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Abstract
In this article, we consider a jump diffusion process (Xt),,, observed
at discrete times t = 0,A,...,nA. The sampling interval A tends to 0
and nA tends to infinity. We assume that (Xi),, is ergodic, strictly
stationary and exponentially S-mixing. We use a penalized least-square
approach to compute two adaptive estimators of the drift function b. We
provide bounds for the risks of the two estimators.

1 Introduction

We consider a general diffusion with jumps:

dXt = b(Xt)dt + O'(Xt)th + §(Xt7 )st and XO =n (1)

where L; is a centred pure jump Levy process:
dL, — / > (u(dt, d2) — div(d=))
z€R

with g a random Poisson measure with intensity measure v(dz)dt such that
fzeR 2%v(dz) < oo. The compensated Poisson measure i is defined by fi(dt, dz) =
w(dt, dz)—v(dz)dt. The random variable 7 is independant of (W, L;);>0. Moreover,
(Wi)e>0 and (L¢)>o are independant.

This process is observed with high frequency (at times t = 0,A,...,nA
where A — 0 and nA — o). It is assumed to be ergodic, stationary and
exponentially S-mixing (see Masuda (2007) for sufficient conditions). Our aim
is to construct a non-parametric estimator of b on a compact set A.

The non-parametric estimation of b and o for a diffusion process observed
with high-frequency is well-known (see for instance Hoffmann (1999) and Comte
et al. (2007)). Diffusion processes with jumps are used in various fields, for in-
stance in finance, for modelling the growth of a population, in hydrology, in



medical science, ..., but there exist few results for the non-parametric estim-
ation of b and o. Shimizu and Yoshida (2006) construct maximum-likelihood
estimators of parameters of b and o. Their estimators reach the standard rates
of convergence: v/nA for the estimator of b, and \/n for the estimator of o.
Shimizu (2008) and Mancini and Reno (2011) use a kernel estimator to ob-
tain non parametric threshold estimators of . Mancini and Reno (2011) also
construct a non-parametric thruncated estimator of b, but only when L; is a
compound Poisson process. To our knowledge, minimax rates of convergences
for non-parametric estimators of b, ¢ or £ are not available in the literature.

In this paper, we use model selection to construct two non-parametric estim-
ators of b under the asymptotic framework A — 0 and nA — oo. This method
was introduced by Birgé and Massart (1998).

First, we introduce a sequence of linear subspaces S,, C L?(A) and, for each
m, we construct an estimator by Of b by minimising on S, the contrast function:

n

= l Z YkA - t XkA)) where YkA = M

n &= A
We obtain a collection of estimators of the drift function b and we bound their
risks (Theorem 1). Then, we introduce a penalty function to select the “best”
dimension m and we deduce an adaptive estimator I;m Under the assumption
that v is sub-exponential, that is if there exist two positive constants C'; A such
that, for z large enough, v([—z,2]¢) < Ce %, the risk bound of by is exactly
the same as for a diffusion without jumps (Theorem 2) (see Comte et al. (2007)
or Hoffmann (1999)).

In a second part, we do not assume that v is subexponential and we construct
a truncated estimator l;m of b. We minimise the contrast function

1 - 2
— Z YkA]]“YkA|SCA — ﬁ(XkA)) where CA 0.6 \/Zln(n)
=1

3

in order to obtain a new estimator b,,. As in the first part, we introduce a
penalty function to obtain an adaptive estimator bi. The risk bound of this
adaptive estimator depends on the Blumenthal-Getoor index of v (Theorems 3
and 4).

In Section 2, we present the model and its assumptions. In Sections 3 and
4, we construct the estimators and bound their risks. Some simulations are
presented in Section 5. Proofs are gathered in Sections 6 and 7.

2 Assumptions

2.1 Assumptions on the model
We consider the following assumptions:

A 1. The functions b, o and & are Lipschitz.



A 2. 1. The function o is bounded from below and above:

Jdog,01, Vz €R, 0< 01 <o(x) < oo.

2. The function £ is bounded: 3¢y, Vx € R, 0 < &(z) < &.

8. The drift function b is elastic: there exists a constant M such that, for
any z € R, |z| > M: zb(z) < — ||,

4. The Lévy measure v satisfies:

o0 o0

v({0}) =0, / 2v(dz) =1 and / 2*v(dz) < oo.
— 00 — 00
Under Assumption Al, the stochastic differential equation (1) admits a
unique strong solution. According to Masuda (2007), under Assumptions A1l
and A2, the process (X;) admits a unique invariant probability w and satisfies
the ergodic theorem: for any measurable function g such that [ |g(z)|w(dz) <

00, when T' — o0,
1 T
—/ g(XS)ds%/g(z)w(d:c).
T /o

This distribution has moments of order 4. Moreover, Masuda (2007) also en-
sures that under these assumptions, the process (X;) is exponentially S-mixing.
Furtermore, if there exist two constants ¢ and ng such that, for any x € R,
£%(z) > c(1 + |z|)~", then Ishikawa and Kunita (2006) ensure that a smooth
transition density exists.

A 3. 1. The stationary measure w admits a density m which is bounded from
below and above on the compact interval A:

Img, 71, Ve € A, 0<m < m(x) < mo.

2. The process (Xt),s is stationary (n ~ w(dz) = 7(z)dx).
The following proposition very useful for the proofs is proved later.

Proposition 1.
Under Assumptions A1-AS8, for any p > 1, there exists a constant c¢(p) such
that, if [, 2*Pv(dz) < oo:

E| sup (X,—X)* | <c(p)h
s€E[t,t+h]



2.2 Assumptions on the approximation spaces

In order to construct an adaptive estimator of b, we use model selection: we
compute a collection of estimators by, of b by minimising a contrast function
Y (t) on a vectorial subspace S,, C L?(A), then we choose the best possible
estimator using a penalty function pen(m). The collection of vectorial subspaces
(Sm)me.w, has to satisfy the following assumption:

A 4.
1. The subspaces Sy, have finite dimension D,,.

2. The sequence of vectorial subpsaces (Sm)m>0 1S increasing: for any m,
Sm c Sm+1-

8. Norm connezion: there exists a constant ¢1 such that, for any m > 0, any
t e Sm,
2 2
[tllce < ¢1Dm [[E]| 72

where ||.||12 is the L>-norm and ||.||« is the sup-norm on A.

4. For any m € N, there exists an orthonormal basis (1/1,\)A€Am of Sy, such
that
VA, card (N, [vaa |l #0) < ¢o

where ¢o does not depend on m.

5. For any function t belonging to the unit ball of the Besov space %5 .,
3C, Ym |t — t3. < 272

where t,, is the L? orthogonal projection of t on S,.

The subspaces generated by piecewise polynomials, compactly supported
wavelets or spline functions satisfy A4 (see DeVore and Lorentz (1993) and
Meyer (1990) for instance).

3 Estimation of the drift

By analogy with Comte et al. (2007), we decompose Yia in the following way:

~ Xrna — Xea

Yia A

=b(Xka) + Ixa + Zia + T (2)

where

| kDA 1 DA
In = — / (0(Xs) = b(Xga))ds, Zga = — / o (Xs)dWs
A kA A k

1 (k+1)A
TkA = Z/ g(Xs*)dLs
kA



The terms Zxa and Tia are martingale increments. Let us introduce the mean
square contrast function

lz Yin 7t XkA)) (3)
k=1

3

and the empirical risk
Pn(t) = ||t — bA||i where |t|| Zt2 Xia) and ty =tla. (4)

We consider the asymptotic framework:
A =0, nA— oo

For any m € .4, = {m, D, < 2,,} where 22 < nA/In*(n), we construct the
regression-type estimator:

by, = arg tIélén V().

