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We derive an effective cluster model to address the transport properties of mutually interacting small
polarons. We propose a decoupling scheme where the hopping dynamics of any given particle is determined by
separating out explicitly the degrees of freedom of its environment, which are treated as a statistical bath. The
general cavity method developed here shows that the long-range Coulomb repulsion between the carriers leads
to a net increase in the thermal activation barrier for electrical transport and hence to a sizable reduction in the
carrier mobility. A mean-field calculation of this effect is provided based on the known correlation functions of
the interacting liquid in two and three dimensions. The present theory gives a natural explanation of recent
experiments performed in organic field-effect transistors with highly polarizable gate dielectrics and might well
find application in other classes of polaronic systems such as doped transition-metal oxides.
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I. INTRODUCTION

In recent years, the development of organic electronics
has triggered a strong effort toward the understanding of
charge transport in organic field-effect transistors �OFETs�.1

In such devices, the carriers induced by a gate potential
move at the interface between an organic semiconductor and
a dielectric. Unlike their inorganic counterparts, such as Si
metal-oxide-semiconductor field-effect transistors �MOS-
FETs�, the transport properties in OFETs are dominated by
the weak transfer integrals between the molecular constitu-
ents of the organic material: the van der Waals intermolecu-
lar bonding leads even in pure crystalline samples to ex-
tremely narrow electronic bands, making such systems very
sensitive to interactions.

Recently, a systematic study of rubrene-based single-
crystalline OFETs fabricated using gate materials of increas-
ing dielectric polarizability has revealed that in the case of
high-� dielectrics, the dominant limiting mechanism of elec-
tron transport originates from the coupling with the polar
phonons at the organic-dielectric interface.2 This phenom-
enon, which in wide-band inorganic semiconductors3–7 and
in graphene8 only leads to minor modifications of the elec-
tron mobility, can be so effective in organic semiconductors
that it leads to polaronic self-localization of the carriers on
the scale of one or few molecules. As a consequence, the
mobility is strongly suppressed and becomes thermally acti-
vated, being due to the incoherent hopping of small polarons
on the molecular lattice.

Because of the increased capacitance of the devices, the
use of high-� dielectrics also has a second interesting conse-
quence, as it allows the injection of sufficiently large charge
densities, such that the electrons can no longer be considered
as noninteracting carriers.9 Indeed, concentrations on the or-
der of 0.1 carriers/molecule and above have been reached in
rubrene devices using Ta2O5 as a gate material �dielectric
constant �s=25�. The current-voltage characteristics of such
devices exhibit strong deviations from linearity that cannot

be explained in terms of independent carriers and have been
ascribed to the onset of electron-electron �e-e� interactions.9

The aim of this work is to establish a theory for the
density-dependent transport properties of mutually interact-
ing small polarons in the hopping regime. Although the
present derivation is motivated by the physics of organic-
dielectric interfaces, the problem itself is sufficiently general
to find application in other polaronic systems such as
transition-metal oxides10 and possibly oxide-oxide
interfaces11 and organic charge-transfer interfaces.12 As it
will become clear in the following, however, OFETs are
ideal systems for the observation of the many-body effects
studied here for two reasons. First, the effect of interactions
on the polaronic hopping rates can be comparatively large in
organic semiconductors, where small polarons can exist with
activation energies that are generally smaller than in oxides.
Second, and most importantly, in such devices the carrier
concentration can be varied accurately by tuning the gate
voltage without the need of chemical substitution,1,13 thus
providing a reliable and unambiguous procedure to disen-
tangle many-body effects from the properties of individual
polarons.

The present paper provides a detailed derivation of the
theory that was used in Ref. 9 to explain the current-voltage
characteristics of rubrene-based high-� OFETs, as well as its
generalization to three-dimensional �3D� systems. We start
by introducing an effective cluster model that allows to sepa-
rate the dynamics of any given electron from the remaining
carriers in the system, which are treated as an external sta-
tistical environment. The mobility is then obtained from a
suitable statistical average of the intermolecular hopping
rates, assuming a succession of incoherent hopping events.
The theory is applied to the calculation of the density-
dependent transport properties of small polarons interacting
through long-range Coulomb potentials. It is shown that the
mutual interactions between carriers give rise to a net in-
crease in the polaronic thermal activation barrier and conse-
quently to a sizable reduction in the mobility. A mean-field
calculation is performed, providing a closed-form analytical

PHYSICAL REVIEW B 79, 035113 �2009�

1098-0121/2009/79�3�/035113�12� ©2009 The American Physical Society035113-1

http://dx.doi.org/10.1103/PhysRevB.79.035113


expression for the mobility based on the known pair distri-
bution function of the interacting liquid.

The paper is organized as follows. In Sec. II we carry out
explicitly the separation between the cluster degrees of free-
dom and those of the environment. In Sec. III we focus spe-
cifically on a two-site cluster, which is appropriate in the
small-polaron limit. We derive a general formula for the hop-
ping mobility of interacting small polarons and provide a
simplified expression describing carrier-carrier correlations
in the mean-field approximation. In Sec. IV the theory is
applied to the problem of polarons interacting via the long-
range Coulomb repulsion. The results are discussed in rela-
tion to the transport properties of OFETs and of other known
polaronic systems in Sec. V.

II. EFFECTIVE CLUSTER MODEL

Let us consider a system of electrons moving on a lattice
�defined by the lattice vectors Ri� which interact with each
other and with the lattice vibrations, as described by the fol-
lowing Hamiltonian:

H = Ht + Hph + Hint + He-ph. �1�

The first term

Ht = − t�
�ij�

ci
†
c j �2�

is the tight-binding Hamiltonian for free electrons, with t as
the hopping integral and ci and ci

† as the corresponding de-
struction and creation operators for electrons. The second
term

Hph = �
j

1

2
kX j

2 + �
j

1

2M
P j

2 �3�

describes local �dispersionless� phonons of frequency �0
=�k /M, where X j is the local lattice displacement, P j the
conjugate momentum, k is the spring constant, and M is the
mass. The term

Hint =
1

2�
i,j

niVijn j �4�

is the e-e interaction where ni=ci
†ci is the electron-density

operator at site i, and Vij =V�Ri−R j� is a generic density-
density interaction potential. Finally,

He-ph = �
i,j

nigijX j �5�

is the electron-phonon �e-ph� interaction where gij =g�Ri

−R j� is a non-local-density-displacement coupling. We shall
not give here the precise form of gij and Vij, which is not
needed for the general formalism developed in the following
paragraphs. This will be provided later when dealing with
specific examples.

A. Derivation of the cluster Hamiltonian

We now derive an effective cluster model neglecting the
second term in Eq. �3�, which is valid at temperatures T

��0. The phonon kinetic-energy term will be reintroduced
in Sec. II B to treat the polaron hopping dynamics in the
semiclassical adiabatic approximation.

