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Abstract

In this article, we consider a jump diffusion process (Xt)t≥0
observed

at discrete times t = 0,∆, . . . , n∆. The sampling interval ∆ tends to 0

and n∆ tends to infinity. We assume that (Xt)t≥0
is ergodic, strictly

stationary and exponentially β-mixing. We use a penalized least-square

approach to compute two adaptive estimators of the drift function b. We

provide bounds for the risks of the two estimators.

1 Introduction

We consider a general diffusion with jumps:

dXt = b(Xt)dt+ σ(Xt)dWt + ξ(Xt−)dLt and X0 = η (1)

where Lt is a centred pure jump Levy process:

dLt =

ˆ

z∈R

z (µ(dt, dz)− dtν(dz))

with µ a random Poisson measure with intensity measure ν(dz)dt such that
´

z∈R
z2ν(dz) <∞. The compensated Poisson measure µ̃ is defined by µ̃(dt, dz) =

µ(dt, dz)−ν(dz)dt. The random variable η is independant of (Wt, Lt)t≥0. Moreover,
(Wt)t≥0 and (Lt)t≥0 are independant.

This process is observed with high frequency (at times t = 0,∆, . . . , n∆
where ∆ → 0 and n∆ → ∞). It is assumed to be ergodic, stationary and
exponentially β-mixing (see Masuda (2007) for sufficient conditions). Our aim
is to construct a non-parametric estimator of b on a compact set A.

The non-parametric estimation of b and σ for a diffusion process observed
with high-frequency is well-known (see for instance Hoffmann (1999) and Comte
et al. (2007)). Diffusion processes with jumps are used in various fields, for in-
stance in finance, for modelling the growth of a population, in hydrology, in
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medical science, . . ., but there exist few results for the non-parametric estim-
ation of b and σ. Shimizu and Yoshida (2006) construct maximum-likelihood
estimators of parameters of b and σ. Their estimators reach the standard rates
of convergence:

√
n∆ for the estimator of b, and

√
n for the estimator of σ.

Shimizu (2008) and Mancini and Renò (2011) use a kernel estimator to ob-
tain non parametric threshold estimators of σ. Mancini and Renò (2011) also
construct a non-parametric thruncated estimator of b, but only when Lt is a
compound Poisson process. To our knowledge, minimax rates of convergences
for non-parametric estimators of b, σ or ξ are not available in the literature.

In this paper, we use model selection to construct two non-parametric estim-
ators of b under the asymptotic framework ∆ → 0 and n∆ → ∞. This method
was introduced by Birgé and Massart (1998).

First, we introduce a sequence of linear subspaces Sm ⊆ L2(A) and, for each

m, we construct an estimator b̂m of b by minimising on Sm the contrast function:

γn(t) =
1

n

n
∑

k=1

(Yk∆ − t(Xk∆))
2 where Yk∆ =

X(k+1)∆ −Xk∆

∆
.

We obtain a collection of estimators of the drift function b and we bound their
risks (Theorem 1). Then, we introduce a penalty function to select the “best”

dimension m and we deduce an adaptive estimator b̂m̂. Under the assumption
that ν is sub-exponential, that is if there exist two positive constants C, λ such
that, for z large enough, ν([−z, z]c) ≤ Ce−λz, the risk bound of b̂m̂ is exactly
the same as for a diffusion without jumps (Theorem 2) (see Comte et al. (2007)
or Hoffmann (1999)).

In a second part, we do not assume that ν is subexponential and we construct
a truncated estimator b̃m of b. We minimise the contrast function

γ̃n(t) =
1

n

n
∑

k=1

(

Yk∆1|Yk∆|≤C∆
− t(Xk∆)

)2
where C∆ ∝

√
∆ ln(n)

in order to obtain a new estimator b̃m. As in the first part, we introduce a
penalty function to obtain an adaptive estimator b̃m̃. The risk bound of this
adaptive estimator depends on the Blumenthal-Getoor index of ν (Theorems 3
and 4).

In Section 2, we present the model and its assumptions. In Sections 3 and
4, we construct the estimators and bound their risks. Some simulations are
presented in Section 5. Proofs are gathered in Sections 6 and 7.

2 Assumptions

2.1 Assumptions on the model

We consider the following assumptions:

A 1. The functions b, σ and ξ are Lipschitz.
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A 2. 1. The function σ is bounded from below and above:

∃σ0, σ1, ∀x ∈ R, 0 < σ1 ≤ σ(x) ≤ σ0.

2. The function ξ is bounded: ∃ξ0, ∀x ∈ R, 0 ≤ ξ(x) ≤ ξ0.

3. The drift function b is elastic: there exists a constant M such that, for
any x ∈ R, |x| > M : xb(x) . − |x|2 .

4. The Lévy measure ν satisfies:

ν({0}) = 0,

ˆ ∞

−∞
z2ν(dz) = 1 and

ˆ ∞

−∞
z4ν(dz) <∞.

Under Assumption A1, the stochastic differential equation (1) admits a
unique strong solution. According to Masuda (2007), under Assumptions A1
and A2, the process (Xt) admits a unique invariant probability ̟ and satisfies
the ergodic theorem: for any measurable function g such that

´

|g(x)|̟(dx) <
∞, when T → ∞,

1

T

ˆ T

0

g(Xs)ds→
ˆ

g(x)̟(dx).

This distribution has moments of order 4. Moreover, Masuda (2007) also en-
sures that under these assumptions, the process (Xt) is exponentially β-mixing.
Furtermore, if there exist two constants c and n0 such that, for any x ∈ R,
ξ2(x) ≥ c(1 + |x|)−n0 , then Ishikawa and Kunita (2006) ensure that a smooth
transition density exists.

A 3. 1. The stationary measure ̟ admits a density π which is bounded from
below and above on the compact interval A:

∃π0, π1, ∀x ∈ A, 0 < π1 ≤ π(x) ≤ π0.

2. The process (Xt)t≥0 is stationary (η ∼ ̟(dx) = π(x)dx).

The following proposition very useful for the proofs is proved later.

Proposition 1.

Under Assumptions A1-A3, for any p ≥ 1, there exists a constant c(p) such
that, if

´

R
z2pν(dz) <∞:

E

(

sup
s∈[t,t+h]

(Xs −Xt)
2p

)

≤ c(p)h.
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2.2 Assumptions on the approximation spaces

In order to construct an adaptive estimator of b, we use model selection: we
compute a collection of estimators b̂m of b by minimising a contrast function
γn(t) on a vectorial subspace Sm ⊂ L2(A), then we choose the best possible
estimator using a penalty function pen(m). The collection of vectorial subspaces
(Sm)m∈Mn

has to satisfy the following assumption:

A 4.

1. The subspaces Sm have finite dimension Dm.

2. The sequence of vectorial subpsaces (Sm)m≥0 is increasing: for any m,
Sm ⊆ Sm+1.

3. Norm connexion: there exists a constant φ1 such that, for any m ≥ 0, any
t ∈ Sm,

‖t‖2∞ ≤ φ1Dm ‖t‖2L2

where ‖.‖L2 is the L2-norm and ‖.‖∞ is the sup-norm on A.

4. For any m ∈ N, there exists an orthonormal basis (ψλ)λ∈Λm
of Sm such

that
∀λ, card (λ′, ‖ψλψλ′‖∞ 6= 0) ≤ φ0

where φ0 does not depend on m.

5. For any function t belonging to the unit ball of the Besov space Bα
2,∞,

∃C, ∀m ‖t− tm‖2L2 ≤ C2−2mα

where tm is the L2 orthogonal projection of t on Sm.

The subspaces generated by piecewise polynomials, compactly supported
wavelets or spline functions satisfy A4 (see DeVore and Lorentz (1993) and
Meyer (1990) for instance).

3 Estimation of the drift

By analogy with Comte et al. (2007), we decompose Yk∆ in the following way:

Yk∆ =
X(k+1)∆ −Xk∆

∆
= b(Xk∆) + Ik∆ + Zk∆ + Tk∆ (2)

where

Ik∆ =
1

∆

ˆ (k+1)∆

k∆

(b(Xs)− b(Xk∆)) ds, Zk∆ =
1

∆

ˆ (k+1)∆

k∆

σ(Xs)dWs

Tk∆ =
1

∆

ˆ (k+1)∆

k∆

ξ(Xs−)dLs.
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The terms Zk∆ and Tk∆ are martingale increments. Let us introduce the mean
square contrast function

γn(t) =
1

n

n
∑

k=1

(Yk∆ − t (Xk∆))
2

(3)

and the empirical risk

Rn(t) = ‖t− bA‖2n where ‖t‖2n =
1

n

n
∑

k=1

t2 (Xk∆) and tA = t1A. (4)

We consider the asymptotic framework:

∆ → 0, n∆ → ∞.

For any m ∈ Mn = {m, Dm ≤ Dn} where D2
n ≤ n∆/ ln2(n), we construct the

regression-type estimator:

b̂m = arg min
t∈Sm

γn(t).

Theorem 1.

Under Assumptions A1-A4, the risk of the estimator with fixed m satisfies:

Rn(b̂m) ≤ 3π1 ‖bm − bA‖2L2 + 48(σ2
0 + ξ20)

Dm

n∆
+ c∆

where bm is the orthogonal (L2) projection of bA over the vectorial subspace Sm.
The constant c is independent of m, n and ∆.

Except for the constant (σ2
0 + ξ20) in the variance term, this is exactly the

bound of the risk that Comte et al. (2007) found for a diffusion process without
jumps.

The bias term, ‖bm − bA‖2L2 , decreases when the dimension Dm increases
whereas the variance term (σ2

0 + ξ20)Dm/(n∆) is proportional to the dimension.
Under the classical assumption n∆2 = O(1), the remainder term ∆ is negligible.
Thus we need to find a good compromise between the bias and the variance term.

Remark 1. If the regularity of the drift function is known, that is, if b belongs
to a ball of a Besov space Bα

2,∞, then the bias term ‖bm − bA‖2L2 is smaller

than D−2α
m . The best estimator is obtained for Dmopt = (n∆)

1/(1+2α)
and the

estimator risk satisfies:

Rn(b̂mopt) . (n∆)
−2α/(2α+1)

+∆.

Let us introduce a penalty function pen such that :

pen(m) ≥ κ(σ2
0 + ξ20)

Dm

n∆
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and set:
m̂ = arg min

m∈Mn

{

γn(b̂m) + pen(m)
}

.

We will chose κ later. We denote by b̂m̂ the resulting estimator. To bound the
risk of the adaptive estimator, an additional assumption is needed:

A 5. 1. The Lévy measure ν is symmetric or the function ξ is constant.

2. The Lévy measure ν is sub exponential: there exist λ,C > 0 such that, for
any |z| > 1, ν(]− z, z[c) ≤ Ce−λ|z|.

Theorem 2.