Theorem 1.
Under Assumptions A1-A4, the risk of the estimator with fized m satisfies:

. D,,

R (b) < 371 |[brm — bA”iZ +48(af + gg)m +cA
where by, is the orthogonal (L?) projection of ba over the vectorial subspace Sy,
The constant c is independent of m, n and A.

Except for the constant (03 + &2) in the variance term, this is exactly the
bound of the risk that Comte et al. (2007) found for a diffusion process without
jumps.

The bias term, ||by, — bal/72, decreases when the dimension D,, increases
whereas the variance term (08 + £2)D,,/(nA) is proportional to the dimension.
Under the classical assumption nA? = O(1), the remainder term A is negligible.
Thus we need to find a good compromise between the bias and the variance term.

Remark 1. If the regularity of the drift function is known, that is, if b belongs
to a ball of a Besov space B ., then the bias term ||by, — bAHiz is smaller

than D,;2*. The best estimator is obtained for D = (A2 4nd the
estimator risk satisfies:

Mopt

Hn(bm,y) S (n2) 2D LA,
Let us introduce a penalty function pen such that :

Dy,

pen(m) = w(of + &)



and set: R

n=a i b } .

= arg min {vn( m) + pen(m)
We will chose « later. We denote by by, the resulting estimator. To bound the
risk of the adaptive estimator, an additional assumption is needed:

A 5. 1. The Lévy measure v is symmetric or the function & is constant.

2. The Lévy measure v is sub exponential: there exist A\,C > 0 such that, for
any |z| > 1, v(] — 2, 2[¢) < Ce M=l

Theorem 2.

Under Assumptions A1-A5, there exists a constant k (depending only on v) such
that, if 22 < nA/In*(n):

) < inf (||b —bal3. + en(m))+ A—i—i
n) ~ mea, U AL b nA )’

We can bound & theoretically, however, this bound is in practice too large
for the simulations. In Section 5, we calibrate x by simulations (see Comte
et al. (2007) for instance). The adaptive estimator automatically realises the
bias-variance compromise. Moreover, this is the same oracle inequality as for a
diffusion process without jumps.

E (Hbm — b

4 Truncated estimator of the drift

Truncated estimators are widely used for the estimation of the diffusion coeffi-
cient of a jump diffusion (see for instance Mancini and Reno (2011) and Shimizu
(2008)). Our aim is to construct an adaptive estimator of b even if Assumption
A5 is not fulfilled. To this end, we cut off the big jumps. Let us introduce the
set

Qxk = {w, |X@+1a — Xra| < Ca}

where CaA = (bmaz + 3)A + (00 + 4&) VAIn(n) (with bpae = sup,c 4 [b(z)]).
Let us consider the random variables

- Xk+1)a — Xka
Yia = %ﬂﬂx,kﬂxmefx-

We recall here the definition of the Blumenthal-Getoor index:

Definition 1.
The Blumenthal-Getoor index of a Lévy measure is

f = inf {a >0, / |z|*v(dz) < oo} .
|z]<1

A compound Poisson process has 5 = 0.
We assume that the following assumption is fulfilled.



A 6. 1. The Lévy measure v is symmetric.

2. For |x| small, v(dz) is absolutely continuous with respect to the Lebesgue
measure (v(z) =n(x)dx) and:

38 € [0,2[, 3ao, Vx € [~ap.a0), n(z) < Czx P71
This implies that the Blumenthal-Getoor index is equal to 3.

8. The function £ is bounded from below: there exists & > 0 such that, for
any z €R, 0 < & <&(2).

4. The functions o and € are €2, and £ and o' are Lipschitz.

We consider the following asymptotic framework:
nA
In®(n)

The truncated estimator b,, is obtained by minimising the contrast function:

-0, AYP2n*(n) -0,

- o 1 <& 2
by, = argtréléri An(t) where F,(t == ; (YkA —( XkA)) .

Theorem 3 : Risk of the non adaptive truncated estimator.

Under Assumptions A1-A4 and A6, for any m such that D,, < 9, where 92 <
nA/In?(n):

1
1-8/2
B ([ = 0a])) Mo = bl + 0 4 )2 + AP 4
The terms of the rest depend on the Blumenthal-Getoor index and are larger
than for the first estimator. Nevertheless, if L; is a compound Poisson process,
then 8 =0 and we obtain (up to a logarithm factor) the same inequality as for
the non-truncated estimator.

Remark 2. If v is not absolutely continuous, we can prove the weaker inequality:
1

b 2 2 D,, B
N (Hbm a bAHn) S b — bA||L2 + (US +€§)M + Al Ban( )+ —

In that case, b converges towards ba only if B < 1, which implies that v has
finite density ([; |z|v(dz) < c0).

Remark 5. Assume that ba belongs to the Besov space 5 ., and that ||bA||%g <1.

The bias-variance compromise ||by, — bal|72+Dm/nA is minimum when m = log,(n

and the risk satisfies:

- 2
E <Hbm — b

Let us set A ~n~" with v > 0. We have the following convergence rates:

) S ()20 A1 )

A)/(1+ 2a),



¥ first estimator | truncated estimator
0<v< 225 <3 A AT=P/21n?(n)
4211 <7< 4a+172ﬁaa*ﬁ 5 < 2(1—1[3 1) (”A)im et Al=B/2 1112(")
Tatiopa=prs <7 <1 (na) 7T [ (nay e

If we have sufficiently high frequency data (nA?0=8/%) = O(1)), then the
rate of convergence is the same for the two estimators.

To construct the adaptive estimator, we use the same penalty function as in
the previous section:
D
en(m) > k (02 + €2) ==
D ( ) - ( 0 60) nA

and define the adaptive estimator:

M= arg min {'Yn(bm) +p€n(m)} -
Theorem 4 : Risk of the adaptive truncated estimator.

If Assumptions A1-A4 and A6 are satisfied, then there exists k such that, if
22 <nA/1In’(n):

- 2 1
E(Hbm—bA )5 min (Hbm—bAHi—i-pen(m))—|—A1_ﬂ/21n2(n)+—

n men, nA’

The adaptive estimator by automatically realises the bias/variance com-
promise if the frequency of data is sufficiently high.

5 Numerical simulations and examples

5.1 Compound Poisson models

We consider the stochastic differential equation:
dXt = b(Xt)dt + O'(Xt)th + f(Xt— )st

where L; is a compound Poisson process of intensity 1: L; = Z;V:t1 G, with Ny
a Poisson process of intensity 1 and ((1,...,(,) are independent and identic-
ally distributed random variables independent of (N;). We denote by f the
probability law of (; .

Model 1:

b(x) =2z, o(x)=¢&x)=1 and f(dz)=v(dz)= %51 + %(5_1.



Model 2:
e~ Mzl dy

ba) = —(z = 1/4°~(z+1/4)°, o(2)=&@) =1 and f(dz) = v(dz) = —

We can remark that the function b is not Lipschitz and therefore does not satisfy
Assumption Al.