Our starting point to evaluate the hopping mobility of the
system described by Eq. �1� is to divide the lattice into a
cluster �c� of finite size, in which we allow for quantum
electron hopping and a remaining part �c̄� in which the dy-
namics of the electrons is neglected. This separation is en-
forced by keeping a finite transfer integral t only for elec-
trons within the cluster �c�, while setting t=0 in �c̄�. It is then
natural to rewrite model �1� by singling out the terms which
explicitly contain electronic variables in �c� that we denote
as H•,

H• = Ht
�c� + Hint

�c� + He-ph
�c� + Hint

�c,c̄� �6�

so that

H = Hph + Hint
�c̄� + He-ph

�c̄� + H•. �7�

In Eqs. �6� and �7� the labels �c� and �c̄� indicate that the
sums over electronic variables are restricted, respectively, to
the cluster or the environment, and �c , c̄� stands for interac-
tions among electrons belonging to the two different sub-
systems. It can be noted that all terms in Eq. �7� commute
with each other.

The proposed separation scheme is formally equivalent to
the one used by Pardee and Mahan14,15 to describe electrical
conduction in solid electrolytes. The justification in that case
follows from the large masses of the charge carriers that are
mobile ions. As a result, the collective rearrangement of the
particles in reaction to a given hopping event is much slower
than the hopping process itself, so that the positions of the
carriers in the environment can effectively be regarded as
static variables during the local dynamical evolution. In our
case this decoupling is justified due to the exponential sup-
pression of the carriers’ hopping rate associated to polaronic
self-localization.

To derive an effective cluster model, it is useful to intro-
duce the following reduced density matrix:

�r =
1

Z
tr�ph� tr�c̄�e

−H/kBT�
�c�

��Y i − �
j

gijX j	 , �8�

where ��c� indicates the product over the cluster electrons,
the trace symbols are defined as

tr�c̄��¯� = �
ni,i��c̄�

�¯� , �9�

tr�ph��..� =
 �
i

dXi�..� , �10�

and Z=tr�c� tr�ph� tr�c̄� e−H/kBT. In Eq. �9� we trace over all the
electronic degrees of freedom which do not belong to the
cluster. The trace over phononic variables in Eq. �10� is per-
formed by assigning the value of the phonon-induced exter-
nal fields,
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Y i = �
j

gijX j, i � �c� . �11�

These are the phononic collective variables, which act on
each site of the cluster, through nonlocal e-ph interaction �5�.
The two steps described above are now explicitly carried out.

1. Tracing out the phonons

The term H• in Eq. �6� depends on the phonons only
through the variables �Y i�. We can therefore rewrite Eq. �8�
as

�r =
1

Z
tr�c̄� tr�ph�e

−�H•��Yi��+Hint
�c̄��/kBT

	 �
i

�c�

��Y i − �
j

gijX j	e−�Hph+He−ph
�c̄� �/kBT, �12�

where with H•��Y i�� we indicate the explicit dependence of
this term on the collective phonon variables. The trace over
the original phonons Xi in Eq. �12� can be performed by
introducing the integral representation of the � function,

��Y i − �
j

gijX j	 =
 d�i

2

exp i�i�Y i − �

j

gijX j	 . �13�

Performing the Gaussian integrals over �Xi� and over ��i�,
we obtain

�r � tr�c̄� e−
H•�Y�+Hint
�c̄�+Heff

�c̄��/kBT, �14�

where Heff
c̄ represents the effective Hamiltonian resulting

from the trace over phonons. It can be expressed as

Heff
�c̄� = −

1

2�
i,j

�c̄�

niDijn j + Heff�
�c̄�, �15�

with

Dij =
1

k

g2�ij −

1

k
�
l,k

�c�


g2�il
gc
−2�lk
g

2�kj , �16�

Heff�
�c̄� =

k

2�
i,j

�c�


gc
−2�ijY iY j + �

i

�c�

�
j

�c̄�

GijY in j , �17�

Gij = �
l

�c�


gc
−2�il
g

2�lj . �18�

In the above equations we have introduced the symbol 
gc
−2�

to denote the inverse of the matrix 
g2� in the cluster sub-
space. As can be seen from Eq. �15�, integrating out the
phonon variables has led to an effective attraction Dij be-
tween the �c̄� electrons, whose form is given by Eq. �16�.
Similarly, Eqs. �17� and �18� describe the effective interac-
tions arising between the �c̄� electrons and the collective
variables Y i.

Adding the phonon-mediated interaction of Eq. �15� to the
bare electron-electron term Hint

�c̄� in Eq. �7� yields the follow-

ing screened interaction between the environment electrons:

H̃int
�c̄� =

1

2�
i,j

ni�Vij − Dij�n j . �19�

The reduced density matrix can be finally expressed as

�r � tr�c̄� e−
H•�Y�+H̃int
�c̄�+Heff�

�c̄��/kBT. �20�

Before moving on to the integration of the environment elec-
trons, it is useful to comment on the physical meaning of the
two different contributions to the phonon-induced screening
in Eq. �16�. The first term, which leads to the effective po-
tential

Ṽij = Vij −

g2�ij

k
, �21�

represents the ability of the polarizable medium to partially
screen the electron-electron interaction. For example, start-
ing from the bare Coulomb potential Vij =e2

/ ���Rij� and an
electron-phonon interaction gij of the Fröhlich type, it is
shown in Appendix B that the inclusion of this term yields

Ṽij =e2
/ ��sRij�, which correctly reproduces the static screen-

ing response of a bulk polar dielectric.
The second term in Eq. �16� is a cavity field which arises

due to the constraints in Eq. �11� because not all of the
phonons have been integrated out. It can be viewed as the
part of phonon screening that is missing due to the existence
of the cluster. Since it involves the product of two matrices

g2�il
g

2�kj, which decays faster than the direct screening

g2�ij itself, this term becomes negligible when the cluster
size is smaller than the average interparticle distance. This
cavity correction can therefore be neglected to the lowest
order in the electron concentration, although its actual mag-
nitude depends on the shape of the electron-phonon interac-
tion gij �for example, such cavity field is clearly absent in the
limit of local e-ph interactions, i.e., gij ��ij�. On the other
hand, if the cluster is enlarged to attain the size of the entire
system, the two terms in Eq. �16� exactly cancel and only the
bare electron-electron interaction remains.