Under Assumptions A1-A5, there exists a constant κ (depending only on ν) such
that, if D2

n ≤ n∆/ ln2(n):

E

(

∥

∥

∥
b̂m̂ − bA

∥

∥

∥

2

n

)

. inf
m∈Mn

(

‖bm − bA‖2L2 + pen(m)
)

+

(

∆+
1

n∆

)

.

We can bound κ theoretically, however, this bound is in practice too large
for the simulations. In Section 5, we calibrate κ by simulations (see Comte
et al. (2007) for instance). The adaptive estimator automatically realises the
bias-variance compromise. Moreover, this is the same oracle inequality as for a
diffusion process without jumps.

4 Truncated estimator of the drift

Truncated estimators are widely used for the estimation of the diffusion coeffi-
cient of a jump diffusion (see for instance Mancini and Renò (2011) and Shimizu
(2008)). Our aim is to construct an adaptive estimator of b even if Assumption
A5 is not fulfilled. To this end, we cut off the big jumps. Let us introduce the
set

ΩX,k =
{

ω,
∣

∣X(k+1)∆ −Xk∆

∣

∣ ≤ C∆

}

where C∆ = (bmax + 3)∆ + (σ0 + 4ξ0)
√
∆ ln(n) (with bmax = supx∈A |b(x)|).

Let us consider the random variables

Ỹk∆ =
X(k+1)∆ −Xk∆

∆
1ΩX,k

1Xk∆∈A.

We recall here the definition of the Blumenthal-Getoor index:

Definition 1.

The Blumenthal-Getoor index of a Lévy measure is

β = inf

{

α ≥ 0,

ˆ

|z|≤1

|z|αν(dz) <∞
}

.

A compound Poisson process has β = 0.
We assume that the following assumption is fulfilled.
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A 6. 1. The Lévy measure ν is symmetric.

2. For |x| small, ν(dx) is absolutely continuous with respect to the Lebesgue
measure (ν(x) = n(x)dx) and:

∃β ∈ [0, 2[, ∃a0, ∀x ∈ [−a0,a0], n(x) ≤ Cx−β−1.

This implies that the Blumenthal-Getoor index is equal to β.

3. The function ξ is bounded from below: there exists ξ1 > 0 such that, for
any z ∈ R, 0 < ξ1 ≤ ξ(z).

4. The functions σ and ξ are C 2, and ξ′ and σ′ are Lipschitz.

We consider the following asymptotic framework:

n∆

ln2(n)
→ 0, ∆1−β/2 ln2(n) → 0.

The truncated estimator b̃m is obtained by minimising the contrast function:

b̃m = arg min
t∈Sm

γ̃n(t) where γ̃n(t) =
1

n

n
∑

k=1

(

Ỹk∆ − t(Xk∆)
)2

.

Theorem 3 : Risk of the non adaptive truncated estimator.

Under Assumptions A1-A4 and A6, for any m such that Dm ≤ Dn where D2
n ≤

n∆/ ln2(n):

E

(

∥

∥

∥
b̃m − bA

∥

∥

∥

2

n

)

. ‖bm − bA‖2L2 + (σ2
0 + ξ20)

Dm

n∆
+∆1−β/2 ln2(n) +

1

n∆
.

The terms of the rest depend on the Blumenthal-Getoor index and are larger
than for the first estimator. Nevertheless, if Lt is a compound Poisson process,
then β = 0 and we obtain (up to a logarithm factor) the same inequality as for
the non-truncated estimator.

Remark 2. If ν is not absolutely continuous, we can prove the weaker inequality:

E

(

∥

∥

∥
b̃m − bA

∥

∥

∥

2

n

)

. ‖bm − bA‖2L2 + (σ2
0 + ξ20)

Dm

n∆
+∆1−β ln2(n) +

1

n∆
.

In that case, b̃m converges towards bA only if β < 1, which implies that ν has
finite density (

´

R
|z|ν(dz) <∞).

Remark 3. Assume that bA belongs to the Besov space Bα
2,∞ and that ‖bA‖Bα

2,∞
≤ 1.

The bias-variance compromise ‖bm − bA‖2L2+Dm/n∆ is minimum when m = log2(n∆)/(1 + 2α),
and the risk satisfies:

E

(

∥

∥

∥b̃m − bA

∥

∥

∥

2

n

)

. (n∆)
−2α/(1+2α)

+∆1−β/2 ln2(n)

Let us set ∆ ∼ n−γ with γ > 0. We have the following convergence rates:
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γ first estimator truncated estimator

0 < γ ≤ 2α
4α+1 ≤ 1

2 ∆ ∆1−β/2 ln2(n)
2α

4α+1 ≤ γ ≤ 2α
4α+1−βα−β/2 ≤ 1

2(1−β/4) (n∆)−2α/(2α+1) ∆1−β/2 ln2(n)
2α+1

4α+1−βα−β/2 ≤ γ < 1 (n∆)
−2α/(2α+1)

(n∆)
−2α/(2α+1)

If we have sufficiently high frequency data (n∆2(1−β/4) = O(1)), then the
rate of convergence is the same for the two estimators.

To construct the adaptive estimator, we use the same penalty function as in
the previous section:

pen(m) ≥ κ
(

σ2
0 + ξ20

) Dm

n∆

and define the adaptive estimator:

m̃ = arg min
m∈Mn

{

γ̃n(b̃m) + pen(m)
}

.

Theorem 4 : Risk of the adaptive truncated estimator.

If Assumptions A1-A4 and A6 are satisfied, then there exists κ such that, if
D2

n ≤ n∆/ ln2(n):

E

(

∥

∥

∥b̃m̃ − bA

∥

∥

∥

2

n

)

. min
m∈Mn

(

‖bm − bA‖2n + pen(m)
)

+∆1−β/2 ln2(n) +
1

n∆
.

The adaptive estimator b̃m̃ automatically realises the bias/variance com-
promise if the frequency of data is sufficiently high.

5 Numerical simulations and examples

5.1 Compound Poisson models

We consider the stochastic differential equation:

dXt = b(Xt)dt+ σ(Xt)dWt + ξ(Xt−)dLt

where Lt is a compound Poisson process of intensity 1: Lt =
∑Nt

j=1 ζi, with Nt

a Poisson process of intensity 1 and (ζ1, . . . , ζn) are independent and identic-
ally distributed random variables independent of (Nt). We denote by f the
probability law of ζi .

Model 1:

b(x) = −2x, σ(x) = ξ(x) = 1 and f(dz) = ν(dz) =
1

2
δ1 +

1

2
δ−1.
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Model 2:

b(x) = − (x− 1/4)
3−(x+ 1/4)

3
, σ(x) = ξ(x) = 1 and f(dz) = ν(dz) =

e−λ|z|dz

2
.

We can remark that the function b is not Lipschitz and therefore does not satisfy
Assumption A1.

Model 3:

We consider the stochastic process of parameters

b(x) = −2x+ sin(3x), σ(x) = ξ(x) =

√

3 + x2

1 + x2

and

f(dz) = ν(dz) =
1

4

√√
24

|z| e
−
√√

24|z|dz.

Let us remark that ν = f is not sub-exponential and does not satisfy A5.

5.2 Simulation algorithm (Compound Poisson case)

We estimate b on the compact interval A = [−1, 1].

1. Simulate random variables (X0, X∆, . . . , Xn∆) thanks to a Euler scheme
with sampling interval δ = ∆/5. To this end, we use the same simula-
tion scheme as Rubenthaler (2010). We simulate the times of the jumps
(τ1, . . . , τN , τN+1) with τN < n∆ ≤ τN+1 and we fix X0 = 0.
If δ < τ1, we compute

Xδ = δb(X0) +
√
δσ(X0)N with N ∼ N (0, 1)..

If τ1 < δ, we first compute

Xτ1 = τ1b(X0) +
√
τ1σ(X0)N + ξ(X0)ζ1

with N ∼ N (0, 1) and ζ1 ∼ f is independant of N . If δ < τ2, we compute

Xδ = (δ − τ1)b(Xτ1) +
√

δ − τ1σ(Xτ1)N
′

else we compute

Xτ2 = (τ2 − τ1)b(Xτ1) +
√
τ2 − τ1σ(Xτ1)N

′ + ξ(Xτ1)ζ2

where N ′ ∼ N (0, 1) and ζ2 has distribution f . N , N ′, ζ1 and ζ2 are
independent.

2. Construct the random variables

Yk∆ =
X(k+1)∆ −Xk∆

∆
and Ỹk∆ =

X(k+1)∆ −Xk∆

∆
1ΩX,k

1Xk∆∈A.
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3. We consider the vectorial subspaces Sm,r generated by the spline functions
of degree r (see for instance Schmisser (2009a)). In that case Dm,r =
dim(Sm,r) = 2m + r. For r ∈ {1, 2, 3} and m ∈ Mn(r) = {m,Dm,r ≤
Dn}, we compute the estimators b̂m,r and b̃m,r by minimising the contrast
functions γn and γ̃n on the vectorial subspaces Sm,r.

4. For the estimation algorithm, we make a selection of m and r as follows.
Using the penalty function pen(m, r) := pen(m) = κ(σ2

0+ξ
2
0)(2

m+r)/n∆,

we select the adaptive estimators b̂m̂,r and b̃m̃,r, and then choose the best

r by minimizing γn(b̂m̂,r) + pen(m̂, r) and γ̃n(b̃m̃,r) + pen(m̃, r).

5.3 Results

In Figures 1-3, we simulate 5 times the process (X0, . . . , Xn∆) for ∆ = 10−1

and n = 104 and draw the obtained estimators. The two adaptive estimators
are nearly superposed, moreover, they are close to the true function.

In Tables 1-3, for each value of (n,∆), we simulate 50 trajectories of (X0, X∆, . . . , Xn∆).

For each path, we construct the two adaptive estimators b̂m̂,r̂ and b̃m̃,r̃ and we
compute the empirical errors:

err1 =
∥

∥

∥
b̂m̂,r̂ − bA

∥

∥

∥

2

n
and err2 =

∥

∥

∥
b̃m̃,r̃ − bA

∥

∥

∥

2

n
.

In order to check that our algorithm is adaptive, we also compute the minimal
errors

emin1 = min
m,r

∥

∥

∥b̂m,r − bA

∥

∥

∥

2

n
and emin2 = min

m,r

∥

∥

∥b̃m,r − bA

∥

∥

∥

2

n

and the oracles oraclei = erri/emini. We give the means m̂a, r̂a, m̃a and r̃a of
the selected values m̂, r̂, m̃ and r̃. The value riski is the mean of erri over the
50 simulations and ori is the mean of oraclei.

The empirical risk is decreasing when the product n∆ is increasing, which
is coherent with the theoretical model. For Model 1, the two estimators are
equivalent. When the tails of ν become larger (Models 2 and 3), the truncated
estimator is better. The improvement is also more significant when the discret-
isation path is smaller. As on the three models, the processes Lt are compound
Poisson processes, these results were expected. The truncated estimator seems
also more robust: we don’t observe aberrant values (like for the first estimator
in Table 2). This aberrant value may be due to the fact that b is not Lipschitz
and then b(Xk∆) may be quite large.