Model 3:

We consider the stochastic process of parameters

b(z) = =2z +sin(3z), o(x) =¢&(x) = \/?1_7;

fdz) = v(dz) = i\/ %e V22| g,

Let us remark that v = f is not sub-exponential and does not satisfy A5.

and

5.2 Simulation algorithm (Compound Poisson case)
We estimate b on the compact interval A = [—1, 1].

1. Simulate random variables (Xo, XA, ..., X,a) thanks to a Euler scheme
with sampling interval § = A/5. To this end, we use the same simula-
tion scheme as Rubenthaler (2010). We simulate the times of the jumps
(T1y. TN, TN+1) With 77 < nA < 7541 and we fix Xy = 0.

If § < 71, we compute

X5 = 6b(Xo) + Vo (Xo)N with N ~ .4(0,1)..
If 1 < 6, we first compute
X7y = mb(Xo) + 710 (Xo)N + £(X0)G
with N ~ 47(0,1) and {; ~ f is independant of N. If § < 72, we compute
X5 = (6 = m)b(Xr,) + V6 — T10(X7, )N
else we compute
X7, = (12 = 1)b(X7) + V72 — 1o (X7, )N’ + €(X7,) G2

where N’ ~ A47(0,1) and (5 has distribution f. N, N’ {; and (» are
independent.

2. Construct the random variables

X - X - X - X
(k+1)A RA Via = (k+1)A kA

A A ]]-Qxyk]]-XkAGA-

Yin =



3. We consider the vectorial subspaces Sy, , generated by the spline functions
of degree r (see for instance Schmisser (2009a)). In that case D, , =
dim(Sp,r) = 2™ 4+ r. For r € {1,2,3} and m € A, (r) = {m, Dy, <
Pn}, we compute the estimators l;m,T and l;m,T by minimising the contrast
functions -, and 7, on the vectorial subspaces S, ,.

4. For the estimation algorithm, we make a selection of m and r as follows.
Using the penalty function pen(m,r) := pen(m) = k(02 +&3)(2™ +71)/nA,
we select the adaptive estimators by, ,» and by, », and then choose the best

r by minimizing vy, (by,.r) + pen(, ) and Yy, (b r) + pen(m, r).

5.3 Results

In Figures 1-3, we simulate 5 times the process (Xo,..., X,a) for A = 1071
and n = 10* and draw the obtained estimators. The two adaptive estimators
are nearly superposed, moreover, they are close to the true function.

In Tables 1-3, for each value of (n, A), we simulate 50 trajectories of (X, Xa, - . .

For each path, we construct the two adaptive estimators by, » and I;m,; and we
compute the empirical errors:

2 2

b, —ba

and errg = Hbﬁw: — by

err; =
n n

In order to check that our algorithm is adaptive, we also compute the minimal
errors

2 2

bm,r - bA

and eming = min ||b,,, — b4
n m,r ’

emin, = min
m,r

n

and the oracles oracle; = err;/emin;. We give the means g, 74, M, and 7, of
the selected values m, 7, m and 7. The value risk; is the mean of err; over the
50 simulations and or; is the mean of oracle;.

The empirical risk is decreasing when the product nA is increasing, which
is coherent with the theoretical model. For Model 1, the two estimators are
equivalent. When the tails of v become larger (Models 2 and 3), the truncated
estimator is better. The improvement is also more significant when the discret-
isation path is smaller. As on the three models, the processes L; are compound
Poisson processes, these results were expected. The truncated estimator seems
also more robust: we don’t observe aberrant values (like for the first estimator
in Table 2). This aberrant value may be due to the fact that b is not Lipschitz
and then b(X;a) may be quite large.

6 Proofs

Let us introduce the filtration

Fr=0 (77’ (Ws)ogsgt ’ (LS)ogsgt) :

10

aXnA)-



The following result is very useful. It comes from Dellacherie and Meyer (1980)
(Theorem 92 Chapter VII) and Applebaum (2004), Theorem 4.4.23 p265 (Kunita’s
first inequality).

Result 1 (Burkholder-Davis-Gundy inequality). We have that, for any p > 2,

s t+h
/ o(Xy)dW, / o?(X,)du
t ¢

and, if [ |z[" v(dz) < o0, as [, 2°v(dz) = 1:

/ &(X d\t‘| CpE (/tt+h§2(Xu)du>p/2 F
(/fh |£(Xu)|pdu> ‘ 9}] /R|z|p V(d2).

p/2
Fi

p

E sup T

sE[t,t+h]

<G, |E

IN

sup
sE€[t,t+h]

+ G,E

6.1 Proof of Proposition 1

By Result 1, there exists a constant ¢, such that:

t+h P
«ff] < op) (/ |b<Xs>|ds> 7,
t+h p
+ c(p)E[(/t UQ(Xs)dS> T
t+h t+h
+ ) (E[ /t §2<Xs>ds> + /t (X, )ds

Then, as £ and o are bounded and b Lipschitz (and thus sub-linear), there exists
a constant Cy such that:

E| sup (Xs— X))
sE€[t,t+h]

p

t+h
E| sup (X,—X,)* «%1 < c(p) (o3P h” + &7 (h+ 7)) +e(p)h* 7 C) / E (X7 ds
t

sE[t,t+h]

As (X}) is stationary, we obtain the expected result.

6.2 Proof of Theorem 1
By (3) and (4), we get:

(Yia — b(Xia))? + [Ib—t]2

SRS
NIE

) = 237 Vs — t(X0a))* =
k=1

>
Il
—

+ (Yia = 0(Xka)) (0(Xpa) — t(Xka)) -

SERN
M=

>
Il
—

11



As, by definition, v, (bm) < Yn(bm), we obtain:

Hgm - bHi < b — ]2 + %z": (Yia — b(Xka)) (l;m(XkA) - bm(XkA)) -

By (2), and as b and by, are supported by A,
Hz} ) H2<||b —b |\2+32n:(1 + Zea + T )(z} (Xpa) — b (X ))
m = bal| < lbm = bally, n 2 kA kA T 1kA) (Om(Xka m(XkA) ) -

Let us set introduce the unit ball
B = {t € S, |It|l, <1}  where Ht||2w = / tQ(x)w(dz)
A

and the englobing space .7, = [, ¢ ., Sm- Let us consider the set
1

< —

-2

Step 1: bound of the risk on (2, Thanks to the Cauchy-Schwartz inequal-
ity, we obtain that, on €,,:

2
t
an{w, vies,, |1 ”; ~1
it

where the norms ||| and ||.||,, are equivalent.

. 2 o 1 2 n ) 1 11~ 2 )
Hbm = ba| < b = bl 55 Hbm || +12) " At Hbm fbmH 12 sup 22(1)
where

1 n
vn(t) = - Z(ZkA + Tha)t(Xka)- (5)
k=1

On ,, by definition, we have:

~ 2 ~ 2 9 N 2 N 2
Hbmfbm §2Hbmfb,4 +2[by — bal®  and HbmfbmH §2Hbmfbm

n

Thus we obtain:

3 2 2 — o 2
Hbm - bAH <3 b — bal® + 24> In +24 sup v2(0).
" k=1 t€Bm

The following lemma is very useful. It is proved later.
Lemma 1. 1. E(I?,) <cA and E (I},) < cA.

2. ]E(Zm|9‘m) :0, ]E(Z,fA‘ﬁkA) S Ug/A andE(Z;lA’ﬁkA) S C/A2.

12



3. E(TkA|JkA)—O E( A‘JkA)<§0/A andE( A‘JkA)<C/A3

By Lemma 1, E [I2,] < A. It remains to bound E [sup,c 4 v2(t)] . We con-
sider an orthonormal basis (¢x)yc,,. Of Sy for the L2 -norm with |A,,| = Dy,.