2. Tracing out the electronic environment

The trace appearing in Eq. �20� can be formally carried
out by introducing two classical fields which couple linearly
to the cluster variables Y i and ni, namely,


i = �
j

�c̄�

Gijn j, i � c , �22�

�i = �
j

�c̄�

Vijn j, i � c . �23�

Such fields take into account the interactions between elec-
trons in �c̄� and the cluster degrees of freedom, as contained
explicitly in Heff�

�c̄� and in the direct term Hint
�c,c̄�. Substituting

these definitions into Eqs. �6� and �17� and regrouping terms
in Eq. �20�, one obtains the following cluster Hamiltonian:
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Hcluster = − t�
�ij�

�c�

ci
†
c j +

1

2�
i,j

�c�

niVijn j + �
i

�c�

ni�i + �
i

�c�

Y i�
i + ni�

+
k

2�
i,j

�c�


gc
−2�ijY iY j . �24�

Finally, by enforcing definitions �22� and �23� through the
appropriate � functions, the reduced density matrix of the
cluster can be expressed as a trace over the classical vari-
ables 
i ,�i of the environment,

�r =
 �
i

�c�

d
id�ie
−Hcluster/kBTP���i�,�
i�� , �25�

whose statistical distribution is

P���i�,�
i�� � tr�c̄� e−H̃int
�c̄�

/kBT�
i

�c�

��
i − �
j

�c̄�

Gijn j	
	 ���i − �

j

�c̄�

Vijn j	 . �26�

To summarize, Eqs. �24�–�26� describe a finite cluster in
which electrons mutually interact via the bare potential Vij

and are coupled to collective phonon variables Y i. The clus-
ter degrees of freedom are also subject to random fields 
i

and �i arising from the environment electrons. Such fields are
distributed, via Eq. �26�, according to the equilibrium distri-
bution of classical particles interacting through the screened

Hamiltonian H̃int
�c̄� defined in Eq. �19�.

B. Ehrenfest dynamics of the cluster model

Within the adiabatic regime, the carrier motion is con-
strained to follow the slow dynamics of the phonon
coordinates.10,16 To determine the polaron mobility it is
therefore necessary to treat explicitly the dynamics of the Xi

that was neglected in Sec. II A. This can be done by intro-
ducing the semiclassical evolution of the lattice degrees of
freedom through the following Ehrenfest equation:

MẌi = − kXi − �
j

gij�n j�t�� . �27�

In the above equation the average of the electronic operators
is taken at fixed Xi. To change to the cluster variables Y i, we
substitute Eq. �27� into Eq. �11� for i� �c�, leading to

MŸ i = − kY i − �
j

�c�


gc
2�ij�n j�t�� − �

j

�c̄�


g2�ij�n j� , �28�

where we have made explicit use of the assumption that the
environment electrons do not evolve in time. Using Eq. �22�
this can be rewritten as

MŸ i = − kY i − �
j

�c�


gc
2�ij
�n j�t�� + 
 j� . �29�

The collective phonon variables Y i are therefore subject to an
external force which depends both on the instantaneous elec-

tron density within the cluster and on the environment de-
grees of freedom through the fields 
i. It is interesting to
observe that in the present treatment, the frequency of the
collective modes is equal to the bare phonon frequency �0
=�k /M. The above Eq. �29� can equivalently be derived in a
Hamiltonian formulation by adding a kinetic term
�2M�−1�ij

�c�
gc
2�ij�i� j to Eq. �24�, with �i as the momentum

conjugate to Y i.

III. SMALL-POLARON LIMIT

The actual choice of the cluster size for practical calcula-
tions is dictated by the polaron properties, since it should be
large enough to accommodate the electronic wave function
involved in the hopping process. To keep the discussion
simple and provide a physically significant example of the
theory presented so far, we now focus specifically on the
small-polaron limit, where the electronic wave function col-
lapses onto a single molecule. This situation is realized in
systems with narrow electronic bands provided that the
electron-phonon coupling is sufficiently strong. To be spe-
cific, this occurs when the energy of a polaron fully localized
on a single molecular site EP= 
g2�11 /2k is larger than ap-
proximately half the free-electron bandwidth; in which case
a self-localized state becomes energetically more favorable
than an extended wave. Such condition is met at
rubrene /Ta2O5 interfaces, as was shown in Refs. 2 and 9, as
well as in a variety of bulk transition-metal oxides.10 The
proper cluster in this case consists of two molecules—the
initial �filled� site and the final �empty� site—and constitutes
the basis for the theory of small-polaron transport.10,16,17 We
shall explicitly consider situations where the formation of
bipolaronic states is ruled out by the presence of sufficiently
strong repulsive interactions between the carriers.18,19 Apart
from this restriction, the results obtained in this section con-
cerning the effect of electron-electron interactions will be
generally valid regardless of the physical origin and particu-
lar form of gij; the only requirement being that the polarons
are small.

A. Two-site cluster

It is shown in Appendix A that for a singly occupied
two-site cluster, Hamiltonian �24� reduces to a spin-boson
model, where the electronic degree of freedom plays the role
of a pseudospin. Introducing the notation �z=n1−n2 and �x

=c1
+c2+c2

+c1, we obtain

Hsb = − t�x +
1

2
kQ2 −

1
�2

�gQ + ���z. �30�

The relative electronic occupation �z is coupled to the
phonons through a single “interaction coordinate,”

Q =
Y2 − Y1

�2g
+

g

k


2 − 
1

�2
. �31�

The first term in Eq. �31� is the direct interaction with the
collective phonons and the second term originates from the
residual electron-phonon interaction of Eq. �18�, 
1 and 
2
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are being defined by Eq. �22�. The parameter g= 
g2�11
− 
g2�12 is an effective electron-phonon coupling for the two-
site cluster. The coupling with the environment electrons �c̄�
also occurs via a single classical variable,

� = ��2 − �1� −
g2

k
�
2 − 
1� , �32�

which takes into account the electronic repulsion �i on the
two sites corrected by the appropriate phonon-mediated at-
tractive terms 
i. Using Eq. �21�, this can be rewritten as

� = �
j

�c̄�


Ṽ2,j − Ṽ1,j�n j . �33�

Such “local field” represents the energy unbalance between
the two sites of the cluster in the presence of the potentials of
the remaining electrons screened by the lattice polarization.

B. Adiabatic hopping

In order to determine the polaron hopping rate, we now
calculate the evolution of the dynamical variables �z and Q

within the cluster in the presence of the local field �, which
by assumption is fixed during the time of the hopping pro-
cess. The electronic variable �z evolves quantum mechani-
cally through Eq. �30�, while the phonon collective variable
Q is taken to evolve through the classical Ehrenfest Eq.
�29�.20 As a further approximation, the electron transition
probability can be estimated by standard methods within the
adiabatic formulation of Refs. 16, 17, and 21: if the electron
dynamics is faster than the motion of the phonons, the quan-
tum variable �z is able to equilibrate at any given value of
the classical Q and can be integrated out. This defines the
following effective potential:

Vad�Q� =
1

2
kQ2 − ���/�2 + gQ�2

/2 + t2, �34�

which is valid at temperatures lower than the barrier ����
defined below. In the polaronic regime, it has the double-well
shape illustrated in Fig. 1�a�. Within the adiabatic descrip-
tion, an electron at site 1 is associated to a phononic variable
being at the equilibrium point Q�−g /�2k. For the occur-
rence of a classical nondissipative motion to the neighboring
well, the initial kinetic energy of Q taken from a Maxwell
distribution must exceed the relative maximum of Vad. This
defines an energy barrier

���� = �P +
�

2
+

k�2

4g2 + O�t2� , �35�

where �P=g2
/4k− t is the activation barrier for independent

adiabatic polarons.22 The rate of electron hops per unit time
from site 1 to site 2 then acquires a characteristic thermally
activated behavior,

w��� =
�0

2

exp
− ����/kBT� . �36�

We note that �0
−1 is the time it takes for the classical coordi-

nate to pass from the initial point at Q�−g /�2k to the final

point at Q�g /�2k and therefore corresponds to the natural
time scale of the hopping process. As can be seen from Eq.
�36�, in the hopping regime the time w���−1 between hopping
events is exponentially longer than the hopping timescale
�0

−1. This fact allows one to neglect the rearrangement of the
environment electrons during a given hopping process, vali-
dating the cluster/environment separation scheme proposed
in the present work.