6 Proofs

Let us introduce the filtration

Ft = σ
(

η, (Ws)0≤s≤t , (Ls)0≤s≤t

)

.
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The following result is very useful. It comes from Dellacherie and Meyer (1980)
(Theorem 92 Chapter VII) and Applebaum (2004), Theorem 4.4.23 p265 (Kunita’s
first inequality).

Result 1 (Burkholder-Davis-Gundy inequality). We have that, for any p ≥ 2,

E

[

sup
s∈[t,t+h]

∣

∣

∣

∣

ˆ s

t

σ(Xu)dWu

∣

∣

∣

∣

p
∣

∣

∣

∣

∣

Ft

]

≤ Cp



E





∣

∣

∣

∣

∣

ˆ t+h

t

σ2(Xu)du

∣

∣

∣

∣

∣

p/2
∣

∣

∣

∣

∣

∣

Ft









and, if
´

R
|z|p ν(dz) <∞, as

´

R
z2ν(dz) = 1:

E

[

sup
s∈[t,t+h]

∣

∣

∣

∣

ˆ s

t

ξ(Xu−)dLu

∣

∣

∣

∣

p
∣

∣

∣

∣

∣

Ft

]

≤ CpE





(

ˆ t+h

t

ξ2(Xu)du

)p/2
∣

∣

∣

∣

∣

∣

Ft





+ CpE

[(

ˆ t+h

t

|ξ(Xu)|p du
)∣

∣

∣

∣

∣

Ft

]

ˆ

R

|z|p ν(dz).

6.1 Proof of Proposition 1

By Result 1, there exists a constant cp such that:

E

[

sup
s∈[t,t+h]

(Xs −Xt)
2p

∣

∣

∣

∣

∣

Ft

]

≤ c(p)









(

ˆ t+h

t

|b(Xs)| ds
)2p

∣

∣

∣

∣

∣

∣

Ft









+ c(p)E

[(

ˆ t+h

t

σ2(Xs)ds

)p∣
∣

∣

∣

∣

Ft

]

+ c(p)

(

E

[(

ˆ t+h

t

ξ2 (Xs) ds

)p

+

ˆ t+h

t

ξ2p(Xs)ds

∣

∣

∣

∣

∣

Ft

])

.

Then, as ξ and σ are bounded and b Lipschitz (and thus sub-linear), there exists
a constant Cb such that:

E

[

sup
s∈[t,t+h]

(Xs −Xt)
2p

∣

∣

∣

∣

∣

Ft

]

≤ c(p)
(

σ2p
0 hp + ξ2p0 (h+ hp)

)

+c(p)h2p−1Cb

ˆ t+h

t

E
[

X2p
s

∣

∣Ft

]

ds.

As (Xt) is stationary, we obtain the expected result.

6.2 Proof of Theorem 1

By (3) and (4), we get:

γn(t) =
1

n

n
∑

k=1

(Yk∆ − t(Xk∆))
2

=
1

n

n
∑

k=1

(Yk∆ − b(Xk∆))
2
+ ‖b− t‖2n

+
2

n

n
∑

k=1

(Yk∆ − b(Xk∆)) (b(Xk∆)− t(Xk∆)) .

11



As, by definition, γn(b̂m) ≤ γn(bm), we obtain:

∥

∥

∥b̂m − b
∥

∥

∥

2

n
≤ ‖bm − b‖2n +

2

n

n
∑

k=1

(Yk∆ − b(Xk∆))
(

b̂m(Xk∆)− bm(Xk∆)
)

.

By (2), and as b̂m and bm are supported by A,

∥

∥

∥b̂m − bA

∥

∥

∥

2

n
≤ ‖bm − bA‖2n+

2

n

n
∑

k=1

(Ik∆ + Zk∆ + Tk∆)
(

b̂m(Xk∆)− bm(Xk∆)
)

.

Let us set introduce the unit ball

Bm = {t ∈ Sm, ‖t‖̟ ≤ 1} where ‖t‖2̟ =

ˆ

A

t2(x)̟(dx)

and the englobing space Sn =
⋃

m∈Mn
Sm. Let us consider the set

Ωn =

{

ω, ∀t ∈ Sn ,

∣

∣

∣

∣

∣

‖t‖2n
‖t‖2̟

− 1

∣

∣

∣

∣

∣

≤ 1

2

}

where the norms ‖.‖̟ and ‖.‖n are equivalent.

Step 1: bound of the risk on Ωn Thanks to the Cauchy-Schwartz inequal-
ity, we obtain that, on Ωn:

∥

∥

∥b̂m − bA

∥

∥

∥

2

n
≤ ‖bm − bA‖2n+

1

12

∥

∥

∥b̂m − bm

∥

∥

∥

2

n
+12

n
∑

k=1

I2k∆+
1

12

∥

∥

∥b̂m − bm

∥

∥

∥

2

̟
+12 sup

t∈Bm

ν2n(t)

where

νn(t) =
1

n

n
∑

k=1

(Zk∆ + Tk∆)t(Xk∆). (5)

On Ωn, by definition, we have:

∥

∥

∥b̂m − bm

∥

∥

∥

2

n
≤ 2

∥

∥

∥b̂m − bA

∥

∥

∥

2

n
+2 ‖bm − bA‖2n and

∥

∥

∥b̂m − bm

∥

∥

∥

2

̟
≤ 2

∥

∥

∥b̂m − bm

∥

∥

∥

2

n
.

Thus we obtain:

∥

∥

∥b̂m − bA

∥

∥

∥

2

n
≤ 3 ‖bm − bA‖2n + 24

n
∑

k=1

I2k∆ + 24 sup
t∈Bm

ν2n(t).

The following lemma is very useful. It is proved later.

Lemma 1. 1. E
(

I2k∆
)

≤ c∆ and E
(

I4k∆
)

≤ c∆.

2. E (Zk∆|Fk∆) = 0, E
(

Z2
k∆

∣

∣Fk∆

)

≤ σ2
0/∆ and E

(

Z4
k∆

∣

∣Fk∆

)

≤ c/∆2.

12



3. E (Tk∆|Fk∆) = 0, E
(

T 2
k∆

∣

∣Fk∆

)

≤ ξ20/∆ and E
(

T 4
k∆

∣

∣Fk∆

)

≤ c/∆3.

By Lemma 1, E
[

I2k∆
]

≤ ∆. It remains to bound E
[

supt∈Bm
ν2n(t)

]

. We con-
sider an orthonormal basis (ϕλ)λ∈Λm

of Sm for the L2
̟-norm with |Λm| = Dm.

Any function t ∈ Sm can be written t =
∑

λ∈Λm
aλϕλ and ‖t‖2

̟ =
∑

λ∈Λm
a2λ.

Then:

sup
t∈Bm

ν2n(t) = sup
∑

λ a2

λ≤1

(

∑

λ∈Λm

aλνn (ϕλ)

)2

≤ sup
∑

λ a2

λ≤1

(

∑

λ∈Λm

a2λ

)(

∑

λ∈Λm

ν2n (ϕλ)

)

=
∑

λ∈Λm

ν2n (ϕλ) .

It remains to bound E
(

ν2n (ϕλ)
)

. By (5),

E
[

ν2n(ϕλ)
]

=
1

n2

n
∑

k=1

E
[

ϕ2
λ(Xk∆)E

[

(Zk∆ + Tk∆)
2
∣

∣Fk∆

]]

+
2

n2

n
∑

k<l

E [(Zk∆ + Tk∆)ϕλ(Xk∆)ϕλ(Xl∆)E [Zl∆ + Tl∆|Fl∆]]

Thanks to Lemma 1, the second term of this inequality is null and we obtain,
as
´

R
ϕ2
λ(x)̟(dx) = 1:

E
[

ν2n(ϕλ)
]

≤ 2(σ2
0 + ξ20)

n2∆

n
∑

k=1

E
[

ϕ2
λ(Xk∆)

]

=
2(σ2

0 + ξ20)

n∆
.

Therefore:

E

[

∥

∥

∥b̂m − bA

∥

∥

∥

2

n
1Ωn

]

≤ 3 ‖bm − bA‖2n + 48(σ2
0 + ξ20)

Dm

n∆
+ C∆.

Step 2: bound of the risk on Ωc
n. The process (Xt)t≥0 is exponentially

β-mixing, π is bounded from below and above and n∆ → ∞. The following
result is proved for ξ = 0 for instance in Comte et al. (2007), but as it relies
only on the β-mixing property, we can apply it.

Result 2.

P [Ωc
n] ≤

1

n3
.

Let us set e = (e∆, . . . , en∆)
∗

where ek∆ := Yk∆−b(Xk∆) = Ik∆+Zk∆+Tk∆

and ΠmY = Πm (Y∆, . . . , Yn∆)
∗
=
(

b̂m(X0), . . . , b̂m(Xn∆)
)∗

where Πm is the

13



Euclidian orthogonal projection over Sm. Then

∥

∥

∥b̂m − bA

∥

∥

∥

2

n
= ‖ΠmY − bA‖2n = ‖ΠmbA − bA‖2n + ‖ΠmY − ΠmbA‖2n
≤ ‖bA‖2n + ‖e‖2n .

According to Lemma 1, Result 2 and the Cauchy-Schwarz inequality,

E

[

‖e‖2n 1Ωc
n

]

≤
(

E

[

‖e‖4n
])1/2

(P (Ωc
n))

1/2 ≤ C

(∆3n3)1/2
≤ C

n∆

and, as b is bounded on the compact set A,

E

[

‖bA‖2n 1Ωc
n

]

≤
(

E

[

‖bA‖4n
]

P (Ωc
n)
)1/2

.
1

n3/2
.

Collecting the results, we get:

E

[

∥

∥

∥b̂m − bA

∥

∥

∥

2

n
1Ωc

n

]

.
1

n∆

which ends the proof of Theorem 1.

6.2.1 Proof of Lemma 1

By Proposition 1, as b is Lipschitz,

E
[

I2k∆
]

=
1

∆2
E





(

ˆ (k+1)∆

k∆

(b(Xs)− b(Xk∆)) ds

)2




≤ 1

∆
E

[

ˆ (k+1)∆

k∆

(b(Xs)− b(Xk∆))
2
ds

]

≤ c

∆

ˆ (k+1)∆

k∆

E

[

(Xs −Xk∆)
2
ds
]

≤ c∆.

In the same way, we prove that E
[

I4k∆
]

≤ c∆. We have that

E
[

Z2
k∆

∣

∣Fk∆

]

= E

[(

1

∆2

ˆ (k+1)∆

k∆

σ2(Xs)ds

)∣

∣

∣

∣

∣

Fk∆

]

≤ σ2
0

∆
.

