σ(X s )f ′ (X s ) -σ(X k∆ )f ′ (X k∆ )) dW s 2 = ˆt k∆ (σ(X s )f ′ (X s ) -σ(X k∆ )f ′ (X k∆ )) 2 ds ∆ 2 .
We can write:

E := E I 2 -f ′ (X k∆ )ξ(X k∆ -) ˆt k∆ dL (1) s + dL (2) s 2 ½ Ω N,k ≤ 2 ˆt k∆ ˆ|z|≤∆ 1/4 E (f (X s + zξ(X s )) -f (X s ) -zξ(X s )f ′ (X s )) 2 ν(dz)ds + 2 ˆt k∆ ˆ|z|≤∆ 1/4 E z 2 (ξ(X s )f ′ (X s ) -ξ(X k∆ )f ′ (X k∆ )) 2 ν(dz)ds.
The function f is C 2 , then, by the Taylor formula, for any s ∈ [k∆, t], z ∈ R, there exists ζ s,z in [X s , X s + zξ(X s )] such that:

f (X s + zξ(X s )) -f (X s ) -zξ(X s )f ′ (X s ) = z 2 ξ 2 (X s ) 2 f ′′ (ζ s,z ).
Then, as ξ and f ′′ are bounded:

E (f (X s + zξ(X s ) -f (X s ) -zξ(X s )f ′ (X s )) 2 = z 4 4 E (ξ(X s )f ′′ (ζ s,z )) 2 z 4
and, by Result 17, for any t ≤ (k + 1)∆,

F := ˆt k∆ ˆ|z|≤∆ 1/4 E (f (X s + zξ(X s ) -f (X s ) -zξ(X s )f ′ (X s )) 2 ν(dz)ds ∆ ˆ|z|≤∆ 1/4 z 4 ν(dz) ∆ 2-β/4 .
The functions ξ and f ′ are Lipschitz, then by Proposition 1,

E z 2 (ξ(X s )f ′ (X s ) -ξ(X k∆ )f ′ (X k∆ )) 2 z 2 E (X s -X k∆ ) 2 ∆z 2
and consequently, for any t ≤ (k + 1)∆:

ˆt k∆ ˆ|z|≤∆ 1/4 E z 2 (ξ(X s )f ′ (X s ) -ξ(X k∆ )f ′ (X k∆ )) 2 ν(dz)ds ∆ 2-β/4
then E ∆ 2-β/4 . By the same way, we obtain that

E I 2 3 ≤ E ˆt k∆ ˆ|z|≤∆ 1/4 z 2 ξ 2 (X s ) 2 f ′′ (ζ s,z ) 2 ν(dz)ds ∆ 2-β/4 .
The functions b and f ′ are Lipschitz and f ′′ and σ are bounded, then, for any t ≤ (k + 1)∆ :

E I 2 4 ∆ ˆt k∆ 1 + E X 4 s ds ∆ 2 .
Then, for any t ≤ (k + 1)∆:

E [(f (X t ) -f (X k∆ ) -ψ f (X k∆ , t))] ≤ ∆ 2-β/4 .

Proof of Theorem 10

As previously, we only bound the risk on Ω n . As in Subsection 6.2, we introduce the function p(m, m ′ ) such that p(m, m ′ ) = 12(pen(m) + pen(m ′ )). On Ω n , for any m ∈ M n , we have:

b m -b A 2 n ≤ 3 b m -b A 2 n + 224 n n k=1 b 2 A (X k∆ )½ Ω c X,k + I 2 k∆ + 2 Z 2 k∆ + T 2 k∆ ½ Ω X,k ∩Ω c Z,k + 224 n n k=1 E (Z k∆ + T k∆ ) ½ Ω X,k ∩Ω Z,k F k∆ 2 + 24 sup t∈B m, m ν2 n (t) -p(m, m) + 4pen(m).
It remains only to bound

E sup t∈B m, m ν2 n (t) -p(m, m) ≤ m ′ E sup t∈B m,m ′ ν2 n (t) -p(m, m) .
As in the proof of Theorem 4, we bound the quantity

E exp εt(X k∆ ) Zk∆ + Tk∆ F k∆ .
We have that

E exp (εt(X k∆ )Z k∆ ) ½ Ω N,k F k∆ ≤ exp ε 2 σ 2 0 t 2 (X k∆ ) 2∆ .
The truncated Lévy process Lt = ´t 0 ´|z|≤∆ 1/4 z μ(ds, dz) satisfies Assumption A5 and then there exists a constant c such that:

E exp (εt(X k∆ )T k∆ ) ½ Ω N,k F k∆ ≤ exp cε 2 ξ 2 0 t 2 (X k∆ ) ∆ (1 -ε/ε 1 )
.