Finally, we remark that the adiabatic treatment is valid
when the condition

��0



� �g2

/4k�kBT



�1/2

� t2 �37�

is met.16,17 In the opposite nonadiabatic regime, a hopping
rate analogous to the one given by Eqs. �35� and �36� is
obtained, with the following minor modifications:10,23–25

the prefactor ��0 /2
� must be replaced by p

= �t2
/�2�

 / �4T�P��1/2 and the barrier �P=g2

/4k. The nona-
diabatic hopping rate has exactly the same dependence as
Eq. �36� on the local field � which embodies the effects of
carrier-carrier interactions. The theory developed here for in-
teracting small polarons therefore holds independently of the
adiabatic/nonadiabatic character of the polaronic transport

Eq. �37��.

C. Small-polaron mobility

To determine the mobility, we assume that the current
flow occurs through a succession of incoherent hopping
events. Each individual process is characterized by a rate of
the form Eq. �36�, which depends explicilty on the electronic

∆p p∆ +ξ/2

V
ad

Q Q

ij

~

V

a

(a)

(b)

FIG. 1. �Color online� �a� Adiabatic double-well potential
Vad�Q� of Eq. �34� for a two-site cluster, in the absence �left� and in
the presence �right� of electron-electron interactions. The electron
position follows the dynamics of the phonon coordinate Q between
the two minima of the potential. As pictorially represented in panel
�b�, interactions between the carriers modify the shape of the double
well via the local field �, which measures the energy unbalance
between the two sites due to the presence of the environment elec-
trons. The grid represents the molecular lattice sites and the shaded
area is the two-site cluster. The initial and final sites of the carrier
hop are indicated, respectively, by a black dot and a white circle.
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environment of the hopping particle through its own local
field �. Neglecting the spatial fluctuations of the transition
rate �36� amounts to averaging the hopping rate over all the
possible values of the local field � through the appropriate
distribution P���. The mobility can then be written through
Einstein’s relation as

� =
ea2

kBT
�w� , �38�

where a is the length of the electron hop, which we take to
be equal to the intermolecular distance, and �w� is the statis-
tical average,26

�w� =
 d�P���w��� . �39�

To find the statistical distribution that enters in Eq. �39�, we
observe that if the system is sufficiently close to equilibrium,
the value of the �static� local field � is determined via Eq.
�33� by the positions of the environment electrons prior to
the hop. Correspondingly, P��� follows via Eq. �26� from the
equilibrium distribution of interacting classical particles con-

strained to the presence of an electron on the initial cluster

site. Such constraint clearly introduces spatial correlations
between the hopping particle and the environment electrons.
By creating a “correlation hole” around each carrier, interac-
tions make polaron hopping in a finite density liquid more
unfavorable than for noninteracting polarons, implying a re-
duction in the mobility. As will be shown in Sec. III D, such
static correlations are reflected in an increase in the activa-
tion barrier for electrical transport. On the other hand, having
implicitly assumed that the environment of any given par-
ticle is at equilibrium �i.e., that it relaxes to equilibrium be-
fore the same particle can hop again�, we are automatically
excluding dynamic correlations between subsequent hops.15

Preliminary numerical simulations performed by us on the
interacting liquid indicate that such dynamic correlations can
at most modify the prefactor of Eq. �38�, which amounts to
logarithmic corrections to the activation barrier. For the
present problem of interacting polarons, the effect would
therefore be negligible compared to the effect of spatial cor-
relations that we are actually calculating.

Finally, the textbook result10 for the mobility of indepen-
dent polarons is recovered by letting �=0 in the above equa-
tions,

�P = p
ea2

kBT
e−�P/kBT. �40�

D. Mean-field approximation

A complete determination of the statistical distribution
P��� defined in Secs. II A and III C requires the knowledge
of all the many-particle correlation functions of the system
�generally speaking, the nth moment of the distribution is
related to an n-particle correlation function�. To obtain a trac-
table expression for the mobility, here we evaluate the effect
of electron-electron interactions on average hopping rate �39�
at mean-field level, i.e., neglecting the fluctuations of the

local field �. This scheme of approximation corresponds to
the theory applied in Ref. 9 to the study of organic/dielectric
interfaces. It amounts to substituting averaged hopping rate
�39� with its first cumulant,

�w� � p exp
− ������/kBT� . �41�

With this replacement, the problem can be solved in terms of
the sole two-particle correlation function of the interacting
system through the evaluation of the average local field

��� = �
j

�c̄�


Ṽ2,j − Ṽ1,j��n j�1, �42�

where the symbol �n j�1 stands for the constrained probability
of occupation of site j with site 1 occupied. As anticipated
earlier, while the unconstrained average of � would clearly
vanish by symmetry in a homogeneous system, the spatial
correlations enforced by this constraint cause a net additional
energy cost ����0 for hopping from site to site in the pres-
ence of repulsive interactions. Assuming that the interaction
correction �����P, so that the quadratic term �2 in Eq. �35�
can be neglected, we obtain a barrier

������ = �P +
���

2
, �43�

which is the sum of the polaronic activation energy and a
many-body correction term due to interactions. From Eq.
�41� the density-dependent mobility can finally be expressed
in terms of the mobility of independent polarons Eq. �40� as

� = �P exp
− ���/2kBT� . �44�

This result shows that in the regime �����P, the many-body
effects on the mobility are completely decoupled from the
individual polaron properties.

It can be noted that Eqs. �43� and �44� are formally
equivalent to the formulas commonly used to describe impu-
rity conduction in compensated polar semiconductors and in
transition-metal oxide glasses.10,23,27,28 In such disordered
systems, however, the microscopic mechanism responsible
for the increase in the polaronic barrier is extrinsic to the
polaronic system, as it originates from the ability of the par-
ticles to find an efficient percolating path connecting dilute
and randomly distributed impurities.29 That picture is funda-
mentally different from the one considered here, where ���
originates from the mutual interactions between carriers in a
perfectly crystalline material.