Moreover, by the Burkholder-Davis-Gundy inequality, we get

E
[

Z4
k∆

∣

∣Fk∆

]

≤ C

∆4
E





(

ˆ (k+1)∆

k∆

σ2(Xs)ds

)2
∣

∣

∣

∣

∣

∣

Fk∆



 ≤ C

∆2
.
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According to Applebaum (2004), Theorem 4.2.3 p224,

E [Tk∆|Fk∆] = 0

and, as
´

R
z2ν(dz) = 1:

E
[

T 2
k∆

∣

∣Fk∆

]

=
1

∆2

ˆ (k+1)∆

k∆

ξ2(Xs)

ˆ

R

z2ν(dz)ds ≤ ξ20
∆
.

By Result 1, we have

E
[

T 4
k∆

∣

∣Fk∆

]

≤ Cp

∆4
E





(

ˆ (k+1)∆

k∆

ξ2(Xs)

ˆ

R

z2ν(dz)ds

)2




+
Cp

∆4
E

[(

ˆ (k+1)∆

k∆

ξ4(Xs)ds

)]

ˆ

R

z4ν(dz)

.
1

∆3

6.3 Proof of Theorem 2

The bound of the risk on Ωc
n is done exactly in the same way as for the non

adaptive estimator. It remains thus to bound the risk on Ωn. As in the previous
proof, we get:

∥

∥

∥b̂m̂ − bA

∥

∥

∥

2

n
1Ωn ≤ 3 ‖bm − bA‖2n +

24

n

n
∑

k=1

I2k∆ + 2pen(m)− 2pen(m̂)

+ 24 sup
t∈Bm,m̂

ν2n(t)

where Bm,m′ is the unit ball (for the L2
̟-norm) of the subspace Sm + Sm′ :

Bm,m′ = {t ∈ Sm + Sm′ , ‖t‖̟ ≤ 1}. Let us introduce a function p(m,m′) such
that 12p(m,m′) = pen(m)+ pen(m′). We obtain that, on Ωn, for any m ∈ Mn:

∥

∥

∥b̂m̂ − bA

∥

∥

∥

2

n
≤ 3 ‖bm − bA‖2n +

24

n

n
∑

k=1

I2k∆ + 4pen(m)

+ 24 sup
t∈Bm,m̂

(

ν2n(t)− p(m, m̂)
)

.

It remains to bound

E

[

sup
t∈Bm,m̂

ν2n(t)− p(m, m̂)

]

≤
∑

m′

E

[

sup
t∈Bm,m′

ν2n(t)− p(m,m′)

]

+

.

For this purpose, we use the following proposition proved in Applebaum (2004)
(Corollary 5.2.2 ).
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Proposition 2 : exponential martingale.

Let (Yt)t≥0 satisfy:

Yt =

ˆ t

0

FsdWs +

ˆ t

0

KsdLs −
ˆ t

0

[

F 2
s

2
+

ˆ

R

(

eKsz − 1−Ksz
)

ν(dz)

]

ds

where Fs and Ks are locally integrable and previsible processes. If for any t > 0,

E

[

ˆ t

0

ˆ

|z|>1

∣

∣eKsz − 1
∣

∣ ν(dz)ds

]

<∞,

then eYt is a Gt-local martingale where Gt = σ(Ws, Ls, 0 ≤ s ≤ t).

For any ε ≤ ε1 := (λ ∧ 1)/(2 ‖t‖∞ ξ0) where λ is defined in Assumption A5,
for any t ≥ 0

ˆ t

0

ˆ

|z|≥1

(exp(εt(Xk∆)ξ(Xs)z)− 1) ν(dz)1s∈]k∆,(k+1)∆]ds <∞.

Let us introduce the two Markov processes

Aε,t := ε2
n
∑

k=0

t2(Xk∆)

ˆ t

0

σ2(Xs)1s∈]k∆,(k+1)∆]ds

and

Bε,t :=

n
∑

k=0

ˆ t

0

ˆ

R

(exp (εt(Xk∆)ξ(Xs)z)− εt(Xk∆)ξ(Xs)z − 1)1s∈]k∆,(k+1)∆]ν(dz)ds

and the following martingale:

Mt =

ˆ t

0

n
∑

k=0

1s∈]k∆,(k+1)∆]t(Xk∆−) (σ(Xs)dWs + ξ(Xs−)dLs) .

By Proposition 2,
Yε,s := εMs −Aε,s −Bε,s

is such that eYε,s is a local martingale.

Bound of Aε,s and Bε,s. We obtain easily thatAε,s ≤ Aε,(n+1)∆ ≤ ε2n∆ ‖t‖2n σ2
0 .

Under Assumption A5, ξ is constant or ν is symmetric, and therefore

Bε,s ≤ Bε,(n+1)∆ ≤ ∆
n
∑

k=0

ˆ

R

(exp (εt(Xk∆)ξ0z)− εt(Xk∆−)ξ0z − 1) ν(dz).

As
´

R
z2ν(dz) = 1, for any α ≤ 1,

ˆ 1

−1

(exp (αz)− αz − 1) ν(dz) ≤ α2

ˆ 1

−1

z2ν(dz) ≤ α2.
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Moreover, by integration by parts, for any α ≤ (1 ∧ λ)/2,
ˆ

[−1,1]c
(exp (αz)− αz − 1) ν(dz) ≤ (eα − α− 1) ν([1,+∞[) +

(

e−α + α− 1
)

ν(]−∞,−1])

+

ˆ +∞

1

α (eαz − 1) ν([−z, z]c)dz

≤ 2α2ν ([−1, 1]c) + Ce−λα

λ

(

eα

1− α/λ
− 1

)

≤ C′α2.

Then Bε,s . n∆ε2ξ20 ‖t‖
2
n. There exists a constant c such that, for any ε < ε1,

Aε,s +Bε,s ≤ c
n∆ε2

(

σ2
0 + ξ20

)

‖t‖2n
(1− ε/ε1)

.

Bound of P

(

νn(t) ≥ η, ‖t‖2n ≤ ζ2
)

. The process exp(Yε,t) is a local martin-

gale, then there exists an increasing sequence (τN ) of stopping times such that
limN→∞ τN = ∞ and exp(Yε,t∧τN ) is a Ft-martingale. For any ε < ε1, and all
N ,

E := P

(

M(n+1)∆∧τN ≥ n∆η, ‖t‖2n ≤ ζ2
)

≤ P

(

M(n+1)∆∧τN ≥ n∆η, A(n+1)∆∧τN +B(n+1)∆∧τN ≤ cn∆ε2
(

σ2
0 + ξ20

)

ζ2

(1− ε/ε1)

)

≤ E
(

exp(Yε,(n+1)∆∧τN )
)

exp

(

−n∆ηε+ cn∆ε2
(

ξ20 + σ2
0

)

ζ2

(1− ε/ε1)

)

.

As exp(Yε,t∧τN ) is a martingale, E(exp(Yε,t∧τN ) = 1 and

E ≤ exp

(

−n∆ηε+ cn∆ε2
(

ξ20 + σ2
0

)

ζ2

(1− ε/ε1)

)

.

LettingN tends to infinity, by dominated convergence, and as νn(t) = n∆M(n+1)∆,
we obtain that

P

(

νn(t) ≥ η, ‖t‖2n ≤ ζ2
)

≤ exp

(

−n∆ηε+ cn∆ε2
(

ξ20 + σ2
0

)

ζ2

(1− ε/ε1)

)

.

It remains to minimise this inequality in ε. Let us set

ε =
η

2c (σ2
0 + ξ20) ζ

2/∆+ η/ε1
< ε1.

We get:

P

(

νn(t) ≥ η, ‖t‖2n ≤ ζ2
)

≤ exp

(

− η2n∆

4c ((σ2
0 + ξ20) ζ

2 + c′ηξ0 ‖t‖∞)

)

.
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The following lemma concludes the proof. It is proved thanks to a L2
̟ −L∞

chaining technique. See Comte (2001), proof of Proposition 4, and Schmisser
(2010), Appendix D.3.

Lemma 2.

There exists a constant κ such that:

E

[

sup
t∈Bm,m′

ν2n(t)− p(m,m′)

]

. κ(ξ20 + σ2
0)
D3/2

n∆
e−

√
D

where D = dim(Sm + Sm′).

As
∑

DD
3/2e−

√
D ≤∑+∞

k=0 k
3/2e−

√
k <∞, we obtain that

E

[

sup
t∈Bm,m̂

ν2n(t)− p(m, m̂)

]

≤
∑

m′∈Mn

E

[

sup
t∈Bm,m′

ν2n(t)− p(m,m′)

]

. κ
ξ20 + σ2

0

n∆
.

6.4 Proof of Theorem 3

We recall that

ΩX,k =
{

ω,
∣

∣X(k+1)∆ −Xk∆

∣

∣ ≤ C∆ = (bmax + 3)∆ + (σ0 + 4ξ0)
√
∆ ln(n)

}

.

Let us introduce the set

ΩN,k =
{

ω, N
′

k∆ = 0
}

where N
′

k∆ is the number of jumps of size larger than ∆1/4 occuring in the time
interval ]k∆, (k + 1)∆]:

N ′
k∆ = µ

(

]k∆, (k + 1)∆] ,
[

−∆1/4,∆1/4
]c)

.

We have that

Ỹk∆ = Yk∆1ΩX,k
1Xk∆∈A

= bA(Xk∆)− bA(Xk∆)1Ωc
X,k∩(Xk∆∈A) + Ik∆1ΩX,k∩(Xk∆∈A) + Z̃k∆ + T̃k∆

+ (Zk∆ + Tk∆)1ΩX,k∩Ωc
N,k∩(Xk∆∈A) + E

(

(Zk∆ + Tk∆)1ΩX,k∩ΩN,k∩(Xk∆∈A)

∣

∣Fk∆

)

.

where

Z̃k∆ = Zk∆1ΩX,k∩ΩN,k∩(Xk∆∈A) − E
(

Zk∆1ΩX,k∩ΩN,k∩(Xk∆∈A)

∣

∣Fk∆

)

and

T̃k∆ = Tk∆1ΩX,k∩ΩN,k∩(Xk∆∈A) − E
(

Tk∆1ΩX,k∩ΩN,k∩(Xk∆∈A)

∣

∣Fk∆

)

.
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As previously, we only bound the risk on Ωn. Let us set

ν̃n(t) :=
1

n

n
∑

k=1

t(Xk∆)
(

Z̃k∆ + T̃k∆

)

.

We have that

∥

∥

∥b̃m − bA

∥

∥

∥

2

n
1Ωn ≤ 3 ‖bm − bA‖2n + 24 sup

t∈Bm

ν̃2n(t) +
224

n

n
∑

k=1

(

I2k∆ + b2A(Xk∆)1Ωc
X,k

)

+
224

n

n
∑

k=1

(

Z2
k∆ + T 2

k∆

)1ΩX,k∩Ωc
N,k∩(Xk∆∈A)

+
224

n

n
∑

k=1

(

E
[

(Zk∆ + Tk∆)1ΩX,k∩ΩN,k∩(Xk∆∈A)

∣

∣Fk∆

])2
.