As Z k∆ ½ Ω N,k and T k∆ ½ Ω N,k are centred, we obtain:

E exp (ε |t(X k∆ ) (Z k∆ + T k∆ )|) ½ Ω N,k F k∆ ≤ 2 exp cε 2 σ 2 0 + ξ 2 0 t 2 (X k∆ ) ∆ (1 -ε/ε 1 )
and then

E exp ε t(X k∆ ) Zk∆ + Tk∆ ½ Ω N,k ∩Ω X,k F k∆ ≤ 2 exp cε 2 σ 2 0 + ξ 2 0 t 2 (X k∆ ) ∆ (1 -ε/ε 1 )
.

We conclude as in the proof of Theorem 4. 10 -2 0.12 1.5 0.16 1.8 0.08 1.2 0.13 2.4 5.10 4 10 -2 0.30 2.5 0.035 1.6 0.26 2.5 0.019 1.8 ma , ra and ma , ra : average values of m, r and m, r on the 50 simulations. risk 1 and risk 2 : means of the empirical errors of the adaptive estimators. or 1 and or 2 : means of oracle =empirical error of the adaptive estimator / empirical error of the best possible estimator. 

(x) = -2x+sin(3x), σ(x) = ξ(x) = (3 + x 2 )/(1 + x 2 )
(x) = -2x, σ(x) = ξ(x) = 1 and ν(dz) = ∞ k=0 2 k+2 (δ 2 -k + δ -2 -k )
∈ S m + S ′ m : ∀η, ζ > 0, ∀t ∈ S m +S m ′ t ∞ ≤ Cζ, P f n (t) ≥ η, t 2 n ≤ ζ 2 ≤ K exp - η 2 nβ (c 1 α 2 ζ 2 + 2Cc 2 αηζ) ,
then there exist some constants C and κ depending only of ν such that, if D ≤ nβ:

E sup t∈B m,m ′ f 2 n (t) - κα 2 D nβ + ≤ CK κα 2 D 3/2 e - √ D
nβ .

Let us consider an orthonormal (for the

L 2 ̟ -norm) basis (ψ λ ) λ∈Λ m,m ′ of S m,m ′ = S m + S m ′ such that ∀λ, card ({λ ′ , ψ λ ψ λ ′ = 0}) ≤ φ 2 . Let us set rm,m ′ = 1 √ D sup β =0 λ β λ ψ λ ∞ |β| ∞ .
We obtain that

λ β λ ψ λ ∞ ≤ φ 2 |β| ∞ sup λ ψ λ ∞ et ψ λ ∞ ≤ √ D ψ λ L 2 ≤ π 1 √ D ψ λ ̟
then rm,m ′ ≤ r := φ 2 π 1 .

We need a lattice of which the infinite norm is bounded. We use Lemma 9 of [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]: The decomposition of u k on the δ k -lattice must be done very carefully: the norms u k -u k-1 ̟ and u k -u k-1 ∞ must be controlled. Let us set

E k = {u k ∈ T k ∩ B m,m ′ , u -u k ̟ ≤ δ k et u -u k ∞ ≤ rδ k } .
We have that ln(|E k |) ≤ H k . For any function u ∈ B m,m ′ , there exist a series

(u k ) k≥0 ∈ k E k such that u = u 0 + ∞ k=1 (u k -u k-1 ) .
Let us consider (η k ) k≥0 and η ∈ R such that η 0 + ∞ k=1 η k ≤ η. We obtain:

P sup u∈B m,m ′ |f n (u)| > η ≤ P ∃ (u k ) ∈ E k , f n (u 0 ) + ∞ k=1 f n (u k -u k-1 ) > η 0 + ∞ k=1 η k ≤ P 1 + ∞ k=1 P 2,k (16) 
where There exist two constants c ′ 1 and c ′ 2 depending only on δ 0 and r such that

P
P (|f n (u 0 )| > η 0 ) ≤ K exp - nβη 2 0 c ′ 1 α 2 + 2c ′ 2 √ Dαη 0 .
Let us set x 0 such that η 0 = α c ′ 1 (x 0 /β) + c ′ 2 √ D (x 0 /β) . Then:

x 0 ≤ βη 2 0 c ′ 1 α 2 + 2c ′ 2 √ Dαη 0
and P (f n (u 0 ) > η 0 ) ≤ K exp (-nx 0 ) .