IV. LONG-RANGE COULOMB INTERACTIONS

We now apply the theory developed so far to the calcula-
tion of the mobility of a liquid of small polarons in the pres-
ence of Coulomb interactions. We shall treat separately the
cases of interacting polarons in two and three space dimen-
sions. The former applies to the problem of polar interfaces
as can be found in OFETs with highly polarizable gate di-
electrics, while the latter can be relevant for doped polar
semiconductors and oxides with strong electron-phonon in-
teractions. In both situations, the hopping motion associated
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to the polaronic nature of the charge carriers prevents a
proper screening of the interactions, so that the full long-
ranged Coulomb potential needs to be considered. We shall
therefore take the general form

Ṽij =
�e��2

Rij

, �45�

where the effective charge e� accounts for the dielectric
screening of the polar medium. It is shown in Appendix B
that e�=e�2 / ��+�s� at a two-dimensional �2D� polar inter-
face and e�=e /��s in a bulk polar material.

We start from the observation that for a Coulomb system,
the correlation function �n j�1 appearing in Eq. �42� varies on
length scales set by the average interparticle distance �Rs

defined as Rs= �
n�−1/2 in two dimensions and Rs

= �4
n /3�−1/3 in three dimensions, n being the particle den-
sity. At sufficiently low concentrations, Rs is much larger
than the lattice spacing so that this function can be safely
replaced by its continuous limit. Correspondingly, the dis-
crete sum appearing in Eq. �42� can be replaced by the fol-
lowing integral:

��� = n
 dr
Ṽ�r + R12� − Ṽ�r��g�2��r� , �46�

with R12=a and g�2��r� as the pair distribution function30 of a
classical liquid of interacting charged particles—the one-
component plasma �OCP�. The properties of the OCP are
governed by a single dimensionless coupling parameter,

� =
�e��2

/Rs

kBT
, �47�

measuring the ratio between the electrostatic interactions and
the thermal energy. This parameter identifies a weakly corre-
lated and a strongly correlated regime, respectively, for �
�1 and ��1. Upon expanding the term between brackets in
Eq. �46� to second order in y=a /Rs, it is readily shown that
��� can be expressed in terms of the dimensionless quantities
� and y as

��� =
kBT

2
y2F��� , �48�

with F��� as a universal function of the OCP. The many-
body effects on the activation barrier are therefore entirely
controlled by the parameter � characterizing the interacting
liquid.

A. 2D

For a homogeneous two-dimensional system, performing
the angular integration in Eq. �46� and integrating the result-
ing expression by parts, we obtain

F��� = �

0

�

dy
g�2��y�

y2 . �49�

In the low-density/weakly interacting regime ��1, the
correlations of the classical OCP are fully determined by the
Debye-Hückel form31

g�2��r� = e−Ṽ�r�/kBT = e−�/y . �50�

Upon substituting this function into Eq. �49�, one obtains
F���=1.

In the opposite limit of strong coupling, the electronic
system undergoes Wigner crystallization, which occurs for
��125.31 In this regime, it is easy to calculate the energy
corresponding to a spatial displacement u of a given electron
while the remaining particles are kept at rest. Since the elec-
tron under study is initially in an equilibrium position, the
energy variation is quadratic in the displacement and can be
written as

E�u� − E�0� = �
�e��2

2Rs
3 u2. �51�

Substituting u=a and converting into the proper units, we
obtain F���=��. The value of the numerical constant
�=0.8 has been obtained through direct Ewald summation of
the Coulomb interactions on a triangular lattice,32 which is
the lowest energy structure of a Wigner crystal in two dimen-
sions.

For the evaluation of ��� at intermediate interaction
strengths, we resort to the Monte Carlo simulations of the
classical two-dimensional OCP performed in Ref. 33. There
the pair distribution function g�2��r� was tabulated at different
values of the Coulomb interaction parameter. Upon perform-
ing integral �49� using such numerical data, one obtains a
discrete set of points for the function F���. In the range 1
���20, the result can be parametrized through the linear
interpolating function,

F��� = 1 + 0.85� , �52�

within 1% accuracy �cf. Fig. 2�, and this formula remains
fairly accurate even at larger values of � until it eventually
merges into the strong-coupling Wigner crystal estimate. It
can be observed that except for a constant preasymptotic
term of order 1, the function F��� representing the interpar-
ticle correlations in the Wigner crystal has essentially the
same � dependence as that of the correlated liquid. Using
Eqs. �47� and �52� and the definition of Rs, we can finally
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FIG. 2. �Color online� The function F��� for a classical two-
dimensional Coulomb liquid: Monte Carlo data of Ref. 33 �open
circles�, interpolating function �52� �full line�, and Wigner crystal
result �dashed line�.
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write the many-body correction to the polaronic activation
barrier due to Coulomb interactions as

��� =



2
na2
kBT + 0.85�e��2�
n�1/2� . �53�

The average local field becomes temperature independent
and behaves asymptotically as ����n3/2 in the strongly cor-
related limit ���1�, i.e., when the second term between
brackets dominates.

It was shown in Refs. 2 and 9 that carriers in
rubrene /Ta2O5 devices form small polarons. Considering the
effective polaron-polaron interaction derived in Appendix B
for organic/dielectric interfaces and using the parameters ap-
propriate to a rubrene /Ta2O5 devices of Ref. 9 �a=7.2 Å,
�s=25, and �=3�, we infer that a moderately correlated po-
laron liquid is realized in the two-dimensional conducting
channel, with coupling parameters in the range 0���9. In
this regime polaron-polaron correlations yield an increase in
the activation barrier for transport reaching ��� /2
�13 meV at the highest concentrations measured �x
�0.15�. This is smaller than the barrier �P=55 meV for
independent polarons consistent with the assumptions under-
lying our derivation. When substituted into Eq. �44�, such
many-body correction leads to a sizable reduction in the po-
laronic mobility, as illustrated in Fig. 3 at two different
temperatures.34

B. 3D

In three space dimensions,

F��� = �

0

�

dy
d

dy
g�2��y� = � . �54�

This result, which follows directly from the fact that in a
homogeneous liquid phase g�2����=1 �the pair correlations
vanish at large distances�, holds exactly at all �. It is there-

fore not necessary to integrate numerically the pair distribu-
tion function obtained from Monte Carlo simulations as was
done in the two-dimensional case. It can be directly checked
that result �54� also extends to the crystallized phase. To this
aim we observe that the energy cost to displace a particle
from its equilibrium position in a three-dimensional Wigner
crystal is still given by Eq. �51�, with now ��3D�=1 from
Gauss’s theorem,35 also leading to F���=�.

For practical calculations the result can be rewritten in
terms of the carrier density n in a generic three-dimensional
system as

��� =
2


3

e2

�s

na2, �55�

which is obtained by substituting Eq. �54� into Eq. �48�. As
usual, a is the hopping distance, on the order of the lattice
spacing. The linear density dependence of the local field re-
sulting from Eq. �55� is weaker than the n3/2 behavior ob-
tained in two dimensions and is temperature independent at
all densities.