The following lemma is proved later.

Lemma 3. 1. P(Ωc
X,k ∩ (Xk∆ ∈ A)) . ∆1−β/2.

2. P(ΩX,k ∩Ωc
N,k ∩ (Xk∆ ∈ A)) . ∆2−β/2.

3.
(

E
[

(Zk∆ + Tk∆)1ΩN,k∩ΩX,k∩(Xk∆∈A)

∣

∣Fk∆

])2
. ln2(n)∆1−β/2.

According to Lemma 1, E(I2k∆) ≤ ∆k. As b is bounded on the compact set

A, E
[

b2A(Xk∆)1Ωc
X,k

]

. P(Ωc
X,k) . ∆1−β/2. Moreover, on ΩX,k,

(Zk∆ + Tk∆)
2 1ΩX,k∩(Xk∆∈A) =

(

X(k+1)∆ −Xk∆

∆
− bA(Xk∆)− Ik∆

)2 1ΩX,k
1Xk∆∈A

.
ln2(n)

∆
+ b2A(Xk∆) + I2k∆

and then

E := E

[

(Zk∆ + Tk∆)
2 1ΩX,k∩Ωc

N,k∩(Xk∆∈A)

]

.

(

ln2(n)

∆
+ b2max

)

P
(

ΩX,k ∩ Ωc
N,k ∩ (Xk∆ ∈ A)

)

+ E
(

I2k∆
)

. ln2(n)∆1−β/2.

It remains to bound E
(

supt∈Bm
ν̃2n(t)

)

. In the same way as in Subsection 6.2,
we get:

E

(

sup
t∈Bm

ν̃2n(t)

)

≤
∑

λ∈Λm

E
(

ν̃2n(ϕλ)
)

≤ 2Dm

n
E

(

Z̃2
∆ + T̃ 2

∆

)

≤ 2Dm

n
E
(

Z2
∆ + T 2

∆

)

≤ 2
(

σ2
0 + ξ20

) Dm

n∆
.
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6.4.1 Proof of Lemma 3

Result 3. Let β be the Blumenthal-Getoor index of Lt. Then:

ν([−z, z]c) . z−β ,

ˆ

|x|≤z∧a0

x2ν(dx) . z2−β and

ˆ

|x|≤z∧a0

x4ν(dx) . z4−β.

The constant a0 is defined in A6.

Bound of P(Ωc
X,k ∩ (Xk∆ ∈ A)). We have:

P
(

Ωc
X,k ∩ (Xk∆ ∈ A)

)

= P
({∣

∣X(k+1)∆ −Xk∆

∣

∣ > C∆

}

∩ (Xk∆ ∈ A)
)

.

We know that X(k+1)∆ −Xk∆ = b(Xk∆) + Ik∆ + Zk∆ + Tk∆. Then

P
(

Ωc
X,k ∩ (Xk∆ ∈ A)

)

≤ P (|∆Ik∆| ≥ ∆)+P

(

|∆Zk∆| ≥ σ0
√
∆ ln(n)

)

+P

(

|∆Tk∆| ≥ ξ0
√
∆ ln(n)

)

.

(6)
By a Markov inequality and Lemma 1, we obtain:

P (|∆Ik∆| ≥ ∆) ≤ E
(

∆2I2k∆
)

∆2
. ∆. (7)

By Proposition 2, the process exp
(

c
´ t

0
σ(Xs− )dWs − c2

´ t

0
σ2(Xs)ds

)

is a local

martingale (as σ is bounded, it is in fact a martingale, see Liptser and Shiryaev
(2001), pp 229-232). Then, by a Markov inequality:

P

(

|∆Zk∆| ≥ σ0
√
∆ ln(n)

)

≤ 2

n
E

[

exp

(√
∆Zk∆

σ0

)]

.
1

n
. (8)

To bound inequality (6), it remains to bound P

(

|∆Tk∆| ≥ ξ0
√

∆ ln(n)
)

. Let

us set

Tk∆ = T
(1)
k∆ + T

(2)
k∆ + T

(3)
k∆ where T

(i)
k∆ =

1

∆

ˆ (k+1)∆

k∆

ξ(Xs−)dL
(i)
s

with

L
(1)
t =

ˆ t

0

ˆ

[−
√
∆,

√
∆]

zµ̃(ds, dz) , L
(2)
t =

ˆ t

0

ˆ

[−∆1/4,−
√
∆]∪[

√
∆,∆1/4]

zµ̃(ds, dz)

L
(3)
t =

ˆ t

0

ˆ

[−∆1/4,∆1/4]c
zµ̃(ds, dz).

Let us set N
′′

k∆ = µ
(

]k∆, (k + 1)∆],
[

−
√
∆,

√
∆
]c)

. By Result 3, we have:

P

(∣

∣

∣T
(2)
k∆ + T

(3)
k∆

∣

∣

∣ > 0
)

= P

(

N
′′

k∆ ≥ 1
)

. ∆ν
([

−
√
∆,

√
∆
]c)

. ∆1−β/2.
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It remains to bound P

[∣

∣

∣
∆T

(1)
k∆

∣

∣

∣
≥ 2ξ0

√
∆ ln(n)

]

. We have that:

P

[∣

∣

∣∆T
(1)
k∆

∣

∣

∣ ≥ 2ξ0
√
∆ ln(n)

]

≤ 2P

[

exp

(

ε

ˆ (k+1)∆

k∆

ξ(Xs−)dL
(1)
s

)

≥ n2εξ0
√
∆

]

.

By Proposition 2, for any ε,

Dt := exp

(

ε

ˆ t

k∆

ξ(Xs−)dL
(1)
s −

ˆ t

k∆

ˆ

|z|≤
√
∆

(exp(εzξ(Xs−)− 1− εzξ(Xs−)) ν(dz)

)

is a local martingale. Let us set ε = 1/(2ξ0∆
1/2). There exists an increasing

sequence of stopping times τN such that, for any N ,

F := P

[

exp

(

1

2ξ0∆1/2

ˆ (k+1)∆∧τN

k∆

ξ(Xs−)dL
(1)
s

)

≥ n

]

≤ n−1 exp

(

ˆ (k+1)∆∧τN

k∆

ˆ

|z|≤
√
∆

(

exp

(

zξ(Xs−)

2ξ0∆1/2

)

− 1− zξ(Xs−)

2ξ0∆1/2

)

ν(dz)

)

≤ n−1 exp

(

2∆

ˆ

|z|≤
√
∆

ξ20z
2

4ξ20∆
ν(dz)

)

≤ n−1 exp

(
ˆ

R

z2ν(dz)

)

≤ n−1.

When N → ∞, by dominated convergence, we obtain:

P

(∣

∣

∣∆T
(1)
k∆

∣

∣

∣ ≥ ξ0
√
∆ ln(n)

)

. n−1. (9)

Bound of P

(

ΩX,k ∩ Ωc
N,k ∩ (Xk∆ ∈ A)

)

. We recall that

N ′
k∆ = µ

(

]k∆, (k + 1)∆], [−∆1/4,∆1/4]c
)

. We have:

Ωc
N,k =

{

N
′

k∆ = 1
}

∪
{

N
′

k∆ ≥ 2
}

with
P

(

N
′

k∆ = 1
)

. ∆1−β/4 and P

(

N
′

k∆ ≥ 2
)

. ∆2−β/2.

Then P

(

Ωc
N,k ∩

{

N
′

k∆ ≥ 2
})

. ∆2−β/2. We can write:

G := P

(

ΩX,k ∩ (Xk∆ ∈ A) ∩ (N
′

k∆ = 1)
)

≤ P

(

N
′

k∆ = 1
)

P

(∣

∣

∣∆T
(2)
k∆ +∆T

(3)
k∆

∣

∣

∣ ≤ 2C∆

∣

∣

∣N ′
k∆ = 1

)

+ P

(

N
′

k∆ = 1
)

P

({∣

∣

∣
∆T

(2)
k∆ +∆T

(3)
k∆

∣

∣

∣
≥ 2C∆

∣

∣

∣
N ′

k∆ = 1
}

∩ ΩX,k ∩ (Xk∆ ∈ A)
)

.

By (7), (8) and (9), we obtain:

H := P

({∣

∣

∣∆T
(2)
k∆ +∆T

(3)
k∆

∣

∣

∣ ≥ 2C∆

∣

∣

∣N ′
k∆ = 1

}

∩ ΩX,k ∩ (Xk∆ ∈ A)
)

≤ P

(

∆
∣

∣

∣bA(Xk∆) + Ik∆ + Zk∆ + T
(1)
k∆

∣

∣

∣ > C∆

)

. ∆+ n−1.
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It remains to bound J := P

(∣

∣

∣
∆T

(2)
k∆ +∆T

(3)
k∆

∣

∣

∣
≤ 2C∆|N

′

k∆ = 1
)

. If N
′

k∆ = 1,

then
∣

∣

∣∆T
(3)
k∆

∣

∣

∣ = |
´ (k+1)∆

k∆
ξ(Xs−)dL

(3)
s | ≥ ξ1∆

1/4. Then J ≤ P

(

∆
∣

∣

∣T
(2)
k∆

∣

∣

∣ ≥ ξ1∆
1/4 − 2C∆

)

.

Let us set n0 =
⌈

1
1−β/2

⌉

and a = (ξ0n0)
−1 (

ξ1∆
1/4 − 2C∆

)

. We have:

J ≤ P [µ(]k∆, (k + 1)∆], [−a, a]c) ≥ 1] + P

[

µ(]k∆, (k + 1)∆], [−a,−∆1/2] ∪ [∆1/2, a]) ≥ n0

]

≤ ∆ν([−a, a]c) + ∆n0ν([−∆1/2,∆1/2]c)n0

. ∆1−β/4 +∆.

Then P(ΩX,k ∩ Ωc
N,k) ≤ P(N ′

k∆ = 1)∆1−β/4 + P(N ′
k∆ = 2) . ∆2−β/2.

Bound of
(

E
[

(Zk∆ + Tk∆) 1ΩX,k∩ΩN,k∩(Xk∆∈A)

∣

∣Fk∆

])2
.

If σ and ξ are constants. Let us setE :=
(

E
[

(Zk∆ + Tk∆)1ΩX,k∩ΩN,k∩(Xk∆∈A)

∣

∣Fk∆

])2

and

ΩI,k =
{

ω, |Ik∆| ≤ 1,∩ |∆Zk∆| ≤ σ0
√
∆ ln(n),∩

∣

∣

∣∆T
(1)
k∆

∣

∣

∣ ≤ 2ξ0
√
∆ ln(n)

}

.