Any function ¢ € S, can be written t = Y, .\ axp\ and Ht||i =Y sen, G5
Then:

sup v2(t) =  sup (Z axvn (m))

tEBm >aai<1 AEA,,

sup ( Z ai) < Z Vi (‘Pﬂ)
>2aa3<1 \)ea,, AEAm,
> vilen).

AEA,

IN

It remains to bound E (12 (¢,)). By (5),

E[2(px)] = % iE (03 (Xka)E [ (Zra + Tea)?| Fral]

2 n
— Z E[(Zka + Tra)pr(Xea)ox(Xia)E [ Zia + Tia| Fial]
k<l

Thanks to Lemma 1, the second term of this inequality is null and we obtain,
as [, @3 () (de) = 1

E[vi(en)] < 2o &) > E [03(Xea) :W'

Therefore:

~ 2 Dm
E Mbm —ba ]lgn} < 8lbn — ballZ + 4803+ €) 2 + CA.

Step 2: bound of the risk on €. The process (X;),- is exponentially
B-mixing, m is bounded from below and above and nA — co. The following
result is proved for £ = 0 for instance in Comte et al. (2007), but as it relies
only on the S-mixing property, we can apply it.
Result 2. )

P[] < pex

Let us set e = (eA, ceey enA)* where exa = YkAfb(XkA) =Ia+Za+Ten
and I1,,Y = I, (Ya,...,Vpa)" = (l;m(XO),...,Em(XnA)) where II,,, is the

13



Euclidian orthogonal projection over S,,. Then

“ 2
[ I~ ball2 = [Tuba — ball? + [Ty Y — bl

IN

2 2
[ball;, + llell, -
According to Lemma 1, Result 2 and the Cauchy-Schwarz inequality,

B (1l 10 < (B [Ieli]) " 007 < o < R

and, as b is bounded on the compact set A,
9 4 o\ 1/2 1
E|lball; o;] < (E[lealls] B(25)) S =7

Collecting the results, we get:

E || — ba||” 20: | < 2
which ends the proof of Theorem 1.
6.2.1 Proof of Lemma 1
By Proposition 1, as b is Lipschitz,
1 (k+1)A 2
BIR) = | [ (000 - ba)ds
A kA
1 (k+1)A )
< 1g / (B(X,) — b(Xpa))? ds
A kA
¢ [+DA
< £ E [(XS ~ Xpa)? ds}
A Jia
< cA.

In the same way, we prove that E [I ,‘C*A} < cA. We have that

A
P/kA o (Xs)ds

Moreover, by the Burkholder-Davis-Gundy inequality, we get

IN

2
g
7] <%

A

c (k+1)A 2 c
E [Z£A| Qg‘\kA} < FE / O’Q(Xs)ds Fun| < —.
kA

14



According to Applebaum (2004), Theorem 4.2.3 p224,
E[Tia| Fkal =0

and, as [, z%v(dz) = 1:

) 1 [k+DA , ) 2
[ kA’ka} A2 /kA &( é)/}Rzz v(dz)ds < i
By Result 1, we have
C (k+1)A 2
BT Fa] < ZE|([ e [ v
k R

A

C (k+1)A
+ A—ZE / 4 X,)ds / 2Mv(dz)
kA R
< L

6.3 Proof of Theorem 2

The bound of the risk on ¢ is done exactly in the same way as for the non
adaptive estimator. It remains thus to bound the risk on §2,,. As in the previous
proof, we get:

. 2 24
Hbm_bAH lg, < 3Hbm—bAHi—l—;ZI,%A—i—Qpen(m)—Qpen(m)
" k=1
+ 24 sup Vi(t)
tEBm,m

where %, v is the unit ball (for the L2 -norm) of the subspace Sy, + Sy
B = {t € S+ S, ||t]|, < 1}. Let us introduce a function p(m, m’) such
that 12p(m,m’) = pen(m) + pen(m’). We obtain that, on Q,, for any m € #,:

. 2 s U
oo —ba| - < Blbn = baly 4573 i +dpentm)

+ 24 sup (V2(t) —p(m,m)).
tEBm,m

It remains to bound

E

sup ui<t>p<m,m>] <YE

tEBm,m

m,m +

For this purpose, we use the following proposition proved in Applebaum (2004)
(Corollary 5.2.2 ).

15



Proposition 2 : exponential martingale.
Let (Yi)i>o0 satisfy:

t t t F2
Y, :/ Fdes—i—/ stLs—/ {—S+/ (e%% —1 - K,2) v(dz)| ds
0 0 0 2 R

where Fs and K are locally integrable and previsible processes. If for anyt > 0,

t
E l/ / |eKsz — 1| v(dz)ds
0 J|z[>1

then e¥t is a 9;-local martingale where 9, = o(Wy, Ls,0 < s < t).

< 00,

For any € <e1:= (AA1)/(2|t]| . o) where X is defined in Assumption A5,
for any ¢t > 0

t
/0 /||>1 (exp(et(Xpa)€(Xs)z) — 1) v(dz) Leppa, (k41)a]ds < 00.

Let us introduce the two Markov processes

n

t
A&t = EQZtQ(XkA)/ 02(Xs)]lse]kA,(k+1)A]d5
k=0 0

and

Borim Y [ [ (e (ct(Xia)6(X0)2) — t(Xua)6(Xe)2 — 1) Luepea, oy (d2)ds
k=070 /R

and the following martingale:

t
Mt:/
0 i

By Proposition 2,

n

Lieipa, (k+1) a1t (Xka-) (0(Xs)dWs + €(Xs-)dLs) -
0

Y.s:=eM, — Aa,s — B s

is such that e¥=* is a local martingale.

Bound of A, ; and B. ;. We obtain easily that A s < A, (,41)a < eZnA ||t|\i 0.
Under Assumption A5, £ is constant or v is symmetric, and therefore

B s < Be(nya <A Z /]R (exp (et(Xka)é02) — et(Xpa- )0z — 1) v(dz).
k=0

As [ 2%v(dz) =1, for any a < 1,
1

/ (exp(az) — 0z — 1)w(dz) < o? / 22u(dz) < a?.

-1 -1

16



Moreover, by integration by parts, for any o < (1 A \)/2,

/[1 e (exp(az) —az—1r(dz) < (e —a—1)y([1,+oo])+ (e™*+a—1)v( —oo,~1])

+oo
+ /1 a (e = 1) v([—z,2]%)dz

< 2 _ c —kg e” -1 < ’ 2-
< 2a°v([-1,1]°) 4+ Ce )\(la/)\ <C'a

Then B. ; < nA2€3 ||t]|2. There exists a constant ¢ such that, for any & < e1,

nAe? (o +€3) |1t

A s+ B s <
st Bes s C (1—¢/er)

Bound of P (Vn(t) >, ||t||i < §2). The process exp(Yz,) is a local martin-

gale, then there exists an increasing sequence (7x) of stopping times such that
limy 00 7v = 00 and exp(Yz iary ) is a F-martingale. For any € < 1, and all
N,

E = P(Masnaney = ndn, i < %)

enAe? (02 + €2) ¢2
< P <M(n+l)A/\7‘N > nAn, Apynyansy T Bunsnanry < (1 (—2/51)0)

(1—e/e1)

As exp(Yz iary ) is a martingale, E(exp(Ye iary) = 1 and

cnAe? (53 + 03) §2> .

enAe? (€2 + o) ¢2
< E (eXP(Ys,(nH)AMN)) exp <_”A77€ + ( 0 0) .