Using typical values for transition-metal oxides, such as
a=4 Å and �s=10–100 and assuming a cubic lattice struc-
ture for simplicity, we obtain a barrier increase ��� /2=�x,
where x is the carrier concentration and the coefficient �
�40–400 meV. An increase in the activation energy with
electron concentration compatible with such prediction has
been observed in doped three-dimensional transition-metal
oxides exhibiting small-polaron conduction such as
magnetite36 and the manganites.37,38 Actually, in the high-
temperature phases of the manganite compounds
LaxCa1−xMnO3, both a large-polaron scenario �in bulk
samples39� and a small-polaron scenario �in thin films37�
have have been invoked to interpret the transport properties
in the lightly electron-doped regime. We have performed a
linear fit of the doping dependence of the activation energy �
reported in Ref. 37 in the range 0�x�0.35, yielding �
=46+56x meV. When compared with Eqs. �43� and �55�,
the fitted slope of the concentration-dependent term yields
�s�70, in good agreement with the dielectric constants mea-
sured in those compounds ��s�55–90 from Ref. 40�.

V. DISCUSSION AND CONCLUSIONS

In this work we have derived a theory for the hopping
transport of mutually interacting polarons in narrow-band
materials. Observing that in the hopping regime the quantum
coherence of the carriers extends over only few lattice sites,
we solve for the quantum dynamics of the carriers within a
finite-size cluster, taking into account the interactions with
the other charges in the environment via a set of static fields.
The calculation then proceeds by assuming that transport oc-
curs through statistically independent hopping events. Corre-
spondingly, the many-particle mobility is obtained from a
statistical average of the intermolecular hopping rates over
the distribution of environment fields, which follows from
the known statistical properties of the interacting liquid.

The proposed decoupling scheme, which is analogous to
the one followed by Pardee and Mahan14,15 in the context of
ionic conductors, is justified here by the quasistatic nature of

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25

µ
/µ

P

carrier concentration

T=300K

T=100K

FIG. 3. �Color online� Interaction-induced reduction in the po-
laronic mobility calculated with the parameters appropriate to a
rubrene /Ta2O5 interface at two different temperatures. The shaded
area represents the range of densities studied in Ref. 9. The full
curves are obtained from Eq. �44�, while the dashed curves include
the full activation barrier given by Eq. �35� with �P=55 meV. The
differences are negligible because in all the explored range ���
��P. Similar curves are obtained for bulk transition-metal oxides.
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the carriers in the hopping regime as a consequence of po-
laronic self-trapping. Despite this simplification, which
amounts to neglecting dynamical correlations between sub-
sequent hops, the spatial correlations between particles
which constitute the dominant many-body effects on po-
laronic transport are fully retained. When applied to a liquid
of small polarons interacting through long-range Coulomb
forces, the theory predicts a net increase in the activation
barrier for electrical transport and hence a reduction in the
carrier mobility. The analytical formulas obtained at mean-
field level, i.e., neglecting the fluctuations of the environ-
ment field � representing the polaron-polaron correlations,
are summarized in Table I.

The present scenario consistently explains the current
characteristics of rubrene /Ta2O5 OFETs measured in Ref. 9.
There, a saturation of the usual linear I�Vg relationship ex-
pected for independent carriers was observed at large values
of the gate voltage Vg, indicative of a sizable reduction in the
mobility �the reader is referred to that work for a detailed
comparison with the experimental data�. An interpretation in
terms of carrier-carrier interactions comes naturally in these
devices where, as was mentioned in Sec. I, all the conditions
for the observation of the predicted many-body effects on the
polaronic hopping transport are simultaneously met: small-
polaron formation �because of the strong polar coupling with
the gate dielectric and the narrow bandwidth of the organic
semiconductor�, long-range Coulomb repulsion between the
carriers, and broad tunability of the carrier concentration via
the applied gate potential.

We anticipate based on our theoretical results that, in prin-
ciple, nothing prevents the observation of a downturn of the
I-Vg curves beyond the saturation regime observed in Ref. 9.
For this, the only requirement is that of a stronger reduction
in the mobility than the one realized at rubrene /Ta2O5 inter-
faces. As is clear from Fig. 3, this can be achieved either by
reducing the temperature or by increasing the carrier density,
as both effects lead to an increase in the correlation param-
eter � 
see Eq. �47�� and therefore of the ratio ��� /2kBT in
Eq. �44�. An interesting possibility in this direction is offered
by the use of polar electrolytes as gate materials, allowing to
reach much higher concentrations than with conventional po-
lar dielectrics.41,42

Finally, due to the very general nature of the mechanisms
involved, one might ask if similar effects can be observed in
other classes of systems. In principle, any system with a
sufficient concentration of small polarons �whatever the mi-

croscopic origin� interacting through long-range repulsive
forces should exhibit a density-dependent increase in the
transport activation energy. In fact, we have found at least
two examples in the literature which could fit in the present
scenario. In the manganite compound LaxCa1−xMnO3, sys-
tematic experimental studies of polaronic transport in both
thin films37 and bulk samples38 have reported a monotonic
increase in the activation barrier upon increasing the electron
concentration x that could be ascribed to polaron-polaron
interactions.38 An analogous increase/decrease in activation
energy has been observed upon increasing/decreasing the
electron concentration in magnetite via Ti and Zn dopings,
respectively.36 A possible explanation in terms of long-range
Coulomb interactions between the carriers has also been ex-
plicitly suggested. In both classes of compounds, the linear
dependence of the activation energy with electron doping is
indeed compatible with the predictions of our theory. Never-
theless, other mechanisms cannot be excluded—related to
the complex structural details of these materials, to the effec-
tiveness of electronic screening, as well as to the presence of
randomly distributed ionized dopants, whose electric fields
could also affect the polaronic hopping rates. These mecha-
nisms could be responsible for the more complex phenom-
enology observed in other systems, as, for example, in boron
carbides,43 where both a doping-independent activation as
well as an activation barrier decreasing with concentration
have been reported depending on the explored temperature
range.

We conclude by suggesting an experimental method that
could be useful to disentangle more clearly the effects of
polaron-polaron interactions from the intrinsic features of
noninteracting polarons. Such method relies on the compari-
son of the activation energy � determined from electrical
transport and �S obtained from thermoelectric power mea-
surements. Since the thermopower is insensitive to a uniform
polaronic renormalization of the carriers,44 �S would give a
direct measure of the interaction correction ��� /2 alone,
while electrical transport would be governed by the sum �
=�P+ ��� /2. Such method has been often applied to disen-
tangle impurity effects from polaron effects in transition-
metal oxide glasses28,45 and has also been proposed in the
context of ionic conductors.15,46 Comparative analysis of the
electrical and thermal transport has also been performed in
the manganite compounds to ascertain the polaronic nature
of the charge carriers.38,47 The feasibility of thermoelectric
power measurements in OFETs has been recently demon-
strated in Ref. 48 and could provide further independent in-
sight into the many-body physics of organic field-effect tran-
sistors. An extension of the present theory to include the
effects of polaron-polaron correlations beyond the mean-field
approximation, as well as its generalization to disordered
systems, is underway.
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TABLE I. Summary of the main formulas determining the
density-dependent mobility of small polarons interacting through
the long-range Coulomb potential of Eq. �45� in two and three
dimensions. Rs is the mean interparticle separation, a is the hopping
distance equal to the distance between molecular units, and e� is the
effective charge determined by the dielectric environment �see Ap-
pendix B�. The right column follows from Eqs. �47�–�49� and �54�.
It gives the mean-field correction to the polaron mobility due to
many-body effects through � /�P=exp�−��� /2kBT� 
Eq. �44��.