By (7), (8) and (9), P
(

Ωc
I,k

)

≤ ∆+ n−1. Then, by a Markov inequality:

E . ∆ ln2(n) +
(

E
[

(Zk∆ + Tk∆) 1ΩX,k∩ΩN,k∩ΩI,k∩(Xk∆∈A)

∣

∣Fk∆

])2
.

Let us introduce the set ΩZT,k :=
{

ω, |Zk∆ + Tk∆| ≤ C∆∆
−1 − bmax − 1

}

. On
ΩI,k, |Ik∆| ≤ 1 and therefore:

ΩZT,k ∩ ΩI,k ⊆ ΩX,k ∩ΩI,k ⊆
{

ω, |Zk∆ + Tk∆| ≤ C∆∆
−1 + bmax + 1

}

∩ ΩI,k.

Then
E . ∆ ln2(n) + F 2 +G2

where F = E
[

(Zk∆ + Tk∆)1ΩZT,k∩ΩN,k∩ΩI,k∩(Xk∆∈A)

∣

∣Fk∆

]

and

G = E

[

(Zk∆ + Tk∆)1Ωc
ZT,k∩ΩX,k∩ΩN,k∩ΩI,k∩(Xk∆∈A)

∣

∣

∣Fk∆

]

. As σ and ξ are

constants, the terms

Zk∆ =
σ0
∆

ˆ (k+1)∆

k∆

dWs and Tk∆ =
ξ0
∆

ˆ (k+1)∆

k∆

dLs

are centered and independent. Then F = 0. Moreover, on ΩN,k, T
(3)
k∆ = 0. Then

|G| .
∣

∣

∣E

[(

Zk∆ + T
(1)
k∆ + T

(2)
k∆

)1ΩX,k∩Ωc
ZT,k∩ΩN,k∩ΩI,k∩(Xk∆∈A)

∣

∣

∣Fk∆

]∣

∣

∣ .
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On ΩI,k ∩ ΩX,k,
∣

∣

∣
Zk∆ + T

(1)
k∆ + T

(2)
k∆

∣

∣

∣
. ln(n)∆−1/2, and

|G| .
ln(n)√

∆

(

P

(∣

∣

∣Zk∆ + T
(1)
k∆ + T

(2)
k∆

∣

∣

∣ ∈
[

C∆∆
−1 − bmax − 1, C∆∆

−1 + bmax + 1
]1ΩI,k

))

= 2
ln(n)√

∆

ˆ

R

P

(

T
(2)
k∆ ∈

[

C∆∆
−1 − bmax − 1− x,C∆∆

−1 + bmax + 1− x
]1ΩI,k

)

× P

(

Zk∆ + T
(1)
k∆ ∈ dx

∣

∣

∣T
(2)
k∆ ∈

[

C∆∆−1 − bmax − 1− x,C∆∆
−1 + bmax + 1− x

]1ΩI,k

)

.

On ΩI,k,
∣

∣

∣Zk∆ + T
(1)
k∆

∣

∣

∣ ≤ (σ0 + 2ξ0) ln(n)∆
−1/2. Then

|G| .
ln(n)√

∆

[

sup
C≥ξ0 ln(n)∆−1/2

P

(

T
(2)
k∆ ∈ [C,C + 2bmax + 2]

)

]

. (10)

We recall that L
(2)
t is a compound Poisson process in which all the jumps are

greater than
√
∆ and smaller than ∆1/4. Let us denote by τi the times of

the jumps of size in [
√
∆,∆1/4] and by ζi the size of the jumps. We set aj =

ξ−1
0 C∆−

∑j−1
i=1 ζi and c := ξ−1

0 (2bmax + 2). Then, as ξ is constant equal to ξ0:

H := P

(

T
(2)
k∆ ∈ [C,C + 2bmax + 2]

)

≤
∞
∑

j=1

P

(

j jumps ≥
√
∆, last jump ∈ [aj , aj + c∆]

)

. 2 sup
a≥

√
∆

P (1 jump ∈ [a, a+ c∆]) = 2∆ sup
a≥

√
∆

ν ([a, a+ c∆]) .

By A6,

H . ∆ sup
a≥

√
∆

[

1

aβ
− 1

(a+ c∆)
β

]

.
√
∆∆1−β/2 (11)

and, by (10) and (11),

E . ∆ ln2(n) +
ln2(n)

∆
∆∆2−β . ∆ ln2(n) + ∆2−β ln2(n).

Remark 4. If ν is not absolutely continuous, we obtain:

E ≤ ∆ ln2(n) + (∆ν ([−a+ c∆, a− c∆]
c
))

2
. ∆ ln2(n) + ∆2−2β ln2(n).

If σ or ξ are not constants. The problem is that Zk∆ and Tk∆ are not
symmetric and we can’t apply directly the previous method. We replace them
by two centred terms. The following lemma is very useful.
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Lemma 4.

Let f be a C 2 function such that f and f ′ are Lipschitz. Let us set, for any
t ∈]k∆, (k + 1)∆]:

ψf (Xk∆, t) = f ′(Xk∆)

(

σ(Xk∆)

ˆ t

k∆

dWs + ξ(Xk∆)

ˆ t

k∆

zµ̃(ds, dz)

)

.

We have:

E

[

(f(Xt)− f(Xk∆)− ψf (Xk∆, t))
2 1ΩN,k

1Xk∆∈A

]

. ∆2−β/4.

Lemma 4 is proved below. Let us set

Z̄k∆ =
1

∆

ˆ (k+1)∆

k∆

(σ(Xk∆) + ψσ(Xk∆,s)) dWs,

T̄
(i)
k∆ =

1

∆

ˆ (k+1)∆

k∆

(ξ(Xk∆) + ψξ(Xk∆,s)) dL
(i)
s and T̄k∆ = T̄

(1)
k∆+ T̄

(2)
k∆+ T̄

(3)
k∆ .

The terms Z̄k∆ and T̄k∆ are symmetric. By lemma 4,

E

[

(

Z̄k∆ − Zk∆

)2 1ΩN,k
1Xk∆∈A

]

=
1

∆2
E

[

ˆ (k+1)∆

k∆

(σ(Xs)− σ(Xk∆)− ψσ(Xk∆,s))
2 ds

]

. ∆1−β/4. (12)

We prove in the same way that

E

[

(

T̄k∆ − Tk∆
)2 1ΩN,k

1Xk∆∈A

]

≤ ∆1−β/4. (13)

Let us set Uk∆ = ∆−1ξ(Xk∆−)
´ (k+1)∆

k∆ dL
(2)
s . By Result 1 and Proposition 1,

E

[

∆2
(

T̄
(2)
k∆ − Uk∆

)2
]

= E

[

ˆ (k+1)∆

k∆

ˆ

R

(ξ(Xs)− ξ(Xk∆))
2
z2ν(dz)ds

]

≤ ∆2.

(14)
Let us introduce the set

Ω̄I,k =
{

ω, |Ik∆|+
∣

∣Zk∆ − Z̄k∆

∣

∣+
∣

∣Tk∆ − T̄k∆
∣

∣ ≤ 3
}

⋂

{

∣

∣∆Z̄k∆

∣

∣ ≤ σ0
√
∆ ln(n) + ∆,

∣

∣

∣
∆T̄

(1)
k∆

∣

∣

∣
≤ 2ξ0

√
∆ ln(n) + ∆

}

⋂

{∣

∣

∣∆(T̄
(2)
k∆ − Uk∆)

∣

∣

∣ ≤ ξ0
√
∆
}

.

By (7), (8), (9), (12), (13), (14) and Markov inequalities, we obtain:

P
(

Ω̄c
I,k

)

. ∆1−β/4 +
1

n
. (15)
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Then

E :=
(

E
[

(Zk∆ + Tk∆)1ΩX,k∩ΩN,k∩(Xk∆∈A)

∣

∣Fk∆

])2
(16)

. ∆1−β/2 ln2(n) +
(

E

[

(

Z̄k∆ + T̄k∆
)1ΩX,k∩ΩN,k∩(Xk∆∈A)∩Ω̄I,k

∣

∣

∣Fk∆

])2

.

Let us introduce the set:

Ω̄ZT,k :=
{

ω,
∣

∣Z̄k∆ + T̄k∆
∣

∣ ≤ C∆∆
−1 − bmax − 3

}

.

We have that

Ω̄ZT,k ∩ Ω̄I,k ⊆ ΩX,k ∩ Ω̄I,k ⊆
{

ω,
∣

∣Z̄k∆ + T̄k∆
∣

∣ ≤ C∆∆−1 + bmax + 3
}

∩ Ω̄I,k.

Given the filtration Fk∆, the sum Z̄k∆ + T̄k∆ is symmetric. Then

E

[

(

Z̄k∆ + T̄k∆
)1Ω̄ZT,k∩ΩN,k∩(Xk∆∈A)

∣

∣

∣Fk∆

]

= 0.

Moreover, on ΩN,k, T̄
(3)
k∆ = 0. Then, by (16),

E . ∆1−β/2 ln2(n) +G2 +H2

where G := E

[(

Z̄k∆ + T̄
(1)
k∆ + T̄

(2)
k∆

)1ΩX,k∩Ωc
ZT,k∩ΩN,k∩ΩI,k∩(Xk∆∈A)

∣

∣

∣Fk∆

]

and

H := E

[(

Z̄k∆ + T̄
(1)
k∆ + T̄

(2)
k∆

)1ΩX,k∩ΩZT,k∩ΩN,k∩Ωc
I,k∩(Xk∆∈A)

∣

∣

∣Fk∆

]

. We have

that H2 . ∆−1 ln2(n)P2(Ωc
I,k) . ∆1−β/2 ln2(n). The end of the proof is the

same as in the case of σ and ξ constants. We obtain that

|G| .
ln(n)√

∆
sup

C≥κ0 ln(n)∆−1/2

P (Uk∆ ∈ [C,C + 2bmax + 6]) .
√
∆∆1−β/2.

6.4.2 Proof of Lemma 4

According to the Ito formula (see for instance Applebaum (2004), Theorem 4.4.7
p251), we have that

f(Xt)− f(Xk∆) = I1 + I2 + I3 + I4

where

I1 =

ˆ t

k∆

f ′(Xs)σ(Xs)dWs I2 =

ˆ t

k∆

ˆ

R

(f (Xs− + zξ(Xs−))− f(Xs−)) µ̃(ds, dz)

I3 =

ˆ t

k∆

ˆ

z∈R

[f(Xs + zξ(Xs))− f(Xs)− zξ(Xs)f
′(Xs)] ν(dz)ds

I4 =

ˆ t

k∆

[

f ′(Xs)b(Xs) + f ′′(Xs)σ
2(Xs)/2

]

ds.
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By Proposition 1, for any t ≤ (k + 1)∆, we have:

E

[

(

I1 − f ′(Xk∆)σ(Xk∆)

ˆ t

k∆

dWs

)2
]

= E

[

(
ˆ t

k∆

(σ(Xs)f
′(Xs)− σ(Xk∆)f ′(Xk∆)) dWs

)2
]

=

ˆ t

k∆

(σ(Xs)f
′(Xs)− σ(Xk∆)f ′(Xk∆))

2
ds . ∆2.