(1—e/e1)

Letting N tends to infinity, by dominated convergence, and as v, (t) = nAM(;, 41)a,
we obtain that

E <exp <—nAn€ +

A 2 2 2 2
B (va(t) >, It} < ¢?) <exp (—nAne + 200 (f/* 1“)0> ¢ ) .

It remains to minimise this inequality in €. Let us set

= 5 (02 2772 < €1
C(Uo +§0>§ JA+n/e1

We get:

RN )

2
P (Vn(t) 21, |ty < <2) < exp (_4c((o§ +83) ¢+ g 1tll.)

17



The following lemma concludes the proof. It is proved thanks to a L% — L>
chaining technique. See Comte (2001), proof of Proposition 4, and Schmisser
(2010), Appendix D.3.

Lemma 2.
There exists a constant k such that:

E

D3/2
sup Z/Z(t) — p(m, m/)] < n(fg + 03) X e~VD
te%m’m/ n

where D = dim(Sy, + Sp).

As 32, D32~ VD < S g3/20~VE < o0, we obtain that

El sup yﬁ(t)—p(?ﬂ,?ﬁ)} < Z El sup ui(t)—p(m,m/)l 5;{50”200.

tEBm,m m' e, teRB

m,m/

6.4 Proof of Theorem 3
We recall that

QX,k = {wa

X(k+1)A - XkA’ < CA = (bmam + 3) A+ (UO + 460) \/Kh’l(n)} .
Let us introduce the set
Oy = {w, Njp = 0}

where N,;A is the number of jumps of size larger than A/ occuring in the time
interval |kA, (k + 1)A:

Nia = (JkA, (b +1)4], [—A1/4,A1/4r) .
We have that

Yea = Yialoy,lxaca

ba(Xka) —ba(Xpa)log  n(xeaca) + Iealoy in(Xeaca) + Za + Tia

+  (Zka +Tia) Loy g, ,n(Xpaca) + E ((Zka + Tea) Loy non xn(Xeaca)| Fra) -

where

Zka = Zraloy i nOnin(Xeaea) — E (ZkAIQX,kaN,m(xmeA)} Fra)

and

Tia = Tealoy ynon xn(Xeaca) — B (Thaloy wnon sn(Xeaca)| Fra) -

18



As previously, we only bound the risk on §2,. Let us set

n

ﬁn(t) = %Zt(XkA) (ZkA + TkA) .

k=1
We have that
Hbm fbAH Lo, < 3|bm—bal?+24 sup 72 —Z (IkA + A4 (Xra)Lag, )
" tEBm -t
4 n
o Z Zin +TiA) Loy .n0g N(Xka€A)
k=1
224 2
t Z (E [(Zka + Tia) Loy cnonn(Xeaca)| Fral)”

=~
Il
_

The following lemma is proved later.
Lemma 3. 1. P(Q%,; N (Xya € 4)) < ALl-8/2
P(Qx,k N Q% N (Xpa € A)) S AZTF/2,
2
3. (E [(ZkA + Tkn) ]lQN,kaX,km(XmeA)’ ykAD < an(n)Al—ﬂ/Q,

According to Lemma 1, E(I,) < Ak. As b is bounded on the compact set
A E [bx%!(XkA)]lQ?gJ < P(Q%k) < A'=P/2_ Moreover, on Qx ,

Xk+1)a — Xpa
(Zka + TkA)2 Loy ,n(Xpaca) = (L

2
_ bA(XkA) — IkA> ]]-QXW;C]]-X}CAEA

A
S lnl(n) + 0% (Xpa) + Iia
and then
E = E [(Zm + Tin)” ]]-Qx,kﬁQf\lwkﬁ(XkAeA)}

A

|
(M0 42, ) 2 @k 050 (s < ) B (72)

< In%(n)AlA2,

It remains to bound E (supteggm 17,21(15)) In the same way as in Subsection 6.2,
we get:

2D N -

E ~2t> < E (72 <R (72 + T2
(ég; Up(t) = /\GZA (Vn(%\)) =, ( A A)
2D,, o\ Dm
< —E(ZA+TA)<2( +§0)n—A.

19



6.4.1 Proof of Lemma 3
Result 3. Let 8 be the Blumenthal-Getoor index of Li. Then:

v([-z29) <278 | / 22v(de) < 227 and / ztu(de) < 24P,
|z|<zAao |z|<zAao
The constant ag is defined in AG.

Bound of P(Q% ; N (Xka € 4)). We have:
P (Q% 5N (Xea € A)) =P ({|Xs1a — Xea| > Ca} N (Xia € A4)).
We know that X(k+1)A — XA = b(XkA) + Ixa + Zia + Tia. Then

P (%4 N (Xpa € A)) < P(|ALa| > A)+P (|AZkA| > oox/ZIn(n))HP’ (|ATkA| > fox/Zhl(n)) .
(6)

By a Markov inequality and Lemma 1, we obtain:

E (A2]2
P(|Ala| > A) < % <A. (7)

By Proposition 2, the process exp (c f(f (X )dW, — c? fot UQ(XS)CZS) is a local

martingale (as o is bounded, it is in fact a martingale, see Liptser and Shiryaev
(2001), pp 229-232). Then, by a Markov inequality:

<\/ZZI¢A>
exp

00

2 1
i (|AZkA| > aox/Zln(n)) <-E S 8)

To bound inequality (6), it remains to bound P (|ATkA| > & Aln(n)). Let
us set

(1 2) 3 ) 1 (k+1)A )
Tea =T+ TA +TiA where T{X = % ¢(X,-)dL
kA

¢ ¢
Lgl) :/ / zi(ds,dz) L§2) :/ / zfi(ds, dz)
0 J[-VAVA] 0 J[-AV/4 —VAJUIVA,A/4]

¢
ng) :/ / zfi(ds,dz).
0 [_Al/47Al/4]c

Let us set N,;/A =pu (]kA, (k+ 1)A], {—\/Z, \/Z} C). By Result 3, we have:
P(|TR + 7| >0) =P (Nix 21) s Av ([-VA,VA]') s A2,

20



It remains to bound P HATISA)‘ > 250\/Z1n(n)} . We have that:
(k+1)A

g(XS)dLg”) > nkfo“z] .
A

P[|AT(R] = 26VAIn(n)] < 2P lexp (5/
k
By Proposition 2, for any &,

D, = exp ( e - [ f  (EPEE) 1 e (X,0) u(dz>>

kA

is a local martingale. Let us set ¢ = 1/(26pA'/2). There exists an increasing
sequence of stopping times 7 such that, for any N,

(k-‘rl)A/\TN
F = P lexp <m /kA S(Xs)dLgl)> > n]
(k-‘rl)A/\TN
—1 Zg(Xs*) Zg(Xs*)
s </m /IZS\/Z (eXp (250A1/2) o 250A1/2) V(dz>>

_ 5322 -1 2 -1
< nltexp QA/ v(dz) | <n” - exp zv(dz) ) <n .
( |z|<VA 465A (d2) R (d2)

When N — oo, by dominated convergence, we obtain:

P (’ATSA)’ > foﬂln(n)) <n L. 9)

Bound of P (QXJc NS, N (Xka € A)). We recall that
Nia =1 (]kAv (k+1)A], [-A/4, A1/4]C). We have:

Qyr = {NkA = 1} U {NkA > 2}
with / /
P (NkA - 1) < AP/ and P (NkA > 2) < A2B/2,
Then P (Qf\,k N {N,;A > 2}) < A?7B/2 We can write:
G = P (QX,,c N (Xpa € AN (Nyjp = 1))

P(Nia =1) P (|ATR + ATR| < 20| Nis = 1)

IN

v P (N,;A - 1) P ({ ‘AT,SA) + ATSA" > QCA‘ Nis = 1} N Qx.x N (Xia € A)) .
By (7), (8) and (9), we obtain:
H = P ({ ’AT,SQA) + AT@] > 204 Nis = 1} A Qxx N (Xea € A))
< P (A ’bA(XkA) + Ien + Zia + T,§1A>] > CA)
< A4nTh
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It remains to bound J = P (|AT(Y + ATR| < 204 | Njx =1). 1 N5 = 1,
then ‘AT,S?’A) = | [0 ¢(x,)dLP)| > € AV4. Then J < P (A ’T,EZ)‘ > AV - ch).