2D Rs= �
n�−1/2 ���= 
 / 2na2
kBT+0.85�e��2�
n�1/2�

3D Rs= �4
n /3�−1/3 ���= 2
 / 3 �e��2na2
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APPENDIX A: HAMILTONIAN OF A TWO-SITE CLUSTER

For a two-site cluster, Hamiltonian �24� explicitly reads

Hcl = Ht + V1,2n1n2 + Y1
1 + Y2
2 + n1��1 + Y1� + n2��2 + Y2�

+
k

2�
g2�11
2 − 
g2�12

2 �
�
g2�11�Y1

2 + Y2
2� − 2
g2�12Y1Y2� .

�A1�

For the present problem, we can assume without loss of gen-
erality that the cluster is singly occupied �there is one elec-
tron on the initial site, the other site being empty for the
hopping process to be allowed�. It is then possible to rewrite
the cluster Hamiltonian in a form which is formally equiva-
lent to that of a tunneling charge interacting with a single

effective mode, which is essentially a spin-boson model. De-
fining the couplings

ḡ2 = 
g2�11 + 
g2�12, �A2�

g2 = 
g2�11 − 
g2�12, �A3�

introducing the variables

x =
Y2 − Y1

�2g
, �A4�

� =
�2 − �1

�2
, �A5�


 =

2 − 
1

�2
, �A6�

and enforcing the single occupancy within the cluster
through the condition n1+n2=1, we can rewrite Eq. �A1� as

Hcl = Ht − �
n1 − n2

�2
− gx�n1 − n2

�2
− 
	1

2
kx2 + E�, �A7�

where, for single occupancy, E� is a constant. From Eq. �A7�
we see that the variable 
 only contributes to an unimportant
shift in the x equilibrium position. It is therefore convenient
to introduce the deviation Q=x−g
 /k as well as a different
interaction variable,

� = �2�� − g2
/k� , �A8�

which takes into account both the elecrton-electron interac-
tion and the electron-phonon screening correction.

Dropping all terms which do not couple to the site occu-
pations or to the phonon displacement and introducing the
pseudospin notation �z=n1−n2 and Ht=−t�x, we arrive at
Eq. �30�.

APPENDIX B: EFFECTIVE ELECTRON-ELECTRON

INTERACTIONS

1. Organic/dielectric interfaces

In organic field-effect transistors, charge carriers accumu-
late in a two-dimensional layer located at the interface be-

tween an organic crystal and a polar gate dielectric.1 Model
�1� therefore consists of two-dimensional tight-binding elec-
trons interacting with the polar-phonon modes of the inter-
face. In Fourier space, the electron-phonon interaction matrix
element has the simple form3–5,49

Mq = M0e−qz
/�q , �B1�

where q is the momentum parallel to the interface, z is the
distance of the electrons to the polar interface, which acts as
a short-distance cutoff, and M0 is a coupling constant that
depends on the dielectric properties of the interface.50 It is
given by M0

2=2
��0e2� /S, with S as the total surface of the
system, and �0 as the frequency of the coupled dispersion-
less polar mode. The parameter � is a combination of the
known dielectric constants of the two media that constitute
the interface, which determines the strength of the electron-
phonon coupling. In the present example of an organic/
dielectric interface, �= ��s−��� / ��s+�� / ���+��, where � is
the �frequency independent� dielectric constant of the or-
ganic semiconductor, and �s ,�� are, respectively, the static
and high-frequency dielectric constants of the polarizable di-
electric.

We start with the “bare” interaction potential Vij between
two charges located at a distance z from the interface:

Vij =
e2

� � 1

Rij

−
1

�Rij
2 + 4z2

�� − �

�� + �� , �B2�

where �� accounts for the high-frequency electronic polariz-
ability of the polar material. To determine the effective po-
tential, we evaluate


g2�ij

k
=

 d2q

�2
�2e−iqRijMq
2

k = 2�e2 1

�Rij
2 + 4z2

�B3�

and with Eq. �21�, we obtain

Ṽij =
e2

� � 1

Rij

−
1

�Rij
2 + 4z2

�s − �

�s + �� . �B4�

This result is equivalent to what one would obtain from a
simple image charge calculation, considering the full static
dielectric constant �s of the polar material right from the
beginning.32

It was shown in Ref. 2 that the conduction in organic
FETs effectively takes place within the first molecular layer
nearby the interface. The cut-off distance z is therefore on
the order of the lateral size of the molecules, which is com-
parable with the lattice spacing a itself. At concentrations
such that the typical interparticle spacing Rs is much larger
than both a and z, effective interaction potential �B4� reduces
to

Ṽij =
2

�s + �

e2

Rij

. �B5�

which corresponds to a long-ranged Coulomb potential with
a screened charge e�=e�2 / ��s+��.
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2. Bulk polar materials

In three-dimensional polar systems, one starts with the
bare interaction potential

Vij =
e2

��Rij

, �B6�

where �� accounts for the high-frequency polarizability of
the material. The interaction of the electrons with the polar-
phonon modes is described by the Fröhlich matrix element
Mq=M0 /q, with M0

2=2
��0�e2
/ �̃� /�. Here � is the total

volume of the system, �0 is the frequency of the coupled
dispersionless phonon mode, and �̃= ���

−1−�s
−1�−1 is an effec-

tive dielectric constant. Including the screening effect of the
polar modes as given by Eq. �16� correctly yields

Ṽij =
e2

�sRij

, �B7�

corresponding to a screened charge e�=e /��s.

3. Local interactions

To conclude this appendix, we observe that local electron-
phonon interactions as the ones described by the Holstein
model do not give rise to a long-range screening term. This
can be readily seen from Eq. �21�, where 
g2�ij /k��ij. The
effective electron-electron interactions are therefore of the
unscreened form Vij =e2

/��Rij in bulk materials and Vij

=2e2
/ ��+���Rij at interfaces. For a given carrier density, the

coupling parameter � is therefore larger than in the case of
polar screening, and the interaction effects on the mobility
should be correspondingly enhanced.

1 M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod.
Phys. 78, 973 �2006�.

2 I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G.
Rastelli, S. Ciuchi, and A. F. Morpurgo, Nature Mater. 5, 982
�2006�.