Then P 1 ≤ K u0∈E0 exp (-nx 0 ) ≤ K exp (H 0 -nx 0 ) . ( 17 
)
We have that

u k -u k-1 2 π ≤ 2 u -u k-1 2 π + u -u k 2 π ≤ 5δ 2 k-1 /2 then u k -u k-1 2 n ≤ 15δ 2 k-1 /4. As u k-1 , u k ∈ E k-1 × E k , it follows that u k -u k-1 2 ∞ ≤ 5δ 2 k-1
r2 /2. There exists two constants c 3 and c 4 such that:

P n (|f n (u k -u k-1 )| > η k ) = P n |f n (u k -u k-1 )| > η k , u k -u k-1 2 n ≤ 15δ 2 k-1 /4 ≤ K exp - nβη 2 k c 3 α 2 δ 2 k-1 + 2c 4 αδ k-1
.

Let us fix x k such that η k = δ k-1 a c 3 (x k /β) + c 4 (x k /β) . We obtain:

x k ≤ βη 2 k c 3 α 2 δ 2 k-1 + 2c 4 αδ k-1 and P (|f n (u k -u k-1 )| > η k ) ≤ K exp (-nx k ) .
Then, P 2,k ≤ K exp (H k-1 + H k -nx k ) and

P 2 = ∞ k=1 P 2,k ≤ K ∞ k=1 exp (H k-1 + H k -nx k ) . (18) 
Let us set τ > 0 and choose (x k ) (and then (η k )) such that √ Dnx 0 = H 0 + D + τ nx k = H k-1 + H k + (k + 1)D + τ.

Collecting the results, we obtain, by ( 16), ( 17) and ( 18 

It remains to compute η 2 . We denote by C a constant depending only on δ 0 and r . This constant may vary from one line to another. We have that: Moreover,

η = ∞ k=0 η k ≤ Cα ∞ k=1 δ k-1 x k β + x k β + α x 0 β + √ D x 0 β .

Let us recall that

∞ k=0 δ k-1 x k β ≤ C √ D + √ τ √ nβ .
As D/nβ ≤ 1, there exists a constant κ such that

η 2 ≤ κα 2 D nβ + 2 τ nβ + τ 2 n 2 β 2 .
Then, according to (19): 

P sup u∈B m,m ′ f 2 n (u) > κα 2 D nβ + 2 τ nβ + τ 2 n 2 β 2 ≤ C

Remark 3 .

 3 If the regularity of the drift function is known, that is, if b belongs to a ball of a Besov space B α 2,∞ , then the bias term b m -b A 2 L 2 is smaller than D -2α m . The best estimator is obtained when the bias term, b m -b A 2

  ) + pen(m) .

Figure 1 :Figure 2 :

 12 Figure 1: Model 1: Ornstein-Uhlenbeck and binomial law b(x) = -2x, σ(x) = ξ(x) = 1 and binomial law

Figure 3 :Figure 4 :

 34 Figure 3: Model 3: Sine function

  If there exist some constants c 1 , c 2 and K independent of D, n, ∆, b and σ and two constants α and β independent of n and D such that, for any function t

Result 21 .

 21 There exists a δ k -latticeT k of L 2 ̟ ∩ (S m + S m ′ ) such that |T k ∩ B m,m ′ | ≤ 5/δ k D where δ k = 2 -k /5 . Let us denote by p k (u) the orthogonal projection of u on T k . For any u ∈ S m,m ′ , u -p k (u) π ≤ δ k and sup u∈p -1 k (t) u -t ∞ ≤ rm,m ′ δ k ≤ rδ k . Let us set H k = ln(|T k ∩ B m,m ′ |).We have that:H k ≤ D ln(5/δ k ) = D (k ln(2) + ln(5/δ 0 )) ≤ C(k + 1)D.