Let us set ng = L_—}mw and a = (50“0)71 (§1A1/4 B QCA) . We have:

J P [u(kA, (k 4+ 1)A], [-a,a]®) > 1] + P [u(]m, (k+1)A], [—a, =AY U[AY2? a]) > no}
Av([—a,a]) + A"op([-Al2 A2

AVBIA LA,

N IN A

Then P(Qx 1 N QY 1) < P(Npa = DAY-A/A L P(N, =2) S A2F/2,
2
Bound of (E [(Zka + Tka) Loy ,nox n(xiaca)| Zra]) ™

If 0 and £ are constants. Let usset E := (IE [(ZkA + TkA) ]].Qx,kﬁQN’kﬁ(XkAeA)‘ 3‘}&)2
and

Qi = {wlhal £1,018%0] < 00VAln(n), 0 [ATL| < 26VAIn() } .

By (7), (8) and (9), P (Q?k) < A +n~!. Then, by a Markov inequality:

2
E S AW (n) 4+ (E[(Zra + Tha) Loy pnon xnor en(Xeaca) | Fral) -

Let us introduce the set Qg7 = {w, |Zka + Tea| < CAA™Y — bar — 1}. On
Q1 .k, Hea| <1 and therefore:

Qzr N Qs C Qx5 Nk € {w, [ Zra + Tha| < CAA™ + binas + 1} N Q.

Then
E < Aln*(n) + F? + G2

Where F = E I:(ZkA + TkA) ]]'QZT,kaN,kaI,km(XkAeA)‘ ykA] a'nd
G =E {(Zm + Tia) Loe

¢ Q% £ NN 107 EN(Xa EA) %CA}- As o and ¢ are

constants, the terms

(k+1)A (k+1)A
Zyn = 20 dW, and Tia = 5—0/
k

dL,
A Jia A

A

are centered and independent. Then F' = 0. Moreover, on Qy k, T,EBA) = 0. Then

G| < ‘E {(Zm +T% + T,ii)) ]l(zxykOQCZT’,CﬁQN,kﬁQI,kﬁ(XkAEA)} ym} } :

22



On QN Qs ‘Zm +1D + T,ﬁi’\ < In(n)A~Y/2, and

In(n _ _
[eS jz) (P (|2ea + TR + TR € [CAA™ = binas = 1,CaA™ + bz +1] 19, ))
In(n _ -
= Q%AP(kAE[C A —bmaz—l—x,CAA 1+bmaz+1_$]191,k)

x P (Za+ T € do| TR € [CaA™ = bnas = 1= 2,CaA™ + bypaa +1 = 7] T, , ).

On Q74, ’Zm + ng‘ < (00 + 260) In(n)A~Y/2. Then

s P(TR €[C.C+Wpar+2]) | (10)

C>&oIn(n)A—1/2

We recall that LE2) is a compound Poisson process in which all the jumps are
greater than v/A and smaller than A4, Let us denote by 7; the times of
the jumps of size in [v/A, A'/4] and by (; the size of the jumps. We set a; =
&ltoa — Zz;ll ¢ and ¢ := & (2bmaz + 2). Then, as ¢ is constant equal to &y

H = IP( @ e e, C+2bmm+2])
< Z]P’ (j jumps > VA, last jump € la;,a; +cA])
j=1
< 2 sup P(1jump € [a,a+ cA]) =2A sup v ([a,a+ cAl).
a>vA a>VvA
By A6,

1 1
HEA sup | — ————| SVAAI/2 (11)
a>vA |9 (a+cA)

and, by (10) and (11),

2
E < Aln®(n) + wAAH’ < Aln®(n) + A2 P n*(n).

Remark 4. If v is not absolutely continuous, we obtain:

E < Aln*(n) + (Av ([—a+ cA, a — cA]%)? < Aln?(n) + A22P In?(n).

If 0 or £ are not constants.  The problem is that Zya and Tya are not
symmetric and we can’t apply directly the previous method. We replace them
by two centred terms. The following lemma is very useful.
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Lemma 4.
Let f be a €2 function such that f and f' are Lipschitz. Let us set, for any
tElkA, (k+ 1)A]:

t t

by (Xeast) = F/(Xia) <a(XkA> /k AW, + €(Xen) /

kA

2ilds, dz)) .

A
We have:

E [(F(X0) ~ (Xea) — s (Xea ) Ly Lxaea] S A2/

Lemma 4 is proved below. Let us set

) 1 DA
Zen = A (0(Xka) + Yo (Xia,s)) dWs,
kA
o1 oA : 5 () A2 A)
hA = A (E(Xka) +ve(Xeas))dLY  and  Tia = Tp) + T +Thn-
kA

The terms Zya and Tpa are symmetric. By lemma 4,

(12)

E [(ZkA - ZkA)2 Loy, lx,aca| = éE /er)A (0(Xs) — 0(Xpa) — Vo (Xias)) ds
< AAA
We prove in the same way that
E {(Tm ~ Tia)’ IQN,k]lxkAeA} < AVA (13)

Let us set Uga = A71E(Xpn-) fk(ZH)A de’. By Result 1 and Proposition 1,

< A2

(k+1)A ,
/ / (E(Xs) — &(Xka))” 2%v(dz)ds
k R

E [A2 (TR - Umﬂ ~E
A

(14)
Let us introduce the set

Qre = {w, [Iral+|Zka — Zea| + |Tea — Tra| < 3}
N {‘AZkA| < aox/Zln(n) + A, AT,SlA)‘ < 2«50\/K1n(n) + A}

N {‘A(ngi) - UkA)‘ < 50\/5} .

By (7), (8), (9), (12), (13), (14) and Markov inequalities, we obtain:

P(Qf,) S A4 1 (15)

n
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Then
E = (E[(Za+Tra) Loy ,non xn(Xeacd)| ykADQ (16)

_ _ 2
,S Alfﬁ/2 ln2(n) + (E |:(ZkA + TkA) ]]'Qx,kﬁflw,kﬁ(XkAGA)ﬁﬁz,k jkA}) .

Let us introduce the set:
Qzrk = {w,|Zka + Tea| < CAA™" — bpas — 3}
We have that

Qzr N Qi CQx e N Qi € {w,

Zka + Tia| < CAA™ 4 byae + 3} N Q.

Given the filtration .Zja, the sum Zya + Tia is symmetric. Then
]E |:(ZkA + TkA) ]]'QZT,kaN,km(XkAGA)’ ngA:| = 0

Moreover, on Qy , T,EZ) = 0. Then, by (16),
E S AYP21n?(n) + G? + H?