We can write:

E := E

[

(

I2 − f ′(Xk∆)ξ(Xk∆−)

ˆ t

k∆

dL(1)
s + dL(2)

s

)2 1ΩN,k

]

≤ 2

ˆ t

k∆

ˆ

|z|≤∆1/4

E

[

(f(Xs + zξ(Xs))− f(Xs)− zξ(Xs)f
′(Xs))

2
]

ν(dz)ds

+ 2

ˆ t

k∆

ˆ

|z|≤∆1/4

E

[

z2 (ξ(Xs)f
′(Xs)− ξ(Xk∆)f

′(Xk∆))
2
]

ν(dz)ds.

The function f is C 2, then, by the Taylor formula, for any s ∈ [k∆, t], z ∈ R,
there exists ζs,z in [Xs, Xs + zξ(Xs)] such that:

f (Xs + zξ(Xs))− f(Xs)− zξ(Xs)f
′(Xs) =

z2ξ2(Xs)

2
f ′′(ζs,z).

Then, as ξ and f ′′ are bounded:

E

[

(f(Xs + zξ(Xs)− f(Xs)− zξ(Xs)f
′(Xs))

2
]

=
z4

4
E

[

(ξ(Xs)f
′′(ζs,z))

2
]

. z4

and, by Result 3, for any t ≤ (k + 1)∆,

F :=

ˆ t

k∆

ˆ

|z|≤∆1/4

E

[

(f(Xs + zξ(Xs)− f(Xs)− zξ(Xs)f
′(Xs))

2
]

ν(dz)ds

. ∆

ˆ

|z|≤∆1/4

z4ν(dz) . ∆2−β/4.

The functions ξ and f ′ are Lipschitz, then by Proposition 1,

E

[

z2 (ξ(Xs)f
′(Xs)− ξ(Xk∆)f

′(Xk∆))
2
]

. z2E
[

(Xs −Xk∆)
2
]

. ∆z2

and consequently, for any t ≤ (k + 1)∆:

ˆ t

k∆

ˆ

|z|≤∆1/4

E

[

z2 (ξ(Xs)f
′(Xs)− ξ(Xk∆)f ′(Xk∆))

2
]

ν(dz)ds . ∆3−β/2

then E . ∆2−β/4. By the same way, we obtain that

E
[

I23
]

≤ E

[

ˆ t

k∆

ˆ

|z|≤∆1/4

(

z2ξ2(Xs)

2
f ′′(ζs,z)

)2

ν(dz)ds

]

≤ ∆2−β/4.
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The functions b and f ′ are Lipschitz and f ′′ and σ are bounded, then, for any
t ≤ (k + 1)∆ :

E
[

I24
]

. ∆

ˆ t

k∆

(

1 + E
[

X4
s

])

ds . ∆2.

Then, for any t ≤ (k + 1)∆:

E [(f(Xt)− f(Xk∆)− ψf (Xk∆, t))] ≤ ∆2−β/4.

6.5 Proof of Theorem 4

As previously, we only bound the risk on Ωn. As in Subsection 6.3, we introduce
the function p(m,m′) such that p(m,m′) = 12(pen(m) + pen(m′)). On Ωn, for
any m ∈ Mn, we have:

∥

∥

∥b̃m̃ − bA

∥

∥

∥

2

n
≤ 3 ‖bm − bA‖2n +

224

n

n
∑

k=1

b2A(Xk∆)1Ωc
X,k

+ I2k∆ + 2
(

Z2
k∆ + T 2

k∆

)1ΩX,k∩Ωc
Z,k

+
224

n

n
∑

k=1

(

E
[

(Zk∆ + Tk∆)1ΩX,k∩ΩZ,k

∣

∣Fk∆

])2

+ 24 sup
t∈Bm,m̂

(

ν̃2n(t)− p(m, m̃)
)

+ 4pen(m).

It remains only to bound E

[

supt∈Bm,m̂

(

ν̃2n(t)− p(m, m̃)
)

]

≤∑m′ E

[

supt∈Bm,m′

(

ν̃2n(t)− p(m, m̃)
)

]

.

As in the proof of Theorem 2, we bound the quantity

E

[

exp
(

εt(Xk∆)
(

Z̃k∆ + T̃k∆

))∣

∣

∣Fk∆

]

.

We have that

E
[

exp (εt(Xk∆)Zk∆)1ΩN,k

∣

∣Fk∆

]

≤ exp

(

ε2σ2
0t

2(Xk∆)

2∆

)

.

The truncated Lévy process L̃t =
´ t

0

´

|z|≤∆1/4 zµ̃(ds, dz) satisfies Assumption

A5 and then there exists a constant c such that:

E
[

exp (εt(Xk∆)Tk∆)1ΩN,k

∣

∣Fk∆

]

≤ exp

(

cε2ξ20t
2(Xk∆)

∆ (1− ε/ε1)

)

.

As Zk∆1ΩN,k
and Tk∆1ΩN,k

are centred, we obtain:

E
[

exp (ε |t(Xk∆) (Zk∆ + Tk∆)|)1ΩN,k

∣

∣Fk∆

]

≤ 2 exp

(

cε2
(

σ2
0 + ξ20

)

t2(Xk∆)

∆ (1− ε/ε1)

)

and then

E

[

exp
(

ε
∣

∣

∣t(Xk∆)
(

Z̃k∆ + T̃k∆

)∣

∣

∣

)1ΩN,k∩ΩX,k

∣

∣

∣Fk∆

]

≤ 2 exp

(

cε2
(

σ2
0 + ξ20

)

t2(Xk∆)

∆ (1− ε/ε1)

)

.

We conclude as in the proof of Theorem 2.
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Figure 1: Model 1: Ornstein-Uhlenbeck and binomial law

b(x) = −2x, σ(x) = ξ(x) = 1 and binomial law
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– : true function -.-: first estimator . . .: truncated estimator
n = 104 et ∆ = 10−1

Figure 2: Model 2: Double well and Laplace law

b(x) = − (x− 1/4)
3 − (x+ 1/4)

3
, σ = ξ = 1 and Laplace law
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– : true function -.-: first estimator . . .: truncated estimator
n = 104 et ∆ = 10−1
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Figure 3: Model 3: Sine function

b(x) = −2x+sin(3x), σ(x) = ξ(x) =
√

(3 + x2)/(1 + x2) jumps not sub-exponential

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0
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3

– : true function -.-: first estimator . . .: truncated estimator
n = 104 et ∆ = 10−1

Table 1: Model 1: Ornstein-Uhlenbeck and binomial law

b(x) = −2x, σ(x) = ξ(x) = 1 and compound Poisson process (binomial law)

first estimator truncated estimator
n ∆ m̂a r̂a risk1 or1 m̃a r̃a risk2 or2

103 10−1 0 1.02 0.044 1.3 0 1.02 0.044 1.3
104 10−1 0 1.02 0.011 1.3 0 1.02 0.011 1.3
103 10−2 0 1.02 0.55 1.04 0 1.02 0.55 1.04
104 10−2 0 1 0.047 1 0 1 0.047 1
5.104 10−2 0.04 1 0.010 1.4 0 1 0.0053 1
m̂a, r̂a and m̃a, r̃a : average values of m̂, r̂ and m̃, r̃ on the 50 simulations.
risk1 and risk2 : means of the empirical errors of the adaptive estimators.
or1 and or2: means of oracle =empirical error of the adaptive estimator /
empirical error of the best possible estimator.
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Table 2: Model 2: Double well and Laplace law
b(x) = −(x− 1/4)3 − (x + 1/4)3, σ(x) = ξ(x) = 1 and Laplace law.

first estimator truncated estimator
n ∆ m̂a r̂a risk1 or1 m̃a r̃a risk2 or2

103 10−1 0.02 1.0 0.12 3.1 0.02 1.0 0.12 3.1
104 10−1 1.7 2.1 2.1096 51 0.4 2.1 0.04 1.5
103 10−2 0.26 1.2 1.8 3.1 0.06 1 0.51 1.4
104 10−2 0.12 1.5 0.16 1.8 0.08 1.2 0.13 2.4
5.104 10−2 0.30 2.5 0.035 1.6 0.26 2.5 0.019 1.8
m̂a, r̂a and m̃a, r̃a : average values of m̂, r̂ and m̃, r̃ on the 50 simulations.
risk1 and risk2 : means of the empirical errors of the adaptive estimators.
or1 and or2: means of oracle =empirical error of the adaptive estimator /
empirical error of the best possible estimator.

Table 3: Model 3: Sine function and jumps not sub-exponential

b(x) = −2x+sin(3x), σ(x) = ξ(x) =
√

(3 + x2)/(1 + x2) and ν(z) ∝ e−
√
az/

√
z

first estimator truncated estimator
n ∆ m̂a r̂a risk1 or1 m̃a r̃a risk2 or2

103 10−1 0.34 1.2 0.76 3.6 0.04 1.2 0.28 1.9
104 10−1 0.8 2.2 0.082 1.3 0.68 2.2 0.073 1.2
103 10−2 0.96 1.2 18 6.3 0.02 1.2 1.3 1.2
104 10−2 0.78 1.4 1.5 4.3 0.12 1.4 0.24 3.3
5.104 10−2 0.92 2.3 0.24 4.3 0.70 2.3 0.039 1.3
m̂a, r̂a and m̃a, r̃a : average values of m̂, r̂ and m̃, r̃ on the 50 simulations.
risk1 and risk2 : means of the empirical errors of the adaptive estimators.
or1 and or2: means of oracle =empirical error of the adaptive estimator /
empirical error of the best possible estimator.
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7 Auxiliary proofs

7.1 Decomposition on a lattice

Proposition 3.

If there exist some constants c1, c2 and K independent of D, n, ∆, b and σ
and two constants α and β independent of n and D such that, for any function
t ∈ Sm + S′

m:

∀η, ζ > 0, ∀t ∈ Sm+Sm′ ‖t‖∞ ≤ Cζ, P
(

fn(t) ≥ η, ‖t‖2n ≤ ζ2
)

≤ K exp

(

− η2nβ

(c1α2ζ2 + 2Cc2αηζ)

)

,

then there exist some constants C and κ depending only of ν such that, if D ≤
nβ:

E

[

sup
t∈Bm,m′

f2
n(t)−

κα2D

nβ

]

+

≤ CK
κα2D3/2e−

√
D

nβ
.

Let us consider an orthonormal (for the L2
̟-norm) basis (ψλ)λ∈Λm,m′

of

Sm,m′ = Sm + Sm′ such that

∀λ, card ({λ′, ‖ψλψλ′‖ 6= 0}) ≤ φ2.