3 S. Q. Wang and G. D. Mahan, Phys. Rev. B 6, 4517 �1972�.
4 K. Hess and P. Vogl, Solid State Commun. 30, 807 �1979�.
5 N. Mori and T. Ando, Phys. Rev. B 40, 6175 �1989�.
6 M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, J. Appl.

Phys. 90, 4587 �2001�.
7 R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M.

Metz, IEEE Electron Device Lett. 25, 408 �2004�.
8 S. Fratini and F. Guinea, Phys. Rev. B 77, 195415 �2008�.
9 S. Fratini, H. Xie, I. N. Hulea, S. Ciuchi, and A. F. Morpurgo,

New J. Phys. 10, 033031 �2008�.
10 I. G. Austin and N. F. Mott, Adv. Phys. 18, 41 �1969�.
11 A. Ohtomo and H. Y. Hwang, Nature �London� 427, 423 �2004�.
12 H. Alves, A. S. Molinari, H. Xie, and A. F. Morpurgo, Nature

Mater. 7, 574 �2008�.
13 C. H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C.

Daniel Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue,
J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and
J.-M. Triscone, Rev. Mod. Phys. 78, 1185 �2006�.

14 W. J. Pardee and G. D. Mahan, J. Solid State Chem. 15, 310
�1975�.

15 G. D. Mahan, Phys. Rev. B 14, 780 �1976�.
16 T. Holstein, Ann. Phys. �N.Y.� 8, 343 �1959�.
17 I. G. Lang and Yu. A. Firsov, Sov. Phys. Solid State 9, 2701

�1968�.
18 F. Bassani, M. Geddo, G. Iadonisi, and D. Ninno, Phys. Rev. B

43, 5296 �1991�.
19 G. Verbist, M. A. Smondyrev, F. M. Peeters, and J. T. Devreese,

Phys. Rev. B 45, 5262 �1992�.
20 S. Paganelli and S. Ciuchi, J. Phys.: Condens. Matter 20,

235203 �2008�.
21 D. Emin and T. Holstein, Ann. Phys. �N.Y.� 53, 439 �1969�.
22 The barrier can be expressed in terms of the polaron energy as

g2
/4k=�EP, with �= �1− 
g2�12 / 
g2�11� /2�1 /2, the equality

holding for purely local electron-phonon interactions �Ref. 35�.

For the Fröhlich interaction in three dimensions, a straightfor-
ward calculation using the Fourier transform of the matrix ele-
ment Mq�1 /q on a cubic lattice gives ��0.3, while for the
electron-phonon interaction at polar interfaces, ��1 /2
−z /�a2+4z2 monotonically decreases with the distance z to the
interface.

23 J. Schnakenberg, Phys. Status Solidi 28, 623 �1968�.
24 R. A. Marcus, Rev. Mod. Phys. 65, 599 �1993�.
25 V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R.

Silbey, and J.-L. Brédas, Chem. Rev. 107, 926 �2007�.
26 Equation �39� has the meaning of a spatial average over the

fields � encountered by the different particles that hop. These are
treated as static variables in virtue of the decoupling of time
scales discussed after Eq. �36�. Relaxing this approximation
could modify qualitatively the rate process beyond Eq. �39� 
see
R. Zwanzig, Acc. Chem. Res. 23, 148 �1990��.

27 D. Emin, Phys. Rev. B 46, 9419 �1992�.
28 L. Murawski, C. H. Chung, and J. D. Mackenzie, J. Non-Cryst.

Solids 32, 91 �1979�.
29 A. Miller and E. Abrahams, Phys. Rev. 120, 745 �1960�.
30 J. P. Hansen and I. R. McDonald, Theory of Simple Liquids

�Academic, London, 1976�.
31 S. Ichimaru, Rev. Mod. Phys. 54, 1017 �1982�.
32 S. Fratini, A. F. Morpurgo, and S. Ciuchi, J. Phys. Chem. Solids

69, 2195 �2008�.
33 H. Totsuji, Phys. Rev. A 17, 399 �1978�.
34 The condition for adiabatic transport is fulfilled in such devices,

as the ratio between the left-hand side and the right-hand side of
Eq. �37� is �0.3 at room temperature. Actually such value
places these devices close to the adiabatic/nonadiabatic cross-
over, where the polaronic activation energy changes from �P

= �g2
/4k�− t to the nonadiabatic value �P= �g2

/4k�. This can be
at the origin of the missing correction −t in the activation energy
reported in Refs. 2 and 9.

35 G. D. Mahan, Many-Particle Physics, 3rd ed. �Plenum, New
York, 2000�.

36 A. Kozłowski, R. J. Rasmussen, J. E. Sabol, P. Metcalf, and J.
M. Honig, Phys. Rev. B 48, 2057 �1993�.

37 D. C. Worledge, L. Miéville, and T. H. Geballe, Phys. Rev. B 57,

HOPPING DYNAMICS OF INTERACTING POLARONS PHYSICAL REVIEW B 79, 035113 �2009�

035113-11



15267 �1998�.
38 T. T. M. Palstra, A. P. Ramirez, S. W. Cheong, B. R. Zegarski, P.

Schiffer, and J. Zaanen, Phys. Rev. B 56, 5104 �1997�.
39 J. L. Cohn, C. Chiorescu, and J. J. Neumeier, Phys. Rev. B 72,

024422 �2005�.
40 J. L. Cohn, M. Peterca, and J. J. Neumeier, Phys. Rev. B 70,

214433 �2004�.
41 H. Shimotani, H. Asanuma, J. Takeya, and Y. Iwasa, Appl. Phys.

Lett. 89, 203501 �2006�.
42 M. J. Panzer and C. D. Frisbie, J. Am. Chem. Soc. 129, 6599

�2007�.
43 T. L. Aselage, D. Emin, and S. S. McCready, Phys. Rev. B 64,

054302 �2001�.
44 D. Emin, Phys. Rev. Lett. 35, 882 �1975�.
45 M. J. Burns and P. M. Chaikin, J. Phys. C 18, L743 �1985�.

46 S. M. Girvin, J. Solid State Chem. 25, 65 �1978�.
47 M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S.

Horwitz, and D. B. Chrisey, Phys. Rev. B 54, 11914 �1996�.
48 K. P. Pernstich, B. Rössner, and B. Batlogg, Nature Mater. 7,

321 �2008�.
49 J. Sak, Phys. Rev. B 6, 3981 �1972�.
50 Interaction �B1� was derived from the macroscopic laws of elec-

trostatics that are valid at distances �a. In real interfaces, the
discrete nature of the polarizable medium should lead to an ad-
ditional short-range cutoff at lengths on the order of the interi-
onic spacing. To a first approximation, this effect can be incor-
porated by treating z as an effective phenomenological quantity
which includes both the channel-interface distance and the lat-
tice cutoff.

S. CIUCHI AND S. FRATINI PHYSICAL REVIEW B 79, 035113 �2009�

035113-12