Where G = E {(ZkA + TélA) + TIEZ)) ]].QX’kﬂQCZTYkﬂQN,kﬂQI,kﬂ(XkAeA)‘ {g‘\kA] and
H =E [(ZkA + TISIA) + TI§2A)) ]].Qx,kﬁQZT’kﬁQN’kﬁQ?kﬂ(XkAeA)‘ jkA}- We have
that H% < A~ In?(n)P?(Q5,) < A'"#/2In*(n). The end of the proof is the
same as in the case of o and ¢ constants. We obtain that

1
Gl = I\l/(%) Sl(lp) , P (Ua € [C,C + 2bpaq + 6]) S VAATA/2,
C>koln(n)A—1/2

6.4.2 Proof of Lemma 4

According to the Ito formula (see for instance Applebaum (2004), Theorem 4.4.7
p251), we have that

f(Xe) = fXpa) =L+ L+ 13+ 14

where

I :/k f(Xs)o(Xs)dWs I :/M/R(f (X + 26(X,-)) — f(X,-)) filds, dz)

A

= /M / O+ 26(X0) = ) = 26001 (X w(dz)ds

Io= [ 1FOG) + 1(X)0*(X)/2] ds

A
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By Proposition 1, for any ¢ < (k + 1)A, we have:

2

& W: (o<Xs>f’<Xs>0<XkA>f'(X’“A))dWS>Z]

A

E l([l — f/(XkA)O'(XkA)/kA dWS>
= /kA (0(Xo) f'(Xs) — o(Xpa) f (Xia))* ds S A%
We can write:

EF = E
kA

t 2
(12 - fI(XkA)g(XkA*)/ dL(M + dLgQ)) ]]‘QN,k‘|

= Q/M /Z<A1/4]E {(f(Xs + 26(Xs)) — f(Xs) — 26(X0) /(X)) } v(dz)ds

+ 2/,; /Z<A1/4E {22 (E(X) f'(X5) *g(XkA)f/(XkA))Q} v(dz)ds.

The function f is 42, then, by the Taylor formula, for any s € [kA,t], z € R,
there exists (s, in [X,, X5 + 2£(X5)] such that:
2252 Xs
(X0 260X0) — 1) — 200 1/(%) = 25 e, )

Then, as £ and f” are bounded:

4

E[(F(X0 + 26(X,) = F(Xo) = 26(X) /(X)) ] = TE[(€(X0) " (¢.2))°] S 2
and, by Result 3, for any t < (k + 1)A,
t
Fo / / B [(F(X, + 26(X,) — F(X,) = 26(X.) 1 (X,))°| wld2)ds
kA J|z|<a1/4
< A / 2Mu(dz) < AP/,
|sl<A1/4
The functions ¢ and f’ are Lipschitz, then by Proposition 1,
E[22 (XS (X,) = €(Xea) f'(Xpa))’] S 2% [(X, = Xpa)?| S A22
and consequently, for any ¢ < (k + 1)A:

/ / E [22 (6(X)1/(X.) ~ §(Xka)f/(Xea)?] vldz)ds < AP/2
kA J|z|<al/4

then E < A%2-#/4 By the same way, we obtain that

B[15] <E l [ (B2 60) vasias

26
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The functions b and f’ are Lipschitz and f” and o are bounded, then, for any
t<(k+1)A:

t
E[]SA [ (1+E[X]])ds S A%
kA
Then, for any ¢ < (k 4+ 1)A:

E[(f(X:) — f(Xpa) — 5 (Xpa,t))] < AZ7H/4,

6.5 Proof of Theorem 4

As previously, we only bound the risk on €2,,. As in Subsection 6.3, we introduce
the function p(m,m’) such that p(m,m’) = 12(pen(m) + pen(m’)). On Q,, for
any m € .y, we have:

n

- 2 224
Hbm—bA < 3||bm_bx4||i+ szi(XkA)lﬂg(’k +IPA +2(Z3a + TA) Loy wnag ,
" k=1
224 2
T (E [(Zra + Tra) Loy 00z | Fral)
k=1
+ 24 sup (72(t) — p(m,m)) + dpen(m).
tEBm,m

It remains only to bound E [supte@m _(2(t) — p(m, ﬁl))} <>, E [supte@m » (Z2(t) — p(m, rh))} .
As in the proof of Theorem 2, we bound the quantity

E {eXp (Et(XkA) (ZkA + TkA)) ‘ ykA} -
We have that

e2ot?(X
E [exp (et(Xra)Zka) Tay .| Fra] < exp (M) .

2A

The truncated Lévy process L; = fg f|z‘<A1/4 zfi(ds,dz) satisfies Assumption
A5 and then there exists a constant ¢ such that:

C€2 2t2 X
E [exp (et(Xpa)Tka) Loy | Fra] < exp < &t kA)) .

A(l—¢/er)

As Zyalq, , and Tyalq, , are centred, we obtain:

2 2 2\ 42
E [exp (e [t(Xka) (Zka + Tia)|) Loy, | Fra] < 2exp (ce (o5 +&3)t (XW)

A(l—¢e/er)

and then

E [eXp (5 ‘f(XkA) (ZkA + TkA) D Loy inQx

ykA} < 2exp <C€2 (03 + 5(2)) t2(XkA)> _

A(l—¢€/er)

We conclude as in the proof of Theorem 2.
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Figure 1: Model 1: Ornstein-Uhlenbeck and binomial law
b(xz) = =2z, o(x) = £{(x) = 1 and binomial law
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Figure 2: Model 2: Double well and Laplace law

b(@) =~ (x = 1/4)* = (@ +1/4)°, o =¢=1and Laplace law
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Figure 3: Model 3: Sine function

b(x) = —2x+sin(3z), o(z) = £(z) = /(3 + 22)/(1 4 22) jumps not sub-exponential
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n=10%et A =101

Table 1: Model 1: Ornstein-Uhlenbeck and binomial law

b(x)

—2zx, o(x) = &(x) = 1 and compound Poisson process (binomial law)

first estimator truncated estimator
n A Mg | Tq | risky | ory || Mg | T | risks | orsy
103 | 107! 0 1.02 | 0.044 | 1.3 0 [1.02] 0.044 | 1.3
10* | 1071 0 |1.02]0.011] 1.3 0 | 1.02 0011 | 1.3
103 | 1072 0 1.02 ] 055 [ 104 o | 1.02] 055 | 1.04
10* | 1072 0 1 0047 ] 1 0 1 0.047 1
5.10% | 10~2 || 0.04 1 0.010 | 14 0 1 0.0053 1

Mg, Tq and mg, 7o : average values of m, 7 and m, 7 on the 50 simulations.
risk, and risks : means of the empirical errors of the adaptive estimators.

or; and orp: means of oracle =empirical error of the adaptive estimator /
empirical error of the best possible estimator.
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Table 2: Model 2: Double well and Laplace law

b(z) = —(x —1/4)3 — (x + 1/4)3, o(x) = £(z) = 1 and Laplace law.
first estimator truncated estimator

n A Mq | Ta | risky | ory | Ma | T | ri5ko | ors
103 10°t ][ 0.02 | 1.0 | 0.12 3.1 || 0.02 | 10| 0.12 | 3.1
100 [10° Y] 1.7 [21]210% [ 51 |[ 04 [21] 0.04 | 1.5
103 1072 ]| 0.26 | 1.2 1.8 3.1 || 0.06 | 1 0.51 | 14
10 [ 1072012 15] 016 | 1.8 [[0.08 | 1.2 ] 0.13 | 2.4
5.10* | 1072 ]| 030 | 2.5 | 0.035 | 1.6 || 0.26 | 2.5 | 0.019 | 1.8
Ma, Tq and Mg, 7y : average values of m, ¥ and m, 7 on the 50 simulations.
risky and risks : means of the empirical errors of the adaptive estimators.
ory and ore: means of oracle =empirical error of the adaptive estimator /
empirical error of the best possible estimator.