1 = u0∈E0 PP

 u0∈E0 (|f n (u 0 )| > η 0 ) and P 2,k = u k ∈E k P (|f n (u k -u k-1 )| > η k ) . As u 0 ∈ T 0 , u 0 ̟ ≤ 1 and u 0 ∞ ≤ r√ D. Moreover, (|f n (u 0 )| > η 0 ) = P |f n (u 0 )| > η 0 , u 0 2 n ≤ 3δ 0 /2 .

  ):P sup u∈B m,m ′ |f n (u)| > η ≤ C e -D e -τ + e - √ D e -τ / √ D .

  H k = C(k + 1)D. Then, nx k = C(3k + 2)D + τ ,

  Setting τ = κα 2 2y/nβ + y 2 /n 2 β 2 , it follows:

Table 1

 1 ra and ma , ra : average values of m, r and m, r on the 50 simulations. risk 1 and risk 2 : means of the empirical errors of the adaptive estimators. or 1 and or 2 : means of oracle =empirical error of the adaptive estimator / empirical error of the best possible estimator.

			: Model 1: Ornstein-Uhlenbeck and binomial law	
	b(x) = -2x, σ(x) = ξ(x) = 1 and compound Poisson process (binomial law)
				first estimator			truncated estimator
	n	∆	ma	ra	risk 1	or 1	ma	ra	risk 2	or 2
	10 3	10 -1	0	1.02 0.044 1.3	0	1.02 0.044	1.3
	10 4	10 -1	0	1.02 0.011 1.3	0	1.02 0.011	1.3
	10 3	10 -2	0	1.02 0.55 1.04	0	1.02	0.55	1.04
	10 4	10 -2	0	1	0.047	1	0	1	0.047	1
	5.10 4 10 -2	0.04	1	0.010 1.4	0	1	0.0053	1
	ma ,									

Table 2 :

 2 Model 2: Double well and Laplace law

	b(x) = -(x -1/4) 3 -(x + 1/4) 3 , σ(x) = ξ(x) = 1 and Laplace law. first estimator truncated estimator
	n	∆	ma	ra risk 1 or 1	ma	ra risk 2 or 2
	10 3	10 -1	0.02 1.0 0.12	3.1	0.02 1.0 0.12	3.1
	10 4	10 -1	1.7 2.1 2e96	51	0.4 2.1 0.04	1.5
	10 3	10 -2	0.26 1.2	1.8	3.1	0.06	1	0.51	1.4
	10 4								

Table 3 :

 3 Model 3: Sine function and jumps not sub-exponential b

  and ν(dz) ∝ e - ma , ra and ma , ra : average values of m, r and m, r on the 50 simulations. risk 1 and risk 2 : means of the empirical errors of the adaptive estimators. or 1 and or 2 : means of oracle =empirical error of the adaptive estimator / empirical error of the best possible estimator.

									√ az /	√ zdz
				first estimator		truncated estimator
	n	∆	ma	ra risk 1 or 1	ma	ra risk 2 or 2
	10 3	10 -1	0.34 1.2 0.76	3.6	0.04 1.2 0.28	1.9
	10 4	10 -1	0.8 2.2 0.082 1.3	0.68 2.2 0.073 1.2
	10 3	10 -2	0.96 1.2	18	6.3	0.02 1.2	1.3	1.2
	10 4	10 -2	0.78 1.4	1.5	4.3	0.12 1.4 0.24	3.3
	5.10 4 10 -2	0.92 2.3 0.24	4.3	0.70 2.3 0.039 1.3

Table 4 :

 4 Model 4: Lévy process

	b

  ra and ma , ra : average values of m, r and m, r on the 50 simulations. risk 1 and risk 2 : means of the empirical errors of the adaptive estimators. or 1 and or 2 : means of oracle =empirical error of the adaptive estimator / empirical error of the best possible estimator.

				first estimator			truncated estimator
	n	∆	ma	ra	risk 1	or 1	ma	ra	risk 2	or 2
	10 3	10 -1	0.04 1.06 0.110 1.86 0.02 1.06 0.111 1.95
	10 4	10 -1	0.06 1.06 0.0172 1.26 0.06 1.06 0.0176 1.22
	10 3	10 -2	0.1 1.04	1.17	1.88	0	1.04	0.61	1.12
	10 4	10 -2	0.04 1.08	0.11	1.25 0.02 1.08 0.068 1.25
	5.10 4 10 -2	0.08 1.16 0.023 1.71	0	1.16 0.011 1.09
	ma ,									
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