Let us set

r̄m,m′ =
1√
D

sup
β 6=0

‖
∑

λ βλψλ‖∞
|β|∞

.

We obtain that
∥

∥

∥

∥

∥

∑

λ

βλψλ

∥

∥

∥

∥

∥

∞

≤ φ2 |β|∞ sup
λ

‖ψλ‖∞ et ‖ψλ‖∞ ≤
√
D ‖ψλ‖L2 ≤ π1

√
D ‖ψλ‖̟

then
r̄m,m′ ≤ r̄ := φ2π1.

We need a lattice of which the infinite norm is bounded. We use Lemma 9 of
Barron et al. (1999):

Result 4. There exists a δk-lattice Tk of L2
̟ ∩ (Sm + Sm′) such that

|Tk ∩ Bm,m′ | ≤
(

5/δk
)D

where δk = 2−k/5 . Let us denote by pk(u) the orthogonal projection of u on
Tk. For any u ∈ Sm,m′ , ‖u− pk(u)‖π ≤ δk and

sup
u∈p−1

k (t)

‖u− t‖∞ ≤ r̄m,m′δk ≤ r̄δk.
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Let us set Hk = ln(|Tk ∩ Bm,m′ |). We have that:

Hk ≤ D ln(5/δk) = D (k ln(2) + ln(5/δ0)) ≤ C(k + 1)D.

The decomposition of uk on the δk-lattice must be done very carefully: the
norms ‖uk − uk−1‖̟ and ‖uk − uk−1‖∞ must be controlled. Let us set

Ek = {uk ∈ Tk ∩ Bm,m′ , ‖u− uk‖̟ ≤ δk et ‖u− uk‖∞ ≤ r̄δk} .

We have that ln(|Ek|) ≤ Hk. For any function u ∈ Bm,m′ , there exist a series
(uk)k≥0 ∈∏k Ek such that

u = u0 +

∞
∑

k=1

(uk − uk−1) .

Let us consider (ηk)k≥0 and η ∈ R such that η0 +
∑∞

k=1 ηk ≤ η. We obtain:

P

(

sup
u∈Bm,m′

|fn(u)| > η

)

≤ P

(

∃ (uk) ∈
∏

Ek,

∣

∣

∣

∣

∣

fn(u0) +

∞
∑

k=1

fn(uk − uk−1)

∣

∣

∣

∣

∣

> η0 +

∞
∑

k=1

ηk

)

≤ P1 +

∞
∑

k=1

P2,k (17)

where

P1 =
∑

u0∈E0

P (|fn(u0)| > η0) and P2,k =
∑

uk∈Ek

P (|fn(uk − uk−1)| > ηk) .

As u0 ∈ T0, ‖u0‖̟ ≤ 1 and ‖u0‖∞ ≤ r̄
√
D. Moreover, ‖u0‖2n ≤ 3/2‖u0‖2̟ ≤

3δ0/2. Then

P (|fn(u0)| > η0) = P

(

|fn(u0)| > η0, ‖u0‖2n ≤ 3δ0/2
)

.

There exist two constants c′1 and c′2 depending only on δ0 and r̄ such that

P (|fn(u0)| > η0) ≤ K exp

(

− nβη20
c′1α

2 + 2c′2
√
Dαη0

)

.

Let us set x0 such that η0 = α
(

√

c′1 (x0/β) + c′2
√
D (x0/β)

)

. Then:

x0 ≤ βη20

c′1α
2 + 2c′2

√
Dαη0

and
P (fn(u0) > η0) ≤ K exp (−nx0) .

Then
P1 ≤ K

∑

u0∈E0

exp (−nx0) ≤ K exp (H0 − nx0) . (18)
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We have that

‖uk − uk−1‖2π ≤ 2
(

‖u− uk−1‖2π + ‖u− uk‖2π
)

≤ 5δ2k−1/2

then ‖uk − uk−1‖2n ≤ 15δ2k−1/4. As uk−1, uk ∈ Ek−1 × Ek, it follows that

‖uk − uk−1‖2∞ ≤ 5δ2k−1r̄
2/2. There exists two constants c3 and c4 such that:

Pn (|fn(uk − uk−1)| > ηk) = Pn

(

|fn(uk − uk−1)| > ηk, ‖uk − uk−1‖2n ≤ 15δ2k−1/4
)

≤ K exp

(

− nβη2k
c3α2δ2k−1 + 2c4αδk−1

)

.

Let us fix xk such that ηk = δk−1a
(

√

c3 (xk/β) + c4 (xk/β)
)

. We obtain:

xk ≤ βη2k
c3α2δ2k−1 + 2c4αδk−1

and
P (|fn(uk − uk−1)| > ηk) ≤ K exp (−nxk) .

Then, P2,k ≤ K exp (Hk−1 +Hk − nxk) and

P2 =

∞
∑

k=1

P2,k ≤ K

∞
∑

k=1

exp (Hk−1 +Hk − nxk) . (19)

Let us set τ > 0 and choose (xk) (and then (ηk)) such that

{√
Dnx0 = H0 +D + τ

nxk = Hk−1 +Hk + (k + 1)D + τ.

Collecting the results, we obtain, by (17), (18) and (19):

P

(

sup
u∈Bm,m′

|fn(u)| > η

)

≤ C
(

e−De−τ + e−
√
De−τ/

√
D
)

. (20)

It remains to compute η2. We denote by C a constant depending only on δ0
and r̄ . This constant may vary from one line to another. We have that:

η =

∞
∑

k=0

ηk ≤ Cα

( ∞
∑

k=1

δk−1

(√

xk
β

+
xk
β

)

)

+ α

(√

x0
β

+
√
D
x0
β

)

.

Let us recall that Hk = C(k + 1)D. Then, nxk = C(3k + 2)D + τ ,
√
Dnx0 =

CD + τ and

∞
∑

k=0

δk−1xk
β

≤ 1

nβ

∞
∑

k=0

2−(k−1)(C(3k + 2)D + τ) ≤ C
D + τ

nβ
.
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Moreover,
∞
∑

k=0

δk−1

√

xk
β

≤ C

√
D +

√
τ√

nβ
.

As D/nβ ≤ 1, there exists a constant κ such that

η2 ≤ κα2

(

D

nβ
+ 2

τ

nβ
+

τ2

n2β2

)

.

Then, according to (20):

P

(

sup
u∈Bm,m′

f2
n(u) > κα2

(

D

nβ
+ 2

τ

nβ
+

τ2

n2β2

)

)

≤ C
(

e−D−τ + e−
√
D−τ/

√
D
)

.

(21)
Furthermore

E := E

([

sup
u∈Bm,m′

f2
n(u)− κa2

D

nβ

]

+

)

=

ˆ ∞

0

P

(

sup
u∈Bm,m′

f2
n(u) > κa2

D

nβ
+ τ

)

dτ

Setting τ = κα2
(

2y/nβ + y2/n2β2
)

, it follows:

E = Cγ2
ˆ ∞

0

P

(

sup
u∈Bm,m′

f2
n(u) > κα2

(

D

nβ
+ 2

y

nβ
+

y2

n2β2

)

)

(

2

nβ
+

2y

n2β2

)

dy.

By (21),

E = Cκα2
(

e−D + e−
√
D
)

(

1

nβ

ˆ ∞

0

ye−y/
√
Ddy

)

≤ C
κα2

nβ
D3/2e−

√
D.

Acknowledgment: the author wishes to thank M. Reiss and V. Genon-Catalot
for helpful discussions.

References

Applebaum, D. (2004) Lévy processes and stochastic calculus, Cambridge Stud-
ies in Advanced Mathematics, volume 93. Cambridge University Press, Cam-
bridge.

Barron, A., Birgé, L. and Massart, P. (1999) Risk bounds for model selection
via penalization. Probab. Theory Related Fields , 113 (3) pp. 301–413.

34



Birgé, L. and Massart, P. (1998) Minimum contrast estimators on sieves: expo-
nential bounds and rates of convergence. Bernoulli , 4 (3) pp. 329–375.

Comte, F. (2001) Adaptive estimation of the spectrum of a stationary gaussian
sequence. Bernoulli , 7 (2) pp. 267–298.

Comte, F., Genon-Catalot, V. and Rozenholc, Y. (2007) Penalized nonparamet-
ric mean square estimation of the coefficients of diffusion processes. Bernoulli ,
13 (2) pp. 514–543.

Dellacherie, C. and Meyer, P.A. (1980) Probabilités et potentiel. Chapitres V à
VIII , Actualités Scientifiques et Industrielles [Current Scientific and Indus-
trial Topics] , volume 1385. Hermann, Paris, revised edition. Théorie des
martingales. [Martingale theory].

DeVore, R.A. and Lorentz, G.G. (1993) Constructive approximation,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences] , volume 303. Springer-Verlag, Berlin.

Hoffmann, M. (1999) Adaptive estimation in diffusion processes. Stochastic
Process. Appl., 79 (1) pp. 135–163.

Ishikawa, Y. and Kunita, H. (2006) Malliavin calculus on the Wiener-Poisson
space and its application to canonical SDE with jumps. Stochastic Process.
Appl., 116 (12) pp. 1743–1769.

Liptser, R.S. and Shiryaev, A.N. (2001) Statistics of random processes. I , Ap-
plications of Mathematics (New York), volume 5. Springer-Verlag, Berlin,
expanded edition. General theory, Translated from the 1974 Russian original
by A. B. Aries, Stochastic Modelling and Applied Probability.

Mancini, C. and Renò, R. (2011) Threshold estimation of Markov models with
jumps and interest rate modeling. J. Econometrics, 160 (1) pp. 77–92.

Masuda, H. (2007) Ergodicity and exponential β-mixing bounds for multidimen-
sional diffusions with jumps. Stochastic Process. Appl., 117 (1) pp. 35–56.

Meyer, Y. (1990) Ondelettes et opérateurs. I . Actualités Mathématiques. [Cur-
rent Mathematical Topics]. Hermann, Paris. Ondelettes. [Wavelets].

Rubenthaler, S. (2010) Probabilités : aspects théoriques et applications en fil-
trage non linéaire, systèmes de particules et processus stochastiques.. Habil-
itation à diriger des recherches, Université de Nice-Sophia Antipolis, France.

Schmisser, E. (2009a) Penalized nonparametric drift estimation for a multi-
dimensional diffusion process. Preprint 2009-02, MAP5, Université Paris
Descartes. accepté pour publication à Statistics.

Schmisser, E. (2010) Estimation non paramétrique pour des processus de diffu-
sion. Ph.D. thesis, Université Paris Descartes.

35



Shimizu, Y. (2008) Some remarks on estimation of diffusion coefficients for jump-
diffusions from finite samples. Bull. Inform. Cybernet., 40 pp. 51–60.

Shimizu, Y. and Yoshida, N. (2006) Estimation of parameters for diffusion pro-
cesses with jumps from discrete observations. Stat. Inference Stoch. Process.,
9 (3) pp. 227–277.

36