Table 3: Model 3: Sine function and jumps not sub-exponential

b(z) = —2z+sin(3z), o(z) =£(z) = VB +22)/(1+22) and v(z) x e V*/\/z

first estimator truncated estimator
n A Ma | Ta | risk; | ory | M | Ta | risko | ors

102 [ 1071 ]034|12] 076 |36 004]1.2] 028 | 1.9
10 | 107t | 0.8 [22]0.082] 1.3 0.68]22]0.073] 1.2
103 [1072]/096 | 12] 18 [63([002]12] 1.3 |12
10% 1072 ]| 0.78 | 1.4 1.5 431012 14| 024 | 3.3
510 [ 1072 ] 092 [ 23| 024 | 43 ][ 0.70 | 2.3 ] 0.039 | 1.3

Mg, Tq and Mg, 7o : average values of m, 7 and m, 7 on the 50 simulations.

risky and risks : means of the empirical errors of the adaptive estimators.

or; and ory: means of oracle =empirical error of the adaptive estimator /

empirical error of the best possible estimator.
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7 Auxiliary proofs

7.1 Decomposition on a lattice

Proposition 3.

If there exist some constants c1, co and K independent of D, n, A, b and o
and two constants o and B independent of n and D such that, for any function
teS,+S,:

2
: < P > <) <K — n"ns
V0,C >0, W € St S [t < CC B (£ult) 2 m el < %) < exp( 7T 1 20eand )

then there exist some constants C' and k depending only of v such that, if D <

E| sup f2(t)—
te@m,m/ n() nﬁ

2 213/2,—VD
Ko D] < C’KHO[ D?/“e .
+ np

Let us consider an orthonormal (for the L2 -norm) basis (1x),cx of

Sm,m’ = Sm + Sm such that .

VA, card ({X, [[Yaa | # 0}) < éo.

Let us set

1 Il
' \/Bﬂ750 |6|oo

‘We obtain that

Z Brtha
/\

then

< ¢2 Iﬂlwsgpllwxl\w et [Vl < VDI[WallL2 < mVD sl

oo

fm,m/ <r:.= ¢27T1.

We need a lattice of which the infinite norm is bounded. We use Lemma 9 of
Barron et al. (1999):

Result 4. There exists a 0y-lattice Ty, of L2 N (S, + Spmr) such that
\Tie O B | < (5/6%)"

where 6, = 27%/5 . Let us denote by pr(u) the orthogonal projection of u on
Ty. For any u € Sy, ||u—pr(u)]. < 0k and

[

sup ”u - tHoo S 7:m,m’(slc S 7:5k-
uepy, ' (t)
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Let us set Hy = In(|Tkx N Br.m’|). We have that:
Hy < DIn(5/6) = D (kIn(2) + In(5/5,)) < C(k + 1)D.

The decomposition of u; on the dg-lattice must be done very carefully: the
norms ||ug — uk—1|, and ||ug — uk—1| ., must be controlled. Let us set

&, = {uk e Ty mv@m,m/; ||u — uk||w <, et ||’LL — Uk”oo < 7:5k}

We have that In(|&%|) < Hj. For any function u € %, 1, there exist a series
(ur)r>0 €[], &% such that

U:UO+Z(Uk_Uk—1)-
k=1

Let us consider (nx)r>0 and n € R such that 79 + >, nx < 1. We obtain:

P ( _Sup [fn(u)] > 77) < P <3 (ur) € [T & | fulwo) + Y fulur — up-1)

>770+Z77k>

m,m/’ k=1 k=1
< P+ Z Py (17)
k=1
where
Pi= Y P(fa(uo)|>m) and Pog= > P(|falur—ur-1)l>m).
u €Ep U EER

As ug € Ty, |Juoll, <1 and |luoll, < 7#VD. Moreover, |luol> < 3/2|juol>, <
300/2. Then

P (| (uo)| > m0) =P (1fa(uo)| > o, [luoll} < 300/2) .

There exist two constants ¢} and ¢, depending only on &y and 7 such that

P('f (UO)| > 770) < Kexp|— ”5778
" N cha? + 20’2\/50070 ’

Let us set g such that 79 = « (\/c’1 (x0/B) + 0’2\/5(350/6)). Then:

Bng

xo <
0= a2 + 2¢h,v/Damyg
and
P (fn(uo) > no) < K exp (—nxo) .
Then
P K Z exp (—nwo) < K exp (Ho — nao) . (18)
uo €8y

32



We have that
g = w17 <2 (o = eI+ = well?) < 503/2

then |[Jug fuk,1||i < 1567 /4. As up_1,ur € Ex_1 X &, it follows that
g — up—1]|%, < 562,72 /2. There exists two constants c3 and ¢4 such that:

Pp (|fn(ur —ug-1)| >n) = Py (lfn(uk — )| > s [Jug — w1 |2 < 15513_1/4)
npn;
< K — .
- exp < c3a?8? |+ 204a(5k_1>

Let us fix xj such that n, = d0x_1a (\/03 (xx/B) + ¢4 (xk/ﬁ)) We obtain:
Bnp

T 30207 4 2c400-1

and
P (| fn(ur — uk—1)| > mi) < K exp (—nay) .
Then, P < Kexp (Hi—1 + Hy — nxy) and

Py = Z Py < KZexp (Hi_1 + Hy — nay,) . (19)
k=1 k=1

Let us set 7 > 0 and choose (xf) (and then (7)) such that

\/ERZEO:H0+D+T
nxg = Hy—1 + He + (k+1)D + 7.

Collecting the results, we obtain, by (17), (18) and (19):
P ( sup |fn(u)| > 77) <C (eiDefT + 67‘/5677/‘/5) . (20)
ue@mm/

It remains to compute n?. We denote by C a constant depending only on dg
and 7 . This constant may vary from one line to another. We have that:

Er s o(Fe(E2) (573

Let us recall that Hy = C(k +1)D. Then, nzy = C(3k +2)D + 7 , V/Dnxg =
CD + 7T and

Op— 1:Ck 1 & —(k—1) D+
— CBk+2)D+71)<C .
Z 5}; )D +17)

np
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Moreover,
> VD
S by < oYD VT
Pt B Vg

As D/nf < 1, there exists a constant x such that

D T T2
<k = 4+2—+— ).
7 < ko (w* nﬁ+n262>

Then, according to (20):

D T T2
2 2 —D—7 —vD—1/vD
P(&ﬁm/f”(“)”“ <n6+2n5+n252>> O(T e )
(21)

E = E <
= 2 o D

= / P sup fi(u)>ka*"—+7|dr
0 UERB ! nﬁ

Setting 7 = ka? (2y/np + y?/n?B?), it follows:

> D Y y2 2 2y
E=Cy [ P 2 2(Z ol I P
CV/O <ue?%1£m,f”(u)>na <n6+ n5+n262)> <n6+n262 y

By (21),

Furthermore

sup fﬁ(u)—mﬁg] )
i

ueAB Tlﬂ

m,m/

1 o0
E = Ckra? (e_D +e_‘/5) (—/ ye_y/‘/ﬁdy)
B Jo

C@Dg/%_‘/ﬁ.

n

IN
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